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Abstract

A description logic ABox is one of the tools to represent a snapshot of a world.
Since a world is dynamic, we need a mechanism to update it and also its snap-
shot. Updates in general can be any kind of information about the change of
the world. But here, we consider only the basic updates, i.e., the updates are
described using only simple ABoxes. There have been several known results con-
cerning this kind of updates. One of the results is that the existence of nominals
and @-constructor is needed to express the updated ABox. More precisely, the
simplest DL that is propositionally closed that is able to express the updated
ABox is ALCO@.

We try to recover the existence of ABox updates in fragments of ALCO@

that still are propositionally closed, by weakening the definition of ABox updates
from semantic updates to syntactic updates. It turns out that this weakening
is not enough to recover the existence of ABox updates in these DLs. We then
try again to weaken the definition of ABox updates from syntactic updates to
extended syntactic updates. With this weakening, we recover the existence of
ABox updates in ALCO. Unfortunately, this is not the case for ALC. If we
only allow ALC ABoxes as the result of updates, then this second weakening is
still not enough to recover the existence of ABox updates in ALC. We recover
the existence of extended syntactic ABox updates in ALC by allowing KB, i.e.,
a pair of TBox and ABox, as the result of the update.
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Chapter 1

Introduction

Every intelligent agent must have the ability to acquire new knowledge, reason
about it and perform a service based on it. Most of the times, the new infor-
mation it acquires cannot simply be added to the agent’s current knowledge
base because it may lead to an inconsistent knowledge base. In [8], Winslett
has shown how to update a knowledge base that is represented in propositional
logic. The problem of using propositional logic as a knowledge base representa-
tion is that, for many applications, it is not expressive enough. Therefore, for
such applications, we need a more expressive logic and a mechanism to update
it.

Description logics (DLs) are a family of logic-based formalisms for knowledge
representation [1]. This logic is more expressive than propositional logic. The
knowledge is defined using relevant concepts of the domain. The description
logic ABox is one of the tools used to represent a knowledge of a world. It
describes a snapshot of the current world. The knowledge represented here
tends to be dynamic because we are livin in a dynamic world. In this paper, we
will discuss updating description logic ABoxes.

Let us now see an example of how to represent knowledge in DL. Suppose
that we are interested in defining knowledge about friends. The following con-
cept describes the class of people that have a strong friend:

Person u ∃has friend.(Person u Strong)

This concept is formulated in ALC, the smallest DL that contains all Boolean
operators [5]. The following ABox, also formulated in ALC, says that John is a
person with at least one strong friend and David is a strong person:

john : Person u ∃has friend.(Person u Strong)
david : Person u Strong

The snapshot above does not say anything about the relation between John and
David. Since the semantics of ABoxes adopts the open world assumption, we
cannot conclude that David is not a friend of John nor that David is a friend of
John. Suppose that at the moment, because of aging, David is no longer strong.
In order to make sure that the ABox still is a snapshot of the real world, we
need to update the ABox. The following ABox, which is formulated in ALCO
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Chapter 1. Introduction 2

(the extension of ALC with nominals), is the result of updating the above ABox
with the new information:

john : Person u ∃has friend.(Person u (Strong t {david}))
david : Person u ¬Strong

Please note that new information about David influenced the assertion concern-
ing John. The reason is that, there is a possibility of David being a friend of
John. Hence, after updating the ABox we have to consider the possibility of
David, who is not strong, being a friend of John.

A formal theory of ABox updates has been developed for several DLs. In [4],
the authors give a formal definition of ABox updates and present an algorithm to
update ABoxes formulated in ALCQIO@ (the extension of ALCO with number
restrictions, inverse roles and @-constructor). The authors also show that under
their definition of ABox updates, we are not always able to represent updated
ABoxes in some basic DLs such as ALC and ALCO. They conclude, that
the simplest DL which contains ALC and has ABox updates is ALCO@ (the
extension of ALCO with @-constructor). It has also been shown that for DL-
Lite, ABox updates can be computed [2]. There is a huge expressiveness gap
between the DLs considered above. The results given in [4] can only be applied
to DLs that are very expressive, whereas the result provided in [2] can only be
applied to DLs that are not expressive enough for many applications. In this
thesis, we try to recover the existence of ABox updates in the basic DLs ALC
and ALCO. We are interested in these DLs because they are more expressive
than DL-Lite, less expressive than ALCO@ and there are available standard
reasoners for them. Racer [3] and Pellet [6] are examples of standard reasoners
that can handle ALC and ALCO, respectively.

As in [4], we only consider basic updates. The assumption is that new infor-
mation is formalized in a simple ABox, i.e. an ABox containing only assertions
A(a), r(a, b) and their negations, where A is an atomic concept. We do not
admit complex assertions in the update because of the same reasons as in [4].
First, there is a single and uncontroversial semantics for updates in this re-
stricted form. Second, we believe that, allowing concepts involving quantifiers
nested in a complex way, in the update leads to unintuitive results. We also
assume that there is no TBox in the original knowledge base for the same reason.

As stated before, we try to recover the existence of ABox updates inALC and
ALCO. We do this by weakening the definition of having ABox updates. Let
A be an ABox represented in L, U an update, and A′ be the result of updating
A with U . In [4], the authors define a DL L has (semantic) ABox updates if A′
can be represented in L. In this thesis, we define a weaker definition of ABox
updates. We call this definition syntactic ABox updates. We say a DL L has
syntactic ABox updates if we can represent an ABox A¦ in L such that A¦ has
the same L logical consequences as A′. It turns out that doing this is not enough
to recover the existence of ABox updates in both ALC and ALCO. We show this
by introducing a combination of ABox and update in ALC (respectively ALCO),
and then showing that there is no ALC (respectively ALCO) ABox that has the
same ALC (respectively ALCO) logical consequences as the updated ABox that
is represented in ALCO@.

We then again try to weaken the definition of syntactic ABox updates to the
extended syntactic ABox updates. Let A be an ABox represented in L, U an
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update, and A′ be the result of updating A with U . We say a DL L has extended
syntactic ABox updates if we can represent an ABox A¦ in L such that A¦ has
the same L logical consequences as A′ with respect to assertions that do not use
symbols that appear in A¦ but not in A′. The idea here is that A¦ is allowed
to use additional symbol that is not used in A¦. By doing this we can recover
the existence of extended syntactic ABox updates in ALCO whereas this does
not work for ALC. We can recover the existence of such updates in ALC by
allowing ALC knowledge bases, i.e. a pairs of general TBox and ABox, as the
result of ABox updates. We show that the updated ABox (resp. knowledge
base) exists and is expressible in ALCO (resp. ALC).

This thesis consists of five chapters:

• Chapter 2 contains the basic knowledge that is required to fully under-
stand the thesis. We introduce several description logics that are used
throughout this thesis. They are ALC, ALCO, ALC@ and ALCO@. We
also introduce some known results in this DLs, that will be used in the
thesis. We then introduce several definitions of ABox updates and the
relations between them. We start with showing how to update interpre-
tations and then introduce three different definitions of ABox updates
that we consider: semantic ABox update, syntactic ABox update and ex-
tended syntactic ABox update. This chapter ends with the introduction
of uniform ABox interpolation and its relation with ABox updates.

• In Chapter 3, we study the existence of syntactic ABox updates in ALC,
ALCO and ALC@. We show that all of these logics are not expressive
enough to represent the syntactically updated ABox. In this chapter,
we also introduce the notion of Boolean ABoxes. We then show that
Boolean ALC ABoxes (which are more expressive than standard ALC and
ALC@ ABoxes) are still not expressive enough to recover the existence of
syntactic ABox updates.

• Chapter 4 consists of the results concerning extended syntactic ABox up-
dates. We show that ALC is still not expressive enough to represent the
updated ABox in this weaker definition. To recover the existence, we then
allow knowledge bases as the results of updates. This brings a positive
result. It turns out that there ALC KB is expressive enough to represent
the updated ABox in this weaker sense. We continue with the DL ALCO.
Here, we show that ALCO has extended syntactic ABox updates.

• In Chapter 5, we give a summary of the results that we have obtained in
this thesis and give some suggestions for future works.



Chapter 2

Preliminaries

There are several basic notions and notations that need to be understood before
we go into details discussing updates of Description Logic ABoxes. First, we
introduce the DLs that we are going to use in this thesis. Then, we introduce
several definitions of ABox updates. We also introduce the notion of uniform
interpolation at the end of this chapter and its relation to ABox updates.

2.1 Description Logics

In this section, we first introduce the syntax and semantics of description logic
ALCO@ and then its fragments: ALC, ALCO, and ALC@. Then we introduce
the notion of ABoxes. We also introduce some well known results concerning
these DLs, that will be used in this thesis.

2.1.1 Syntax and Semantics

In the DL ALCO@, concepts can be constructed using the constructors listed
in Figure 2.1 starting with a set NC of concept names, NR of role names and
NI of individual names. There and throughout this paper, we use a, b, and c
to denote individual names, r and s to denote role names, A and B to denote
concept names, and C and D to denote concepts. As usual, we also use the
abbreviation > for a propositional tautology, ⊥ for ¬>, → and ↔ for the usual
Boolean abbreviations.

The most basic fragment of the DL ALCO@ that we consider in this paper is
the DL ALC. The DL ALC is the ”smallest” DL that is propositionally closed,
i.e. it allows only the following concept constructors: negation, conjunction,
disjunction, and both universal and existential restrictions [5]. The availability
of the other concept constructors are indicated by concatenating the following
letters to ALC: O stands for nominals and superscript @ for the @ constructor.
So, we have the following fragments of ALCO@: ALC, ALCO, and ALC@. A
concept is an L concept iff it is constructed using the constructors allowed in
the DL L. The following are examples of ALC, ALCO, ALC@ and ALCO@
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2.1 Description Logics 5

Name Syntax Semantics

Nominal {a} {aI }
Negation ¬C ∆I \ CI
Conjunction C uD CI ∩DI
Disjunction C tD CI ∪DI
Existential restriction ∃r.C {d ∈ ∆I | (d, e) ∈ rI and e ∈ CI }
Universal restriction ∀r.C {d ∈ ∆I | (d, e) ∈ rI implies e ∈ CI }
@ constructor @aC ∆I if aI ∈ CI , and ∅ otherwise

Figure 2.1: Syntax and semantics of ALCO@

concepts.

ALC concept : Person u ∀has friend.(Good u Loyal)
ALCO concept : Man u ∃has friend.({david} u (¬Strong t Brave))
ALC@ concept : @maryHappy t ∃has friend.Happy

ALCO@ concept : ∃has friend.{john} t@john¬Happy

The semantics of a DL concept, role, and individual names is defined in
terms of an interpretation I = (∆I , ·I). The domain ∆I is a set of individuals
and the function ·I maps each concept name A ∈ NC to a set AI ⊆ ∆I , each
role name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I and each individual name
a ∈ NI to an individual aI ∈ ∆I . The semantics of the concept constructors are
listed in Figure 2.1.

A concept C is satisfiable if there is an interpretation I such that CI 6= ∅.
Such an interpretation is called a model of C. A concept C is subsumed by D
(denoted C v D) if for all interpretations I, CI ⊆ DI . The followings are
examples of an unsatisfiable concept and a subsumption between two concepts.

• Au¬A is unsatisfiable because for all interpretation I, AI∩(∆I \AI) = ∅.
• A uB v B because for all interpretations I, AI ∩BI ⊆ BI .

Concerning the satisfiability of a concept, the DL ALC has an interesting
property. It turns out that for every satisfiable ALC concept C, there exists a
tree model of it.

Definition 1 (Tree Model). An interpretation I is a tree model of C iff

• I = (V,E) is a tree where V = ∆I and for all (e, f) ∈ ∆I×∆I , (e, f) ∈ E
iff there is an r ∈ NR such that (e, f) ∈ rI .

• d ∈ CI and d is the root of (V,E).

The proof of the following lemma can be seen in [5].

Lemma 2. For all ALC concepts C, C is satisfiable iff C has a tree model.
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Before we introduce TBox and ABox formalisms in DL, we first introduce
some basic notions that will often be used in this thesis. A concept C is in
Negation Normal Form (NNF) if the negation occurs only in front of a concept
name or nominal. For example, the concept ¬(A t {a}) is not in NNF but the
equivalent concept ¬A u ¬{a} is in NNF. Every ALCO@ concept can be trans-
formed into an equivalent concept in NNF by applying the following rewriting
rules exhaustively.

¬¬C Ã C ¬(C uD) Ã ¬C t ¬D
¬¬{a} Ã {a} ¬(C tD) Ã ¬C u ¬D
¬∃r.C Ã ∀r.¬C ¬∀r.C Ã ∃r.¬C
¬@aC Ã @a¬C

The length |C| of a concept C is the number of symbols needed to write C. It
is easy to see that the applications of the rewriting rules are bounded by |C|.
Hence, it is safe to assume that a concept is given in NNF since we know that
the NNF of a concept always exists and can be constructed in linear time.

The set sub(C) of subconcepts of a concept C is a set of all subconcepts
of C. The set sub(C) is the smallest set satisfying:

C ∈ sub(C)
¬D ∈ sub(C) implies D ∈ sub(C)

D u E ∈ sub(C) implies {D,E} ⊆ sub(C)
D t E ∈ sub(C) implies {D,E} ⊆ sub(C)
∃r.D ∈ sub(C) implies D ∈ sub(C)
∀r.D ∈ sub(C) implies D ∈ sub(C)
@aD ∈ sub(C) implies D ∈ sub(C)

The interesting fact about the cardinality of sub(C) (denoted |sub(C)|) is that
|sub(C)| ≤ |C|. This fact can be shown using structural induction on C. Please
also note that if C is in NNF, then every element of sub(C) is also in NNF.

A signature Σ = 〈N′C,N′R〉 is a pair of a set of concept names N′C ⊆ NC and
a set of role names N′R ⊆ NR. A concept C is an LΣ concept iff C is an L
concept and for every concept and role names ψ that occurs in C, ψ ∈ N′C ∪N′R.
A concept name A belongs to a signature Σ = 〈N′C,N′R〉 (written A ∈ Σ) if
A ∈ N′C. A role name r belongs to a signature Σ = 〈N′C,N′R〉 (written r ∈ Σ) if
r ∈ N′R. The signature sig(C) is a pair 〈N′C,N′R〉 where N′C and N′R are the set
of concept and role names used in C. We say that Σ1 = 〈NC1,NR1〉 is a sub
signature of Σ2 = 〈NC2,NR2〉 denoted Σ1 ⊆ Σ2 if NC1 ⊆ NC2 and NR1 ⊆ NR2.
The abbreviation Σ1∩Σ2 denotes the signature that consists of the intersection
of the concept names and the intersection role names in Σ1 and Σ2. We also
use the abbreviation Σ1 ∪Σ2 to denote the signature that consists of the union
of the concept names and the union role names in Σ1 and Σ2.

2.1.2 Description Logic ABox

A description logic assertional box (ABox) is a finite set of concept assertions
a : C (or sometimes written C(a) if C is a short or simple concept), positive
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A = {john : ∃has friend.(Strong t {david}), david : ¬Strong u Brave}
A¦ = {john : ∃has friend.(Strong t Brave), david : ¬Strong u Brave}

Figure 2.2: Examples of ABoxes

role assertions r(a, b), and negative role assertions ¬r(a, b). An ABox is used
to store an incomplete snapshot of a world, i.e., an ABox contains only parts
of information of the real world. As we have seen in the introductory chapter,
this is the source why updating an ABox is not trivial. An ABox assertion ϕ is
an L assertion iff ϕ is a role assertion or ϕ = C(a) and C is an L concept. An
ABox is an L ABox if it contains only L assertions. The ABox A in Figure 2.2
is an ALCO ABox while A¦ is an ALC ABox. Let Σ = 〈N′C,N′R〉 be a signature.
An ABox assertion ϕ is an LΣ assertion iff

• ϕ = r(a, b) and r ∈ N′R

• ϕ = ¬r(a, b) and r ∈ N′R

• ϕ = C(a) and C is an LΣ concept

If an ABox contains only LΣ assertions, then it is called an LΣ ABox. The
signature sig(A) is a pair 〈N′C,N′R〉 where N′C and N′R are the set of concept and
role names used in A. The length |ϕ| of an ABox assertion ϕ is defined as
follows.

|ϕ| :=





|C| if ϕ = C(a)
1 if ϕ = r(a, b)
1 if ϕ = ¬r(a, b)

The size |A| of an ABox A is defined as follows.

|A| :=
∑

ϕ∈A
|ϕ|

An ABox A is in NNF iff for all concept assertions C(a) ∈ A, C is in NNF.
The set sub(A) is defined as follow.

sub(A) :=
⋃

C(a)∈A
sub(C)

An interpretation I satisfies a concept assertion C(a) iff aI ∈ CI , a positive
role assertion r(a, b) iff (aI , bI) ∈ rI , and a negative role assertion ¬r(a, b) iff
(aI , bI) /∈ rI . An interpretation I is a model of an ABox A (written I |= A) iff
for all assertions ψ ∈ A, I satisfies ψ (written I |= ψ). An ABox is consistent
iff it has a model. An ABox assertion ϕ is a logical consequence of an ABox A
(written A |= ψ) iff every model of A satisfies ϕ. An ABox A entails an ABox
B (written A |= B) if for all ϕ ∈ B, ϕ is a logical consequence of A (sometimes,
we also say A satisfies ϕ).
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Concerning the consistency of ABoxes, the DL ALC has an interesting prop-
erty that will be used in this thesis. Since, every satisfiable ALC concept has a
tree model, it is not hard to see that every ALC ABox has a forest-like model.

Definition 3 (Forest-like Model). An interpretation I is a forest-like model of
an ABox A if

• I |= A,

• I is a forest-like interpretation, i.e., I consists of trees with the inter-
pretations of individual names as the roots and every root can only have
incoming edge from other roots, and

• if aI and bI are roots of the trees in I, then there exists an r edge from
aI to bI iff r(a, b) ∈ A or r(b, a) ∈ A

Lemma 4. For all consistent ALC ABox, there exists a forest-like model of it.

Proof. (sketch) Let A be a consistent ALC ABox. Then A has a model I. Now,
let a be an individual name that occurs in A. We define the concept Xa as
follows.

Xa :=
l
{C ∈ sub(A) | I |= C(a)} u

l
{¬C | C ∈ sub(A) and I |= ¬C(a)}

We also define T (a) as a tree model with aT (a) as the root and aT (a) ∈ (Xa)T (a).
Lemma 2 and the definition of Xa guarantee the existence of these models
for all individual names a that occur in A. We collect all these trees and
then for all r(a, b) ∈ A, we connect the root of T (a) to T (b). We name this
new interpretation J . From the construction, we know that J is a forest like
interpretation. The fact that J satisfies all role assertions in A follows directly
from the construction. The fact that J satisfies all concept assertions in A
can be shown by inductively showing the claim for all a ∈ NI, d ∈ ∆T (a) and
C ∈ sub(A), d ∈ CT (a) implies d ∈ CJ .

2.2 ABox Updates

As mentioned in the previous section, an ABox is used to store an incomplete
snapshot of the world. The complete snapshot itself is represented by an in-
terpretation. So, before going into details about updating an ABox, we need
to know how to update an interpretation. In this thesis, we only consider the
simplest form of update which only allow simple ABoxes as updates. An ABox
A is simple if C(a) ∈ A implies that C is a concept literal, i.e., a concept name
or a negated concept name. We also assume that the update information is
consistent since it does not make any sense to update a knowledge base with
inconsistent information. To sum up, an update is a simple and consistent ABox
that contains update information. We first introduce the definition of interpre-
tation update and ABox updates afterwards.

Definition 5 (Interpretation Update). Let U be an update, I, I ′ interpretations
such that ∆I = ∆I′ and for all a ∈ NI, aI = aI

′
. Then I ′ is the result of

updating I with U (written I =⇒U I ′) if
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• for all A ∈ NC, A
I′ = (AI ∪ {aI | A(a) ∈ U}) \ {aI | ¬A(a) ∈ U};

• for all r ∈ NR, rI
′
= (rI ∪ {(a, b) | r(a, b) ∈ U}) \ {(a, b) | ¬r(a, b) ∈ U}.

Now, we define the ABox updates problem. Given an ABox A that describes
the current knowledge and an update U containing update information, we want
to construct a new ABox A′ that is the snapshot of the updated world. In this
thesis, we introduce three types of ABox updates: semantic updates, syntactic
updates and extended syntactic updates.

From now on, we often treat sets of models similar to ABoxes. In particular,
we write I ≡ A if I is the set of models of A and say that an assertion ϕ is a
logical consequence of a set of models I (written I |= ϕ) iff for all I ∈ I, I |= ϕ.

Definition 6 (Semantic ABox Update). Let A be an ABox and U an update.
We denote A ∗ U as the (unique) set of models such that

(U1) ∀I, I ′ : ((I |= A ∧ I =⇒U I ′) → I ′ ∈ A ∗ U) and

(U2) ∀I ′ : (I ′ ∈ A ∗ U → ∃I : (I |= A ∧ I =⇒U I ′)).
An ABox A′ is the result of semantically updating A with U if A′ ≡ A ∗ U . We
call A the original ABox, A ∗ U the updated models and A′ the semantically
updated ABox.

We know that given an original ABox A and update U , up to equivalence,
there exists at most one semantically updated ABox A′. We say a DL L has
semantic ABox updates if for every original L ABox and update U , there exists
an L ABox A′ such that A′ and the updated models A ∗ U are equivalent
(A′ ≡ A ∗ U). There is an interesting fact concerning the signature of the
semantically updated ABox A′. We know that sig(A) ∪ sig(U) ⊆ sig(A′). As
stated in [4], the DLs ALC, ALCO, and ALC@ do not have ABox semantic
updates. The simplest DL that contains ALC and has semantic ABox updates
is the DL ALCO@.

Consider the following scenario. We are working with an ABox A that is
expressed in L where L ∈ {ALC,ALCO,ALC@}. For some reason, our ABox
A needs to be updated with U . In general, we get an ALCO@ ABox A′ as
the semantically updated ABox that cannot be represented in L. Since we are
working on an L-ABox, we are most like interested only in L assertions. Then,
we do not need to have an updated ABox that is equivalent to A′. We just need
an ABox that has the same L logical consequences as A′.
Definition 7 (L-indistinguishable).

• ϕ is an L logical consequence of A if A |= ϕ and ϕ is an L assertion.

• ABoxes A and A¦ are L-indistinguishable if for all L assertions ϕ, A |= ϕ
iff A¦ |= ϕ.

• A set of models I and an ABox A¦ are L-indistinguishable if for all L
assertions ϕ, I |= ϕ iff A¦ |= ϕ.

This scenario leads us to the idea of introducing a weaker definition of ABox
updates. We hope by weakening the definition of semantic updates to syntactic
updates, we are able to recover the existence of ABox updates in some basic
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DLs ALC, ALCO and ALC@. We say a DL L has syntactic ABox updates if for
every original L ABox A and update U , there exists an L ABox A¦ such that
the updated models A ∗ U and A¦ are L-indistinguishable.

Definition 8 (Syntactic ABox Update). Let A be an original L ABox, U an
update and A∗U the updated models. An ABox A¦ is the result of syntactically
updating A with U in DL L if A ∗ U and A¦ are L-indistinguishable. We call
A¦ the syntactically updated ABox in DL L.

We will give an example of this kind of update. Before going into details
of the example, we introduce a new notation that will be used. Let A be an
ABox. We use the notation JAK = {I | I |= A} for the set of all models of A.
The following ALC ABox A expresses that John has at least one strong friend.
We also know that David is strong and brave.

john : ∃has friend.Strong

david : Strong u Brave

Suppose that, because of aging, David is no longer strong but he is still a brave
man. Hence, we need to update our knowledge by the following update U .

¬Strong(david)

Let JAK = {I | I |= A}, we divide these interpretations into two groups such
that JA1K ∪ JA2K = JAK as follows:

1. JA1K = {I | I ∈ JAK and I |= has friend(john, david)}
2. JA2K = {I | I ∈ JAK and I |= ¬has friend(john, david)}

From the definition, it is clear that for all I ∈ JA1K ∪ JA2K,
I |= david : Strong u Brave

I |= john : ∃has friend.Strong

Abusing notation, let JAU1 K and JAU2 K be the results of updating the interpreta-
tions in JA1K and JA2K respectively. Then we have:

JAU1 K = {I | I |= david : ¬Strong u Brave} ∩
{I | I |= has friend(john, david)} ∩
{I | I |= john : ∃has friend.(Strong t {david}}

JAU2 K = {I | I |= david : ¬Strong u Brave} ∩
{I | I |= ¬has friend(john, david)} ∩
{I | I |= john : ∃has friend.Strong}

Due to (U1) and (U2), we have that the update models A ∗ U is the union of
these two sets. Hence, the semantically updated ABox A′ can be expressed in
ALCO as follows:

john : ∃has friend.(Strong t {david})
david : ¬Strong u Brave

This ABox is exactly the ABox A described in Figure 2.2.
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Figure 2.3: I, I ′ and I ′′

Lemma 9. There exists no ALC ABox that is equivalent to the ALCO ABox
A as described in Figure 2.2.

Proof. (sketch) Let I, I ′ and I ′′ be the interpretations shown in Figure 2.3. The
individual names john and david are mapped to j and d respectively. Moreover,
all other individual names are mapped to y. The concept name Brave is mapped
to {d, x}, Strong to {z} and the other concept names are interpreted as empty
set. It is easy to see that I |= A and I ′′ |= A, but I ′ 6|= A.

We claim that there is no ALC concept that can differentiate the interpre-
tations I and I ′. This means that for all ALC concepts C and all individual
names α, I |= C(α) iff I ′ |= C(α). The proof of the claim can be done using a
very similar argument as in [4].

We then assume that such ALC ABox B exists. Then I |= B and I ′′ |= B,
but I ′ 6|= B. We know that for all role assertions ϕ ∈ B, I ′′ |= ϕ iff I ′ |= ϕ. We
also know that for all concept assertions ψ ∈ B, I |= ψ iff I ′ |= ψ. Hence, this
shows that I |= B and I ′′ |= B then I ′ |= B (contradiction).

Lemma 9 implies the fact that ALC does not have semantic ABox updates.
But, if we are interested only in the logical consequences in the DL ALC, then
there exists an ALC ABox A¦ such that A′ and A¦ are ALC-indistinguishable.
This is shown in the following lemma. Moreover, we show that the ALC ABoxes
A and A¦ in Figure 2.2 are ALC-indistinguishable.

Lemma 10. Let A and A¦ be ABoxes in Figure 2.2. Then, A and A¦ are
ALC-indistinguishable.

Proof. We need to show that for all ALC assertions ϕ, A |= ϕ iff A¦ |= ϕ. Since
A¦ ⊆ A, we know that A |= A¦. Hence, we can conclude that for all ALC
assertions ϕ, A¦ |= ϕ implies A |= ϕ. To conclude the proof, we still need to
show for all ALC assertions ϕ, A |= ϕ implies A¦ |= ϕ. We do a case analysis
on ϕ. If ϕ is a role assertion, then the case is trivial because we know both of
the ABoxes above do not entail any role assertions. We now come to a more
interesting case, which is, ϕ is a concept assertion.

We prove this by showing the following claim. For allALC concept assertions
ϕ, if A¦ ∪ {¬ϕ} is consistent, then A ∪ {¬ϕ} is also consistent. Assume that
A¦ ∪ {¬ϕ} is consistent. Then there exists a model I of A¦ ∪ {¬ϕ}. From
Lemma 4, we know that without loss of generality, we can assume that I is a
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forest-like model. We show that we can construct another interpretation J by
extending I such that J |= A ∪ {¬ϕ}. This then concludes the proof.

We construct the interpretation J as an extension of I. The construction of
J depends on the individual name in ϕ. If the individual name is david, then we
add (johnI , davidI) to the interpretation has friendI . Otherwise, we change the
interpretation of davidI to the individual who is a brave friend of John. This
individual is guaranteed to exists due to the fact that

I |= john : ∃has friend.(Strong t Brave) and
I 6|= john : ∃has friend.(Strong t {david}).

Formally, J is constructed as follows. Let d ∈ ∆I such that (johnI , d) ∈
has friendI and d ∈ BraveI .

has friendJ :=

{
has friendI if ¬ϕ 6= C(david)
has friendI ∪ {(johnI , davidI)} otherwise

davidJ :=

{
d if ¬ϕ 6= C(david)
davidI otherwise

As a direct result of our construction, we have J |= A. It remains to show that
J |= ¬ϕ. Case analysis:

• ¬ϕ = C(david). This case is trivial because from the construction and
the fact that I is a forest-like interpretation, we know that for all ALC
concepts C, davidJ ∈ CJ iff davidI ∈ CI .

• ¬ϕ 6= C(david). This case is also trivial because from the construction we
have for all d ∈ ∆I and ALC concepts C, d ∈ CI iff d ∈ CJ and for all
a ∈ NI, a 6= david implies aI = aJ .

Hence, J |= A and J |= ¬ϕ.

We have seen that there exists an ALC ABox that is ALC-indistinguishable
with a semantically updated ABox which cannot be expressed in ALC. From
this, one may be tempted to conjecture that if we started with an original
ALC ABox, the syntactically updated ABox can always be expressed in ALC.
Unfortunately, this is not the case. We will show this in the next chapter.

In some applications, we are often interested only in a certain set of concept
and role names (signatures) and we do not care about the others. So going back
to the previous scenario, instead of being interested only in L assertions, we
are interested only in L assertions which are build using a particular signature.
These particular signatures usually contain only finite sets of concept and role
names. This means we can use additional concept and role names in our syntac-
tically updated ABox and not care about the assertions that use the additional
symbols.

Definition 11 (LΣ-indistinguishable).

• ϕ is an LΣ logical consequence of A if A |= ϕ and ϕ is an LΣ assertion.

• ABoxes A and A¦ are LΣ-indistinguishable if for all LΣ assertions ϕ,
A |= ϕ iff A¦ |= ϕ.
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• A set of models I and an ABox A¦ are LΣ-indistinguishable if for all LΣ

assertions ϕ, I |= ϕ iff A¦ |= ϕ.

The scenario above and the fact that weakening semantic updates to syntac-
tic updates is not enough to recover the existence of ABox updates in the DLs
we are interested in, are the reasons why we introduce the ABox extended syn-
tactic update. We will show that using this definition, we can partially recover
the existence of ABox updates in the DL ALC and fully in the DL ALCO. We
say a DL L has extended syntactic ABox updates if for every original L ABox A,
update U , there exists an L ABox A¦ such that the updated models A ∗ U and
A¦ are LΣ-indistinguishable where Σ = 〈NC,NI〉 \ (sig(A¦) \ (sig(A) ∪ sig(U))).

It is not hard to see that A and A¦ are LΣ-indistinguishable where Σ =
〈NC,NI〉\(sig(A¦)\sig(A)) iff for all L assertion ϕ where sig(ϕ)∩sig(A¦) ⊆ sig(A),
we have A |= ϕ iff A¦ |= ϕ. We will be using these sentences interchangeably
throughout the thesis.

Definition 12 (Extended Syntactic ABox Update). Let A be an L ABox,
U an update and A ∗ U the updated models. An ABox A¦ is the result of
extended syntactically updating A with U in DL L if A ∗ U and A¦ are LΣ-
indistinguishable where Σ = 〈NC,NI〉 \ (sig(A¦) \ (sig(A) ∪ sig(U))). We call A¦
the extended syntactically updated ABox in L.

Intuitively, the definition allows us to use additional helping symbols, that
will not be considered when we check the logical consequences, in expressing
A¦. For this kind of update, consider the following example. Assume that we
know that John has at least one strong friend. We then see that John and
David are fighting with each other in a bar. This means we have to update our
knowledge with the information that David is not John’s friend. The following
ALCO ABox A describes the snapshot.

john : ∃has friend.Strong

Let JAK = {I | I |= A}, we divide these interpretations into three groups such
that JA1K ∪ JA2K ∪ JA3K = JAK as follows:

1. JA1K = {I | I ∈ JAK ∧ I |= Strong(david) ∧ I |= has friend(john, david)}
2. JA2K = {I | I ∈ JAK ∧ I |= Strong(david) ∧ I |= ¬has friend(john, david)}
3. JA3K = {I | I ∈ JAK ∧ I |= ¬Strong(david)}

From the definition, it is clear that for all I ∈ JA1K ∪ JA2K ∪ JA3K,

I |= john : ∃has friend.Strong

Abusing notation, let JAU1 K, JAU2 K and JAU3 K be the results of updating the



2.2 ABox Updates 14

interpretations in JA1K, JA2K and JA3K respectively. Then we have:

JAU1 K = {I | I |= Strong(david)} ∩
{I | I |= ¬has friend(john, david)} ∩
{I | I |= john : ∃has friend.(Strong u ¬{david}}

JAU2 K = {I | I |= Strong(david)} ∩
{I | I |= ¬has friend(john, david)} ∩
{I | I |= john : ∃has friend.Strong}

JAU3 K = {I | I |= ¬Strong(david)} ∩
{I | I |= ¬has friend(john, david)} ∩
{I | I |= john : ∃has friend.Strong}

Due to (U1) and (U2), we have the updated models A ∗ U is the union of these
three sets. Hence, the semantically updated ABox A′ can be expressed in ALC@

as follows:

john : ∃has friend.Strong t@davidStrong

¬has friend(john, david)

It has been shown in [4] that there is no ALCO ABox that is equivalent to
the above ALC@ ABox. Moreover, we will show in Chapter 3 that there is no
ALCO ABox B such that A′ and B has the same ALCO logical consequences.
But, if we consider only ALCOΣ logical consequences where Σ = 〈NC,NI〉 \
(sig(A¦) \ sig(A′)), then there exists an ALCO ABox A¦ such that A′ and A¦
are ALCOΣ-indistinguishable.

Lemma 13. If

A′ = {john : ∃has friend.Strong t@davidStrong,¬has friend(john, david)

is the semantically updated ALCO@ ABox. Then

A¦ = {john : ∃has friend.Strong t (∃u.{david} u Strong),
¬has friend(john, david)}

is the extended syntactically updated ABox.

We will proof this in a more general manner in Chapter 4. We now want to
see the relation between the different definitions of ABox updates. This explains
why we say one definition is weaker than the other.

Lemma 14. Let A be an ABox.

1. If A is the semantically updated ABox, then A is also the syntactically
updated ABox in L for all DLs L.

2. If A is the syntactically updated ABox in L, then A is also the extended
syntactically updated ABox in L.

Proof.
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1. From the Definition 7, we know that for all ABoxes A, B and DLs L, we
have A ≡ B implies A and B are L-indistinguishable. Hence, the fact that
A ≡ A concludes the case.

2. Let A′ be the semantically updated ABox. Then from the assumption
that A is the syntactically updated ABox in L, we get A and A′ are L-
indistinguishable. From the Definition 11, we know that for all ABoxes
A, B and signatures Σ, we have A and B are L-indistinguishable implies
A and B are LΣ-indistinguishable. Hence, we have A and A′ are LΣ-
indistinguishable where Σ = 〈NC,NR〉 \ (sig(A) \ sig(A′)).

Corollary 15.

1. If a DL L has semantic ABox updates, then L has syntactic ABox updates.

2. If a DL L has syntactic ABox updates, then L has extended syntactic ABox
updates.

Proof.

1. Assume that L has semantic ABox updates. Then for every original ABox
A and update U , there exists a semantically updated L ABox A′. From
Point 1 in Lemma 14, we know that A′ is also the syntactically updated
ABox.

2. Assume that L has syntactic ABox updates. Then for every original ABox
A and update U , there exists a syntactically updated L ABox A′. From
Point 2 in Lemma 14, we know that A′ is also the extended syntactically
updated ABox.

There are some cases where the existence of syntactic ABox updates coin-
cides with the existence of extended syntactic ABox updates. One result that
we will see in the next subsection is that if a description logic has uniform
ABox interpolation, the existence of syntactic ABox updates and the existence
of extended syntactic ABox updates coincides.

2.3 Uniform Interpolation

In this subsection, we introduce the notion of uniform concept interpolation and
then the notion of uniform ABox interpolation. After that we show the relation
between uniform interpolation and ABox updates.

Definition 16 (Uniform Concept Interpolation).

1. An L concept CΣ is the uniform concept interpolant of an L concept C
w.r.t. Σ ⊆ sig(C) if

(a) sig(CΣ) ⊆ Σ

(b) C v CΣ
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(c) for all L concepts D with sig(D) ∩ sig(C) ⊆ Σ, C v D implies
CΣ v D.

2. A description logic L has uniform concept interpolation if for all L concept
C and Σ ⊆ sig(C), there exists an L concept CΣ that is the uniform
concept interpolant of C with respect to Σ.

Theorem 17 ([7]). ALC has uniform concept interpolation.

We now extend the notion of uniform concept interpolation to uniform ABox
interpolation. It turns out that the DL ALC does not have uniform ABox
interpolation even if it has uniform concept interpolation.

Definition 18 (Uniform ABox Interpolation).

1. An L ABox AΣ is the uniform ABox interpolant of an L ABox A w.r.t.
Σ ⊆ sig(A) if

(a) sig(AΣ) ⊆ Σ

(b) A |= AΣ

(c) for all L assertion ϕ with sig(ϕ)∩sig(A) ⊆ Σ, A |= ϕ implies AΣ |= ϕ.

2. A description logic L has uniform ABox interpolation if for all L ABox
A and Σ ⊆ sig(A), there exists an L ABox AΣ that is the uniform ABox
interpolant of A with respect to Σ.

Intuitively, Definition 18 says adding auxiliary variables does not increase
the expressive power of ABoxes for description logics that have uniform ABox
interpolation. The following lemma shows the relation between uniform ABox
interpolation and ABox updates definition.

Lemma 19. If a DL L has uniform ABox interpolation, then L has syntactic
ABox updates iff L has extended syntactic updates.

Proof. This (⇒) is exactly what is stated in Point 2 in Corollary 15. We now
show the other direction.

(⇐) Assume that L does not have syntactic ABox updates but has extended
syntactic ABox updates. Then there exists an original L ABox A and update
U such that there is no L ABox that is L-indistinguishable with the updated
ABox A ∗ U .

Since L has extended syntactic ABox updates, we know that there exists
an L ABox A¦ such that A ∗ U and A¦ are LΣ-indistinguishable where Σ =
〈NC,NR〉\(sig(A¦)\sig(A)∪sig(U)). Equivalently, we can write for all L assertion
ϕ with sig(ϕ) ∩ sig(A¦) ⊆ sig(A) ∪ sig(U), we have A¦ |= ϕ iff A ∗ U |= ϕ.

It is not hard to see that sig(A)∪ sig(U) ⊆ sig(A¦). The idea now is to show
that the uniform interpolant of A¦ w.r.t. sig(A) ∪ sig(U) is L-indistinguishable
with A∗U . Let AΣ

¦ be the uniform ABox interpolant of A¦ w.r.t. Σ = sig(A)∪
sig(U). Then we know that

• sig(AΣ
¦ ) ⊆ sig(A) ∪ sig(U) and

• for all L assertion ϕ with sig(ϕ) ∩ sig(A¦) ⊆ sig(A) ∪ sig(U), A¦ |= ϕ iff
AΣ
¦ |= ϕ iff A ∗ U |= ϕ.
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We can write the second item equivalenty as follows. A ∗ U , A¦, and AΣ
¦ are

LΣ′-indistinguishable where Σ′ = 〈NC,NR〉 \ (sig(AΣ
¦ ) \ (sig(A)∪ sig(U))). Since

sig(AΣ
¦ ) ⊆ sig(A)∪ sig(U), we have A∗U and AΣ

¦ are L〈NC,NR〉-indistinguishable.
Thus, AΣ

¦ and A ∗ U are L-indistinguishable (contradiction).

We have seen in Lemma 19 that if a DL has uniform ABox interpolation, the
existence of syntactic and the extended syntactic updates coincides. Now, to
make sure that it is worthy to weaken the definition of syntactic ABox updates
to extended syntactic ABox updates, we need to show that there is a description
logic that does not have uniform ABox interpolation. Moreover, we show that
ALC does not have ABox interpolation in the following lemma.

Lemma 20. ALC does not have uniform ABox interpolation.

Proof. Let A = {a : A t ∀r.A, r(a, b), s(a, b), t(a, b)} be an ALC ABox and
Σ = 〈{A}, {s, t}〉. We want to show there is no uniform ABox interpolant of A
w.r.t. Σ.

Assume that there exists an ALC ABox AΣ that is the uniform ABox inter-
polant of A w.r.t. Σ. We will first show that there exists a model I of AΣ such
that:

1. I |= ¬A(a),

2. I |= ¬A(b) and

3. {d | (aI , d) ∈ sI} ∩ {d | (aI , d) ∈ tI} = {bI}.
Let B be a concept name that does not occur in both A and A′. Now, using
the fact that we have a model I of AΣ satisfying the three properties above,
we show that AΣ 6|= a : ∀s.B → (A t ∃t.(A u B)) eventhough A |= a : ∀s.B →
(A t ∃t.(A u B)). Let us construct a new interpretation I ′ by only modifying
the interpretation of the concept name B as follows

BI
′
:= {d | (aI′ , d) ∈ sI}.

Since the concept name B does not appear in the ABox AΣ, we know for sure
that I ′ |= AΣ. It is easy to see that I ′ |= a : ∀s.B but I ′ 6|= a : A t ∃t.(A uB).
This contradicts the fact that AΣ is the uniform ABox interpolant of A w.r.t.
signature Σ.

To conclude the proof, we need to show that such interpretation I exists.
Let C1 = ∃s.>t∃t.> and C2 = ∃ss.>t∃st.>t∃ts.>t∃tt.>. The concepts C1

and C2 are used as a technical trick. We will see the usage of these concepts later
on in the proof. From the assumption that AΣ is the uniform ABox interpolant
of A w.r.t. Σ, we know that:

• AΣ 6|= a : A t ∀s.A t ∀t.A t C2 since A 6|= a : A t ∀s.A t ∀t.A t C2 and

• AΣ 6|= b : A t C1 since A 6|= b : A t C1.

Now, let J and K be models of AΣ such that J |= a : ¬Au∃s.¬Au∃t.¬Au¬C2

and K |= b : ¬A u ¬C1. Without loss of generality, we assume ∆J ∩∆K = ∅.
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We now construct I as follows. For all concept names A, role names r and
individual names b 6= a,

∆I := ∆J ∪∆K,

AI := AJ ∪AK,
aI := aJ ,

bI := bK,

rI := rJ ∪ rK ∪ {(aI , bI) | r ∈ {s, t}}.

It is easy to see that I satisfies all three conditions above. To conclude the
proof, it remains to show that I is a model of AΣ. Let ϕ ∈ A be an ABox
assertion. We do a case analysis on ϕ.

• ϕ is a role assertion. Then ϕ is either s(a, b) or t(a, b). It is easy to see
that I |= ϕ.

• ϕ is a concept assertion. We show I |= AΣ by showing the following
claims. For all ALC concepts C built using the signature Σ, we have

1. for all d ∈ ∆K, d ∈ CK implies d ∈ CI and
2. for all d ∈ ∆J , d ∈ CJ implies d ∈ CI .

The first claim can be shown easily using structural induction on C. We
will only show the more interesting structural induction for the second
claim. Without loss of generality, we assume that C is in NNF.

– The cases C = A and C = ¬A are trivial.

– The cases C = D t E and C = D u E follow directly from the
induction hypothesis.

– C = ∃r.D, where r ∈ {s, t}. This case is trivial since we do not
remove any outgoing edge from d during the construction.

– C = ∀r.D, where r ∈ {s, t}. If d 6= aI then the case is trivial because
we did not add any outgoing edge from d during the construction of
I. Assume that d = aI = aJ . Then during the construction, we
added the edge (aI , bI) to rI . To conclude the case, we need to show
that bI ∈ DI .
Since J |= a : ∃s.¬A u ∃t.¬A, we know that there exist e, e′ ∈ ∆J

such that (d, e) ∈ sJ and (d, e′) ∈ tJ and {e, e′} ∩ AJ = ∅. This
implies {e, e′} ⊆ DI . We claim that for all ALC concepts E built
using signature Σ, e ∈ EJ implies bI ∈ EI and e′ ∈ EJ implies
bI ∈ EI . This is where the concepts C1 and C2 come in handy.
The facts J |= ¬C2(a), (aJ , e) ∈ sJ and (aJ , e′) ∈ tJ guarantee
that both e and e′ have no r-successor. The fact that K |= ¬C1(b)
guarantees that bK = bI has no r-successor. The fact that K |= ¬A(b)
guarantees that bK = bI /∈ AK. This implies bI /∈ AI Using the
facts mentioned above, the claim can easily be shown easily using
structural induction on E.



Chapter 3

Syntactic Updates

We say a description logic L has syntactic ABox updates iff for every ABox A,
formulated in L, and every update U , there exists an ABox A¦, formulated in
L, such that A ∗ U and A¦ are L-indistinguishable. In this chapter, we study
the existence of syntactic ABox updates in the DLs ALC, ALCO and ALC@.

3.1 Syntactic Updates in ALC
We analyze the basic description logic ALC and show that it does not have
syntactic ABox updates. In particular, we consider the combination of ABoxes
given in the following lemma. Please note that the original ABoxA is formulated
in ALC, but the updated ABox A′ is formulated in ALCO.

Lemma 21. Let A = {a : ∃r.A,A(b), r(b, b)}, U = {¬A(b)} and

A′ = {¬A(b), r(b, b), a : ∃r.(A t {b})}.
Then A ∗ U ≡ A′.

To show that the description logic ALC does not have syntactic ABox up-
dates, it is enough to show that there is no ALC ABox that has the same ALC
logical consequences as A′. We first introduce the abbreviation ∃rn.C for the
concept ∃r . . . ∃r︸ ︷︷ ︸

n

.C. We will use this abbreviation throughout the thesis. Now,

consider the concept assertion Cn(a) where Cn = ∃r.(A t ∃rn.¬A). Clearly, for
all n ∈ N, A′ |= Cn(a), but A′ 6|= a : ∃r.A. We can also see that r(b, b) is the
only role assertion that is a logical consequence of A′. To show that there is no
ALC ABox which has the same ALC logical consequences as A′, we show that
there is no ALC ABox A¦ with a finite size that has the following properties:

(i) r(b, b) is the only role assertion that is a logical consequence of A¦,
(ii) A¦ entails the concept assertion Cn(a), for all n ∈ N and

(iii) a : ∃r.A is not a logical consequence of A¦.
Now, let A be an ALC ABox. Then, we define A|a as follows.

A|a = {C(a) | C(a) ∈ A}

19
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Intuitively, A|a is a set of concept assertions in A that describes the individual
name a. First, we show that if a consistent ALC ABox A does not entail any role
assertion going in or out from an individual name a, then A entails a concept
assertion C(a) iff A|a entails C(a). Without loss of generality, we can always
assume that A|a contains only a single concept assertion D(a). Hence, we have
A entails C(a) iff A|a entails C(a) iff D v C. We then show that if D is an ALC
concept that is subsumed by Cn(a) (Property (ii)) but not by ∃r.A (Property
(iii)) where n ∈ N, then |C| > n. This implies |A|a| > n which then implies
|A| > n. Hence, we have that |A| cannot be finite because |A| has to be greater
than n for all n ∈ N.

Lemma 22. Let A be a consistent ALC ABox and a an individual name. If
for all b ∈ NI and r ∈ NR, A 6|= r(a, b) and A 6|= r(b, a), then

A |= C(a) iff A|a |= C(a).

Proof. (⇐) Assume A|a |= C(a). Since A|a ⊆ A, we know that A |= A|a.
Hence, A |= C(a).

(⇒) Assume A|a 6|= C(a). Then there is an interpretation I such that
I |= A|a but I 6|= C(a). Now, let K be a model of A. Without loss of generality,
we assume ∆K ∩∆I = ∅. From this we can construct an interpretation J such
that the following conditions hold. Let D be an arbitrary ALC concept in NNF.

(i) for all d ∈ ∆I , d ∈ DI implies d ∈ DJ ,

(ii) for all d ∈ ∆K, d ∈ DK implies d ∈ DJ ,

(iii) for all role assertions ϕ ∈ A, J |= ϕ iff K |= ϕ and

(iv) aJ = aI

From Point (ii), (iii) and the fact that K is a model of A, we know that J |=
A\A|a. And then from Point (i), (iv) and the assumption I |= A|a but I 6|= C(a)
we have J |= A|a but J 6|= C(a). Hence, we have A 6|= C(a).

Now, to conclude the proof, we show that there exists an interpretation J
that satisfies all of the conditions mentioned above. Such J can be constructed
as follows.

∆J := ∆I ∪∆K

aJ := aI

bJ := bK for all b ∈ NI \ {a}
AJ := AI ∪AK for all A ∈ NC

rJ := rI ∪ rK for all r ∈ NR

Point (iv) follows directly from the construction of J . Let ϕ be a role assertion
in A. To show Point (iii), we do a case analysis on ϕ.

• ϕ = ¬r(α, β). This case is trivial because we do not add any edge to the
interpretation of any role name during the construction of J .

• ϕ = r(α, β). From the assumption A is consistent and for all b ∈ NI and
r ∈ NR, A 6|= r(a, b) and A 6|= r(b, a), we know that α 6= a and β 6= a. This
means αJ /∈ ∆I and βJ /∈ ∆I which then implies αJ ∈ ∆K and βJ ∈ ∆K.
Since during the construction of J we do not remove any edge from the
interpretation of role names, we have J |= r(α, β) iff K |= r(α, β).
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We show Point (i) using structural induction on D. Point (ii) can be proven
analogously.

• D = A or D = ¬A, where A ∈ NC. Since d ∈ ∆I and ∆I ∩∆K = ∅, we
know that d /∈ AK. Hence, d ∈ AJ iff d ∈ AI .

• D = E uF or D = E tF . These cases follow directly from the semantics
and induction hypothesis.

• D = ∃r.E or D = ∀r.E. These cases are trivial because we do not add or
remove any edge from rI during the construction of J .

Next, we introduce the notion of role depth of an ALC concept. Using this
notion, we show in the next lemma that if C is an ALC concept that is subsumed
by Cn but not by ∃r.A then |C| > n where n ∈ N. The idea is to exploit the fact
that C cannot ”see” deeper than its own role depth and |C| is always greater
than its role depth.

Definition 23 (Role depth of ALC concepts). Let A be a concept name and C
an ALC concept. Then we define the role depth of a concept C (written rd(C))
as follows.

• rd(A) := 0,

• rd(¬C) := rd(C),

• rd(C uD) := rd(C tD) := max{rd(C), rd(D)},
• rd(∃r.C) := rd(∀r.C) := 1 + rd(C).

Let C be an ALC concept. Suppose that we have two different tree models
I and I ′ of C that have depth n > rd(C) and if we cut these trees at depth
rd(C) we end up with two identical trees. We show that C will not be able to
differentiate these two models, i.e. C is satisfied at the root of I iff C is satisfied
at the root of I ′. So in order for the concept C to be able to differentiate these
two trees, the role depth of C has to be at least n which then implies |C| > n.

Before showing the lemma, we first introduce the notion of depth in an
interpretation tree. Let I be a tree interpretation and d ∈ ∆I . We define the
notion of the depth of an individual in a finite tree.

depth(d) :=





0 if d is a root,
n+ 1 if there exists e ∈ ∆I and r ∈ NR such that

depth(e) = n and (e, d) ∈ rI

Lemma 24. For all n ∈ N, C 6v ∃r.A and C v Cn implies |C| > n

Proof. Assume C 6v ∃r.A and C v Cn. Then we know that C u ¬∃r.A is
satisfiable. Hence, from Lemma 2, we get C u ¬∃r.A has a tree model. Now,
assume rd(C) < n and let I be a tree model of C u ¬∃r.A such that d ∈ ∆I is
the root of I where d ∈ (∃rn+1.A)I \ (∃r.A)I .
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Now, let us construct a new interpretation I ′ by cutting all outgoing edges
from all nodes at depth rd(C). Formally, I ′ is constructed by extending I as
follows.

rI
′
:= rI \ {(e, f) | depth(e) = rd(C)}.

We claim that the following properties hold.

(i) d /∈ (∃rn+1.A)I
′

(ii) d ∈ CI′

With the properties above, we can see that I ′ shows that C 6v Cn (contradic-
tion). Therefore, we have rd(C) ≥ n which implies |C| > n.

To conclude the proof, we need to show that I ′ satisfies the properties above.
Point (i) is a direct consequence of the construction of I ′. We show Point (ii)
by claiming that for all subconcepts D of C and all e ∈ ∆I′ with depth(e) ≤
rd(C) − rd(D), e ∈ DI implies e ∈ DI

′
. We prove the claim using structural

induction on D. Without loss of generality, we assume that D is in NNF.

• D = A or D = ¬A, where A ∈ NC. This case is trivial, since during the
construction of I ′ we do not change the interpretation of concept names.

• D = EuF orD = EtF . From Definition 23, we know that rd(E) ≤ rd(D)
and rd(F ) ≤ rd(D). Hence, from the semantics and induction hypothesis
we have e ∈ DI′ .

• D = ∃r.E. Assume that depth(e) ≥ rd(C), then rd(D) ≤ 0. But then
this contradicts the fact that rd(D) = rd(∃r.E) ≥ 1. Hence, we know
that depth(e) < rd(C). This case then becomes trivial because we do not
remove any outgoing edge from e for all individuals e with depth(e) <
rd(C).

• D = ∀r.E. This case is trivial because we do not add any edge to rI

during the construction of I ′.

We are now ready to show that there is no ALC ABox which does not entail
any role assertion except r(b, b) and entails the assertions Cn(a) for all n ∈ N,
but does not entail a : ∃r.A.

Lemma 25. There is no ALC ABox A such that A has the following properties:

• for all n ∈ N, A |= Cn(a),

• A 6|= a : ∃r.A and

• for all c ∈ NI and r ∈ NR, A 6|= r(a, c) and A 6|= r(c, a).

Proof. Assume that such an ABox A exists. Lemma 22 tells us that A|a |=
Cn(a) for all n ∈ N and A 6|= a : ∃r.A. This means that A|a 6= ∅. Without
loss of generality, we assume that C(a) is the only assertion in A|a. Hence, we
have {C(a)} |= Cn(a) but {C(a)} 6|= a : ∃r.A for all n ∈ N. This is equivalent
to C v Cn and C 6v ∃r.A for all n ∈ N. Hence, by Lemma 24, we know that
|C| > n for all n ∈ N. This gives a contradiction to the fact that |C| is finite.
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Combining the results that we have so far, we are now ready to show that
there is no ALC-ABox A¦ such that A′ and A¦ are ALC-indistinguishable.

Lemma 26. Let A′ be the semantically updated ABox described in Lemma 21.
Then there is no ALC ABox A¦ such that A′ and A¦ are ALC-indistinguishable.

Proof. It is easy to see that A′ has all properties from Lemma 25.

Theorem 27. ALC does not have syntactic ABox updates.

Recall that the updated ABox A′ described in Lemma 21 is an ALCO ABox.
From this, one may be tempted to conjecture that adding nominals is enough
to recover the existence of syntactic ABox updates. Unfortunately, this is not
the case. We show this in the following section.

3.2 Syntactic Updates in ALCO
We now consider the description logic ALCO. We show that extending ALC
by adding nominals is not enough to recover the existence of syntactic ABox
updates.

It has been shown in [4] that the DL ALCO does not have semantic ABox
updates. In this section, we will see that this is also the case even if we only
consider syntactic ABox updates. In particular, we consider the combination
of ABoxes in the following lemma (which is taken from [4]). Please note that
the original ABox A is formulated in ALC (which is also an ALCO ABox),
but the semantically updated ABox A′ is formulated in ALC@. We show that
there is no ALCO ABox that has the same ALCO logical consequences as the
semantically updated ABox A′.
Lemma 28. Let A = {a : ∃r.A}, U = {¬r(a, b)} and

A′ = {a : ∃r.A t@bA,¬r(a, b)}.

Then A ∗ U ≡ A′.
Let us describe the models of A′. We know A′ |= ¬r(a, b) so for all models

I, we have I 6|= r(a, b). We also know A′ |= a : ∃r.A t@bA. From this, we can
derive the fact that for all models I of A′, we have I |= a : ∃r.A or I |= A(b).
In summary we have, for all models I of A′,

(i) I |= ¬r(a, b) and

(ii) I |= a : ∃r.A or I |= A(b).

The idea now is to find ALCO concept assertions that are always satisfied by
the interpretations that satisfies both properties above, but cannot be entailed
by a single ALCO ABox. There are not so many interesting ALCO ABox
assertions that we can derive from Property (i). That is why we will concentrate
on Property (ii). We choose to consider an assertion for individual name b
(one can also try to find for individual name a). The negation of Property
(ii) is I |= a : ¬∃r.A and I |= ¬A(b). Let I be the set of interpretations
that satisfies the negation of Property (ii). We now use the expressiveness
power of concept description in the DL ALCO to express concept assertions
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as concepts. For example, we can use the concept {a} u ¬∃r.A to express
the concept assertion a : ¬∃r.A. Now, it is easy to see that for all s ∈ NR,
I |= b : (¬Au ∃s.({a} u ¬(∃r.A))) implies I ∈ I. Since we know that I contains
only interpretations that satisfy the negation of Property (ii), for all I /∈ I, I
satisfies Property (ii). So we can conclude that for all interpretation I, if I
satisfies Property (ii), then for all s ∈ NR, I 6|= b : (¬A u ∃s.({a} u ¬(∃r.A))) or
written in a nicer way I |= b : (At∀s.({a} → (∃r.A))) for all s ∈ NR. From now
on, we will be using the abbreviation Cs = A t ∀s.({a} → (∃r.A)) throughout
this section. We also use the following abbreviations. Let R be a finite subset
of NR. We define concept abbreviation ∃path(R,n).C as follows. For n ∈ N,

∃path(R,n).C :=
⊔

p∈(R)∗

len(p)≤n

∃p.C

where ∗ is the kleene-∗ operator.

Lemma 29. For all finite subsets R of NR, role names u /∈ R, finite subsets I
of NI \ {b} and n ∈ N,

A′ 6|= a : ∃r.A t
⊔

c∈I

∀u.({c} → ∃path(R,n).{b}) and (3.1)

A′ 6|= b : A t
⊔

c∈I

∃path(R,n).{c}. (3.2)

Proof. Consider the interpretations I and I ′ depicted in Figure 3.1. We assume
that the individual names a and b are mapped to the objects of the same name,
and all other individual names are mapped to the individual c. Moreover, the
concept name A and role names r and u are interpreted as shown in the figure
and all other concept and role names are interpreted as empty sets. It can
easily be checked that I and I ′ are models of A′ where (3.1) and (3.2) holds
respectively.

To show ALCO does not have syntactic ABox updates, it suffices to show
that there is no ALCO ABox which has the same ALCO consequences as A′.
We show this by showing there is no ALCO ABox that entails Cs(b) for all
s ∈ NR and also satisfies (3.1) and (3.2) at the same time.

We now introduce a property of ALCO concept assertions. Let us view
an interpretation I as a graph GI = (V I , EI) where V I = ∆I and EI =
{(d, e) | there exists r ∈ NR such that (d, e) ∈ rI}. Then, the truth value of an
ALCO concept assertion C(a) in an interpretation I only depends on the set
of individuals that are reachable from aI in the graph GI using less than |C|
steps. Formally, this property can be defined as in the following lemma.

We first define several abbreviations that are used throughout this thesis.
Let C be a concept. We will be using concs(C), roles(C) and inds(C) for the
set of concept, role and individual names that occur in C respectively. This
abbreviation is also extended to ABoxes.

Lemma 30. Let C(a) be an ALCO concept assertion. Then, for all interpre-
tations I and I ′, if for all d ∈ ∆I , d is reachable from aI in GI using less than
|C| steps implies
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a ba b

I I ′

¬A
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A

A

cc

u

Figure 3.1: I and I ′

• d ∈ ∆I′ ,

• for all A ∈ concs(C), d ∈ AI iff d ∈ AI′ ,
• for all r ∈ roles(C), (d, e) ∈ rI iff (d, e) ∈ rI′ and

• for all a ∈ inds({C(a)}), aI = d iff aI
′
= d

then
I |= C(a) iff I ′ |= C(a).

Intuitively, Lemma 30 says that the assertion C(a) cannot differentiate two
interpretations I, I ′ if the two interpretations have differences only:

• at the individuals that is not reachable from aI in GI using less than |C|
steps or

• on the interpretations of concept, role and individual names that do not
occur in C(a).

Lemma 31. Let A be an ALCO ABox, u a role name such that u /∈ roles(A)
and |A| = n. If

A 6|= a : ∃r.A t
⊔

c∈inds(A)\{b}
∀u.({c} → ∃path(roles(A), n).{b}) and

A 6|= b : A t
⊔

c∈inds(A)\{b}
∃path(roles(A), n).{c}

then there exists a model I of A such that

I 6|= a : ∃r.A and I 6|= A(b).

Proof. From the assumptions, we know that there are models J and K of A
such that

(i) J 6|= a : ∃r.A,

(ii) J |= a : ∃u.({c} u ¬∃path(roles(A), n).{b}) for all c ∈ inds(A) \ {b},
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(iii) K 6|= A(b),

(iv) K |= b : ¬∃path(roles(A), n).{c} for all c ∈ inds(A) \ {b},
Now we will construct an interpretation I such that I 6|= a : ∃r.A and

I 6|= b : A by combining J and K. And later, we show that I is still a model of
A. Without loss of generality, we assume ∆J ∩∆K = ∅. Then K is constructed
as follows. For all concept names A, role names r, and individuals c ∈ NI\{a, b},

∆I := ∆J ∪∆K

AI := AJ ∪AK
rI := rJ ∪ rK
aI := aJ

bI := bK

cI := cJ

From the construction, we can derive the following facts: I 6|= a : ∃r.A since
J 6|= a : ∃r.A and I 6|= A(b) since K 6|= A(b). It remains to show that I |= A.
We make a case distinction according to the type of assertion ϕ ∈ A :

• ϕ is a positive role assertion. The only possible positive role assertions in
A that can be violated by I are role assertions that involve individual b
and some individual α 6= b. But Point (ii) and (iv) guarantee that these
role assertions do not exists in A.

• ϕ is a negative role assertion. Since we did not add any new pair to the
interpretation of any role, it is easy to see that if K |= ϕ or J |= ϕ then
I |= ϕ.

• ϕ is a concept assertion C(α). From Lemma 30,we know that the truth
value of an assertion C(a) ∈ A in the interpretation I only depends on
the set of individuals that are reachable from αI in GI using role names
that occurs in C with less than |C| steps. We make a case distinction on
α:

– α 6= b. Then we have to pay attention to the individuals in ∆J

because αI = αJ . The only individual in ∆J that is involved during
the construction of J is bJ . But then, from Point (ii) we know that
αJ cannot reach bJ using role names that occurs in C with role
depth at most |C|. Hence, it is clear that αI ∈ CI iff αJ ∈ CJ .

– α = b. For this case, we must pay attention on the individuals in
∆K because αI = αK. During the constructions, we changed the
interpretations of individuals names in NI \{b}. But then, from point
(iv) we know that αK cannot reach any other individual names using
role names that occurs in C with role depth at most |C|. Hence, it
is clear that αI ∈ CI iff αK ∈ CK.

Combining the results that we have so far, we are now ready to show that
there is no ALCO-ABox A¦ such that A′ and A¦ are ALCO-indistinguishable.
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Lemma 32. Let A′ be the semantically updated ABox described in Lemma 28.
Then there exists no ALCO ABox A¦ such that A′ and A¦ have the same ALCO
logical consequences.

Proof. Assume that there is anALCO ABoxA¦ such thatA′ andA¦ areALCO-
indistinguishable. Let Cs = A t ∀s.({a} → ∃r.A). It is easy to see that A′ |=
Cs(b) for all s ∈ NR. Then from the assumption, we haveA¦ |= Cs(b). Lemma 29
and the assumption implies A¦ has the following properties.

A¦ 6|= a : ∃r.A t
⊔

c∈inds(A¦)\{b}
∀u.({c} → ∃path(roles(A¦), n).{b}) and

A¦ 6|= b : A t
⊔

c∈inds(A¦)\{b}
∃path(roles(A¦), n).{c}.

From Lemma 31, we know that there exists a model I of A¦ such that
I 6|= a : ∃r.A and I 6|= A(b). Since I 6|= A(b) and for all s ∈ NR, A¦ |= Cs(b),
it has to be the case that for all s ∈ NR, I |= b : ∀s.({a} → ∃r.A) (otherwise
I is already a counter model). The idea now is to show that there exists an
interpretation I ′ and a role name t such that

(i) I ′ |= A¦,
(ii) I ′ 6|= A(b) and

(iii) I ′ 6|= b : ∀t.({a} → ∃r.A).

This implies that there exists a t ∈ NR such that A¦ 6|= Ct(b) (contradiction).
To conclude the proof, we show how to construct I ′. Let t be a role name

such that t /∈ roles(A¦). Then I ′ can be obtained by extending I as follows.

tI
′
:= tI ∪ {(bI , aI)}

It is easy to see that the Point (i) hold because during the construction of I ′,
we do not change the interpretation of concept, role and individual names that
occur in A¦. Point (ii) holds because I 6|= A(b) and during the construction of
I ′, we do not change the interpretation of any concept name. From the fact that
I 6|= a : ∃r.A and we do not change the interpretation of rI and any concept
name, we have I ′ 6|= a : ∃r.A. Point (iii) holds because (bI

′
, aI

′
) ∈ tI

′
and

I ′ 6|= a : ∃r.A.

Theorem 33. ALCO does not have syntactic ABox updates.

Please recall that the semantically updated ABox in Lemma 28 is given in
the DL ALC@. From this, one might again be tempted to conjecture that adding
the @ constructor to the DL ALC will recover the ABox syntactic update. We
will see in the next subsection that this is not the case.

3.3 Syntactic Updates in ALC@ and Boolean
ABoxes

As we have seen in the previous section, extending ALC with only nominals is
not enough to recover the existence of syntactic ABox updates. We now study
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the existence of syntactic ABox updates in ALC@. It has been shown in [4]
that ALC@ does not have semantic ABox update. In this section, we study the
existence of syntactic ABox update in ALC@. It turns out that ALC@ ABoxes
are not expressive enough to express the syntactically updated ALC@ ABoxes.
We also show some results related to Boolean ABox in this section. First, we
introduce the definition of restricted Boolean ABox and then study the relation
between it and ALC@ ABox.

A restricted Boolean L ABox is a finite set of role and restricted Boolean
L assertions, i.e., Boolean combinations of L concept assertions expressed in
terms of the connectives ∧ and ∨. We do not need to introduce negation since
concept negation is available in every DL considered in this thesis. For example,
A is not a restricted Boolean ALC ABox, but B is.

• A = {A(a), r(a, b) ∧ (B(a) ∨B(b))}
• B = {A(a), b : ∃r.B ∨ (B(a) ∧B(b)), r(a, b)}.
We treat the interpretation of the connectives ∧ and ∨ as in propositional

logic. An interpretation I satisfies a restricted Boolean assertion ϕ∨ψ (written
I |= ϕ ∨ ψ) if I |= ϕ or I |= ψ and I |= ϕ ∧ ψ if I |= ϕ and I |= ψ. An
interpretation I satisfies a restricted Boolean ABox A if I satisfies all role and
restricted Boolean assertions in A. There exists a very close connection between
ALC@ ABoxes and restricted Boolean ALC ABoxes.

Lemma 34.

1. For every ALC@ ABox, there exists an equivalent restricted Boolean ALC
ABox.

2. For every restricted Boolean ALC ABox, there exists an equivalent ALC@

ABox.

Proof.

(Point 1). Let A be an ALC@ ABox and C(a) ∈ A such that @bD ∈ sub(C).
We construct an ALC restricted Boolean ABox A′ such that A ≡ A′.
The ABox A′ is obtained by replacing all assertions C(a) ∈ A where
@bD ∈ sub(C), with (D(b)∧C[>/@bD])∨ (¬D(b)∧C[⊥/@bD]). It is easy
to see that A ≡ A′

(Point 2). Let us define a mapping ·¦ from ALC restricted Boolean assertions
to ALC@ concepts as follow.

(ϕ ∧ ψ)? := ϕ? u ψ?

(ϕ ∨ ψ)? := ϕ? t ψ?

(a : C)? := @aC

Now, we are ready to convert a restricted Boolean ALC-ABox A into an
ALC@ ABox. Let α be any arbitrary individual name and ϕ an ALC
restricted Boolean assertion.

A′ = {α : ϕ? | ϕ ∈ A} ∪
. {r(a, b) | r(a, b) ∈ A} ∪

{¬r(a, b) | ¬r(a, b) ∈ A}
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It is easy to see that A′ is equivalent to A.

Thus, ALC@ ABoxes have the same expressive power as ALC restricted
Boolean ABoxes. Recall the ABoxes A, U , and A′ in Lemma 21.

A = {a : ∃r.A,A(b), r(b, b)},
U = {¬A(b)}
A′ = {¬A(b), r(b, b), a : ∃r.(A t {b})}.

To prove that ALC@ does not have ABox syntactic updates, we show that
there is no restricted Boolean ALC ABox A¦ such that A′ and A¦ are ALC@-
indistinguishable. To show this, it is enough to show that there is no restricted
Boolean ALC ABox A¦ such that A′ and A¦ are ALC@-indistinguishable be-
cause every ALC ABox assertion is an ALC@ ABox assertion. Without loss
of generality, we can assume that the restricted Boolean ABoxes are always
represented in disjunctive normal form as follows.

B = B|R ∧ (B0 ∨ . . . ∨ Bn−1)

where B0, . . . ,Bn−1 are ALC ABoxes without role assertions and B|R contains
only role assertions. We first establish a property of restricted Boolean ABoxes
in the following lemma.

Lemma 35. Let ϕ be an ALC concept assertion, r(a, b) a positive role assertion
and B a consistent ALC restricted Boolean ABox in disjunctive normal form.
Then,

1. B |= ϕ iff for all 0 ≤ m ≤ n− 1,B|R ∪ Bm |= ϕ

2. B |= r(a, b) iff r(a, b) ∈ B|R
Proof.

1. (⇒) Assume there exists an m < n such that B|R ∪ Bm 6|= ϕ. Then
there is an interpretation I such that I |= B|R ∪ Bm but I 6|= ϕ. Since
I |= B|R ∪ Bm implies I |= B, we have B 6|= ϕ.
(⇐) Assume B 6|= ϕ. Then there is an interpretation I such that I |= B but
I 6|= ϕ. Since I |= B then there exists an m < n such that I |= B|R ∪Bm.
Hence, for this particular Bm, we have B|R ∪ Bm 6|= ϕ.

2. (⇒) Assume B is consistent, B |= r(a, b) and r(a, b) /∈ B|R. Since B
is consistent, there exists a model I of B. Thus from the assumption
B |= r(a, b), we have I |= r(a, b). We construct I ′ from I as follow. Let
A ∈ NI, s ∈ NR \ {r} and α ∈ NI. Then

∆I′ := ∆I ∪ {b′} where b′ /∈ ∆I

AI
′

:= AI ∪ {b′ | b ∈ AI}
rI
′

:= rI ∪ {(b′, c) | (bI , c) ∈ rI} ∪ {(aI , b′)} \ {(aI , bI)}
sI
′

:= sI ∪ {(b′, c) | (bI , c) ∈ sI}
αI

′
:= αI

The idea of the construction is to replace bI with its imitation b′ and then
cut the edge r(a, b). We now claim that the followings hold



3.3 Syntactic Updates in ALC@ and Boolean ABoxes 30

(i) Let ψ be a positive role assertion. Then,

I |= ψ and I ′ 6|= ψ implies ψ = r(a, b).

(ii) For all d ∈ ∆I and ALC concepts C, d ∈ CI′ iff d ∈ CI′ .
Point (i) is a direct consequence of the construction of I ′ and Point (ii)
can be proved easily using structural induction on C. From Point (i), (ii)
and the fact that r(a, b) /∈ B|R we can conclude that I |= B|R implies
I ′ |= B|R. And from the fact that there is no role assertion in Bm, we
have I |= Bm iff I for 0 ≤ m ≤ n−1. Hence we have I |= B|R∪Bm implies
I ′ |= B|R ∪ Bm for 0 ≤ m ≤ n − 1. This implies I ′ |= B. But then the
fact that I ′ 6|= r(a, b) gives us a contradiction to our original assumption
B |= r(a, b).

(⇐) This direction is trivial.

Using the previous lemma, we are now ready to show the non existence of
restricted Boolean ALC ABox that has the same ALC@ logical consequences as
A′ = {¬A(b), r(b, b), a : ∃r.(A t {b})}.
Lemma 36. Let A′ be the semantically updated ABox described in Lemma 21.
Then there exists no restricted Boolean ALC ABox B such that A′ and B are
ALC@-indistinguishable.

Proof. Assume that there exists a restricted Boolean ALC ABox B such that A′
and B are ALC@-indistinguishable. Without loss of generality, we assume that
B is in disjunctive normal form. Let Ck = ∃r.(At∃rk.¬A). Then we know that

• for all k ∈ N, A′ |= Ck(a),

• A′ 6|= a : ∃r.A and

• for all c ∈ NI and r ∈ NR, A′ 6|= r(a, c) and A′ 6|= r(c, a).

From the assumption A′ and B are ALC@-indistinguishable and Lemma 35, we
can conclude that

• for all m < n and k ∈ N, B|R ∪ Bm |= Ck(a),

• there exists an m ≤ n such that B|R ∪ Bm 6|= a : ∃r.A and

• for all c ∈ NI and r ∈ NR, B|R 6|= r(a, c) and B|R 6|= r(c, a).

Let us consider the ABox A¦ = B|R ∪ Bm in the second item. We know that
A¦ has the properties as follows:

• for all k ∈ N, A¦ |= Ck(a),

• A¦ 6|= a : ∃r.A and

• for all c ∈ NI and r ∈ NR, A¦ 6|= r(a, c) and A¦ 6|= r(c, a).

But then the fact that A¦ is an ALC ABox and Lemma 25 guarantee that such
an ABox does not exist (contradiction).
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Corollary 37. ALC@ does not have syntactic ABox updates.

We have seen that we cannot recover the existence of ABox syntactic update
if we restrict the Boolean combinations of ABox assertions only to concept
assertions. We now generalize the notion of a restricted Boolean ABox to that
of a Boolean ABox. Unlike a restricted Boolean ABox, the connectives in a
Boolean ABox can be used to any ABox assertions. The following is an example
of a Boolean ABox:

{B(a) ∨ r(a, b), (s(a, c) ∨ s(b, c)) ∧ a : ∃r.¬A}

Definition 38 (Boolean L ABox). A Boolean L ABox is a finite set of Boolean
combinations of L ABox assertions expressed in terms of the connectives ∧
and ∨.

As in a restricted Boolean ABox, the connectives ∧ and ∨ are interpreted as
in propositional logic. We have seen that restricted Boolean ALC ABoxes have
exactly the same expressive power as ALC@ ABoxes. This is not the case for
Boolean ABox. Boolean ALC ABoxes are more expressive than ALC@ ABoxes.
It is easy to see that there is no ALC@ ABox that is equivalent to the Boolean
ALC ABox {A(a) ∨ r(b, c)}. Now we show that even Boolean ALC ABoxes are
still not expressive enough to express syntactically updated ABoxes.

In order to do this, we need a new combination of original and semantically
updated ABoxes because the semantically updated ABox A′ in Lemma 21

A′ = {¬A(b), r(b, b), a : ∃r.(A t {b})}

can be expressed in Boolean ALC ABox. It is easy to check the Boolean ALC
ABox

B = {¬A(b), r(b, b), a : ∃r.A ∨ r(a, b)}
is equivalent to A′.
Lemma 39. Let A = {a : ∃r2.A,A(b), r(b, b)}, U = {¬A(b)} and

A′ = {¬A(b), r(b, b), a : ∃r2.(A t {b}}.

Then A ∗ U ≡ A′.
Let A′ be the semantically updated ABox as described in Lemma 39. We

want to show that there is no Boolean ALC ABox B such that for all Boolean
ALC ABox assertions ϕ, A′ |= ϕ iff B |= ϕ. We will use a similar strategy
as the one we used to prove negative result in ALC. The idea now is to find
interesting Boolean ALC assertions that are entailed or not entailed by A′. Let
Cn = ∃r2.(A t ∃rn.¬A). It is easy to see that for all n ∈ N, A′ |= Cn(a). Now,
it remains to find an interesting Boolean ALC assertion that is not entailed by
A′. Let I be a finite subset of NI and ϕI = a : ∃r2.A ∨∨

c∈I r(a, c) ∨ r(c, a). It
is easy to see that A′ 6|= ϕinds(A′). We summarize the properties above in the
following lemma.

Lemma 40. Let A′ be the ABox as described in Lemma 39. Then

• A′ |= Cn(a) for all n ∈ N and
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• A′ 6|= ϕinds(A′)

Like in the case of restricted Boolean ABoxes, we introduce a normal form
for Boolean ALC ABoxes as follows:

B = B0 ∨ . . . ∨ Bn−1

where B0 . . .Bn−1 are ALC ABoxes. The following lemma shows an interesting
property of Boolean ALC ABoxes.

Lemma 41. Let ϕ be a Boolean ALC ABox assertion and B a consistent
Boolean ALC ABox in normal form. Then,

B |= ϕ iff for all 0 ≤ m ≤ n− 1,Bm |= ϕ.

Hence, from Lemma 41, we know that if there exists a Boolean ALC ABox
B = B0 ∨ . . . ∨ Bn−1 that satisfies all conditions given in Lemma 40, then there
exists an ALC ABox Bm where m < n such that Bm satisfies those conditions.
Since Bm is an ALC ABox and Bm 6|= ϕ, we will show in the following lemma
that we can indeed apply Lemma 22 to Bm and then follow the same strategy
as we show negative results for syntactic ABox updates in ALC.
Lemma 42. Let A be an ALC ABox and a ∈ NI. If A 6|= ∨

b∈inds(A) r(a, b) ∨
r(b, a), then for all c ∈ NI, A 6|= r(a, c) and A 6|= r(c, a).

Proof. Assume that A 6|= ∨
b∈inds(A) r(a, b) ∨ r(b, a) and there exists a c ∈ NI

such that A |= r(a, c) or A |= r(c, a). Then we know that c /∈ inds(A). Now, let
I be a model of A. Hence, I |= r(a, c) ∨ r(c, a). From this, we construct a new
interpretation I ′ by modifying only the interpretation of the individual name c.

cI
′
= d

where d ∈ ∆I′ \ ∆I . The concept, role and other individual names are inter-
preted the same as I. It is easy to see that I is still a model of A because
we only change the interpretation of c which does not occur in A. And as a
direct consequence of the construction of I ′ we have I ′ 6|= r(a, c)∨ r(c, a). This
contradicts the assumption A |= r(a, c) ∨ r(c, a).

From Lemma 42, the fact that Bm is an ALC ABox and Bm 6|= ϕinds(B), we
can conclude that Bm |= Cn(a) iff Bm|a |= Cn(a). Without loss of generality,
we assume that Bm|a contains only a single concept assertion D(a). It is not
hard to see that Bm |= Cn(a) iff Bm|a |= Cn(a) iff D v Cn. From the fact that
Bm 6|= ϕ, we can also conclude that Bm 6|= a : ∃r2.A. Then, using the same
deduction as above we have Bm 6|= a : ∃r2.A iff D 6v ∃r2.A.

Now, we use again the fact that an ALC concept cannot ”see” deeper than
its own role depth. We use this fact to show a size limitation for an ALC concept
C that has the property C v Cn but C 6v ∃r2.A. where n ∈ N. It turns out that
|C| has to be greater than n. We will then use this result to show that there is
no such concept C that satisfies both property for all n ∈ N which then implies
that such ALC ABox Bm may not exists. This then shows that there is no such
Boolean ALC ABox that can satisfy the conditions stated in Lemma 40.

Lemma 43. Let C be an ALC concept and n ∈ N. If C 6v ∃r2.A and C v Cn,
then |C| > n.
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Proof. This lemma can be proven in a very similar way as in Lemma 24.

Theorem 44. Boolean ALC ABoxes do not have syntactic ABox updates.

Proof. Consider the ALC ABox A, the update U and the ALCO ABox A′ given
in Lemma 39. Assume that there exists a Boolean ALC ABox B that has the
same Boolean ALC logical consequences as A′. Without loss of generality, we
assume that B is in disjunctive normal form (B = B0 ∨ . . . ∨ Bn−1). Then from
Lemma 40, B fulfills all of the conditions follow:

B |= Cn(a)
B 6|= ϕinds(B).

And from Lemma 41 we know that there exists an m < n such that:

Bm |= Cn(a)
Bm 6|= ϕinds(B).

From Bm 6|= ϕinds(B), Lemma 42 and 22 we have Bm |= Cn(a) iff Bm|a |= Cn(a).
Without loss of generality, we assume that Bm|a contains only a single assertion
D(a). Then, we can conclude the following.

D v Cn

D 6v ∃r2.A.

But then Lemma 43 says that |D| > n for all n ∈ N. This contradicts the fact
that |D| is finite.



Chapter 4

Extended Syntactic
Updates

As we have seen in the previous chapter, weakening semantic updates to syn-
tactic updates is not enough to recover ABox updates in the DLs ALC, ALCO
and ALC@. In this chapter, we consider a weaker definition of ABox updates
which is the extended syntactic ABox updates. It turns out that extended syn-
tactically updated ABoxes can be expressed in ALC (with the help of TBoxes)
and ALCO. But unfortunately this is not the case for ALC@ and Boolean ALC
ABoxes.

4.1 Extended Syntactic Updates in ALC
In this section, we study the availability of extended syntactic ABox updates in
ALC. First, we show that if we do not use the help of TBoxes, the extended
syntactically updated ABox cannot be expressed in ALC. Then, we show that
we can recover the availability of such ABox updates in ALC by using TBoxes.

Theorem 45. ALC does not have extended syntactic ABox updates.

Proof. Recall the original ABox A, update U and semantically updated ABox
A′ in Lemma 21.

A = {a : ∃r.A,A(b), r(b, b)}
U = {¬A(b)}
A′ = {¬A(b), r(b, b), a : ∃r.(A t {b})}

Now assume that there exists an ALC ABox A¦ such that for all ALC asser-
tions ϕ with sig(ϕ)∩ sig(A¦ ⊆ sig(A′), A′ |= ϕ iff A¦ |= ϕ. We now need to find
interesting ABox assertions ϕ that satisfy the precondition sig(ϕ) ∩ sig(A¦ ⊆
sig(A′). Let Cn = ∃r.(At∃rn.¬A). It is easy to see that that sig(Cn) ⊆ sig(A′)
which then implies sig(Cn) ∩ sig(A¦) ⊆ sig(A′). It is also not hard to see that
r ∈ sig(A′) which then implies for all {a, b} ⊆ NI, sig(r(a, b))∩sig(A¦) ⊆ sig(A′).
Hence for the following assertions ϕ:

• Cn(a) where n ∈ N,

34
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Strong t Brave v Dependable
Secure v ∀has friend.(¬Strong → Brave)

Figure 4.1: Examples of GCIs

• a : ∃r.A and

• r(a, b) where {a, b} ⊆ NI

we have A′ |= ϕ iff A¦ |= ϕ.
It is easy to see that A′ |= Cn(a) for all n ∈ N but A′ 6|= a : ∃r.A. For the

role assertions, we know that the only role assertions that is entailed by A′ is
r(b, b). But then Lemma 25 ensures that there is no ALC ABox that can fulfill
the properties above (contradiction).

Description Logic TBox and KB

A general terminological box (TBox) is a finite set of general concept inclusions
(GCI) C v D where C andD are concepts. A TBox is used to store subsumption
relations between concepts in our domain of interest. A TBox that stores only
L concepts is called an L TBox. Similarly, a TBox is called an LΣ TBox if it
contains only subsumption relations between LΣ concepts. The signature sig(T )
is a pair 〈N′C,N′R〉 where N′C and N′R are the set of concept and role names used
in T . Figure 4.1 is an example of an ALC TBox. The size |T | of a TBox T is
defined as follow.

|T | :=
∑

CvD∈T
|C|+ |D|

A TBox T is in NNF iff for all GCIs, C v D ∈ T , both C and D are in NNF.
The set sub(T ) is defined as follows.

sub(T ) :=
⋃

CvD∈T
sub(C) ∪ sub(D)

An interpretation I satisfies a GCI C v D (written I |= C v D) iff CI ⊆
DI . An interpretation I is a model of a TBox T (written I |= T ) iff for all
GCIs φ ∈ T , I |= φ. A TBox is consistent iff it has a model.

Combining the two formalisms (TBox and ABox) that we have introduced,
we define another formalism called the knowledge base formalism. A knowledge
base (KB) K is a pair K = 〈T ,A〉 where T is a TBox and A is an ABox. If T
is an L TBox and A an L ABox then K is an L KB. Similarly, if T is an LΣ

TBox and A an LΣ ABox then K is an LΣ KB. The signature sig(K) is defined
as sig(A) ∪ sig(T ). The size |K| of a KB K is |T | + |A|. A KB K is in NNF if
both T and A are in NNF. And the set sub(K) := sub(T ) ∪ sub(A).

An interpretation I is a model of a KB K = 〈T ,A〉 iff I |= T and I |= A. A
KB is consistent iff it has a model. An ABox assertion ϕ is a logical consequence
of a KB K (written K |= ϕ) iff for all interpretations I, I |= K implies I |= ϕ. A
KB K entails an ABox A (written K |= A)) if for all assertions ϕ ∈ A, K |= ϕ.
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Computing Updates in ALC
Unlike in the previous chapter, we now try to partially recover extended syn-
tactic ABox updates in ALC. We say a DL L has partially extended syntactic
ABox updates if for all original L ABox and update U , there exists an L KB K
such that for all L assertions ϕ with sig(ϕ) ∩ sig(K) ⊆ sig(A) ∪ sig(U), K |= ϕ
iff A′ |= ϕ. This means, given a semantically updated ALCO@ ABox A′, we
construct a KB K¦ = 〈T ¦,A¦〉 such that for all ALC ABox assertions ϕ with
sig(ϕ) ∩ sig(K¦) ⊆ sig(A′), we have A′ |= ϕ iff K¦ |= ϕ.

Before constructing the whole KB, we first deal with the role assertions. We
do not need the help of TBoxes here. The idea here is to exploit the fact that
given an original ALC ABox and an update, the semantically updated ABox is
always representable in ALCO@. And, given all role assertions that are entailed
by the original ABox and an update, we can generate all the role assertions that
are entailed by the semantically updated ABox.

Definition 46 (Role Explicit). An ABox A is role explicit if for all role asser-
tions r(a, b),

• A |= r(a, b) implies r(a, b) ∈ A and

• A |= ¬r(a, b) implies ¬r(a, b) ∈ A.

Lemma 47. Let A be an original ALC ABox, U an update and A′ ≡ A∗U . If
A is role explicit and consistent, then for all role assertions r(a, b),

(i) A′ |= r(a, b) iff r(a, b) ∈ U or r(a, b) ∈ A and ¬r(a, b) /∈ U .

(ii) A′ |= ¬r(a, b) iff ¬r(a, b) ∈ U or ¬r(a, b) ∈ A and r(a, b) /∈ U .

Proof. We only show Point (i). Point (ii) can be shown in a similar way.
(⇒) Assume A′ |= r(a, b). Let I ′ be a model of A′. From (U2) in Defini-

tion 6, we know that there exists a model I of the A such that I =⇒U I ′. Then
from Definition 5 we know that (aI

′
, bI

′
) ∈ rI

′
iff r(a, b) ∈ U or (aI , bI) ∈ rI

and ¬r(a, b) /∈ U .
(⇐) Let I ′ be a model of A′. Then, we know that there is a model I of

A such that I =⇒U I ′ from (U2). To show (aI
′
, bI

′
) ∈ rI′ we distinguish two

cases.

• r(a, b) ∈ U . From Definition 5 and the assumption that r(a, b) ∈ U , we
know that (aI

′
, bI

′
) ∈ rI′ .

• r(a, b) ∈ A and ¬r(a, b) /∈ U . Since I |= A, we know that I |= r(a, b).
Then, from Definition 5 and the assumption that ¬r(a, b) /∈ U , we have
(aI

′
, bI

′
) ∈ rI′ .

Since I ′ is arbitrary, we can conclude that for all I ′, I ′ |= A′ implies I ′ |= r(a, b).
Hence A′ |= r(a, b).

Lemma 47 says that given a role explicit ALC ABox and update U , we can
derive all role assertions that should be entailed by the semantically updated
ABox. Using this information, we can generate a role explicit semantically up-
dated ABox. This then has solved ”half” of the problem that needs to be handled
because we can easily assume without loss of generality that the semantically
updated ABox is role explicit.
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Lemma 48. Let A be an original role explicit ALC ABox, U an update and A′
the ALCO@ semantically udpated ABox. Then we can construct a role explicit
ALCO@ ABox A¦ such that A¦ ≡ A′.
Proof.

A¦ = A′ ∪ {r(a, b) | r(a, b) ∈ U} ∪ {¬r(a, b) | ¬r(a, b) ∈ U} ∪
{r(a, b) | r(a, b) ∈ A and ¬r(a, b) /∈ U} ∪
{¬r(a, b) | ¬r(a, b) ∈ A and r(a, b) /∈ U}

The next thing we need to consider are the concept assertions. The idea
now is to construct an ALC KB K(A′) from a role explicit semantically updated
ALCO@ ABox A′ such that for all ALC concept assertions C(a) with sig(C) ∩
sig(K(A′)) ⊆ sig(A′), we have K(A′) |= C(a) iff A′ |= C(a). Before going into
the details of the construction, we first define several notions. Let A be an
ALCO@ ABox. We define:

• Xs := {Xa | a ∈ NI},
• Zs := {Za,C | a ∈ NI and C is an ALCO@ concept},
• cl(A) := {C,¬C | C ∈ sub(A)} and

• Z(A) := {Za,C ∈ Zs | a ∈ inds(A) and C ∈ cl(A)}.
The setXs and Zs are sets of fresh (i.e. does not appear in the ABoxA′) concept
names for each individual name and possible concept assertion respectively. The
closure cl(A) of A is the set of all subconcepts of A and their negations. All of
these sets are disjoint each other and also to the set concs(A). The set Z(A) is a
subset of Zs. Using these sets, we define an ALC concept CALC as the concept
obtained from an ALCO@ concept C by replacing all occurrences of nominals
{a} with Xa ∈ Xs and @aD with Za,D ∈ Zs.

Definition 49 (Constructing K(A)). Let A be a role explicit ALCO@ ABox
and u /∈ roles(A). We define the KB K(A) := 〈T ′,A′〉 as follows.

A′ := {Xa(a) | a ∈ inds(A) and Xa ∈ Xs} ∪ (4.1)
{r(a, b) | r(a, b) ∈ A} ∪
{¬r(a, b) | ¬r(a, b) ∈ A} ∪
{u(a, b), u(b, a) | {a, b} ⊆ inds(A)} (4.2)

T ′ := {Xa v CALC | a : C ∈ A} ∪ (4.3)
{Xa v ∀r.¬Xb | ¬r(a, b) ∈ A} ∪ (4.4)
{Xa u CALC v Za,C | Za,C ∈ Z(A))} ∪ (4.5)
{Za,C v ∀r.Za,C | Za,C ∈ Z(A) and r ∈ roles(A′)} ∪ (4.6)
{∃r.Za,C v Za,C | Za,C ∈ Z(A) and r ∈ roles(A′)} ∪ (4.7)
{Xa u Za,C v CALC | Za,C ∈ Z(A))} (4.8)

Now, we show that if A′ is a role explicit ALCO@ ABox that is equivalent
to a semantically updated ABox, then the ALC KB K(A′) is the extended
syntactically updated ABox.
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Lemma 50. Let A be a role explicit ALCO@ ABox and K(A) a KB defined as in
Definition 49. Then, for all ALC assertions ϕ with sig(ϕ)∩ sig(K(A)) ⊆ sig(A),
K(A) |= ϕ iff A |= ϕ.

Proof. Let K(A) = 〈T ′,A′〉. Let ϕ be an ALC assertion such that sig(ϕ) ∩
sig(K(A)) ⊆ sig(A). It is easy to see that if ϕ is a role assertion, then A |= ϕ
iff ϕ ∈ A iff ϕ ∈ A′ iff K |= ϕ due to the fact that A is role explicit and A′
contains all role assertions in A. We now come to a more interesting case where
ϕ is a concept assertion E(a).

(⇐) Assume that K(A) 6|= E(a). Then there exists a model I ′ of K(A), such
that aI

′ 6∈ EI
′
. We now claim that for all models I ′ of K(A), there exists a

model I of A such that aI = aI
′
and for all d ∈ ∆I and ALC concepts C with

sig(C)∩ sig(K(A)) ⊆ sig(A), d ∈ CI′ implies d ∈ CI . Hence, we have that there
exists a I of A such that aI 6∈ EI which then implies A 6|= E(a).

To conclude this direction, we need to show that the claim holds. Let I ′ be
a model of K such that I 6|= E(a). We construct I as follows.

∆I = ∆I′ \ {d | d ∈ XI′
a and d 6= aI

′} (4.9)

aI = aI
′

(4.10)

AI = AI
′ ∩∆I (4.11)

rI = (rI \ {(d, e) | (d, e) ∈ rI′ and ∃a ∈ NI : e ∈ XI′
a }) ∪ (4.12)

{(d, aI) | ∃e ∈ ∆I′ : (d, e) ∈ rI′ and e ∈ XI′
a }

From the construction of I, it is easy to see that aI = aI
′
. We still need to

show that I |= A. We show this making a case analysis of ϕ ∈ A. The first two
cases are positive and negative role assertions.

• ϕ = r(a, b). If r(a, b) ∈ A then r(a, b) ∈ A′. Hence (aI
′
, bI

′
) ∈ rI

′
and

bI
′ ∈ XI′

b . Thus, from (4.12) we have (aI , bI) ∈ rI .
• ϕ = ¬r(a, b). If ¬r(a, b) ∈ A then from (4.4), we have that Xa v ∀r.¬Xb ∈
T ′. Since I ′ |= T ′, we know that there is no r edge going from individuals
in XI′

a to individuals in XI′
b . And since in (4.12) we do not add that kind

of edge, we have I |= ¬r(a, b).
For the concept assertions case and the condition for all d ∈ ∆I and ALC
concepts C with sig(C) ∩ sig(K(A)) ⊆ sig(A), d ∈ CI

′
implies d ∈ CI , it is

enough to show the following claim. For all d ∈ ∆I and ALCO@ concepts
C with sig(C) ∩ sig(K(A)) ⊆ sig(A), d ∈ (CALC)I

′
implies d ∈ CI . Showing

this claim is enough to conclude the concept assertions case and the condition
mentioned above because:

• every concept assertion C(a) ∈ A, it holds that C is an ALCO@ concept
with sig(C) ∩ sig(K(A)) ⊆ sig(A),

• every ALC concept is an ALCO@ concept and

• for all ALC concepts C, CALC = C.

We show this using structural induction on C. Without loss of generality, we
assume that C in NNF and I ′ is a forest like model. Thus, (4.2) implies I ′ is
a connected model, i.e. in I ′, there is a path from any individual to any other
individual using role names that occur in A′.
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• C = A or ¬A, where A ∈ NC. Trivial since AALC = A and for all
d ∈ ∆I′ , d ∈ AI′ iff d ∈ AI .

• C = DuE and C = DtE. These cases follow directly from the induction
hypothesis.

• C = {a}. Then CALC = Xa. Assume that d ∈ XI′
a . From (4.10) and

(4.9), we know that if d ∈ ∆I and d ∈ XI′
a , then it has to be the case that

d = aI
′
= aI . Hence d ∈ {a}I .

• C = ¬{a}. Then CALC = ¬Xa. We need to show d 6∈ {a}I . Assume that
d /∈ {a}I but d ∈ XI′

a . From (4.10), we get d 6= aI
′
. Hence, from (4.9) we

get that d 6∈ ∆I (contradiction).

• C = @aD. Then CALC = Za,D. We need to show d ∈ (@aD)I . Assume
that d ∈ ZI′a,D. Then, (4.5), (4.6) and (4.7) assure that Za,D holds in every
individuals that are connected to d. The assumption I ′ is a connected
model and (4.8) guarantee that if Za,D has at least one element, it has to
be the case that for all element of e ∈ XI′

a , we have e ∈ (DALC)I
′
. Since

aI
′ ∈ XI′

a , we have aI
′ ∈ (DALC)I

′
. From the induction hypothesis and

the fact that aI = aI
′
, we get aI ∈ DI . Hence, from the semantics of the

@ constructor, we have for all e ∈ ∆I , e ∈ (@aD)I . Since d ∈ ∆I , we can
conclude that d ∈ (@aD)I .

• C = ∃r.D. Then CALC = ∃r.DALC . Assume d ∈ (∃r.DALC)I′ . We
need to show d ∈ (∃r.D)I . This case is interesting only if during the
construction, we remove the edge (d, e) ∈ rI

′
where e ∈ (DALC)I

′
and

for all f ∈ ∆I \ {e}, (d, f) ∈ rI
′

implies f /∈ (DALC)I
′
. Otherwise

this case becomes trivial. We only remove the edge (d, e) ∈ rI
′

if there
exists an a ∈ NI such that e ∈ XI′

a , e 6= aI . From (4.12), we know
that the existence of r-successor is recovered with (d, aI). To show that
d ∈ (∃r.D)I , it is enough to show that aI ∈ DI . From the fact that
e ∈ (Xa u DALC)I′ , D ∈ sub(A), (4.1), (4.5), (4.6), (4.7) and (4.8), we
get that aI

′ ∈ (DALC)I
′
. Then from the induction hypothesis, we have

aI
′ ∈ DI . Hence, from the fact that aI = aI

′
, we have aI ∈ DI .

• C = ∀r.D. Then CALC = ∀r.DALC . Assume d ∈ (∀r.DALC)I′ . We need to
show d ∈ (∀r.D)I . This case is interesting only if during the construction,
we add the edge (d, aI) to rI

′
. Otherwise this case becomes trivial. We

only add the edge (d, aI) if there exists an e ∈ ∆I′ such that (d, e) ∈ rI′
and e ∈ XI′

a . To show that d ∈ (∀r.D)I , it is enough to show that
aI ∈ DI . Since d ∈ (∀r.DALC)I′ and (d, e) ∈ rI

′
, we can conclude that

e ∈ (DALC)I
′
. Then, from the fact that e ∈ (Xa uDALC)I′ , D ∈ sub(A),

(4.1), (4.5), (4.6), (4.7) and (4.8), we get that aI
′ ∈ (DALC)I

′
. Then from

the induction hypothesis, we have aI
′ ∈ DI . Hence, from the fact that

aI = aI
′
, we have aI ∈ DI .

(⇒) Assume that A 6|= E(a). We claim that for all models I of A, there
exists a model I ′ of K(A) such that aI

′
= aI and for d ∈ ∆I′ and all ALC

concept C with sig(C) ∩ sig(K(A)) ⊆ sig(A), d ∈ CI
′

implies d ∈ CI . Then,
from the claim we can conclude that there exists a model I ′ of K(A) such that
aI

′
/∈ EI′ which then implies K(A) 6|= E(a).
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To show the claim, we show the construction of I ′. Let I be an interpretation
such that I |= A ∪ {¬E(a)}. We define an interpretation I ′ as an extension of
I as follows.

XI′
a = {aI} for all a ∈ NI

ZI
′

a,C =

{
∆I′ if aI ∈ CI ,
∅ otherwise.

uI
′

= {(aI , bI), (bI , aI) | {a, b} ⊆ NI}

It is easy to see that I ′ |= K(A) and aI
′

= aI . For concluding the case,
it remains to show that for all d ∈ ∆I′ and ALC concepts C with sig(C) ∩
sig(K(A)) ⊆ sig(A), d ∈ CI implies d ∈ CI′ . But, this is trivial because during
the construction of I ′, we do not modify the interpretation of concept and role
names that are used to construct C.

Theorem 51. ALC has partially extended syntactic ABox updates.

Proof. Let A be an ALC ABox, U an update and A′ ≡ A ∗ U . Let

B = A ∪ {r(a, b) | A |= r(a, b) ∧ {a, b} ⊆ inds(A) ∧ r ∈ roles(A)} ∪
{¬r(a, b) | A |= ¬r(a, b) ∧ {a, b} ⊆ inds(A) ∧ r ∈ roles(A)}.

It is easy to see that B ≡ A and B is role explicit. Hence, from Lemma 48, we
know that we can construct a role explicit ALCO@ ABox A¦ that is equivalent
to A′. Lemma 50 concludes the proof.

4.2 Computing Updates in ALCO
The results obtained in the previous section imply that the availability of ex-
tended syntactic ABox updates in ALC cannot be recovered without using the
help of ALC TBoxes. In this section, we show that this is not the case in the
DL ALCO. More precisely, given a semantically updated ALCO@ ABox, we
show how to construct the extended syntactically updated ABox in ALCO.

The idea of the construction is to utilize the usage of the expressive power of
ALCO, where we can express assertions using concepts, to imitate the @ con-
structor. Given an ALCO@ ABox A, we replace all occurrences of subconcept
@aC with an ALCO concept ∃u.({a}uC) where u is a fresh role name. It is easy
to see that we will get an ALCO ABox. Let us name the ALCO ABox A¦. We
show A and A¦ are LΣ-indistinguishable where Σ = 〈NC,NR〉\(sig(A¦)\sig(A)).
We first establish the relation between ∃u.({a} u C) and @aC in the following
lemma.

Lemma 52. Let C be an ALCO concept. Then for all interpretations I, we
have the following:

(i) for all d ∈ ∆I , d ∈ (∃u.({a} u C))I implies d ∈ (@aC)I and

(ii) if (d, aI) ∈ uI and d ∈ (@aC)I , then d ∈ (∃u.({a} u C))I
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Now, let A be an ALCO@ ABox in NNF and u a role name that does not
occur in A. We define A¦ as follows.

θ = {∃u.({a} u C)/@aC | @aC ∈ subs(A)}
A¦ = {r(a, b) | r(a, b) ∈ A} ∪ {¬r(a, b) | ¬r(a, b) ∈ A} ∪

{a : C[θ] | C(a) ∈ A}

where C[θ] is the result of applying the substitution θ to C. We show in the
following lemma that for all ALCO assertion ϕ where sig(ϕ)∩ sig(A¦) ⊆ sig(A),
we have A |= ϕ iff A¦ |= ϕ. This result implies that if A is the semantically
updated ABox, then A¦ is the extended syntactically updated ABox.

Lemma 53. For all ALCO@ ABoxes A, there exists an ALCO ABox A¦ such
that A and A¦ are ALCOΣ-indistinguishable where Σ = 〈NC,NI〉 \ (sig(A¦) \
sig(A)).

Proof. Without loss of generality, we assume that A is in NNF. We show for all
ALCO assertion ϕ where sig(ϕ) ∩ sig(A¦) ⊆ sig(A), we have A |= ϕ iff A¦ |= ϕ.

(⇒) For this direction, we show that A¦ |= A. This then implies for all
ALCO assertion ϕ, A |= ϕ implies A¦ |= ϕ. We do a case analysis on ϕ. If
ϕ is a role assertion then the case is trivial because we do not add or remove
any role assertion during the construction of A¦. The more interesting case is
if ϕ is concept assertion. Let I¦ be a model of A¦ and ϕ ∈ A. We show that
I¦ |= C(a) for all C(a) ∈ A by showing the following claim. For all d ∈ ∆I¦

and ALCO concepts C, d ∈ (C[θ])I
¦

implies d ∈ CI
¦
. We prove this using

structural induction on C. From the assumption A is in NNF, we know that C
is in NNF.

• C = A, C = ¬A, C = {a} or C = ¬{a}, where A ∈ NC and a ∈ NI. These
cases are trivial because C[θ] = C.

• C = D t E, C = D u E, C = ∃r.D or C = ∀r.D. These cases follow
directly from the induction hypothesis.

• C = @aD. Then C[θ] = ∃u.({a} u D[θ]). Assume that d ∈ (∃u.({a} u
D[θ]))I

¦
. Then aI

¦ ∈ (D[θ])I
¦
. From the induction hypothesis, we get

aI
¦ ∈ DI¦ . Thus, d ∈ (∃u.({a}uD))I

¦
. Then from Point (i) in Lemma 52,

we get d ∈ (@aD)I
¦
.

(⇐) Assume that there exists an ALCO assertion ϕ with sig(ϕ)∩ sig(A¦) ⊆
sig(A), such that A 6|= ϕ. Then there exists a model I such that I |= A∪{¬ϕ}.
The idea now is to construct an interpretation I¦ from I such that I¦ |= A¦ ∪
{¬ϕ}. This will then show that A¦ 6|= ϕ.

The interpretation I¦ can be constructed by extending I as follows.

uI
¦

= {(d, e) | {d, e} ⊆ ∆I}

To conclude the proof, we need to show that I¦ |= A¦ ∪ {¬ϕ}. We first show
that I¦ is a model of A¦. We do a case analysis on ψ ∈ A¦. If ψ = r(a, b), then
we know that r 6= u because u does not occur in A and we never add or remove
any role assertion from A while constructing A¦. Hence, it is easy to see that
I |= r(a, b) iff I¦ |= r(a, b). The case ψ = ¬r(a, b) can be shown in a similar way.
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The more interesting case is if ψ is concept assertion. Let ψ = C(a). We show
that I¦ |= C(a) by showing the following claim. For all d ∈ ∆I and ALCO@

concepts C with sig(C) ∩ sig(A¦) ⊆ sig(A), dI ∈ CI implies d ∈ (C[θ])I
¦
. We

show the claim using structural induction on C. Since A is in NNF, we know
that C is also in NNF.

• C = A, C = ¬A, C = {a} or C = ¬{a}. These cases are trivial because
C[θ] = C and we do not change the interpretation of concept names nor
individual names when constructing IO.

• C = D u E or C = D t E. These cases follow directly from induction
hypothesis.

• C = ∃r.D or C = ∀r.D. These cases are trivial because we know that
r 6= u and we do not change the interpretation of any other role names
except u during the construction of I¦.

• C = @aD. Then C[θ] = ∃u.({a}uD[θ]). Assume that d ∈ (@aD)I . Then
aI ∈ DI . From the induction hypothesis and the fact that aI

¦
= aI , we

get aI
¦ ∈ (D[θ])I

¦
. Thus, d ∈ (@a(D[θ]))I

¦
. From the construction of

I¦, we know (d, aI
¦
) ∈ uI¦. Hence, from Point (ii) in Lemma 52, we have

d ∈ (∃u.({a} uD[θ]))I
¦
.

To conclude the case, we still need to show that I¦ |= ¬ϕ. Since sig(ϕ) ∩
sig(A¦) ⊆ sig(A), we know that u does not occur in ϕ. But then this case be-
comes trivial because we only modify the interpretation of uI while constructing
I¦. Hence, I |= ¬ϕ implies I¦ |= ¬ϕ.

Theorem 54. ALCO has extended syntactic ABox updates.

4.3 Extended Syntactic Updates in ALC@ and
Boolean ALC ABoxes

From the previous chapter, we know that syntactic ABox updates do not exist in
ALC@. In this section, we will see that this is the case even if we only consider
extended syntactic ABox updates. We show that the extended syntactically
updated ABox still cannot be expressed in ALC@.

We also know that Boolean ALC ABoxes do not have syntactic updates from
the previous chapter. Here, we show that this also the case for extended syntac-
tic updates. We show that ALC has uniform ABox interpolation with respect
to Boolean ABoxes (from now on called uniform Boolean ABox interpolation).
Then using the this fact, we show that the non-existence result of syntactic
updates carries over to non-existence of extended syntactic updates in Boolean
ALC ABoxes.

Theorem 55. ALC@ does not have extended syntactic ABox updates.
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Proof. Recall the original ABox A, update U and semantically updated ABox
A′ in Lemma 21.

A = {a : ∃r.A,A(b), r(b, b)}
U = {¬A(b)}
A′ = {¬A(b), r(b, b), a : ∃r.(A t {b})}

Assume that ALC@ has extended syntactic ABox updates. Then there exists
an ALC@ ABox A¦ such that A¦ is the extended syntactically updated ABox.
This means that for all ALC@ assertions ϕ with sig(ϕ) ∩ sig(A¦) ⊆ sig(A′), we
have A¦ |= ϕ iff A′ |= ϕ.

We use the same logical consequences as in the proof of Theorem 55. Let
Cn = ∃r.(A t ∃rn.¬A). It is easy to see that that Cn satisfies the precondtion
sig(Cn) ⊆ sig(A′) which then implies sig(ϕ) ∩ sig(A¦) ⊆ sig(A′). It is also not
hard to see that for all {a, b} ⊆ NI, r(a, b) satisfies the precondition. Hence, for
the following assertions ϕ:

• Cn(a) where n ∈ N,

• a : ∃r.A and

• r(a, b) where {a, b} ⊆ NI

we have A′ |= ϕ iff A¦ |= ϕ. It is not hard to see that A′ |= Cn(a) for all n ∈ N,
A′ 6|= a : ∃r.A and for all c ∈ NI, A′ 6|= r(a, c) and A′ 6|= r(c, a). Thus,

(i) A¦ |= Cn(a) for all n ∈ N,

(ii) A¦ 6|= a : ∃r.A and

(iii) for all c ∈ NI, A′ 6|= r(a, c) and A¦ 6|= r(c, a).

From Lemma 34, we know that there exists a restricted Boolean ABox B
such that B ≡ A¦. Without loss of generality we assume that B is in the normal
form as follows.

B = B|R ∧ (B0 ∨ . . . ∨ Bn−1)

where B0, . . . ,Bn−1 are ALC ABoxes that contain only concept assertions and
B|R contains only role assertions. Hence, from Lemma 35, we know that there
exists an m < n such that

(i) Bm ∪ B|R |= Cn(a) for all n ∈ N,

(ii) Bm ∪ B|R 6|= a : ∃r.A and

(iii) for all c ∈ NI, A′ 6|= r(a, c) and Bm ∪ B|R 6|= r(c, a).

But then, Lemma 25 ensures that there is no ALC ABox that has the properties
above (contradiction).
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Uniform Boolean ABox Interpolation in ALC
As we can see in the proof of Lemma 20, ALC does not have uniform ABox
interpolation because it cannot express the assertion A(a)∨A(b). From this, one
may conjecture that we can recover the existence of uniform ABox interpolant
if we allow Boolean combination of ALC assertions to appear in the uniform
ABox interpolant.

Definition 56 (Uniform Boolean ABox Interpolation).

1. A Boolean L ABox AΣ is the uniform Boolean ABox interpolant of a
Boolean L ABox A w.r.t. Σ ⊆ sig(A) if

(a) sig(AΣ) ⊆ Σ

(b) A |= AΣ

(c) for all Boolean L assertion ϕ with sig(ϕ)∩sig(A) ⊆ Σ, A |= ϕ implies
AΣ |= ϕ.

2. A description logic L has uniform Boolean ABox interpolation if for all
Boolean L ABox A and Σ ⊆ sig(A), there exists a Boolean L ABox AΣ

that is the uniform Boolean ABox interpolant of A with respect to Σ.

Lemma 57. If a DL L has uniform Boolean ABox interpolation, then Boolean
L ABoxes have syntactic ABox updates iff Boolean L ABoxes have extended
syntactic updates.

Proof. This lemma can be shown in a very similar way as Lemma 19.

It turns out that ALC indeed has uniform Boolean ABox interpolation. We
first introduce the notion of complete ALC ABox and then show that for all
complete ALC ABoxes A and signatures Σ ⊆ sig(A), A has uniform ABox
interpolant w.r.t Σ. Using this result, we will show how the uniform Boolean
interpolant of a Boolean ALC ABox A w.r.t. Σ ⊆ sig(A) can be constructed.

Definition 58 (Complete ALC ABox). An ALC ABox A is complete if

• a : C tD ∈ A implies C(a) ∈ A or D(a) ∈ A,

• a : C uD ∈ A implies {C(a), D(a)} ⊆ A and

• {a : ∀r.C, r(a, b)} ⊆ A implies C(b) ∈ A.

Lemma 59. For all complete ALC ABoxes A and signatures Σ ⊆ sig(A), there
exists an ALC ABox AΣ such that AΣ is the uniform interpolant of A with
respect to Σ.

Proof. In this proof, we only analyze consistent ABoxes because the case is
trivial if the ABoxes are inconsistent ABox. Let A be a complete and consistent
ALC ABox and Σ ⊆ sig(A). We claim the following ABox is the uniform ABox
interpolant of A with respect to Σ.

AΣ = {r(a, b) | A |= r(a, b) and r ∈ Σ} ∪
{¬r(a, b) | A |= ¬r(a, b) and r ∈ Σ} ∪
{a : (

l

C(a)∈A
C)Σ}
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where CΣ is the uniform concept interpolant of C with respect to Σ. To show
the claim, we show that AΣ fulfills all conditions in Definition 18.

1. sig(AΣ) ⊆ Σ

2. A |= AΣ

3. for all L ABox assertion ϕ with sig(ϕ) ∩ sig(A) ⊆ Σ, A |= ϕ implies
AΣ |= ϕ.

Without loss of generality, we assume for all a ∈ inds(A), there exists a con-
cept assertion >(a) ∈ A. Using this assumption, we guarantee that inds(A) =
inds(AΣ).

Point 1 and 2 are direct consequences of the construction of AΣ. To show
Point 3, we use a case analysis on ϕ. If ϕ is a role assertion, then the case
follows directly from the construction of AΣ.

We now show the more interesting case where ϕ is a concept assertion. We
assume that there exists a concept assertion E(a) with sig(E) ∩ sig(A) ⊆ Σ,
such that AΣ 6|= E(a). Then, we know that AΣ ∪{¬E(a)} is consistent. Hence,
there exists an interpretation IΣ such that IΣ |= AΣ ∪ {¬E(a)}. We will then
construct an interpretation I from IΣ such that I |= A ∪ {¬E(a)}. This then
concludes Point 3.

Now, let α ∈ inds(A). We define the concepts Xα, Yα and Y Σ
α as follows.

Xα =
l

D∈sub(¬E)

IΣ|=D(α)

D u
l

D∈sub(¬E)

IΣ 6|=D(α)

¬D

Yα =
l

C(α)∈A
C

and Y Σ
α the uniform interpolant of Ya with respect to Σ. Then, from the fact

that IΣ |= AΣ, we know that for all α ∈ inds(AΣ), IΣ |= Y Σ
α (α). It is also

easy from the definition of Xα that IΣ |= Xα(α). Thus, for all α ∈ inds(AΣ),
we have Xα u Y Σ

α is satisfiable. Since Y Σ
α is the uniform interpolant of Yα with

respect to Σ and sig(Xα)∩ sig(A) ⊆ Σ, we have for all α ∈ inds(AΣ) = inds(A),
Xα u Yα is also satisfiable.

In order to show that A 6|= E(a), we will construct an interpretation I such
that I |= A∪{¬E(a)}. Let Iα be an interpretation such that Iα |= α : XαuYα.
Without loss of generality, we assume that for all α ∈ inds(A), ∆Iα are disjoint
sets. We then construct I as follows. Let A ∈ NC, r ∈ NR and α ∈ NI.

∆I =
⋃

α∈inds(A)

∆Iα

αI = αIα

AI =
⋃

α∈inds(A)

AIα

rI =
⋃

α∈inds(A)

rIα ∪ {(bI , cI) | r(b, c) ∈ A}

To finish the proof, we still need to show that I |= A ∪ {¬E(a)}. We first
show that I is a model of A. We do case analysis on ϕ ∈ A. If ϕ is a role
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assertion, then the case is trivial. The more interesting case is if ϕ is concept
assertion. We show this by showing the following claim. For all α ∈ inds(A)
and concept assertions D(α) ∈ A, Iα |= D(α) implies I |= D(α). Without loss
of generality, we assume that D is in NNF. We show the claim using structural
induction on D.

• D = A or D = ¬A where A ∈ NC. These cases are direct consequences of
the construction of I.

• D = F t G. Since A is a complete ABox, we know that F (α) ∈ A or
G(α) ∈ A. Then, from the induction hypothesis we get I |= F (α) or
I |= G(α). Hence, I |= D(α).

• D = F uG. This case can be shown similarly as the previous case.

• D = ∃r.F . This case is trivial because we do not remove any edge from
rIα during the construction of rI .

• D = ∀r.F . During the construction of I, we add an edge (αI , bI) to
the interpretation of r only when r(α, b) ∈ A. So, to conclude the proof,
we need to show that I |= F (b). Since A is a complete ABox, we have
F (b) ∈ A. And then, from the induction hypothesis, we get I |= F (b).

It remains to show that I |= ¬E(a). We show this by showing the following
claim. For all α ∈ inds(A) and D ∈ sub(¬E), Iα |= D(α) implies I |= D(α).
We also show this using structural induction on D. Without loss of generality
we assume D is in NNF.

• D = A or D = ¬A where A ∈ NC. These cases are direct consequences of
the construction of I.

• D = F uG or D = F tG. These cases follow directly from the semantics
and induction hypothesis.

• D = ∃r.F . This case is trivial because we do not remove any edge from
rIα during the construction of rI .

• D = ∀r.F . During the construction of I, we add an edge (αI , bI) to the
interpretation of r only when r(α, b) ∈ A. So, to conclude the proof, we
need to show that I |= F (b). Since D ∈ sub(¬E), it has to be the case that
r(α, b) ∈ AΣ. Otherwise, sig(¬E) ∩ sig(A) 6⊆ Σ. Since Iα |= Xα(α) and
Iα |= D(α), we know that IΣ |= D(α). And from the fact that IΣ |= AΣ

and r(α, b) ∈ AΣ, we know that IΣ |= F (b). Thus, it is not hard to see
that Xb v F because from the definition of Xb, F has to be one of the
conjuncts in Xb. Hence, from the induction hypothesis and the fact that
Ib |= Xb(b), we conclude I |= F (b).

The idea now is to show that for every Boolean ALC ABox B, there exists
an equivalent Boolean ALC ABox B′ = B0 ∨ . . .∨Bn−1, where B0, . . . ,Bn−1 are
complete ALC ABoxes. Without loss of generality, we assume that sig(B) =
sig(B0) = . . . = sig(Bn−1). Let Σ ⊆ sig(B). Then for each Bm where m < n, we
construct the uniform ABox interpolation BΣ

m with respect to Σ. After that, we
show that BΣ = BΣ

0 ∨ . . . ∨ BΣ
n−1 is the uniform Boolean ABox interpolant of B

with respect to Σ.
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Lemma 60. For every Boolean ALC ABox B, there exists an equivalent Boolean
ALC ABox B′ = B0∨ . . .∨Bn−1 where B0, . . . ,Bn−1 are complete ALC ABoxes.

Proof. Let B a Boolean ALC ABox. We assume that B is in the following normal
form.

B = B0 ∨ . . . ∨ Bm−1

where B0 . . .Bm−1 are ALC ABoxes. To conclude the proof, it is enough to
show the following claim. We claim that for all ALC ABoxes A, there exists an
equivalent Boolean ALC ABox A′ = A′0 ∨ . . . ∨ A′k−1 where A′0, . . . ,A′k−1 are
complete ALC ABoxes.

An ABox Acomp is a completion of A if for all C ∈ sub(A) and a ∈ inds(A),
C(a) ∈ A or ¬C(a) ∈ A. Let A be the set of all possible completions of A.
Then it is not hard to see that A′ =

∨
Acomp∈AAcomp is equivalent to A. It is

also not hard to see that every Acomp is a complete ALC ABox.

Theorem 61. ALC has uniform Boolean ABox interpolation.

Proof. Let B be a Boolean ALC-ABox. From Lemma 60, we know that there
exists an equivalent Boolean ALC ABox

B′ = B0 ∨ . . . ∨ Bn−1

where B0, . . . ,Bn−1 are complete ALC ABoxes. Without loss of generality, we
assume sig(B) = sig(B′) = sig(B1) = . . . = sig(Bn−1).

Let Σ ⊆ sig(B). Now, we claim the following Boolean ALC ABox BΣ is
the uniform Boolean ABox interpolant of B w.r.t. Σ. Let AΣ be a uniform
interpolant of A with respect to signature Σ.

BΣ =
∨

A∈{B1...Bm}
AΣ

It is easy to see that sig(BΣ) ⊆ Σ and B |= BΣ. It remains to show for all
Boolean ALC assertion ϕ with sig(ϕ) ∩ sig(A) ⊆ Σ, B |= ϕ implies BΣ |= ϕ.
Let ϕ be a Boolean ALC assertion with sig(ϕ) ∩ sig(B) ⊆ Σ. Assume BΣ 6|= ϕ.
Then there is an ALC ABox BΣ

k where k ≤ m such that BΣ
k 6|= ϕ. Since BΣ

k is
the uniform ABox interpolant of Bk w.r.t. Σ, we know that Bk 6|= ϕ. Hence,
B 6|= ϕ.

Corollary 62. Boolean ALC ABoxes do not have extended syntactic ABox
updates.

Proof. Follows directly from Theorem 44, Theorem 61 and Lemma 57.



Chapter 5

Conclusion

We have revisited the ABox update problem in several basic description logics.
Some of the results presented in this thesis strengthen the results given in [4].
Here, we have shown that weakening the definition of ABox update from seman-
tic update to syntactic update is not enough to recover the existence of ABox
updates in the DLs ALC, ALCO and ALC@. We show the negative results by
giving combinations of original ALC (resp. ALCO) ABox, update and semanti-
cally updated ABox, and then show that there is no ALC (resp. ALCO) ABox
that has the same ALC (resp. ALCO) logical consequences as the semantically
updated ABox. For ALC@, we show the negative result indirectly. We first show
that ALC@ ABoxes have the same expressive power as restricted Boolean ALC
ABoxes. And then we show that there is no restricted Boolean ALC ABox that
has the same ALC logical consequences as the semantically updated ABox given
in the section where we show the negative result for ALC. We can use the same
combination of ABoxes because every ALC ABox is also a restricted Boolean
ALC ABox. While studying the restricted Boolean ABox, we also explored the
availability of syntactic ABox update in Boolean ALC ABox. It turned out
even Boolean ALC ABoxes, which are more expressive than ALC@ ABoxes, are
still not expressive enough to express semantically updated ABox. Unlike the
case for restricted Boolean ALC ABoxes, we show this negative result using a
different combination of ABoxes. We needed a new combination because there
is a Boolean ALC ABox that is equivalent to the semantically updated ABox in
the combination that we used to show the negative results for ALC and ALC@.
So, in summary, we conclude that weakening semantic ABox updates to syntac-
tic ABox updates does not help in recovering the existence of ABox updates in
standard DLs.

To recover the existence of ABox updates, we tried to weaken the definition of
ABox update even further from syntactic update to extended syntactic update.
These two definitions of ABox updates coincide in DLs that admit uniform
ABox interpolation.

We have seen in Chapter 4 that we are able to recover the existence of
ABox updates in ALCO by this weakening. Unfortunately, we are not able to
fully recover the existence of ABox updates in ALC. This negative result is
shown in a very similar way as we show the negative result for ALC concerning
the syntactic ABox updates. The recovery of ABox update in ALC can be
done if we allow ALC KB as the result of the update instead of having just
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ALC ALCO ALC@

Semantic Updates [4](×) [4](×) [4](×)
Syntactic Updates Th.27(×) Th.33(×) Cor.37(×)
Extended Syntactic Updates Th.51(⊗) Th.54(

√
) Th.55(×)

B. Semantic Update [4](×) [4](
√

) [4](×)
B. Syntactic Update Th.44(×) [4](

√
) ?

B. ext. Syntactic Update Cor.62(×) [4](
√

) ?

Figure 5.1: Existence of ABox updates in some DLs

an ALC ABox. If we allow this, the updated ALC KB can be computed. We
also studied extended syntactic ABox updates for ALC@ and Boolean ALC
ABoxes. The result that we obtained is that this weakening is not enough to
fully recover the existence of ABox updates in ALC@ and Boolean ALC ABoxes.
We showed the negative result for ALC@ by using a similar strategy as we
showed the negative result for ALC@ concerning the syntactic ABox updates.
For the negative result of Boolean ALC ABoxes, we showed that ALC has
uniform Boolean ABox interpolation. This then implies that the non-existence
of syntactic ABox updates result carries over to Boolean ALC ABoxes.

A summary of the results is presented in Figure 5.1. ”B.”, ”Th.” and ”Cor.”
are abbreviations for Boolean, Theorem and Corollary, respectively. This states
where we show the results in this thesis. If the cell has a citation remark, it
means that the result is obtained from that citation. The symbol

√
means that

ABox updates exist, × means that ABox updates do not exist, ⊗ means that
ABox updates exist if we allow KBs instead of ABoxes as the results of updates
and ? means that we did not know whether it exists or not.

As stated in the introduction, we only consider simple ABoxes as updates.
One obvious future work is to develop a theory on how to consider a more general
ABox as the update. If we try to apply this, then we will need to define a new
way to update an interpretation. One idea is to have a set of interpretations
instead of just an interpretation as the result of updating an interpretation.



Bibliography

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

[2] G. D. Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the update
of description logic ontologies at the instance level. In Proceedings of the
Twenty-first National Conference on Artificial Intelligence (AAAI 2006),
2006.
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