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Abstract

Research embracing context-sensitivity in the domain of knowledge representation

(KR) has been scarce, especially when the context is uncertain. The current study deals

with this problem from a logic perspective and provides a framework combining Description

Logics (DLs) with Bayesian Networks (BNs). In this framework, we use BNs to describe

contexts that are semantically linked to classical DL axioms.

As an application scenario, we consider the Bayesian extension BEL of the lightweight

DL EL. We define four reasoning problems; namely, precise subsumption, positive sub-

sumption, certain subsumption and finding the most likely context for a subsumption. We

provide an algorithm that solves the precise subsumption in PSPACE. Positive subsump-

tion is shown to be NP-complete and certain subsumption coNP-complete. We present

a completion-like algorithm, which is in EXPTIME, to find the most likely context for a

subsumption.

The scenario is then generalised to Bayesian extensions of classic-valued, monotonic

DLs, where precise entailment, positive entailment, certain entailment and finding the most

likely context for an entailment are defined as lifted reasoning problems. It is shown that

precise entailment, positive entailment and certain entailment can be solved by generalising

the algorithms developed for the corresponding reasoning problems in BEL. Lastly, the

complexities of these problems are shown to be bound with the complexity of entailment

checking in the underlying DL, provided this is PSPACE-hard.

Keywords: Description Logics, Bayesian Networks, Context-based Reasoning, Uncer-

tainty, Semantic Web
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Chapter 1

Introduction

Knowledge Representation (KR) KR is the field of studies that aims to “develop

formalisms for providing high-level descriptions of the world that can be effectively used to

build intelligent applications” as described by Brachman and Nardi [1]. There are a number

of questions that can be raised with respect to this quotation, such as what is meant by a

formalism, what do the high level descriptions correspond to and most importantly when

can an application be classified as intelligent. In KR, intelligent applications are restricted

to those which are able to reason about the knowledge and infer implicit knowledge from

the explicitly represented one. A formalism in KR is realized by means of a language that

has a well-defined syntax and an unambiguous semantics. Lastly, a high-level description

refers to concentrating only on the relevant aspects of the domain of interest.

The domain of interest can cover any part of the real world as well as any hypothetical

system about which one desires to represent knowledge. Typically, KR formalisms enable us

to form statements. A set of statements that describes a domain is then called a knowledge

base or ontology, upon which reasoning can be performed by making use of the formal

semantics of the statements.

Description Logics (DLs) DLs [1] comprise a widely-studied family of knowledge repre-

sentation formalisms. This family is characterized by the use of concepts, roles and indi-

viduals. In DLs, concepts describe an abstract or generic idea generalised from particular

individuals and roles describe the binary relations between such individuals.

Informally, the syntax of DLs is based on named concepts and named roles which are

given a priori. Concept descriptions, in short concepts, are defined inductively from named

concepts and named roles by making use of the constructors provided by the particular

DL. Consequently, the particular DL is mainly a result of the choice over the constructors

to be used. Basic constructors in DLs are conjunction (u), disjunction (t), negation (¬),
existential restriction (∃) and value restriction (∀). Top concept (>) and bottom concept

(⊥) are special constructors, that denote concepts on their own.

1



Chapter 1. Introduction 2

The semantics of DLs is defined by interpreting the named concepts as sets and the

named roles as relations. The interpretations are then generalised to all concepts by addi-

tionally setting the intended meaning of the constructors. Intuitively, given two concepts C

and D, the conjunct (C uD) defines a new concept that contains only the individuals that

belong to both C and D, that is, an intersection in set theory. Analogously, disjunction

is interpreted as union and negation as complement. ∃r.C describes the set of individuals

that are related to an individual in concept C via the role r. ∀r.C describes the set of

individuals x where for all y that is related to x via r, y belongs to the concept C. Finally,

> is the set consisting of all individuals in the domain and ⊥ is the empty set.

The language described so far is called the concept language and is mainly a result of

the choices on the constructors to be used. However, even if the concept language is fixed,

it is still possible to form different types of ontologies in DLs. This stems from the fact that

there exists different operators for forming statements, or axioms, as is widely-known, that

aid in realizing different types of ontologies. DL ontologies mostly consist of a terminological

box (TBox) and an assertional box (ABox), where the former contains axioms in the concept

level, and the latter on the individual level.

ABox axioms, usually called assertions, are units of statements about individuals. Con-

sidering the concept Parent, the assertion Parent(Hans) states that the individual Hans is

a Parent. TBox axioms, on the other hand, are units of statements on the concept level,

i.e., they allow us to form statements about concepts. General TBoxes are finite collections

of axioms, known as general concept inclusions, that are built with the subsumption op-

erator (v). For instance, (Father v Parent) is a simple general concept inclusion that is

interpreted as a sub-class relation between Father and Parent, meaning that all individuals

belonging to the concept Father also belong to the concept Parent.

Besides being theoretical formalisms, DLs are also promising in practice. Given their

numerous applications in various domains of knowledge, it would be safe to say that DLs

have achieved a considerable success in KR. For instance, DLs are the underlying theory

behind the Semantic Web, which is the effort to structure the content on the web a priori

in a machine-processable way. To date, various DL formalisms have been proposed based

on the different combinations of the constructors. Several reasoning problems that allow

to deduce consequences such as subclass and instance relationships from the DL ontologies

have been defined and solved by providing various algorithms. Furthermore, plenty of

tools that perform reasoning over DL ontologies have been developed such as Hermit [2],

Fact++ [3] and CEL [4].

Uncertainty Having partial knowledge over a domain is in most cases, if not in all, un-

avoidable. As a result, the question of whether and to what extent this fact is taken into

account in KR is important. A number of probabilistic approaches, dating back to the

mathematical investigation of the probabilistic logics in 1854 [5], have been developed to

address uncertainty. Since then, probabilistic extensions of different logics have been stud-

ied widely. Nilsson [6] provides a probabilistic logic which can be considered as the basis
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for its successors. Fagin et al. [7] introduce a probabilistic logic, closely related to Nils-

son’s probabilistic logic, that allows to specify linear inequalities over events. Frisch and

Haddawy [8] generalise the propositional version of Nilsson’s probabilistic logic by incorpo-

rating conditional probabilities and they introduce inference rules upon which producing

proofs to explain how conclusions are drawn is possible. Lukasiewicz [9–12] introduces lo-

cally complete inference rules for probabilistic deduction from taxonomic and probabilistic

knowledge-bases over conjunctive events.

Rather recently, probabilistic DLs are being investigated, see [13] for a survey. Al-

though there are plenty of different approaches, some properties of probabilistic DLs are

mostly shared. Most importantly, all formalisms need to satisfy the requirements of the

probability calculus. This is commonly realized through the so-called probabilistic world

semantics. In this semantics, the unknown part of the knowledge domain is instantiated,

which then corresponds to a world. Each world is associated with a probability that deter-

mines its likelihood. Exhaustively doing this for every possible world enables us to draw

conclusions over the domain as a whole. Intuitively, worlds are abstractions through which

we complete our partial knowledge over the domain.

Probabilistic DLs have a larger degree of freedom than classic DLs in the sense that

there are other choices than the underlying DL. We recall the related work in the relevant

chapters by putting an emphasis on these choices.

Context-sensitivity Another challenge in KR is to distinguish the context of the knowl-

edge domain. Suppose we want to state that plants make photosynthesis. Assuming that

existential restrictions are available in the DL we can form an axiom as follows.

Plant v ∃make.Photosynthesis

Now suppose that we want to put restrictions on this axiom; for instance, we want

to say that this is the case only if there light is available. Näıvely, this can be done by

manipulating the axiom. On the other hand, the main intention here is to describe a

context for the axiom. Hence, it is important to keep the axiom as general as possible

and annotate it with certain context, which also enables reuse of a particular axiom in

different contexts. In his “Notes on formalizing context” [14], McCarthy has discussed the

importance of contexts in knowledge domains and proposed a theory to formalize them.

The basis of his theory is to be able to make assertions in the form of ist(c, p) which is

interpreted as the proposition p is true in the context c, that is; p is true if the context is

c. Adopting this to our example we can form an axiom as follows.

ist(Plant v ∃makes.Photosynthesis, {Light is available})

A context in this particular example consists of one proposition, i.e., light being avail-

able. It is worth to noting that we may as well benefit from a set of propositions to describe

a context. Such KR formalisms that are able to take into account the context-dependent

character of knowledge are called context-sensitive formalisms. Accordingly, reasoning in
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context-sensitive formalisms is called context-sensitive reasoning or context-based reason-

ing. Context-based reasoning in DLs is recently being investigated; see Klarman [15] for

a framework on context based reasoning in DLs and related work. Intuitively, contexts

describe another dimension for knowledge domains. Then, the main questions are how to

represent the new dimension and what properties are required to be met by this represen-

tation.

Context-sensitivity over uncertain domains This work aims to provide a framework

that is context-sensitive where the context is uncertain. We can illustrate this further by

building on the previous example of the axiom stating that plants make photosynthesis

provided that there is light in the environment. On the other hand, we do not have certain

information about the appearance of light in the environment, that is, having light in the

environment comes with some probability.

The main approach held in this work is to combine two KR formalisms, namely, DLs

and Bayesian networks (BNs) with a dimensional perspective. We provide axioms with two

dimensions, the first dimension being the standard DL axiom, and the second one being

the context, which is a set defined w.r.t. a BN. Semantically, these are connected with an

“if condition” as in McCarthy’s formalism.

As an application scenario we consider the lightweight DL EL and extend it to Bayesian

EL, which we abbreviate in the remainder of the text as BEL. The thesis is organised in

the following way: In Chapter 2 we define the preliminaries where we introduce individual

formalisms that are combined. This is followed by Chapter 3, in which the syntax and

semantics of BEL is given. Next, we define reasoning problems for BEL and provide al-

gorithms to solve them. These results together with the computational complexity results

of the algorithms are collected in Chapter 4. In Chapter 5, we generalise BEL to the DL

family, denoted as BDL, and discuss reasoning in BDL. We conclude by summarising our

results and contributions to the existing literature as well as discussing potential directions

for future work.



Chapter 2

Preliminaries

We propose a new formalism that combines the DL EL with BNs. It is important to know

the insights of these formalisms before moving on to the new logic, where these formalisms

represent the dimensions.

The first formalism that we concentrate on is EL. EL uses only the constructors >, u
and ∃. It is a lightweight DL and reasoning in EL is known to be tractable, i.e., polynomial.

It has drawn the attention of researchers because tractable extensions of EL, particularly
EL++ [16], are already sufficient for knowledge representation and reasoning tasks over

various knowledge domains. These extensions have been used in bio-medical ontologies

such as the Systematized Nomenclature of Medicine [17], The Gene Ontology [18] and

large parts of the Galen Medical Knowledge Base [19]. Furthermore, EL underlies the

OWL 2 EL profile, which has been standardised by World Wide Web Consortium (W3W)

in 2009.

The term “Bayesian” comes from Thomas Bayes who is the pioneer in proposing to

update beliefs. His ideas, however, have not been published during his life-time. After

Bayes’s death, Richard Price has significantly edited and published his notes [20]. What

we name “Bayesian” in the modern sense has been mostly formulated by Laplace in his

work titled “Théorie analytique des probabilités” [21]. In his “Essai philosophique sur les

probabilités” [22], Laplace has derived the general form of “Bayes’s theorem” that we know

today. Furthermore, he suggested a system for inductive reasoning based on probability,

which laid the ground for today’s “Bayesian statistics”. BNs are “Bayesian” in the sense

that they employ the principles of Bayesian inference (based on Bayes’s theorem) but they

do not necessarily imply a commitment to “Bayesian statistics”. Indeed, it is common

to use frequentists methods. BNs can be seen as an automated mechanism for applying

the principles of Bayesian inference to more complex problems by making use of directed

acyclic graphs.

The idea of combining DLs with BNs goes back to Koller et. al. [23], where authors

extend the old description logic CLASSIC to P-Classic by making use of BNs. The reasoning

problems defined for P-Classic are then reduced to inference in BNs. In addition to the lack

5
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of support for assertional knowledge, P-Classic introduces certain restrictions, which make

the reasoning easier, even polynomial if BNs are restricted to poly-trees as their underlying

data structure. Our framework differs from this not only w.r.t. the underlying DL, but also

in the contextual setting that we define, upon which the two formalisms are semantically

linked.

2.1 EL

EL is a DL, which uses only >, u and ∃ as constructors. Assume that a countably infinite

supply of concept names, usually denoted as A and B, and of role names, usually denoted

as r and s, are available. Let NC and NR be disjoint sets of concept and role names,

respectively. Then the syntax and semantics of EL are defined as follows:

Definition 2.1 (Syntax). The set of EL-concepts is inductively defined as follows:

− > and A ∈ NC are concepts.

− If C and D are concepts then so is C uD.

− If C is a concept and r ∈ NR then ∃r.C is a concept.

The semantics of EL is given in terms of interpretations. An interpretation consists

of an interpretation function and a non-empty interpretation domain. We first define the

interpretation function over the elements of the sets NC and NR and then extend it to all

concepts.

Definition 2.2 (Semantics). An interpretation is a pair (∆I , ·I) where ∆I is a non-empty

domain and ·I is an interpretation function such that:

− AI ⊆ ∆I for all A ∈ NC

− rI ⊆ ∆I ×∆I for all r ∈ NR

The interpretation function ·I is extended to all concepts as follows:

− >I = ∆I

− (C uD)I = CI ∩DI

− (∃r.C)I = {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

We have defined the concept language of EL. In EL it is also important to capture

the terminological knowledge of application domains in a structured way. This is achieved

through terminological boxes.

Definition 2.3 (TBox). A GCI is an expression of the form C v D, where C, D are

concepts. An interpretation I satisfies the GCI C v D iff CI ⊆ DI . An EL terminological

box (TBox) T is a finite set of GCIs. An interpretation I is a model of the TBox T iff it

satisfies all the GCIs in T .

The main reasoning service in EL is subsumption checking, i.e., deciding the sub-

concept relations between given concepts based on their semantic definitions. Subsumption

is formally defined as follows.
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Definition 2.4 (Subsumption). C is subsumed by D w.r.t. the TBox T (C vT D) iff

CI ⊆ DI for all models I of T .

It has been shown that subsumption can be decided in EL in polynomial time [16]

by an algorithm (known as completion algorithm), which we will refer to in Chapter 4.

This concludes our remarks on the description logic EL. In Section 2.2, we elaborate on

Bayesian networks which is the other constituent of our hybrid formalism.

2.2 Bayesian Networks

Bayesian networks [24], also known as Belief networks, provide a probabilistic graphical

model, which has a directed acyclic graph (DAG) as its underlying data structure. Each

node in the graph represents a random variable, and the set of edges in the graph represent

probabilistic dependencies among random variables.

Definition 2.5 (Bayesian network). A Bayesian network is a pair BN = (G,Θ) where

− G = (V, E) is a directed graph with V as the set of random variables and E as the set

of dependencies among the random variables

− Θ is a set of conditional probability distributions PBN , one for each node X ∈ V given

its parents:

Θ = {PBN (X = x|Pa(X) = x′)|X ∈ V}

where x and x′ represent the valuations of X and Pa(X) (parents of X) respectively.

This definition of BNs encodes the local Markov property, which states that each

variable is conditionally independent of its non-descendants given its parent variables. This

is an important property of BNs since it suffices to check the parental variables to determine

a conditional probability distribution.

We assume that the random variables are discrete. For BNs with discrete random vari-

ables, each conditional probability is represented by a conditional probability table (CPT).

Each such CPT stores the conditional probabilities of a random variable for each possi-

ble combination of the values of its parent nodes. For each random variable X and its

valuations D(X) in the BN, a conditional probability table is formed as follows:

− For each combination of the values of parental nodes a row is introduced.

− For each row in the table, exactly as many columns as |D(X)| is introduced.
− Each cell in the table contains a probability value such that the sum of the probabil-

ities in a row add up to 1.

In what follows, we describe a situation that can be modelled by BNs.

Example 2.6. Suppose1 that we are in a hypothetical environment in which Light, Water

and CO2 are the parameters. We know the conditional probability distributions and we want

1The content as well as the probabilities provided in Example 2.6 are for illustrative purposes. Nothing
further is intended.
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Water Light

CO2

Light=t Light=f

0.60 0.40

Light Water=t Water=f

t 0.70 0.30
f 0.60 0.40

Light Water CO2=t CO2=f

t t 0.90 0.10
t f 0.80 0.20
f t 0.70 0.30
f f 0.50 0.50

Figure 2.1: A simple Bayesian network

to compute the probability of CO2 being available in the environment. Figure 2.1 shows a

Bayesian network motivated by this situation.

The network consists of three random variables. For the random variable CO2, we

have a domain of values D(CO2) = {t, f}. The probability of CO2 being true is denoted

as PBN (CO2 = t). There are conditional probability tables next to each random variable.

For example, the probability of CO2 being true given that there exists both Light and Water

is 0.90. To calculate the probability of CO2 being true, we need to introduce the full joint

probability distribution and the worlds.

A valuation of a random variable is usually called an event and the probability of

every possible event can be calculated w.r.t the full joint probability distribution.

Definition 2.7. (Full joint probability distribution) Given a Bayesian network BN , the

full joint probability distribution is the probability of all possible events represented by the

random variables and their valuations in BN . Full joint probability distribution can be

calculated [25] as:

PF (V = v) =
∏
X∈V

PBN (X = v|Pa(X) = v)

where v is restricted to the valuations of X and to the valuations of Pa(X) respectively.

Given Definition 2.7, we can calculate the probability of any set of events. Calculating

the probability of a given set of events, also called Bayesian inference, is the main inference

problem in Bayesian networks. Given a set of variables E from a Bayesian network BN
and their valuations e ∈ D(E) it holds that:

PBN (E = e) =
∑
E=e

PF (V = v)

It has been shown that Bayesian inference is NP-hard [26]. On the other hand, if the set

of events is complete, i.e., it contains a valuation for each random variable then inference

can be done in polynomial time.
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Worlds Light Water CO2 Value

1 t t t 0.378
2 t f t 0.144
3 f t t 0.168
4 f f t 0.080
5 t t f 0.042
6 t f f 0.036
7 f t f 0.072
8 f f f 0.080

Table 2.1: Full joint probability distribution

Definition 2.8. (World) A World is a set of events such that for all Xi ∈ V it contains

exactly one valuation Xi = xi where xi ∈ D(Xi).

For every world, the calculation of the probability of the world can be done simply

by applying the chain rule over the specified valuations of the random variables. Prior to

applying the chain rule it is required to order the variables such that ancestor variables

appear before the successors, which can be done in polynomial time. Suppose an ordered

world (X1 = x1, ..., Xn = xn) is given where V = {Xi|1 ≤ i ≤ n} and xi ∈ D(Xi) then:

PBN (X1 = x1, ..., Xn = xn) =
∏

1≤i<j≤n
PBN (Xi = xi|Xj = xj)

There are exponentially many worlds in BNs. Suppose that all the worlds are given.

Since BNs provide complete probabilistic models and there is no other possible world, the

following is an immediate result

Lemma 2.9. Given a BN = (G,Θ) and all of its worlds (W1, ...,Wk) it holds that:∑
1≤i≤k

PBN (Wi) = 1.

Given these we can return to our motivating example and calculate the probability of CO2

being true.

Example 2.10 (Continuation of Example 2.6). The full joint probability distribution can

be seen as a large CPT that results from the multiplication of all CPTs. Hence, we get the

full joint probability distribution shown in Table 2.1 for our minimal example. Summing the

rows where CO2=t yields the probability 0.77, which denotes the probability of CO2 being

available in the environment.

We have revisited the basic definitions of BNs. Lastly, we define the notion of a context

as a set of events. As a consequence, the probabilities of this set of events determines the

likelihood of the context.

Definition 2.11. (Context) A Context is a set of events (X1 = x1, ..., Xn = xn).

A world is a special context that contains a valuation for every random variable.

Essentially, each context describes a set of worlds. The joint probability of each world can
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be calculated by applying the chain rule as explained. This calculation can be performed in

polynomial time and will later be important in defining reasoning procedures for the new

logic. Additionally, it is important to note that for the contexts that are not worlds this

does not hold. This stems from the fact that the contexts that are not worlds are partial,

i.e., there are variables that are not mapped to a valuation which causes the calculation to

be propagated over all possible valuations.

This concludes Chapter 2. We can build now on this background and define the new

logic BEL, which aims to extend the description logic EL with uncertain contexts, provided

by the Bayesian network. This will be elaborated in Chapter 3 in detail.



Chapter 3

Bayesian EL

After the establishment of P-Classic [23], combining probabilistic graphical models such as

BNs and Markov Networks (MN) with DLs has been spread. A similar attempt to P-Classic

has been made by Yelland [27] to extend the DL FL which uses the constructors >, t and

∀. This approach has also had reflections in the lightweight DLs such as EL and DL-Lite.

Niepert, Noessner and Stuckenschmidt present a probabilistic extension of EL++ [28] by

making use of the Markov logic that is based on Markov Logic Networks [29]. Another

formalism that extends EL++ with MNs is given in [30], which basically translates EL++

to first order logic (FOL) to make use of the reasoning services that have been defined

for the first order Markov logic. Our work differs from these previous attempts at least

in two significant ways. Firstly, as mentioned above, we use BNs. In addition, Markov

Logic Networks provide a model in which the first order axioms are annotated with weights

(probabilities) only whereas we have contexts as annotation which evaluate to a probability.

Another proposal for a probabilistic EL has been given in [31]. This framework is

applied to different logics as well as to EL which is named Prob-EL. This is closely related

to the one in [30] mostly in the sense that they both use the principles of an existing

probabilistic FOL developed in [7]. Yet, differently from the BEL proposed in this thesis,

Prob-EL does not make use of any probabilistic graphical model. Additionally, it is different

from our proposal in the sense that it extends the concepts with probabilities whereas we

extend the axioms.

It will be fruitful at this point to briefly discuss two previous works from the literature,

which can be considered as closest to the framework we propose here. The first one, called

BDL-Lite [32] extends the lightweight DL DL-Lite with BNs. BDL-Lite ontologies contain

axioms that are combinations of DL-Lite axioms and a set of random variable valuations,

taken from a BN. This is close to our dimensionality perspective and its syntax can be easily

generalised towards other DLs. On the other hand, these two dimensions are connected

to each other via an “if and only if condition”, which does not suit to our contextual

setting. This “if and only if condition” leads to some inconsistencies since it forces a set

of random variables to be satisfied given that a certain axiom is satisfied. The second

work that we highly benefit from is by Bellodi et. al. [33]. They use a semantics which

11
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they call DIstribution Semantics for Probabilistic ONTologiEs (DISPONTE) and provide

a framework that can be applied to the DL family. The key idea here is to annotate

each axiom with a probability as in BDL-Lite. As opposed to BDL-Lite they combine the

dimensions with an “if condition” and they consider all random variables to be independent.

In effect, they do not benefit from conditional probabilities or any graphical model. They

also provide a system called BUNDLE [34] that performs inference over probabilistic OWL

DL ontologies by making use of other DL reasoners as oracles.

To the best of our knowledge, there is no work on context-based reasoning over un-

certain domains. On the other hand, DISPONTE provides a semantics which is capable of

taking contexts into account. It is sufficient to treat annotations as contexts. Instead of

using annotations that are assumed to be independent we make use of BNs as in BDL-Lite.

Yet, in contrast to BDL-Lite, we consider DISPONTE as the underlying semantics. As

a result of this, our framework allows forming axioms which hold provided that a certain

context holds. As a basis to our framework we extend the description logic EL to BEL.
The syntax and semantics of BEL is defined in a way that it can be extended to more

expressive logics.

3.1 Syntax and Semantics of BEL

The BEL concept language is defined exactly as the EL concept language. The semantics

of BEL is based on probabilistic world semantics, which defines a probability distribution

over a set of contextual interpretations. In the following, we first define the contextual

interpretations and then introduce the probabilistic world semantics of BEL. The contex-

tual interpretations extend the standard EL interpretations by additionally mapping the

random variables from the Bayesian network to their domain of values.

Definition 3.1 (Contextual interpretations). Given a Bayesian network BN = (G,Θ) de-

fined over the set G = (V, E), a contextual interpretation is a triple (∆IC ,VIC , ·IC) where

∆IC is a non-empty domain disjoint from the domain VIC and ·IC is an interpretation

function such that:

− AIC ⊆ ∆IC for all A ∈ NC

− rIC ⊆ ∆IC ×∆IC for all r ∈ NR

− XIC ∈ VIC for all random variables X ∈ V.

The interpretation function ·IC is extended to all concepts as follows:

− >IC = ∆IC

− (C uD)IC = CIC ∩DIC

− (∃r.C)IC = {x ∈ ∆IC | ∃y ∈ ∆IC : (x, y) ∈ rIC ∧ y ∈ CIC}

The intuition behind introducing the contextual interpretations is to be able to distin-

guish the contexts. Hence, we define the satisfiability of a context w.r.t. a given contextual

interpretation.
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Definition 3.2 (Satisfiability of a context). Let BN = (G,Θ) be a Bayesian network over

the graph G = (V, E), ψ = (X1 = x1, ..., Xn = xn) a context, and IC a contextual interpre-

tation. IC satisfies the context ψ, denoted as IC |= ψ, iff {XIC
1 = x1, ..., X

IC
n = xn}

In BEL, GCIs are replaced with probabilistic general concept inclusions (PGCIs),

which is a pair consisting of a standard GCI and a possibly empty context. In what

follows, we formally define the notion of PGCIs, give the satisfaction condition of a PGCI

and define the BEL TBoxes and ontologies.

Definition 3.3 (PGCI, TBox and Ontology). A probabilistic general concept inclusion

(PGCI) is an expression of the form (C v D : ψ), where C, D are concepts and ψ is a

context. A contextual interpretation IC satisfies the probabilistic general concept inclusion

(C v D : ψ), denoted as IC |= (C v D : ψ), iff the following implication holds:

(IC |= ψ) → (IC |= (C v D))

A BEL TBox T is a finite set of PGCIs that extend the standard GCIs with the contexts.

A BEL ontology K is a pair (T ,BN ) where BN is a Bayesian network and T is a BEL
TBox which has contexts that contain only events from BN .

Note that the contextual interpretations stem from McCarthy’s ist function. Exam-

ple 3.4 demonstrates the contextual semantics of BEL.

Example 3.4. (Contextual interpretations of PGCIs) It is possible to formulate an axiom

α which states that plants make photosynthesis provided that light, CO2 and water are

available as:

α = (Plant v ∃make.Photosynthesis, {Light=t, CO2=t, Water=t })

Suppose that the three contextual interpretations IC1, IC2 and IC3 are given as specified

below.

− IC1 = (∆IC1 ,VIC1 , ·IC1), IC2 = (∆IC2 ,VIC2 , ·IC2), IC3 = (∆IC3 ,VIC3 , ·IC3)

− ∆IC1 = ∆IC2 = ∆IC3 = {a, v}
− PlantIC1 = PlantIC2 = PlantIC3 = {a}
− PhotosynthesisIC1 = PhotosynthesisIC2 = PhotosynthesisIC3 = {v}
− makeIC1 = {(a, v)}, makeIC2 = makeIC3 = {}
− LightIC1 = LightIC2 = LightIC3 = t

− CO2
IC1 = CO2

IC2 = CO2
IC3 = t

− WaterIC1 =WaterIC2 = t, WaterIC3 = f

We analyse whether the given contextual interpretations satisfy α or not. By definition, a

contextual interpretation IC satisfies α iff it satisfies the following implication:

(IC |= {Light = t, CO2 = t,Water = t}) → (IC |= (Plant v ∃make.Photosynthesis))

The contextual interpretation IC1 satisfies this implication since it satisfies both the classical

part of the axiom and the context. Hence, we conclude that IC1 satisfies α. On the other

hand, IC2 does satisfy the context but not the classical part since there is no individual

in Plant that is connected to Photosynthesis with make relation. Therefore, IC2 does not
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satisfy α. Because of the same reason as in IC2, IC3 does not satisfy the classical part of

the axiom either. However, it also does not satisfy the context since Water is interpreted

as false. Hence, the implication holds, i.e., IC3 satisfies α.

Having defined the contextual interpretations it is possible to define the semantics of

BEL. The semantics of BEL is based on the probabilistic world semantics which defines a

probability distribution over a set of contextual interpretations.

Definition 3.5 (Probabilistic interpretations). A probabilistic interpretation IP is a pair

(Φ,Pr) where Φ is a set of contextual interpretations and Pr is a probability distribution

over Φ such that: {IC1, ..., ICn} ⊆ Φ, 1 ≤ i ≤ n for a finite n and for every contextual

interpretation IC /∈ {IC1, ..., ICn} it holds that Pr(IC) = 0. A probabilistic interpretation

IP is a model of T iff for each (C v D : ψ) ∈ T it satisfies:∑
ICi|=(CvD:ψ)

Pr(IC i) = 1

IP is consistent with a Bayesian network BN iff for every world W in BN it holds that:∑
ICi|=W

Pr(IC i) = PBN (W)

A probabilistic interpretation IP is a model of a BEL ontology K = (T ,BN ) iff IP is

a model of T and consistent with BN . A BEL ontology K = (T ,BN ) is satisfiable iff it

has a probabilistic model.

Note that we allow infinitely many contextual interpretations but only finitely many of

them are assigned a positive probability by the probability distribution. Suppose that the

Bayesian network in Figure 2.1 is given. We extend Example 3.4 and show a construction

of a probabilistic interpretation w.r.t. a BEL ontology. Furthermore, we show that the

constructed probabilistic interpretation is a model of the given ontology.

Example 3.6. (A model construction) Let K = (T ,BN ) be a BEL ontology where T = {α}
and BN be the Bayesian network shown in Figure 2.1. We define a set of contextual

interpretations Φ = {IC1, ..., IC8} in the following way. Let ICj = (∆ICj ,VICj , ·ICj ) where

∆ICj = {a, v}, PlantICj = {a}, PhotosynthesisICj = {v}, makeICj = {(a, v)} for 1 ≤ j ≤
8. VICj , 1 ≤ j ≤ 8, and the probability distribution Pr over ICj are as follows.

− LightIC1 = t,WaterIC1 = t, CO2
IC1 = t, Pr(IC1) = 0.378

− LightIC2 = t,WaterIC2 = f, CO2
IC2 = t, Pr(IC2) = 0.144

− LightIC3 = f,WaterIC3 = t, CO2
IC3 = t, Pr(IC3) = 0.168

− LightIC4 = f,WaterIC4 = f, CO2
IC4 = t, Pr(IC4) = 0.080

− LightIC5 = t,WaterIC5 = t, CO2
IC5 = f , Pr(IC5) = 0.042

− LightIC6 = t,WaterIC6 = f, CO2
IC6 = f , Pr(IC6) = 0.036

− LightIC7 = f,WaterIC7 = t, CO2
IC7 = f , Pr(IC7) = 0.072

− LightIC8 = f,WaterIC8 = f, CO2
IC8 = f , Pr(IC8) = 0.080
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This construction ensures that every contextual interpretation in Φ satisfies the clas-

sical part of α, i.e., (Plant v ∃make.Photosynthesis). We define IP = (Φ,Pr) as a prob-

abilistic interpretation. We first check whether IP is a model of T . Since there is only

one axiom in T it is enough to check whether the sum of the probabilities of the contextual

interpretations satisfying α add up to 1. The following shows that this is the case:∑
ICi|=α

Pr(IC i) = Pr(IC1) + ...+ Pr(IC8) = 1

Hence, IP is a model of T . Next, we check whether the probabilistic interpretation IP is

consistent with the Bayesian network BN , i.e., for every world W in BN it holds that:∑
ICi|=W

Pr(IC i) = PBN (W)

Each of the contextual interpretations that we have defined correspond to one world in BN
and these are all of the worlds. We have assigned the probabilities to the contextual inter-

pretations such that they comply with the probabilities of the respective worlds. Therefore

we get: ∑
ICi|=Wj

Pr(IC i) =
∑

ICj |=Wj

Pr(ICj) = PBN (Wj)

Hence, IP is consistent with BN . As a result we conclude that IP is a model of the ontology.

For every model, we have forced the probability distributions of the models to be

consistent with the probabilities of the worlds in the Bayesian network. This ensures that

the joint probability distribution defined by the Bayesian network and the probability

distribution defined by the model are consistent. This is proven in Lemma 3.7.

Lemma 3.7. Given a BEL ontology K = (T ,BN ), for every context ψ and for all models

IP = (Φ,Pr) of K with IC i ∈ Φ where Pr(IC i) > 0 it holds that:∑
ICi|=ψ

Pr(IC i) = PBN (ψ)

Proof. Result follows from the fact that the probability of a context is the sum of its

probabilities in each world. Hence, we get:∑
ICi|=ψ

Pr(IC i) =
∑

ICi|=W,ψ⊆W

Pr(IC i) =
∑
ψ⊆W

PBN (W) = PBN (ψ)

So far, we introduced the syntax and semantics of BEL. Moreover, we have shown

that it is possible to represent contextual knowledge over uncertain domains in BEL. For

instance, we have formulated an axiom which states that “plants make photosynthesis

provided that there exists light, water and CO2 in the environment”, where the likelihood

of the environment is determined by the Bayesian network. In Chapter 4, we introduce

several reasoning problems for BEL and provide algorithms for solving them.



Chapter 4

Reasoning in BEL

Most DLs deal with two basic reasoning procedures, consistency checking and subsumption

checking. In EL, on the other hand, the main reasoning procedure is subsumption checking

since any EL ontology is known to be consistent. We show that this property of EL is

preserved when extending to BEL, i.e., every BEL ontology is consistent.

We introduce subsumption checking as a reasoning problem in BEL. Furthermore, we

define different types of subsumption problems w.r.t. the probabilities and provide algo-

rithms for solving them.

4.1 Consistency of any BEL ontology

A BEL ontology is consistent iff it has a model. We hereby show a construction of such a

model IP for a given BEL ontology. Intuitively, a Bayesian network describes a world by

each possible valuation of all of its variables. There are only finitely many different worlds,

which can be enumerated as (W1, ...,Wk). Given a BEL ontology K = (T ,BN ) we define

the probabilistic interpretation IP = ({IC1, ..., ICk},Pr) where:

− IC i = ({ai},VICi , ·ICi)

− AICi = {ai}, rICi = {(ai, ai)}, {X = XICi |X ∈ V} = Wi for all A ∈ NC and r ∈ NR

− Pr(IC i)=PBN (Wi)

We prove the consistency of any BEL ontology by showing that IP is indeed a model of

the given ontology.

Theorem 4.1. Every BEL ontology is consistent.

Proof. Consider the probabilistic interpretation IP = ({IC1, ..., ICk},Pr) that has been con-

structed from an arbitrary BEL ontology K. Bayesian networks providing complete prob-

abilistic models ensure that the sum of the probabilities of all the worlds add up to 1:∑
1≤i≤k

Pr(IC i) =
∑

1≤i≤k
PBN (Wi) = 1

16
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Each IC i is an interpretation that satisfies every axiom. As a result of this we get that for

every axiom (C v D : ψ) ∈ T it holds that:∑
ICi|=(CvD:ψ)

Pr(IC i) =
∑

1≤i≤k
Pr(IC i) = 1.

Hence IP is a model of T . By construction, for every world Wj it holds that:∑
ICi|=Wj

Pr(IC i) =
∑

ICj |=Wj

Pr(ICj) = PBN (Wj)

Hence IP is consistent with BN . As a result, we get that IP is a model of the given

ontology K. Since we have shown a construction of a model for an arbitrary BEL ontology,

we get that every BEL ontology is consistent.

4.2 Subsumption in BEL

This section introduces subsumption-based reasoning services. In BEL, we are able to ex-

press probabilities of subsumptions upon which the different types of subsumption problems

are defined.

Definition 4.2 (Probability of a subsumption). Let K = (T ,BN ) be a BEL ontology and

IP = (Φ,Pr) a probabilistic interpretation. The probability of the subsumption (C v D : ψ)

w.r.t. IP , denoted as P(C vIP D : ψ) is:

P(C vIP D : ψ) =
∑

ICi|=(CvD:ψ)

Pr(IC i)

The probability of (C v D : ψ) w.r.t. K, denoted as P(C vK D : ψ) is defined as the infi-

mum over the probabilities of the subsumption w.r.t. all models:

P(C vK D : ψ) = inf{P(C vIP D : ψ)|IP |= K}

P(C vIP D) is written short for P(C vIP D : {}) and P(C vK D) for P(C vK D : {}).

We can also determine whether a given axiom (C v D : ψ) is a consequence of an

ontology. Intuitively, a consequence is an exact entailment, i.e., for all models of the

ontology an axiom is a consequence iff every contextual interpretation which is assigned a

positive probability in the model satisfies the axiom.

Definition 4.3 (PGCI as a consequence). Given a BEL ontologyK = (T ,BN ), (C v D : ψ)

is a consequence of K, denoted as (C vK D : ψ) iff it holds that P(C vK D : ψ) = 1.

We also define the notion of a partial interpretation w.r.t. a world and a subsumption.

The intuition is to detect the interpretations that partially satisfy a subsumption in a given

world. This notion is particularly useful in proving that the probability of a subsumption

w.r.t. an ontology must be a sum of the probabilities of a set of worlds.
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Definition 4.4 (Partial interpretations). A probabilistic interpretation IP = (Φ,Pr) is

partial w.r.t. a world W and a subsumption (C v D) if there exists two conceptual inter-

pretations ICa, ICb ∈ Φ satisfying the following conditions:

ICa |= W, ICa |= (C v D), Pr(ICa) > 0

ICb |= W, ICb 2 (C v D), Pr(ICb) > 0
(4.1)

We use the notion of partial interpretations to show that the infimum in the definition

of the probability of the subsumption w.r.t. an ontology is also a minimum.

Lemma 4.5. Let K = (T ,BN ) be an ontology C, D concepts. There exists a model IP of

K such that P(C vK D) = P(C vIP D).

Proof. Suppose that there are k worlds Wj , 1 ≤ j ≤ k. We first show that P(C vK D) has

the form
∑

Wj∈W PBN (Wj) where W is a set of worlds . By the definition of subsumption

w.r.t. an ontology we know that P(C vK D) = inf{P(C vIP D)|IP |= K}. Hence, by the

definition of infimum, we can find a model IP+ of K such that:

P(C vIP+ D) <
∑

Wj∈W

PBN (Wj) + min{PBN (Wi) > 0|1 ≤ i ≤ k}

Let IP+ = (Φ+,Pr+) with {IC+1 , ..., IC+m} ⊆ Φ+ and for every contextual interpretation

IC+ /∈ {IC+1 , ..., IC+m} it holds that Pr(IC+) = 0. This is well-defined since there can be

infinitely many contextual interpretations but only finitely many of them (in this case

{IC+1 , ..., IC+m}) can be assigned a positive probability by the probability distribution Pr.
We rewrite P(C vIP+ D) as follows:

P(C vIP+ D) =
∑

IC+
i |=W1, IC+

i |=(CvD)

Pr(IC+i ) + · · ·+
∑

IC+
i |=Wk, IC+

i |=(CvD)

Pr(IC+i )

We show that we can construct a model IP such that the value P(C vIP D) equals to∑
Wj∈W PBN (Wj). We show this by induction on the number of the worlds W for which

IP+ is partial w.r.t. the subsumption (C v D), i.e., for which there exists two conceptual

interpretations IC+a , IC+b ∈ Φ+ satisfying the conditions in (4.1). We assume that the

worlds are enumerated such that the worlds satisfying (4.1) precede all the worlds that do

not satisfy (4.1).

Induction Base: For (s = 0), we know that there is no world satisfying (4.1). Hence we

take IP = IP+ and get that:

P(C vIP D) =
∑

ICi|=CvD,ICi|=Wj

Pr(IC i) =
∑

ICi|=CvD,ICi|=Wj

PBN (Wj) =
∑

Wj∈W

PBN (Wj)

Induction Hypothesis: For (s = l − 1), there exists a model IP
′
= (Φ

′
,Pr′) where

− {IC
′
1, ..., IC

′
n} ⊆ Φ

′
, 1 ≤ i ≤ n and

− for every contextual interpretation IC
′
/∈ {IC

′
1, ..., IC

′
n} it holds that Pr(IC

′
) = 0.

such that P(C vIP D) =
∑

Wj∈W PBN (Wj).
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Induction: Take (s = l). We know by the induction hypothesis that there exists a model

IP
′
such that P(C vIP

′ D) =
∑

Wj∈W PBN (Wj). If the model IP
′
does not satisfy (4.1)

w.r.t. (C v D) and Wl, then the result follows directly since PBN (Wl) is either added or

not, where both of the cases yield the result. Assume that it satisfies (4.1), i.e., there

exists at least two conceptual interpretations IC
′
a, IC

′
b ∈ Φ

′
satisfying the conditions set in

(4.1). This means that for Wl there exists at least one contextual interpretation IC
′
b ∈ Φ

′

with PBN (IC
′
b) > 0 where (IC

′
b |= W) and (IC

′
b 2 C v D). This shows that the subsump-

tion (C v D) does not need to hold in Wl. We use this fact to construct a probabilistic

interpretation IP of the ontology. Let IP = (Φ,Pr) where:

− Φ = {IC1, ..., ICn},
− IC i = IC

′
i for all IC

′
i 2 W

− IC i = IC
′
i for all IC

′
i |= W where W 6= Wl,

− IC i = IC
′
b for all IC

′
i |= Wl,

− Pr(IC i) = Pr(IC
′
i) for all 1 ≤ i ≤ n.

This construction ensures that every contextual interpretation with positive probabil-

ity satisfying Wl is equal to IC
′
b. Since IC

′
b does not satisfy the subsumption (C v D) we

get: ∑
ICi|=Wl,ICi|=(CvD)

Pr(IC i) =
∑

ICi=IC
′
b,ICi|=(CvD)

Pr(IC i) = 0.

Hence, the subsumption does not hold in Wl. As a result, we get that Pr(C vIP D) has

the form
∑

Wj∈W PBN (Wj). We still need to show that the probabilistic interpretation IP
is a model of the ontology. We know that Pr(IC i) = Pr(IC

′
i) for 1 ≤ i ≤ n and IP

′
is a

model. Hence, for every world Wj it holds that:∑
ICi|=Wj

Pr(IC i) =
∑

IC
′
i|=Wj

Pr(IC
′
i) = PBN (Wj) (4.2)

While constructing IP , we have replaced the contextual interpretations in IP
′
that satisfy

Wl and (C v D) with IC
′
b. We know that IC

′
b does satisfy Wl but does not satisfy the

subsumption (C v D). Additionally, IC
′
b has a positive probability. Therefore, it must

satisfy all axioms that hold in Wl since otherwise IP
′
would not be a model. We use this

fact to show that IP is a model of the TBox T . Since IP
′
is a model, for all axioms

(E v F : ψ) ∈ T it holds that:∑
IC

′
i|=(EvF :ψ)

Pr(IC
′
i) =

∑
IC

′
i2W, IC

′
i|=(EvF :ψ)

Pr(IC
′
i) +

∑
IC

′
i|=W, IC

′
i|=(EvF :ψ)

Pr(IC
′
i) = 1

(4.3)

Since for all IC
′
i 2 W it holds that IC i = IC

′
i and Pr(IC i) = Pr(IC

′
i), we can rewrite the

first summand in Equation 4.3 as: ∑
ICi2W, ICi|=(EvF :ψ)

Pr(IC i) (4.4)
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Likewise, we can rewrite the second summand in Equation 4.3 as:∑
ICi|=W, W6=Wl, ICi|=(EvF :ψ)

Pr(IC i) +
∑

ICi|=Wl, ICi|=(EvF :ψ)

Pr(IC i) (4.5)

We know that IC i = IC
′
b for all IC

′
i |= Wl. Since all IC

′
b must satisfy all axioms in Wl, we

can rewrite (4.5) as: ∑
ICi|=W, ICi|=(EvF :ψ)

Pr(IC i) (4.6)

Since the summands in Equation 4.3 can be replaced by (4.4) and (4.6) respectively we get

the following: ∑
ICi2W, ICi|=(EvF :ψ)

Pr(IC i) +
∑

ICi|=W, ICi|=(EvF :ψ)

Pr(IC i) = 1. (4.7)

Then for all axioms (E v F : ψ) ∈ T the following holds:∑
ICi|=(EvF :ψ)

Pr(IC i) =
∑

ICi2W, ICi|=(EvF :ψ)

Pr(IC i) +
∑

ICi|=W, ICi|=(EvF :ψ)

Pr(IC i) = 1 (4.8)

From (4.8), we get that IP is a model of T . Combining this with the statement in Equa-

tion (4.2) yields that IP is a model of K. This shows that P(C vK D) has the form∑
Wj∈W PBN (Wj) where W is a subset of the set of all worlds. Given this, Lemma 4.5

holds as a result of the following facts.

We know that there are finitely many worlds. Therefore, there are only finitely many

sums over finitely many worlds where P(C vK D) =
∑

Wj∈W PBN (Wj). Hence we get that

the infimum in the definition of subsumption w.r.t. an ontology is indeed a minimum, i.e.,

P(C vK D) = inf{P(C vIP D)|IP |= K} = min{P(C vIP D)|IP |= K}. This shows that

there exists a model IP of K where P(C vIP D) = P(C vK D).

As it has been mentioned, it is possible to define various types of subsumption problems

in BEL. This stems from the fact that we can represent uncertainty and hence we can have

degrees of a subsumption to hold. We define the following four types of reasoning problems

w.r.t. these degrees.

Definition 4.6 (Subsumption types). Given a BEL ontology K = (T ,BN ) and the con-

cepts C, D we say that C is precisely subsumed by D w.r.t. K with probability p if

p = P(C vK D). Additionally, we define two special cases of precise subsumption as follows.

C is positively subsumed by D w.r.t. K if P(C vK D) > 0 and C is certainly subsumed by

D w.r.t.K if P(C vK D) = 1. Given that C is positively subsumed byD, we say that ψ is the

most likely context for the subsumption (C v D) if PBN (ψ) = sup{PBN (ψ
′
)|(C vK D : ψ

′
)}.

The rest of this chapter is divided in subsections, each of which provides a solution to

one of the reasoning problems that has been defined.

4.2.1 Precise Subsumption

Precise subsumption is to calculate the precise probability of a subsumption w.r.t. a given

ontology. We provide an algorithm, named Algorithm 1, that solves the precise subsumption
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Algorithm 1 Precise subsumption

Input: K = (T ,BN ) and A, B ∈ NC
Output: The precise probability p of the subsumption A v B
1: p = 0 I Initialize the global variable p to 0
2: for every world Wi = {X = x|X ∈ V, x ∈ D(X)} do
3: TWi = {} I Take an empty EL ontology
4: for every (E v F : ψ) ∈ T do I Create an EL ontology w.r.t. Wi

5: if ψ ⊆ Wi then I If the current world includes ψ
6: add (E v F ) to TWi

7: if (TWi |= A v B and PBN (Wi) > 0) then
8: p = p+ PBN (Wi) I Add the worlds probability to p

9: return p

where the subsumption is restricted to named concepts. Later, we show that this can easily

be extended to subsumptions with arbitrary concepts. Algorithm 1 takes one world Wi of

the given BEL ontology K = (T ,BN ) at a time. Depending on the world Wi it constructs

an EL ontology TWi upon which the subsumption (A v B) is checked by the standard EL
completion algorithm. The probability of the world is added to a global variable p if TWi

entails the subsumption (A v B) and the world has a positive probability w.r.t. the given

Bayesian network. After repeating this for all of the worlds, Algorithm 1 returns p, in

which the precise probability of the subsumption is stored.

Lemma 4.7. Algorithm 1 is in PSPACE.

Proof. We need to show that the algorithm uses at most polynomial space w.r.t. the size of

the input. Although the algorithm needs to check all the worlds, which are exponentially

many, only one world Wi is kept in memory at a time where |Wi| is bound with the size of

the random variables given by BN . Inside of the for-loop (2-8) consists of two parts, i.e.,

another for-loop (4-6) and an if-clause (7-8). The space used in the for-loop (4-6) is bound

with |T |+ |Wi|, which is linear in the size of the input. The space used in if-clause (7-8)

also has a polynomial bound since checking both TWi |= A v B and PBN (Wi) > 0 can be

done in polynomial space, i.e., the former by calling the EL completion algorithm and the

latter by applying the chain rule. Hence, Algorithm 1 is in PSPACE.

Lemma 4.8 (Soundness). Given a BEL ontology K = (T ,BN ), and the named concepts

A,B ∈ NC as inputs, Algorithm 1 returns p such that p ≤ P(A vK B).

Proof. We assume that there are k worlds. For each world Wi, Algorithm 1 constructs an

EL ontology TWi = {(E v F )|(E v F : ψ) ∈ T , ψ ⊆ Wi}. For every Wi with PBN (Wi) > 0

and its corresponding EL ontology TWi , Algorithm 1 returns p such that:

p =
∑

TWi
|=(AvB)

PBN (Wi) (4.9)

By Lemma 4.5, we know that if P(A vK B) = p then there exists a model IP = (Φ,Pr)
of K where P(A vIP B) = p. There are only finitely many interpretations with positive

probability in IP . Let these contextual interpretations be {IC1, ..., ICn} ⊆ Φ. We use IP to
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construct another probabilistic interpretation IP′ as follows. For each world Wj , 1 ≤ j ≤ k,

we define a contextual interpretation IC
′
j such that:

IC
′
j =

⋃
·

ICi|=Wj

IC i

For the probabilistic interpretation IP
′
it holds that:

P(A vIP
′ B) =

∑
IC

′
i|=(AvB:Wi)

Pr(IC
′
) =

∑
IC

′
i|=(AvB),IC

′
i|=Wi

Pr(IC
′
) +

∑
IC

′
i2Wi

Pr(IC
′
)
(4.10)

Furthermore, for arbitrary concepts C, D our construction ensures that for any world Wi

and its corresponding contextual interpretation IC
′
i it holds that:

IC
′
i |= (C v D) iff TWi |= (C v D) (4.11)

Rewriting
∑

IC
′
i|=(AvB),IC

′
i|=Wi

Pr(IC
′
) as

∑
TWi

|=(AvB) PBN (Wi) in Equation 4.10 yields:

P(A vIP
′ B) =

∑
TWi

|=(AvB)

PBN (Wi) +
∑

IC
′
i2Wi

Pr(IC
′
) (4.12)

Since
∑

IC
′
i2Wi

Pr(IC
′
) ≥ 0 we get:

P(A vK B) = P(A vIP
′ B) ≥

∑
TWi

|=(AvB)

PBN (Wi) = p

It is only left to show that IP is indeed a model of the BEL ontology K. By the construction

the following holds for every world Wj :∑
IC

′
i|=Wj

Pr(IC
′
i) =

∑
IC

′
j |=Wj

Pr(IC
′
j) = PBN (Wj) (4.13)

For every (E v F : ψ) ∈ T it holds that:∑
ICi|=(EvF :ψ)

Pr(IC) =
∑

ICi|=ψ, ICi|=(EvF )

Pr(IC i) +
∑
ICi2ψ

Pr(IC i) (4.14)

For every contextual interpretation with positive probability we know that IC i |= ψ iff

for Wi it holds that ψ ⊆ Wi. Combining this with (4.11) we get that (IC i |= ψ and

IC i |= (E v F )) iff ψ ⊆ Wi. We use this fact to rewrite the Equation 4.14:∑
IC |=(EvF :ψ)

Pr(IC) =
∑
ψ⊆Wi

PBN (Wi) +
∑
ψ*Wi

PBN (Wi) =
∑
Wi

PBN (Wi) = 1 (4.15)

From (4.15) we get that IP is a model of T . Together with (4.13) we get that IP is a model

of K.

Lemma 4.9 (Completeness). Given a BEL ontology K = (T ,BN ), and the named concepts

A,B ∈ NC as inputs, Algorithm 1 returns p such that p ≥ P(A vK B).

Proof. We assume that there are k worlds. For each world Wi, Algorithm 1 constructs

an EL ontology TWi = {(E v F )|(E v F : ψ) ∈ T , ψ ⊆ Wi}. For every world Wi with

PBN (Wi) > 0 and its corresponding EL ontology TWi , Algorithm 1 returns p such that:

p =
∑

TWi
|=(AvB)

PBN (Wi) (4.16)
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Let Ii be a model of TWi such that for arbitrary concepts C and D it holds that:

Ii |= (C v D) iff TWi |= (C v D) (4.17)

We define a set of contextual interpretations IC i as a triple IC i = (∆Ii ,VICi , ·ICi) where

·ICi is a disjoint union of mappings:

·ICi = ·Ii ∪· (X 7→ x) where {X = x|X ∈ V} = Wi.

Since ∆Ii and VICi are disjoint sets ·ICi is well defined. We define a probabilistic inter-

pretation IP = (Φ,Pr) where {IC1, ..., ICk} ⊆ Φ with Pr(IC i) = PBN (Wi) for 1 ≤ i ≤ k.

For every contextual interpretation IC /∈ {IC1, ..., ICk} it holds that Pr(IC) = 0. Since ev-

ery conceptual interpretation IC i is constructed from Ii by an additional disjoint mapping

determined by Wi, we get an analogous result as (4.17):

IC i |= (C v D) iff TWi |= (C v D) (4.18)

By the definition of a subsumption w.r.t. a probabilistic interpretation we get:

P(A vIP B) =
∑

IC1|=W1, IC1|=(AvB)

Pr(IC1) + · · ·+
∑

ICk|=Wk, ICk|=(AvB)

Pr(ICk) (4.19)

Each term on the right hand side of Equation 4.19 either equals to PBN (Wi) or to 0

depending on whether the contextual interpretation entails the subsumption or not . Hence,

the Equation 4.19 can be rewritten as:

P(A vIP B) =
∑

ICi|=(AvB)

PBN (Wi) (4.20)

Given (4.18) we can replace the subscript IC i |= (C v D) on the right hand side of Equa-

tion 4.20 with TWi |= (A v B) which yields:

P(A vK B) ≤ P(A vIP B) =
∑

TWi
|=(AvB)

PBN (Wi) = p (4.21)

It is only left to show that IP is indeed a model of the BEL ontology K = (T ,BN ). By the

construction the following holds for every world Wj :∑
ICi|=Wj

Pr(IC) =
∑

ICj |=Wj

Pr(ICj) = PBN (Wj) (4.22)

For every (E v F : ψ) ∈ T it holds that:∑
ICi|=(EvF :ψ)

Pr(IC i) =
∑

ICi|=ψ, ICi|=(EvF )

Pr(IC i) +
∑
ICi2ψ

Pr(IC i) (4.23)

For the contextual interpretations with positive probability we know that IC i |= ψ iff for Wi

it holds that ψ ⊆ Wi. Combining this with (4.18), we get that (IC i |= ψ and IC i |= (E v F )

iff ψ ⊆ Wi. We use this fact to rewrite Equation 4.23 as follows:∑
IC |=(EvF :ψ)

Pr(IC) =
∑
ψ⊆Wi

PBN (Wi) +
∑
ψ*Wi

PBN (Wi) =
∑
Wi

PBN (Wi) = 1 (4.24)

From (4.24) we get that IP is a model of T . Together with (4.22) we get that IP is a model

of K.
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We have provided Algorithm 1 to solve precise subsumption for a given pair of named

concepts. By Lemma 4.8 and Lemma 4.9 we get the correctness of the algorithm. Next,

we show that this can be generalised to all concepts. Let C, D be arbitrary concepts, A,

B new named concepts, K = (T ,BN ) and K′ = ({T ∪ {(A v C : {}), (D v B : {})}},BN )

BEL ontologies. Then, Lemma 4.10 holds.

Lemma 4.10. C is precisely subsumed by D w.r.t. K with probability p only if A is precisely

subsumed by B w.r.t. K′
with probability p.

Proof. Assume by contradiction that A is most likely subsumed by B w.r.t. K′ with prob-

ability p
′
> p. Then, for all models IP

′
of K′

it holds that P(A vIP
′ B) ≥ p

′
. But then,

for all models IP of K it holds that P(C vIP D) ≥ p
′
since empty context is satisfied by

any contextual interpretation. Hence P(C vK D) ≥ p
′
> p, which leads to a contradiction.

Assume by contradiction that A is most likely subsumed by B w.r.t. K′ with probabil-

ity p
′
< p. Then, there exists a model IP

′
of K′

such that P(A vIP
′ B) = p

′
by Lemma 4.5.

But then, IP
′
is also a model of the sub-ontology K such that P(C vIP D) = p

′
. Hence,

P(C vK D) ≤ p
′
< p, which leads to a contradiction.

From Lemmas 4.7-4.10, Theorem 4.11 is an immediate result.

Theorem 4.11. Precise subsumption can be decided in PSPACE.

In the next two subsections we look into two special instances of precise subsumption, i.e.,

positive subsumption and certain subsumption.

4.2.2 Positive Subsumption

Positive subsumption can be solved by a non-deterministic algorithm, Algorithm 2, which

first guesses a world Wi. Depending on Wi, it constructs an EL ontology TWi upon which

the subsumption (A v B) is checked by the standard EL completion algorithm. If the

subsumption holds and at the same time the world has a positive probability w.r.t. the

given Bayesian network, Algorithm 2 answers true.

Lemma 4.12. Algorithm 2 is a non-deterministic algorithm that terminates in polynomial

time.

Proof. To prove that the algorithm is in NP, we need to show the following: Both guessing

a world and checking whether the guess was a correct one can be done in polynomial time.

Producing a world can be done in polynomial time by picking one value from D(X) for

each random variable X, which is linear in the size of the given input.

The sub-procedure in the algorithm consists of 2 basic parts. First part is the for-loop

(3-5) which is bound with the size of the T and subset checking (4) inside the for-loop is

linear in the size of Wi. Hence, first part stays in polynomial-time. The second part (6-9)

checks both: TEL |= C v D and PBN (Wi) > 0, where the former can be done by calling

the EL completion algorithm in polynomial time and the latter by applying the chain rule.

Hence, the combined complexity of the whole sub-procedure is then polynomial.
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Algorithm 2 Positive subsumption

Input: K = (T ,BN ) and A, B ∈ NC
Output: true if A is positively subsumbed by B, false otherwise

1: Wi={X = x|X ∈ V, x ∈ D(X)} I Guess a valuation for all random variables
2: TWi = {} I Take an empty EL ontology
3: for every (E v F : ψ) ∈ T do I Create an EL ontology w.r.t. Wi

4: if ψ ⊆ Wi then I If the current world includes ψ
5: add (E v F ) to TWi

6: if (TWi |= A v B) and (PBN (Wi) > 0) then
7: return true

8: else
9: return false

Lemma 4.13 (Soundness). Given a BEL ontology K = (T ,BN ), and the named concepts

A,B ∈ NC as inputs, Algorithm 2 returns true only if P(A vK B) > 0.

Proof. As a result of Lemma 4.8 stating the soundness of Algorithm 1 we know that all the

worlds with positive probability w.r.t. which the entailment TWi |= A v B holds contribute

to the probability of the subsumption. Since Algorithm 2 answers true only if it finds such

a world Wi we get P(A vK B) > 0.

Lemma 4.14 (Completeness). Given a BEL ontology K = (T ,BN ), and the named con-

cepts A,B ∈ NC as inputs, Algorithm 2 returns true if P(A vK B) > 0.

Proof. We have proved Lemma 4.9 stating the completeness of Algorithm 1. Hence, we

know that the precise probability of the subsumption can be calculated by only taking

into account the worlds with positive probability w.r.t. which the entailment TWi |= A v B

holds. Hence, if P(A vK B) > 0 then there must exist such a world. Assuming that the

guess for a world done by Algorithm 2 is a correct one Algorithm 2 answers true.

We have shown the correctness of the algorithm in Lemma 4.13 and Lemma 4.14. We

still need to show that this can be generalised to arbitrary concepts. Let C, D be con-

cepts, A, B new named concepts, K = (T ,BN ) and K′ = (T ′,BN ) BEL ontologies where

T ′ = T ∪ {(A v C : {}), (B v D : {})}. Since Algorithm 2 is a special case of Algorithm 1

and we have shown the generalisation of Algorithm 1 in Lemma 4.10, Lemma 4.15 is an

immediate result.

Lemma 4.15. C is positively subsumed by D w.r.t. K iff A is positively subsumed by B

w.r.t. K′
.

From Lemma 4.12 we know that Algorithm 2 is a non-deterministic algorithm that ter-

minates in polynomial time. From Lemmas 4.13-4.15 we get that the positive subsumption

problem is decidable.

Lemma 4.16. Positive subsumption can be decided in NP.

It has been shown that the problem can be solved in NP. In the rest of this section,

NP is shown to be also a lower bound for the problem. Lemma 4.17 shows that inferencing
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in Bayesian networks can be reduced to positive subsumption w.r.t. a BEL ontology, that

is constructed in polynomial time.

Lemma 4.17 (Hardness). Let BN be a Bayesian network and K = (T ,BN ) be a BEL
ontology where T = {(C v D : ψ)}. Then it holds that PBN (ψ) > 0 iff P(C vK D) > 0.

Proof. ⇒ Let IP = (Φ,Pr) be an arbitrary model of K where {IC1, ..., ICn} ⊆ Φ, 1 ≤ i ≤ n

and for every contextual interpretation IC /∈ {IC1, ..., ICn} it holds that Pr(IC) = 0. By

the definition of a model, we know that for (C v D : ψ) ∈ T it holds that:∑
ICi|=(CvD:ψ)

Pr(IC i) = 1

Since PBN (ψ) > 0 there is at least one contextual interpretation IC i with positive prob-

ability that satisfies ψ, which as a consequence, needs also to satisfy C v D. Hence,

P(C vK D) > 0.

⇐ For all models IP = (Φ,Pr) of K it holds that:∑
ICi|=(CvD:ψ)

Pr(IC i) = 1, (4.25)

where {IC1, ..., ICn} ⊆ Φ, 1 ≤ i ≤ n and for every contextual interpretation IC /∈ {IC1, ..., ICn}
it holds that Pr(IC) = 0. Equation 4.25 holds for all models of K only if the followings

hold: ∑
ICi|=ψ

Pr(IC i) > 0,
∑

ICi|=(CvD)

Pr(IC i) > 0 (4.26)

Combining (4.25) with Lemma 3.7, which asserts that the sum of the contextual interpre-

tations satisfying a context ψ must equal to the probability of ψ in the Bayesian network,

we get that PBN (ψ) > 0.

By Lemma 4.16 and Lemma 4.17, Theorem 4.18 is an immediate result.

Theorem 4.18. Positive subsumption is NP-complete.

In Section 4.2.3 we analyse the dual decision problem, i.e., certain subsumption, which

is another special case of precise subsumption.

4.2.3 Certain Subsumption

Certain subsumption can be solved analogously to the positive subsumption. Instead of

the certain subsumption problem, an answer to the dual problem is produced. As in

Algorithm 2, first a world Wi is guessed. Depending on Wi, the algorithm constructs an

EL ontology TWi upon which the subsumption A v B needs to be checked by the standard

EL completion algorithm. If the subsumption does not hold and at the same time the

context has a positive probability w.r.t. the given Bayesian network the algorithm answers

false. The intuition is to look for a world Wi with positive probability that does not satisfy

the subsumption, which guarantees that the subsumption has a probability strictly less

than 1. In the following, Algorithm 3 is given to solve the certain subsumption problem as

explained.
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Algorithm 3 Certain subsumption

Input: K = (T ,BN ) and A, B ∈ NC
Output: true if A is certainly subsumbed by B, false otherwise

1: Wi={X = x|X ∈ V, x ∈ D(X)} I Guess a valuation for all random variables
2: TWi = {} I Take an empty EL ontology
3: for every (E v F : ψ) ∈ T do I Create an EL ontology w.r.t. Wi

4: if ψ ⊆ Wi then I If the current world includes ψ
5: add (E v F ) to TWi

6: if (TWi 2 (A v B)) ∧ (PBN (Wi) > 0) then
7: return false

8: else
9: return true

Lemma 4.19. Algorithm 3 is a non-deterministic algorithm that returns the answer false

in polynomial time.

Proof. We show that Algorithm 3 returns the answer false in NP. As in Algorithm 2 we

need to show the following: Both guessing a world and checking whether the guess was a

correct one can be done in polynomial time. Producing a world can be done in polynomial

time by picking one value from D(X) for each random variable X, which is linear in the

size of the given input.

The sub-procedure in the algorithm consists of 2 basic parts. First part is the for-loop

(3-5) which is bound with the size of the T and subset checking (4) inside the for-loop is

linear in the size of Wi. Hence, first part stays in polynomial-time. The second part (6-9)

checks both: TWi 2 A v B and PBN (Wi) > 0, where the former can be done by calling

the EL completion algorithm in polynomial time and the latter by applying the chain rule.

Hence, the combined complexity of the whole sub-procedure is then polynomial.

Lemma 4.20 (Soundness). Given a BEL ontology K = (T ,BN ), and the named concepts

A,B ∈ NC as inputs, Algorithm 3 returns true only if P(A vK B) = 1.

Proof. If Algorithm 3 returns true then we know that there is no world Wi with positive

probability satisfying TWi 2 A v B, i.e., for all of the worlds Wi with positive probability

we get TWi |= A v B. By the soundness result of Algorithm 1 given in Lemma 4.8, we know

that all of the worlds Wi with positive probability upon which the entailment TWi |= A v B

holds contribute to the probability of the subsumption. Since the sum of probabilities of

all worlds add up to 1, P(A vK B) = 1 follows.

Lemma 4.21 (Completeness). Let K = (T ,BN ) be a BEL ontology and A, B ∈ NC. Given

K = (T ,BN ), A and B as inputs, Algorithm 3 returns true if P(A vK B) = 1.

Proof. We proved the completeness of Algorithm 1 in Lemma 4.9. Hence, we know that

the precise probability of the subsumption can be calculated by only taking into account

the worlds with positive probability upon which the entailment TWi |= A v B holds. Since

the sum over the probabilities of all worlds equals to 1 and P(A vK B) = 1, we know that

there is no world with positive probability upon which TWi 2 A v B holds. As a result,

Algorithm 3 returns true.
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Let C, D be concepts, A, B new named concepts, K = (T ,BN ) and K′ = (T ′,BN )

BEL ontologies where T ′ = T ∪ {(A v C : {}), (B v D : {})}. With the same argument as

in Lemma 4.15 in positive subsumption, Lemma 4.22 is an immediate result.

Lemma 4.22. C is certainly subsumed by D w.r.t. K iff A is certainly subsumed by B

w.r.t. K′
.

From Lemma 4.19 we know that Algorithm 3 is a non-deterministic algorithm that

produces an answer to the dual certain subsumption problem in polynomial time. Together

with Lemma 4.22 and the correctness results shown in Lemma 4.20 and Lemma 4.21 we

get the decidability result.

Lemma 4.23. Certain subsumption can be decided in coNP.

It has been shown that the problem is in coNP. We prove the completeness of the

problem by a reduction from inferencing in Bayesian networks to certain subsumption

problem w.r.t. a BEL ontology, that is constructed in polynomial time.

Lemma 4.24 (Hardness). Let BN be a Bayesian network and K = (T ,BN ) be a BEL
ontology where T = {(C v D : ψ)}. Then it holds that PBN (ψ) > 0 iff P(C vK D) = 1.

Proof. ⇒ Let IP = (Φ,Pr) be an arbitrary model of K where {IC1, ..., ICn} ⊆ Φ, 1 ≤ i ≤ n

and for every contextual interpretation IC /∈ {IC1, ..., ICn} it holds that Pr(IC) = 0. By

definition of a model, we know that for (C v D : ψ) ∈ T it holds that:∑
ICi|=(CvD:ψ)

Pr(IC i) = 1

Since PBN (ψ) = 1, all of the contextual interpretations IC i with positive probability satisfy

ψ. Consequently, all of the contextual interpretations IC i with positive probability also

satisfy C v D. Hence, P(C vK D) = 1.

⇐ Since P(C vK D) = 1, for all models IP = (Φ,Pr) of K it holds that:∑
ICi|=(CvD)

Pr(IC i) = 1, (4.27)

where {IC1, ..., ICn} ⊆ Φ, 1 ≤ i ≤ n and for every contextual interpretation IC /∈ {IC1, ..., ICn}
it holds that Pr(IC) = 0. This implies that the subsumption holds in every world. Hence

we get: ∑
ICi|=ψ

Pr(IC i) = 1 (4.28)

Combining (4.28) with Lemma 3.7 we get that PBN (ψ) = 1.

By Lemma 4.23 and Lemma 4.24 we get the completeness result for the certain subsumption

problem.

Theorem 4.25. Certain subsumption is coNP-complete.

Together with certain subsumption, we have provided procedures to solve three of

the reasoning problems. These reasoning problems are closely related. Positive and certain

subsumption are dual reasoning problems that are special instances of precise subsumption.
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In Section 4.2.4, we concentrate on the last reasoning problem and solve it with an approach

that is analogous to finding justifications for consequences in standard DLs.

4.2.4 Most Likely Context

Most likely context for a subsumption is an interesting decision problem that stems from

our contextual approach. In DL ontologies given a consequence, it is very important to find

justifications for this consequence. The task of finding justifications, minimal subsets, of a

DL ontology that have a given consequence is called axiom pinpointing [35]. Axiom pin-

pointing in EL together with its complexity results are presented by Peñaloza and Sertkaya

in [36]. The idea in axiom pinpointing is to label every axiom in an ontology and keep track

of these labels while computing the consequences. At the end, the set of labels are used to

find the set of minimal axioms. We use this idea in finding the most likely context for a

subsumption. The BEL contexts can be seen as labels in axiom pinpointing. Differently,

the contexts have probabilities that provide the likelihoods.

To decide the most likely context for a subsumption in BEL, we introduce an algorithm

that follows basically the same lines as the existing graph completion algorithm for EL. In
EL, the completion algorithm for computing subsumption w.r.t. a TBox classifies the whole

TBox, i.e., it computes the subsumption relationships between all named concepts of a given

TBox simultaneously. This algorithm proceeds in four steps:

1. Normalisation of the TBox.

2. Translation of the normalised TBox into completion sets.

3. Completion of these sets using completion rules.

4. Reading off the subsumption relationships from the normalised graph.

In the sequel, we present the BEL completion algorithm, which follows the same steps as

the EL-completion algorithm. We begin with the normalisation step, which enables us to

convert a given BEL TBox to an equivalent normalised BEL TBox.

1. Normalisation. The idea behind the normalisation is to replace the concepts that

are not named concepts with the named ones. The aim is to convert the TBox to an

equivalent TBox w.r.t. the subsumption relation upon which the classification can be done

in polynomial time. We say that a BEL ontology is in normal form if the TBox in the

ontology contains only axioms in a special form.

Definition 4.26 (Normal form). A BEL ontology K = (T ,BN ) is in normal form iff every

axiom in T is one of the following forms:

(A v B : ψ), (A1 uA2 v B : ψ), (A v ∃r.B : ψ), (∃r.A v B : ψ)

where A, A1, A2, B ∈ (NC ∪ >) and ψ is a context.

We introduce the normalisation rules which enable us to rewrite a given BEL ontology

into a normalised one.
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NR1 ((C u D̂ v E) : ψ) 99K {(D̂ v A : ψ1), ((C uA v E) : ψ2)}

NR2 (∃r.Ĉ v D) : ψ) 99K {(Ĉ v A : ψ1), (∃r.A v D) : ψ2)}

NR3 (Ĉ v D̂) : ψ) 99K {((Ĉ v A) : ψ1), ((A v D̂) : ψ2)}

NR4 (B v ∃r.Ĉ) : ψ) 99K {(B v ∃r.A : ψ1), (A v Ĉ) : ψ2)}

NR5 ((B v C uD) : ψ) 99K {((B v C) : ψ), ((B v D) : ψ)}

where Ĉ, D̂ /∈ {NC ∪ >}, A is a new concept name and ψ = ψ1 ∪ ψ2

Table 4.1: BEL normalisation rules

BEL ontologies can be transformed into a normal form by exhaustively applying

the normalisation rules given in Table 4.1. Suppose that we are given a BEL ontology

K = (T ,BN ). Applying a rule updates the TBox T by replacing the axioms having one of

the forms listed on the left hand side of Table 4.1 by the two axioms on the right hand side.

We first apply the rules (NR1)-(NR4) exhaustively and then apply the rule (NR5). The

number of possible applications of rules (NF1) to (NF4) is limited linearly in the size of T .

Each of these rules increases the size of T only by a constant. Hence, applying the rules

(NF1) to (NF4) exhaustively increases the size of T only polynomially. Then, we begin to

apply the rule (NF5). Therefore, single application of the rule (NF5) also increases the size

of T only by a constant. Hence, by exhaustively applying (NF5) the size of T increased

only linearly. As a consequence, normalisation takes only polynomial time. It is also easy

to verify that these rules yield a TBox in normal form.

Furthermore, the rule applications are sound, meaning that, for each rule it is possible

to derive the initial axiom from the two new axioms. It is also easy to see that any

contextual interpretation satisfying the right hand side must satisfy the left hand side by

our semantics. As a result, any model of the normalised ontology is also a model of the

original ontology. We collect these results in Lemma 4.27.

Lemma 4.27. Let A, B ∈ {NC∪>}. Every BEL ontology K = (T ,BN ) can be transformed

in polynomial time into a normalised ontology K′ = (T ′,BN ) such that:

(A vK B : ψ) iff (A vK′ B : ψ)

In the rest, we assume that the ontology is in normal form. We first define the

completion sets w.r.t. the normalised ontology and then construct the so-called completion

graph. We define the completion rules that modify the completions sets represented by the

completion graph in a way that the subsumption relations can be read directly from the

graph.

2. Completion Sets. Completion sets are the basic elements of the completion algorithm.

There are two kinds of completion sets used in the algorithm: S(A) and R(A,B) for each

concept name A, B occurring in the normalised TBox. Given a BEL ontology K = (T ,BN )

the set labels S(A) and R(A,B) w.r.t. K are initialised as follows:

− S(A) = {(A : {}), (> : {})} for each concept name A ∈ T
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CR1. If (A1 v B : ψ1) ∈ T and it holds that: (A1 : ψ2) ∈ S(A)
then add (B : ψ1 ∪ ψ2) to S(A).

CR2. If (A1uA2 v B : ψ1) ∈ T and it holds that (A1 : ψ2) ∈ S(A)
and (A2 : ψ3) ∈ S(A) then add (B : (ψ1∪ψ2∪ψ3))) to S(A).

CR3. If (A1 v ∃r.B : ψ1) ∈ T and (A1 : ψ2) ∈ S(A) then add
(r : (ψ1 ∪ ψ2)) to R(A,B).

CR4. If (∃r.B1 v A1 : ψ1) ∈ T and it holds that (B1 : ψ2) ∈ S(B),
(r : ψ3) ∈ R(A,B) then add (A1 : ((ψ1 ∪ ψ2 ∪ ψ3)) to S(A).

Table 4.2: BEL completion rules

− R(A,B) = {} for each concept name A, B ∈ T

We represent the completion sets with a graph, named completion graph. We manipulate

the set labels in the graph with the so-called completion rules.

3. Completion Graph. Intuitively the sets S(A) represent the nodes that contain set

labels, while the sets R(A,B) represent the edges of the completion graph. Formally the

completion graph G = (V, V × V, S,R) is defined over a BEL ontology K = (T ,BN ) as

follows:

− V = A where A ∈ (NC ∪ >)

− S = V 7→ NBC where NBC = {(A,ψ)|A ∈ NC}
− R = V × V 7→ NBR where NBR = {(r, ψ)|A ∈ NR}

The completion graph is constructed with the initialised completion sets. Next, we define

the completion rules given in Table 4.2 that change the set labels in the nodes of the graph

in a certain way. The completion rules are applied only if they change a set label in the

completion graph and the algorithm continues until no more rule is applicable. Intuitively,

the completion rules make the subsumption relationships in the TBox explicit so that they

can be read directly from the completion graph. In fact, the completion rules preserve the

following invariants that guarantee this:

− (B : ψ) ∈ S(A) → (A vK B : ψ)

− (r : ψ) ∈ r(A,B) → (A vK ∃r.B : ψ)

Lemma 4.28. The completion rules preserve invariants.

Proof. After a successful application of the completion rule R1, (B : (ψ1 ∪ ψ2)) is added

to S(A). To show that the rule preserves the invariants (A vK B : (ψ1 ∪ ψ2)) needs to

be shown. (A1 vK B : ψ1) holds since it is in T . Furthermore, (A1 : ψ2) ∈ S(A) is

given. Assuming that the invariants hold before the rule application, (A1 : ψ2) ∈ S(A)

implies (A vK A1 : ψ2). This means that all of the contextual interpretations with positive

probability satisfy both (A1 vK B : ψ1) and (A vK A1 : ψ2) for all models IP of K. As a

result, we get (A vK B : (ψ1 ∪ ψ2)).

After a successful application of the completion rule R2, (B : (ψ1 ∪ ψ2 ∪ ψ3)) is

added to S(A). To show that the rule preserves the invariants (A vK B : (ψ1 ∪ ψ2 ∪ ψ3))

needs to be shown. (A1 u A2 vK B : ψ1) holds since it is in T . (A1 : ψ2) ∈ S(A) and
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(A2 : ψ3) ∈ S(A) are given. Assuming that the invariants hold before the rule application,

we get both (A vK A1 : ψ2) and (A vK A2 : ψ3). This means that all of the contextual

interpretations with positive probability satisfy both (A vK A1 : ψ2) and (A vK A2 : ψ3)

for all models IP of K. Hence we get (A vK A1 uA2 : (ψ2 ∪ψ3)). Similarly combining this

with (A1 uA2 vK B : ψ1) we get (A vK B : (ψ1 ∪ ψ2 ∪ ψ3)).

After a successful application of the completion rule R3, (r : (ψ1 ∪ ψ2)) is added to

R(A,B). Hence, (A vK ∃r.B : (ψ1∪ψ2)) needs to be shown. Since (A1 v ∃r.B : ψ1) ∈ T it

holds that (A1 vK ∃r.B : ψ1) and (A1 : ψ2) ∈ S(A) is given. Assuming that the invariants

hold prior to rule application (A1 : ψ2) ∈ S(A) implies (A vK A1 : ψ2). Since all of

the contextual interpretations with positive probability satisfy both (A vK A1 : ψ2) and

(A1 vK ∃r.B : ψ1) for all models IP of K it follows that all of the contextual interpretations

with positive probability satisfy (A v ∃r.B : (ψ1 ∪ ψ2)).

After a successful application of the completion rule R4, (A1 : (ψ1∪ψ2∪ψ3)) is added

to S(A). (A vK A1 : (ψ1 ∪ ψ2 ∪ ψ3)) needs to be shown. (∃r.B1 v A1 : ψ1) ∈ T and

hence (∃r.B1 vK A1 : ψ1) holds. Furthermore, (B1 : ψ2) ∈ S(B) and (r : ψ3) ∈ R(A,B)

are given. Analogously, by the invariants we get (B vK B1 : ψ2) and (A vK ∃r.B : ψ3)

respectively given that the invariants hold prior to the rule application. (A vK ∃r.B : ψ3)

and ((B vK B1) : ψ2) imply (A vK ∃r.B1 : (ψ2 ∪ψ3)) by the same argument over all of the

contextual interpretations of all models. Combining this with (∃r.B1 vK A1 : ψ1) we get

(A vK A1 : (ψ1 ∪ ψ2 ∪ ψ3)).

Lemma 4.29. Completion algorithm terminates after an exponential number of steps.

Proof. The size of V in G is linear in the size of (NC∪>). The size of the edges of the graph

on the other hand is quadratic in |V |. Hence, the size of the graph is polynomial in the size

of the input. On the other hand, both NBC and NBR are potentially exponential sets since

there are exponentially many contexts in the size of the random variables. Furthermore,

since each rule application adds one element to the graph, and the rules are applied only

if they change anything, it follows that rule application terminates after an exponential

number of steps.

Since the initial configuration of the graph satisfies the invariants and since rule applications

do satisfy invariants we get the soundness of the algorithm.

Lemma 4.30 (Soundness). Let K = (T ,BN ) be a BEL ontology. After running the com-

pletion algorithm for K, it holds for all A, B ∈ NC and the contexts ψ that:

(A vK B : ψ) if (B : ψ) ∈ S(A)

To prove the completeness of the algorithm we construct a probabilistic interpretation based

on the completion graph.

Lemma 4.31 (Completeness). Let K = (T ,BN ) be a BEL ontology. After running the

completion algorithm for K, it holds for all A, B ∈ NC and contexts ψ that:

(A vK B : ψ) only if (B : ψ) ∈ S(A)



Chapter 4. Reasoning in BEL 33

Proof. Suppose that (B : ψ) /∈ S(A) when no more rule is applicable. Suppose that

there are k worlds. We construct a probabilistic interpretation IP = (Φ,Pr) of K where

{IC1, ..., ICk} ⊆ Φ and for every contextual interpretation IC /∈ {IC1, ..., ICk} it holds that

Pr(IC) = 0. Furthermore, we define:

− ∆ICi = V , IC i |= Wi, Pr(IC i) = PBN (Wi)

− B′ICi = {A′ | ψ′ ⊆ Wi, (B
′ : ψ′) ∈ S(A′)} for all B′ ∈ NC

− r′ICi = {(A′, B′) | ψ′ ⊆ Wi, (r
′ : ψ′) ∈ R(A′, B′)} for all r′ ∈ NR

Since (B : ψ) /∈ S(A) we get that: ∑
ICi|=(AvB:ψ)

Pr(IC i) < 1

Therefore, we know that there exists at least one world with positive probability that does

not entail this axiom. It is only left to show that IP is a model of K. For every world Wj ,

the following follows from the construction of IP :∑
ICi|=Wj

Pr(IC i) = Pr(ICj) = PBN (Wj) (4.29)

Furthermore, we need to show that IP is a model of T , i.e., for each (E v F : ψ) ∈ T it

satisfies: ∑
ICi|=(EvF :ψ)

Pr(IC i) = 1

The following holds:∑
ICi|=(EvF :ψ)

Pr(IC i) =
∑

ICi|=ψ,ICi|=EvF

Pr(IC i) +
∑
ICi2ψ

Pr(IC i)

Therefore, it is enough to show that every contextual interpretation IC i, 1 ≤ i ≤ k with

positive probability satisfying ψ also satisfies the subsumption. We show that this is indeed

the case by showing this over the four types of axioms that may occur in the TBox:

− Suppose the axiom is of type ((A1 v B) : ψ) ∈ T . Let IC i be a contextual interpreta-

tion that satisfies the context ψ. Suppose that C ∈ A
ICi
1 w.r.t. a context ψ ⊆ Wi, i.e.,

(C : ψ) ∈ S(A). Since (CR1) no longer applies it holds that (C : ψ) ∈ S(B). This

implies that C ∈ BICi w.r.t. a context ψ ⊆ Wi. Since IC i was selected arbitrarily we

get that every contextual interpretation with positive probability that satisfies ψ also

satisfies the subsumption (A1 v B).

− Suppose the axiom is of type ((A1 u A2 v B) : ψ) ∈ T . Let IC i be a contextual

interpretation that satisfies the context ψ. Suppose that C ∈ (A1 u A2)
ICi w.r.t.

a context ψ1 ⊆ Wi, i.e., (C : ψ1) ∈ S(A), (C : ψ1) ∈ S(A2). Since (CR2) no

longer applies it holds that (C : ψ2) ∈ S(B) with ψ = ψ1 ∪ ψ2. This implies that

C ∈ BICi w.r.t. a context ψ2 ⊆ Wi. Since IC i was selected arbitrarily we get that

every contextual interpretation with positive probability that satisfies ψ also satisfies

the subsumption (A1 uA2 v B).

− Suppose the axiom is of type (A1 v ∃r.B : ψ) ∈ T . Let IC i be a contextual interpre-

tation that satisfies the context ψ. Suppose that C ∈ A
ICi
1 w.r.t. a context ψ1 ⊆ Wi,
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i.e., (C : ψ1) ∈ S(A). Since (CR3) no longer applies it holds that (r : ψ2) ∈ R(C,B)

with ψ = ψ1 ∪ ψ2. This implies that C ∈ (∃r.B)ICi w.r.t. a context ψ2 ⊆ Wi. Since

IC i was selected arbitrarily we get that every contextual interpretation with positive

probability that satisfies ψ also satisfies the subsumption (A1 v ∃r.B).

− Suppose the axiom is of type (∃r.B1 v A1 : ψ) ∈ T . Let IC i be a contextual

interpretation that satisfies the context ψ. Suppose that C ∈ (∃r.B1)
ICi w.r.t. a

context ψ1 ⊆ Wi, i.e., (r : ψ1) ∈ S(B). Since (CR4) no longer applies it holds

that (A1 : ψ2) ∈ R(C,B) with ψ = ψ1 ∪ ψ2. This implies that C ∈ A
ICi
1 w.r.t. a

context ψ2 ⊆ Wi. Since IC i was selected arbitrarily we get that every contextual

interpretation with positive probability that satisfies ψ also satisfies the subsumption

(∃r.B1 v A1).

As a result we get that IP is a model of the ontology with
∑

ICi|=(AvB:ψ) Pr(IC i) < 1.

Hence, inf{A vIP B : ψ | IP |= K} < 1. Consequently, (A vK B : ψ) does not hold.

Given Lemma 4.30 and Lemma 4.31 we get the correctness of the algorithm. As a result,

most likely context can be determined as follows.

4. Reading the Subsumptions We have shown that the completion graph contains all

subsumption relationships in the given ontology. Hence, ψ is the most likely context in K
for the subsumption (A v B) iff PBN (ψ) = sup{PBN (ψ

′
)|(B : ψ

′
) ∈ S(A)}. We generalise

this to arbitrary concepts C and D as follows. Let C, D be concepts, A, B new named

concepts, K = (T ,BN ) and K′ = ({T ∪ {(A v C : {}), (D v B : {})}},BN ) a BEL
ontology. Then, Lemma 4.32 holds.

Lemma 4.32. ψ is the most likely context in K for the subsumption (C v D) only if ψ is

the most likely context in K for the subsumption (A v B).

Proof. Assume by contradiction that ψ∗ is the most likely context in K for (A v B) such

that PBN (ψ∗) > PBN (ψ). Then by definition, there exists a consequence (A vK′ B : ψ∗).

But then, (C vK D : ψ∗) is also a consequence. Therefore, ψ is not the most likely context

for the subsumption since PBN (ψ) is not a supremum. Hence, contradiction.

Assume by contradiction that ψ∗ is the most likely context in K for (A v B) such

that PBN (ψ∗) < PBN (ψ). By definition, we know that (C vK D : ψ) is a consequence. But

then, (A vK′ B : ψ) is also a consequence. Therefore, ψ∗ is not the most likely context for

the subsumption since PBN (ψ∗) is not a supremum. Hence, contradiction.

Theorem 4.33. Most likely context can be decided in EXPTIME.

Proof. It has already been shown that the completion algorithm terminates in exponential

time. For each consequence that has been generated by the modified completion algorithm

we need to check how likely it is, which requires making inference in Bayesian networks,

which is NP-hard. Hence, the combined complexity is EXPTIME.
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Generalising the framework to DL

family: B + DL

So far, we have provided a Bayesian extension of the description logic EL. Even though

we have restricted the scenario to the ontologies with TBoxes, we now postulate that this

restriction can be removed easily. Furthermore, the scenario can also be extended to more

expressive DLs. For our framework to be extended, it is sufficient to have a classic-valued,

monotonic logic, namely, one where the consequence-based entailment can be checked.

We will briefly review expressive probabilistic DLs before presenting our generalisation.

ALC is the classic DL that uses the constructors >, ⊥, u, t, ¬, ∃, ∀. Two of the early

probabilistic DLs, by Heinsohn [37] and Jaeger [38] propose a probabilistic extension of ALC
and define probabilistic inference services for reasoning. Both of them support probabilistic

concepts at terminological level, but do not fully support assertions over individuals. A

more recent work that extends ALC has been conducted by Dürig and Studer. Their

formalism allows assertional probabilistic knowledge, but does not allow terminological

probabilistic knowledge. The main reasoning problem is consistency w.r.t. the assertional

knowledge, for which no decidability result is given. Lukasiewicz [39] provides a framework

for more expressive probabilistic DLs, that contain additional data, concept and axiom

types. His framework is mainly based on the notion of semantic division of the probabilistic

ontologies. Based on this assumption some reasoning problems have been defined. The

reasoning problems are based on finding intervals of probabilities which is different from

our approach. A set of algorithms to solve these problems are defined and a set of complexity

results are provided. Importantly, [39] is one of the few formalisms that allows probabilistic

extensions at both assertional and terminological level. Different from BDL, the theory in

the background is probabilistic lexicographic entailment taken from probabilistic default

reasoning.

In this section we do not provide the individual syntax and semantics of the Bayesian

DLs. Instead we define a general syntax and semantics that is built on top of the semantics

of the concept language of the underlying DL. We additionally show that first three decision

35
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problems that we have defined for BEL can be extended towards Bayesian DLs, since these

algorithms use the classic DL reasoners as oracles.

5.1 Towards More Expressive Bayesian DLs

The syntax and semantics of BEL are defined in a way that it can easily be extended

towards other description logics. In defining the syntax and semantics of Bayesian DLs

we have the following strategy. First, we take a DL that is classic-valued and monotonic.

Then, we define its Bayesian extension without specifying the underlying logic. We denote

the classic-valued, monotonic description logics as DL and their Bayesian extensions as

BDL.

The BDL concept language is defined exactly as the DL concept language. The

contextual interpretations extend the standard DL interpretations by additionally mapping

the random variables to their domain of values. The BDL syntax extends the DL syntax

with probabilistic axioms. Furthermore, instead of defining different sets for different types

of axioms, as it is common in description logics, we define a general set, named general box,

which contains all types of axioms.

Definition 5.1 (Axiom, General Box and Ontology). LetDL be a classic-valued description

logic that is monotonic. A probabilistic axiom is an expression of the form (α : ψ), where

α is an axiom of any type that can be formed in DL and ψ a context. A contextual

interpretation IC satisfies the axiom (α : ψ), denoted as IC |= (α : ψ), iff it holds that:

(IC |= ψ) → (IC |= α)

A DL general box T is a finite set of axioms that can be formed in DL. A DL ontology K
is a pair (T ,BN ) where T is a DL general box and BN is a Bayesian network.

The semantics of BDL is defined analogously to the semantics of BEL. The only difference

is that we have a general box instead of a TBox.

Definition 5.2 (Semantics of BDL). A probabilistic interpretation IP is a pair (Φ,Pr)
where Φ is a set of contextual interpretations and Pr is a probability distribution over Φ such

that: {IC1, ..., ICn} ⊆ Φ, 1 ≤ i ≤ n where n is finite and for every contextual interpretation

IC /∈ {IC1, ..., ICn} it holds that Pr(IC) = 0. A probabilistic interpretation IP is a model of

T iff for each (α : ψ) ∈ T it satisfies: ∑
ICi|=(α:ψ)

Pr(IC i) = 1

IP is consistent with a Bayesian network BN iff for every world W in BN it holds that:∑
ICi|=W

Pr(IC i) = PBN (W)

A probabilistic interpretation IP is a model of a DL ontology K = (T ,BN ) iff IP is a

model of T and consistent with BN . A DL ontology K = (T ,BN ) is satisfiable iff it has a

probabilistic model.
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We introduced the syntax and semantics of BDL w.r.t a description logic DL, which
is classic-valued and monotonic. In Section 5.2, we lift the reasoning problems defined for

BEL to BDL.

5.2 Reasoning in BDL

Reasoning procedures for BDL can be seen as the lifted reasoning procedures that have been

defined for BEL. Since DL is not specified other than being classic-valued and monotonic,

we generalise the subsumption to any kind of axiom that can be formed in DL. Hence, we

define the probabilities of axioms instead of subsumptions.

Definition 5.3 (Probabilities of axioms). Given a BDL ontology K = (T ,BN ) and a

probabilistic interpretation IP = (Φ,Pr). The probability of the axiom (α : ψ) w.r.t. IP ,
denoted as P(αIP : ψ) is:

P(αIP : ψ) =
∑

ICi|=(αIP :ψ)

Pr(IC i)

The probability of α w.r.t. K, denoted as P(αK : ψ) is:

P(αK : ψ) = inf{P(αIP : ψ)|IP |= K}

P(αIP ) is written short for P(αIP : {}) and P(αK) for P(αK : {}).

Analogously, we can determine whether a given probabilistic axiom (αK : ψ) is a con-

sequence of an ontology.

Definition 5.4 (Axiom as a consequence). Given a BDL ontology K = (T ,BN ), (αK : ψ)

is a consequence of K, denoted as (αK : ψ) iff it holds that P(αK : ψ) = 1.

It is now possible to define the reasoning procedures. Since subsumptions are re-

placed with general axioms, instead of checking whether a subsumption is entailed we

check whether an axiom is entailed.

Definition 5.5 (Reasoning problems). Given a BDL ontology K = (T ,BN ) and an axiom

α, we say that α is precisely entailed with probability p w.r.t. K if p = P(αK). We define

two special cases of precise entailment, i.e., positive entailment and certain entailment as

follows. α is entailed positively w.r.t. K if P(αK) > 0 and α is entailed certainly w.r.t. K if

P(αK) = 1. Given an axiom α that is positively entailed, we say that ψ is the most likely

context for the entailment α in K if PBN (ψ) = sup{PBN (ψ
′
)|P(αK : ψ

′
)}.

Generally, there are two approaches in developing algorithms to reason over the ex-

tensions of DLs. First approach, known as the black-box approach, is to use the results

of the standard reasoners developed for the underlying logic to develop a new reasoning

procedure over the extended logic. This is also called using DL reasoners as oracles. The

second approach, known as the glass-box approach, is to modify the internals of a DL

reasoner to develop a new reasoning procedure. Both of the approaches has its own ad-

vantages and disadvantages. The main advantage of the black-box approach is that it can
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be generalised easily. On the other hand, the glass box approach concentrates on a more

specific problem by taking into account its internal structure which usually leads to more

optimal procedures. However, since it highly depends on the structure of the particular

problem it cannot be generalised to other structures easily.

Algorithm 1, Algorithm 2 and Algorithm 3 are based on the black box approach since

they do not make use of any particular internal structure of EL. The algorithms basically

use an EL reasoner as an oracle to check whether an axiom is entailed from the constructed

EL TBox. Therefore, it can be easily extended to DLs where entailment checking can be

done.

Note that most likely context cannot be generalised since it modifies the internals of

a DL reasoner such that it yields the results during the computation. Within the scope of

this thesis, we leave most likely context in BDL open.

We assumed that the description logic DL that underlies BDL is a monotonic logic.

Therefore, we know that we can check the entailment for a given axiom. Hence, the

algorithms are changed so that they use the reasoners developed for the underlying DL
to check entailment. These yield in sound and complete algorithms for BDL. The only

difference is of course in the complexity results, since the underlying DLs may have different

computational complexities for entailment checking.

It is important to note the fact that any BDL is decidable provided that entailment

checking in DL is decidable. Moreover, precise entailment can be decided in PSPACEC,

positive entailment in NPC and certain entailment in coNPC, where C is the complexity of

deciding the entailment in DL.

Let us explain these w.r.t. some known DLs. We have already given the complexities

for BEL. One interesting question is how far BEL can be pushed without any change

in the complexity result of the three reasoning problems. It is known that EL++ has

polynomial time entailment checking. As a result, BEL++ has the same complexities for

the same reasoning problems. EL++ as well as other DLs in which entailment checking

can be done better than PSPACE, these complexity results have the following meaning.

The computational complexities are w.r.t. the size of the random variables given by the

Bayesian network. Hence, it is possible to have a large set of axioms, as it is usually desired

in DLs, while keeping the Bayesian network minimal, which will lead to efficient reasoning

procedures.

Consider the DL ALC in which entailment can be checked in EXPTIME. As a result,

the complexity of reasoning in Bayesian ALC stays same as the complexity of reasoning in

standard ALC. Indeed, this is also the fact for other expressive DLs.

We have shown that our scenario can be generalised towards more expressive logics.

Furthermore, the reasoning problems, except most likely context, can be solved analogously

to BEL since the algorithms use a black-box approach. In Chapter 6, we summarize the

results and offer some future research directions.
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Further Research and Summary

In this work, we provided a combination of two widely studied KR formalisms in order to

achieve context based reasoning over uncertain contexts. The main contributions can be

listed as follows.

− We provided a context-sensitive extension of DLs that is different from existing ap-

proaches. The current work is especially marked by its considering uncertain domains

for the contexts, an area that was not explored before. Furthermore, it also differs

from existing probabilistic DLs in a number of other ways aforementioned in relevant

sections of the text.

− We have provided decision problems w.r.t. the probabilities of the contexts and de-

veloped algorithms to solve these. We have given decidability results and a set of

complexity results. For BEL, we have shown that precise subsumption is in PSPACE,

positive and certain subsumption is NP-complete. Lastly, we have provided an expo-

nential algorithm to solve most likely context.

− We generalised our scenario to classic-valued, monotonic DLs. Precise, positive and

certain subsumption problems are lifted and complexity results for these generalisa-

tions w.r.t. the existing algorithms are provided.

There are several open avenues for future work to consider. Some of them can be listed as

follows.

− The hardness results for precise subsumption and most likely context are not given.

This is left as an open problem.

− In the scope of this thesis, we do not provide any implementation for any of the

algorithms provided. It is important to implement these algorithms considering real

application domains, for instance the bio-medical domain. This points to yet another

future dimension; one that needs to be discussed in close collaboration with the

experts of such knowledge domains.

− A downside of Algorithm 1 is that it is complexity-wise strict, i.e., it does not perform

better in the best case. We strongly think that practically-oriented algorithms can

39
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be developed, which may have bad worst-case behaviour, but could provide good

average-case behaviour as it is the case for many DL reasoners.

− The completion-like algorithm does not suffer from strictness. It may have a good

average case performance. We think that this algorithm can be optimised further. For

instance, one can choose set labels prior to adding them, and ignore some irrelevant

ones. This is also left as a future work.

− Although we have only considered ontologies, it might be possible to adopt this for-

malism to Databases, which gives rise to another future work.

− We think that this formalism can also attract researchers from the Bayesian networks

community. It is an open question enquiry whether and how the framework can be

used for learning tasks in Bayesian networks from the perspective of Bayesian network

community.

Context-sensitive formalisms as well as probabilistic formalisms address important

characteristics of the knowledge domains. We think that this work proposes promising

questions which needs to be further studied. These questions may offer new horizons for

KR which can address some problems of KR as well as open new ones.
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