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Abstract

Finite tree automata consist of a set of states and a set of transitions. Input trees are
accepted if it is possible to label the tree with states such that the relationship between
the state at every node and the state at its child nodes conforms to a transition. Thus,
the transitions only define how a state must be labeled with respect to its children or
vice versa.

This work investigates how finite tree automata behave when transitions are made
more expressive. Two extensions are considered: a new finite tree automaton model
with transitions of arbitrary size and a model where a regular tree language defines the
set of transitions. The first extension allows transitions in the shape of trees to have any
size. The main difference to conventional tree automata is that larger transitions can
overlap. Nevertheless, the new tree automaton model has the same expressive power
as conventional tree automata models. The main challenge of the provided proof is
eliminating overlappings.

The second extension contains a separate tree automaton called the transition automa-
ton. The language recognized by the transition automaton defines the set of transitions.
Consequently, transitions are no longer bounded in size and amount. Nevertheless,
this second tree automaton model is not more expressive than conventional models. A
constructive proof is provided that uses a conventional tree automaton for simulating
the extended tree automaton together with its transition automaton.
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1
Introduction

Finite tree automata are a natural extension to word automata. The key difference
between word and tree automata is the alphabet that consists of symbols together
with an arity function. The arity function defines for every symbol the number of
successors. Words consists only of symbols with arity one and zero. Symbols with
multiple successors lead away from linear trees, i.e., words, but towards the “branching”
of trees. Similar to automata over words, finite tree automata consist of a finite set of
states. An input tree is accepted if it is possible to label the tree with states such that
some local conditions are fulfilled. One of the conditions is verified by a transition
relation. The tree automaton contains a finite set of transitions and the transitions define
how a state must be labeled with respect to its children or vice versa. Additionally,
the states for the root and the leaves of the input tree are specified. A tree that can be
completely labeled by the transitions is accepted.

As trees are a very common data structure in computer science, tree automata can be
used in almost all subfields of computer science. Natural applications are, e.g., compilers
processing syntax trees or browser parsing XML documents. Computer linguist process
natural languages with special tree automata. Infinite trees are processed in verification.
Similar to their counterparts over words, tree automata also provide a basis for theoretic
research. Indeed, tree automata have originally been invented to prove the decision
problem of monadic second order logic with two successors [TW68; Don70].

To define a specific tree automaton, every transition must be stated explicitly. But
sometimes, it is more convenient to define conditions involving more than one node
and its children. In this case, the condition has to be split into smaller parts to define
transitions that only decide over the states of a node and its children. The goal of this
work is to investigate how tree automata change when giving more freedom on how the
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1 Introduction

transitions have to be defined.

1.1 Contribution

Two extensions of finite tree automata are presented. Both allow more powerful transi-
tions but are similar to conventional tree automata in other aspects.

The first extension is the general finite tree automaton. It allows transitions of arbitrary
size but the set of transitions must be finite and the transitions must be trees in shape.
This automaton model turns out to have the same expressive power as conventional
tree automaton models. To show this, we prove that it is possible to decrease the size
of the transitions. As larger transitions can overlap, it is necessary to first eliminate
overlappings. The elimination of overlappings is the difficult part of the conversion.
The proof is constructive and converts every pair of overlapping transitions into a single
or a pair of non-overlapping transitions.

The second extension are regular tree automata. This automaton model allows a reg-
ular tree language as transitions. A tree language is regular if a finite tree automaton
recognizes it. Consequently, the regular tree automaton contains a conventional “inner”
automaton. This inner automaton accepts trees that are interpreted as transitions in the
outer automaton. This has some implications that distinguishes regular tree automata
from conventional ones: transitions are no longer bounded in size and the amount of
transitions can be infinite. Contrary to intuition, regular tree automata have not more
expressive power than general finite tree automata or conventional tree automata. To
show this, we simulate a regular tree automaton by a conventional finite tree automa-
ton. As the size of transitions is not bounded, transitions can overlap. The simulating
automaton keeps a set of configuration of the “inner” automaton to keep track of all
possible transitions at the same time.

1.2 Related Work

Tree automata are an extension to finite automata on words. Pursuing this idea even
further, automata on rectangular grids or pictures [BH67; GR92], on partial orderings
or acyclic graphs [AG68] and on general graphs [Cou90] have been considered in the
literature. Another extension to finite tree automata are tree automata over infinite
words [Rab70; Rab72; VW86].

In this section, we present previous work closely related to the topic of this work. The
most important contribution is made by Thomas [Tho91]. The definitions of general and
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1.2 Related Work

regular tree automata in chapter 3 and 4 are based on [Tho91]. After summarizing his
work, we shortly present some extensions to his contribution.

Thomas introduces graph acceptors in [Tho91]. Graph acceptors are finite automata
working on general graphs. His definition of graph acceptors has the same expressive
power as monadic second-order logic over graphs. Similar to this work, Thomas allows
transitions to be arbitrary subgraphs which are not restricted in size. He presented these
results again with another focus in [Tho97b; Tho97a].

A graph acceptor is a triple A = (Q, ∆, C) that consists of states Q, transitions ∆ and
a set of constraints C. The set of transitions is allowed to contain transitions of any size.
They are not limited to one node and its neighbors. Constraints C are only needed for
the more complex structures like pictures and general graphs.

Thomas gives a theorem with a proof sketch stating that every language accepted by
graph acceptors is definable in monadic second-order logic.

Furthermore, a theorem states that tree (or word) languages are recognizable by graph
acceptors exactly if they are recognizable by conventional finite automata. The proof
is only sketched. One direction is easy because conventional finite automata can be
expressed by graph acceptors. [Tho97a] gives slightly more details to the other direction:
by the theorem above, a graph acceptor can be transformed into a monadic second-order
formula. The conventional finite automaton can be inductively constructed from this
monadic second-order formula.

The proof does not work for more complex structures like pictures or general graphs
because picture and graph automata are not closed under complement and therefore,
in general, it is not possible to express negations of monadic second-order formulae.

As graph acceptors can have arbitrary sized transitions, one can conclude from the
theorem above that enlarging transitions for word or tree automata does not give extra
expressive power.

The paper further discusses how first-order logic is related to single state graph
acceptors and that the monadic theory of context-free graphs is decidable.

The work [Gia+96] proves that transitions in picture automata can be increased in size
without increasing the expressive power. It bases on ideas of [Tho91]. The main result
of the paper is that their definition of picture automata has the same expressive power
as existential monadic second-order logic. One step in the direction from monadic
second-order formulae to picture automata shows that transitions can be reduced in
size, i.e., (d,d)-tiles can be reduced to (2,2)-tiles.

Latteux and Simplot went another direction: They show in [LS97] that for picture
automata, instead of 2x2 tiles, it is equally powerful to use horizontal 1x2 and vertical
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1 Introduction

2x1 dominoes.

1.3 Organization

The presentation is organized as follows: The following chapter 2 defines all preliminar-
ies important for this work. This includes basic notions about trees and also conventional
finite tree automata. Chapter 3 discusses the expressive power of tree automata with ar-
bitrary sized transitions. This chapter also proves that the general finite tree automaton
model has not more expressive power than conventional tree automaton models. Tree
automata with a regular language as transition set are presented in Chapter 4. Their
expressive power is discussed in the same chapter. Finally, conclusions are given in
Chapter 5.
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2
Background

This chapter introduces tree automata as described in the literature. We shall first define
alphabets and trees as required for the definitions of tree automata. The second section
introduces finite tree automata.

There exist multiple notations for tree automata. The main resources on tree automata
used in this work are [TATA; GS15; Baa05; Fin15; Tho90]. We shall loosely follow the
notation from [Baa05].

2.1 Basics

In this work we shall only consider trees over ranked alphabets. This includes the special
case of words where the arity of every symbol is one except for the last symbol in the
word which has arity zero.

A ranked alphabet is a tuple (Σ, arity) where Σ is a finite set and arity is a mapping
from Σ to N which denotes the arity of a symbol σ ∈ Σ. Let Σp be the set of all symbols
in Σ with arity p.

A finite word over Σ is the concatenation of finitely many symbols from Σ. |w| is the
length of the word w. The empty word of length zero is denoted by ε. The set of all finite
words over Σ is denoted by Σ∗. For any word w, the nth symbol of w for n < |w| is
denoted by w(n).

Trees are defined as functions over a ranked alphabet.

Definition 2.1 ([Baa05]). A finite Σ-tree is a partial function t : N∗ → Σ whose domain
dom(t) satisfies the prefix condition: ε ∈ dom(t) and for all u ∈N∗ and i ∈N we have

ui ∈ dom(t) iff u ∈ dom(t) and i < arity(t(u)).
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2 Background

The set of all Σ-trees is denoted by TΣ. Subsets L ⊆ TΣ are called tree languages. H

A leaf of t is a node u ∈ dom(t) such that arity(t(u)) = 0. An inner node of t is a node
u ∈ dom(t) such that arity(t(u)) ≥ 1. The root of t is the node u = ε. A tree t is finite if
dom(t) is finite. The size of a tree is the number of nodes: size(t) = |dom(t)|.

A subtree of t at position u ∈ dom(t) is the tree t[u] with

• dom(t[u]) = {v | uv ∈ dom(t)}

• t[u](v) = t(uv).

Every subtree of t that is not at position ε, and is thus not the tree t itself, is called
a proper subtree of t. Let � be the prefix relation on N∗ with u � v iff ∃u′ ∈ N∗ with
uu′ = v. We say u ≺ v iff u � v and u 6= v. A path in t is a maximal and totally
ordered subset of dom(t). The depth of a tree is the length of its largest path, i.e.,
depth(t) = max{|p| | p ∈ dom(t)}.

2.2 Finite Tree Automata

Tree automata have been introduced to solve the decision problem of the monadic
second-order theory of multiple successors [TW68; Don70]. Automata on finite trees
can process their inputs either from the leaves to the root or vice versa. Consequently,
we call the corresponding automata models leaf-to-root and root-to-leaf automata.

2.2.1 Leaf-to-Root Automata

The tree automaton processing input trees from the leaves to the root are described
in [Don70; TW68]. The automaton is similar to finite automata on words, only the
transition relation differs.

Definition 2.2. A leaf-to-root automaton A = (Q, Σ, I, ∆, F) consists of

• a finite set of states Q

• a ranked alphabet Σ

• an initial assignment I : Σ0 → 2Q

• a transition assignment ∆ = {∆a | a ∈ Σ}, where ∆a is a function Qn → 2Q for
a ∈ Σn

• a set of final states F ⊆ Q.
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2.2 Finite Tree Automata

A run on tree t ∈ TΣ is a mapping r : dom(t) → Q such that for all positions
u ∈ dom(t)

r(u) ∈ ∆a(r(u0), ..., r(u(n− 1))),

where t(u) = a and arity(a) = n. A run r is called successful iff

• r(u) ∈ I(t(u)) for all leaves u

• r(ε) ∈ F.

An automatonA = (Q, Σ, I, ∆, F) is said to accept t ∈ TΣ if there is a successful run ofA
on t. The language recognized by A is L(A) = {t ∈ TΣ | A accepts t}. H

As the automaton is allowed to be nondeterministic, the transition assignment maps
tuples of states to sets of states. Alternatively, the transition assignment ∆ can also be
represented as a relation ∆ ⊆ Qn × Σ×Q. Analogously, the initial assignment can be
seen as a relation I ⊆ Σ0 ×Q. The function and the relation representation of ∆ and I
will be used interchangeably.

2.2.2 Root-to-Leaf Automata

The other direction of finite tree automata, i.e., processing input trees from the root to
the leaves, works almost the same, only the transition assignment is “turned around”.

Definition 2.3. A root-to-leaf automaton A = (Q, Σ, I, ∆, F) consists of

• a finite set of states Q

• a ranked alphabet Σ

• a set of initial states I ⊆ Q

• a transition assignment ∆ = {∆a | a ∈ Σ}, where ∆a is a function Q → 2Qn for
a ∈ Σn

• a final assignment F : Σ0 → 2Q.

A run on the tree t ∈ TΣ is a mapping r : dom(t) → Q such that for all positions
u ∈ dom(t)

(r(u0), ..., r(u(n− 1))) ∈ ∆a(r(u)),

where t(u) = a and arity(a) = n. A run r is called successful iff

• r(ε) ∈ I
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2 Background

• r(u) ∈ F(t(u)) for all leaves u.

An automaton A = (Q, Σ, I, ∆, F) accepts t ∈ TΣ if there is a successful run of A on t.
The language recognized by A is L(A) = {t ∈ TΣ | A accepts t}. H

As for leaf-to-root automata, the transition assignment can also be considered as a
relation ∆ ⊆ Q× Σ×Qn.
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3
Increasing the Size of Transitions

In this chapter, we shall present a general tree automaton model that allows for arbitrary
shapes in its transition relation.

Thomas [Tho91] already extended the transition relation for graph automata as de-
scribed in Section 1.2. Thomas’ paper only gives an overview and does not give details.
As almost no proofs are contained in the paper, this chapter adapts his ideas and gives
proofs for the relevant parts of this work. Another difference to Thomas’ graph automata
is that graph automata are not defined to include a ranked alphabet as this is not mean-
ingful for graphs. The definitions of tree automata in this work base on ranked alphabets.
Even though we changed Thomas’ graph automaton considerably, the discussed type
of automaton is still strongly inspired by his work.

The first section introduces the notion of general finite tree automata. The next three
sections each contain a part of the proof that this new extended automaton is not more
expressive than conventional tree automata.

3.1 General Finite Tree Automata

This section introduces a more general kind of finite tree automaton than the automata
defined in Section 2.2. The following definition resembles Root-to-Leaf and Leaf-to-
Root Automata, but since the transition relation is more general, the direction is not
predefined anymore.

In contrary to the original paper [Tho91], the definition of trees follows Section 2.1.
Only one extension is needed:

Definition 3.1. Let Σ be a ranked alphabet with arity function and let Q be a non-empty
finite set. A Q-labeled Σ-tree is a (Q× Σ)-tree where arity′ : Q× Σ → N is the arity
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3 Increasing the Size of Transitions

function derived from the arity function arity of Σ with arity′(q, σ) = arity(σ). H

The set of all Q-labeled Σ-trees is denoted by TQ×Σ. Note that Q-labeled Σ-trees are
still ordinary trees, and so basic definitions from Section 2.1 still apply.

Definition 3.2. A General Finite Tree Automaton A = (Q, Σ, ∆, A) consists of

• a finite set Q of states

• a ranked alphabet Σ with arity function

• a finite set of transitions ∆ containing Q-labeled (Σ ∪ {2})-trees

• a finite set A ⊆ Q of accepting states H

2 is a new symbol of arity zero. The transitions τ are Q-labeled Σ ∪ {2}-trees. They
can also be seen as the product of two separated functions with the same domain:
τ = r× t with τ(p) = (r(p), t(p)), r : dom(τ)→ Q and t : dom(τ)→ Σ ∪ {2}. In this
work, transitions τ and pairs (r, t) will be used interchangeably.

We need to define when such an automaton accepts an input tree. Intuitively, the
transitions are used to tile trees. Only trees that can be tiled in the right way will be
accepted. Every node in the tree must be covered by a node in a transition and the
special nodes labeled by 2 are used to glue two tiles or transitions together.

An partial subtree 〈t[u]〉 of t ∈ TΣ at position u results from a subtree t[u] by substitut-
ing some of its subtrees by 2.

Definition 3.3. Let t ∈ TΣ and u ∈ dom(t). Let D ⊆ dom(t[u]). The partial subtree
〈t[u]〉 of t at position u is a (Σ ∪ {2})-tree with domain

dom(〈t[u]〉) = dom(t[u]) \ {n ∈N∗ | ∃p ∈ D.p ≺ n}

defined by

〈t[u]〉(p) =

2, if p ∈ D

t[u](p), otherwise.

A node p ∈ dom(〈t[u]〉) is called a border node if it is labeled by 2, i.e., 〈t[u]〉(p) = 2.
Otherwise, it is called a core node. H

For a tree t to be accepted by an automaton A, every node in the tree must be covered
by core nodes of partial subtrees that “correspond” to transitions of A, all of which are
compatible with a run on the tree t. Border nodes are used to connect two adjacent
partial subtrees.
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3.1 General Finite Tree Automata

Definition 3.4. A run r of an automaton A = (Q, Σ, ∆, A) on t ∈ TΣ is a Q-tree with
dom(r) = dom(t). The subrun r[u] of r at position u is r[u](p) = r(up). H

A partial subtree 〈t[u]〉 of t ∈ TΣ at position u with a run r on t matches a transition
(r′, t′) ∈ ∆ if 〈t[u]〉 = t′ and r[u] = r′. Often, the run r is implicitly clear from the context
and will not be stated explicitly.

Definition 3.5. Let r be a run of an automaton A = (Q, Σ, ∆, A) on a tree t ∈ TΣ. A
tiling for t with respect to r is a set π = {t1, ..., tn} of partial subtrees of t such that every
partial subtree ti ∈ π matches some transition of ∆ and every node of t is the core node
of at least one partial subtree tj ∈ π. A tiling π = {t1, ..., tn} is called non-overlapping or a
NO-tiling for t if every node of t is the core node of exactly one partial subtree tj ∈ π. H

Definition 3.6. A run r of A = (Q, Σ, ∆, A) on tree t ∈ TΣ is called (non-overlapping or
NO-)successful if

1. r(ε) ∈ A

2. there exists a (non-overlapping) tiling for t with respect to r.

In this case, the tiling is also called successful. H

Note that the definition of partial subtrees technically allows substituting the root of
a subtree by 2. The resulting partial subtree would be a graph with only one node: the
root labeled by 2. Even though this is allowed, it will not be useful because it does not
contain core nodes. Therefore, partial subtrees where the root is labeled by 2 cannot be
used for non-redundant tilings of trees.

Example 3.1. Consider the finite field F2 and variables p and q. We build a finite tree
automaton A = (Q, Σ, ∆, A) with successful runs for all terms over F2 that result in
the value 1 when p is evaluated to 0 and q to 1. The set of states consists of two states
corresponding to the two elements in F2: Q = {S0, S1}. The set of accepting states is a
singleton: A = {S1}. Σ contains the operators of F2 together with the variables p and
q: Σ = {p, q,−,+, ·}. The arity corresponds to the arity of the operation: addition and
multiplication are binary, negation is unary and the arity of the variables is zero.

The set of transitions is depicted in Figure 3.1. It contains all combinations of all
operators. The pairs (S0,+) are simply written together as S0 +. The first two transitions
S0 p and S1 q correspond to initial states in Leaf-to-Root-Automata, they evaluate the
variables.

The first tree in Figure 3.2 shows an example of a tree that has a successful run. The
second tree in the same figure shows in addition the states of the successful run. The
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S0 p S1 q S1 −

S0 2

S0 −

S1 2

S0 +

S0 2 S0 2

S1 +

S0 2 S1 2

S1 +

S1 2 S0 2

S0 +

S1 2 S1 2

S0 ·

S0 2 S0 2

S0 ·

S0 2 S1 2

S0 ·

S1 2 S0 2

S1 ·

S1 2 S1 2

Figure 3.1: ∆ of automaton A

−

·

+

p p

q

S1 −

S0 ·

S0 +

S0 p S0 p

S1 q

Figure 3.2: Example of an accepted tree and its state labeling

following transitions are used: both single-node transitions, the first negation, the first
addition and the second multiplication. All nodes in the tree except for the root are
covered by two transitions: once as a core node and once as a border node. O

Definition 3.7. A transition τ ∈ ∆ is called elementary if it contains exactly one core
node. If A only contains elementary transitions, it is called an elementary finite tree
automaton. H

Elementary tree automata only use trees of depth zero and one as transitions. They
behave exactly like conventional finite tree automata. Even though their definition is
different, it is easy to see that Leaf-to-Root or Root-to-Leaf automata can be translated
to elementary finite tree automata and vice versa.

Definition 3.8. A is said to (NO-)accept t if there is a (NO-)successful run of A on t.
Otherwise, A rejects t. A = (Q, Σ, ∆, A) (NO-)recognizes the language L if for any tree
t ∈ TΣ, t ∈ L iffA (NO-)accepts t. If there is an automatonA (NO-)recognizing L, then L
is called (NO-)t-recognizable or recognizable by (NO-)tilings. IfA is elementary, L is called
e-recognizable. H

12



3.2 From Overlapping to Non-Overlapping Transitions

p a

q a

r a s 2 t 2

q a

r 2 s a t 2

Figure 3.3: Two transitions overlapping

The definition of recognition can also be interpreted the other way around: The
language recognized by A = (Q, Σ, ∆, A) is L(A) = {t ∈ TΣ | A accepts t}.

Example 3.2. The tree automaton in the preceding Example 3.1 is elementary because
all transitions are elementary. As there is a successful run of A on the example tree, this
tree is accepted by A. It is even NO-accepted because every node is the core node of
exactly one transition.

Let L be the language of all terms over F2 that result in the value 1 when p is evaluated
to 0 and q to 1. There are successful runs of A for every term in L. It follows that A
NO-recognizes L. Consequently, this language is NO-t-recognizable and since A is
elementary, L is even e-recognizable. O

It turns out that, in general, every language that is t-recognizable is also NO-t-recog-
nizable and e-recognizable. We shall show this in the following three sections.

3.2 From Overlapping to Non-Overlapping Transitions

Finite tree automata can have overlapping transitions. To transform general tree au-
tomata to elementary ones, the first step is to transform the overlapping transitions into
new transitions that allow to transform successful runs to NO-successful runs.

Intuitively, overlapping means that a part including the root of one transition is equal
to a subtree of the other transition. Furthermore, this part must contain at least one core
node of both transitions.

Figure 3.3 shows two transitions overlapping. The two transitions are called upper
transition (in the figure left) and lower transition (in the figure the right transition).
As marked by the colors, every transition is divided into two parts: the matching part
overlaps the other transition (red) and the individual part comprises the nodes which
are not existing in the other transition (black). The lower transition always contains an
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3 Increasing the Size of Transitions

individual part below the matching part. There are three cases to distinguish for the
upper transition:

1. In the figure, the upper transition contains an individual part above and one below
the matching part.

2. It can happen that the individual part below the matching part is missing. In this
case, all individual subtrees belong to the lower transition.

3. The transitions only differ in their subtrees and the individual part above the
matching part is missing. Thus, the position u ∈ dom(ti)where the two transitions
are overlapping is ε.

The following definition formalizes the notion of overlapping and the individual and
matching part of overlapping transitions.

Definition 3.9. Two transitions τ1 = (r1, t1) and τ2 = (r2, t2) ∈ ∆ are overlapping at
position u ∈ dom(t1) if t1(u) 6= 2 and t2(ε) 6= 2 and for all v ∈N∗ with uv ∈ dom(t1)

and v ∈ dom(t2) either t1(uv) ∈ {t2(v),2} or t2(v) = 2, and r1(uv) = r2(v).
τ1 is called the upper and τ2 the lower transition.
t1 restricted to {p ∈ dom(t1) | u � p} is called the upper individual part of t1. t1[u]

restricted to dom(t2) is the matching part of t1. The matching part of t2 is t2 restricted
to dom(t1[u]). The individual subtrees of t2 are all subtrees t2[p] for which t1[u](p) = 2

and the individual subtrees of t1 are all subtrees t1[up] for which t2(p) = 2. H

In the following, we want to illustrate by means of some examples how to remove
overlappings. The general idea is to combine transitions into new transitions that can be
included in a non-overlapping tiling. Thus, combining denotes an operation taking two
overlapping transitions as input and resulting in one or multiple new transitions that
are no longer overlapping but provide the same core nodes for the tiling.

The first example shows a simple way that does not work in general. The next two
examples remove overlappings for different cases.

For the next examples, we will often use an alphabet Σ = {0, 1, 2, ...} where the arity
of a symbol corresponds to the meaning of the symbol, i.e., arity(0) = 0, arity(1) = 1
and so on.

Example 3.3. Let A = (Q, Σ, ∆, A) be a general finite tree automaton with ∆ = {τ1},
where the transition τ1 is as shown in Figure 3.4 on the left. Transition τ1 can tile linear
subtrees with the only symbol being 1. In a successful run, the states p and q must
alternate.
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τ111

· · ·

· · ·

Figure 3.4: Example trees for Example 3.3

Transition τ1 can overlap with itself. The matching part are the lower two nodes,
colored red in the figure. If τ1 is recursively overlapping multiple times, the transition
ensures that there are always an even number of nodes and that the minimum are four
nodes.

We want to transform A into an automaton A′ that NO-accepts L(A). The naive
approach is to join overlapping transitions together to one new transition and to explicitly
add the joined transitions to the set of new transitions of the new automaton A′. τ1 is
self-overlapping and can be joined with itself. The result is τ11 shown in Figure 3.4. As
τ11 is overlapping with τ1, these can be joined again resulting in τ111 as shown in the
same figure. We could continue like this because τ111 overlaps with τ1 and τ11 and can
be joined with them again.

Formally, τ = (r, t) overlapping with τ′ = (r′, t′) at position u can be joined to τnew

with domain dom(τnew) = dom(τ) ∪ {uv | v ∈ dom(τ′)} which is defined as

τnew(p) =

τ′(up), if p /∈ dom(τ) or t(p) = 2

τ(p), otherwise.

In the example, the joining of transitions only results in new transitions whose lower
two nodes are p 1 and q2. Therefore, the new transitions are overlapping with τ1 and
can again be joined with τ1. This would result in even larger transitions.

But it is not possible to use multiple transitions together in a non-overlapping tiling.
To NO-accept the trees that have been accepted by the original automaton with over-
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(c) τ′111 and τ′′111

Figure 3.5: Example trees for Example 3.4

lappings, it is necessary to join all possible transitions repeatedly and infinitely. So this
results in infinitely many new transitions but the set ∆′ of transitions is only allowed to
be finite. O

As discussed before the previous example, we need a way to combine overlapping
transitions into non-overlapping transitions. The approach discussed in the example
above does not work for self-overlapping transitions because in an overlapping tiling, τ1

can be used multiple times but in a non-overlapping tiling, every old or new transition
can only be used once and does not fit to the other transitions.

The next two examples show an approach to eliminate overlappings that does work for
self-overlapping transitions. This approach is used in the proof below of Theorem 3.2.
Instead of joining overlapping transitions together, this approach only removes the
matching part of the upper transition. Without the matching part in the upper transition,
the two transitions can be used together in a non-overlapping tiling.

Note that it is also possible to remove the matching part of the lower transition instead.
But this alternative approach is not very convenient because removing the matching
part, including the root, of the lower transition results in a forest of all its individual
subtrees. Thus, this approach generates a lot more transitions.

The approach below uses new renamed states to ensure that the shrunk transitions
cannot be included in a tiling without the former overlapping partner transition. Thus,
the new transitions can only be used together in a tiling.

Example 3.4. The transition τ1 displayed in Figure 3.5(a) is the same as in Example 3.3.
As discussed, this transition overlaps with itself. The matching part has been marked
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3.2 From Overlapping to Non-Overlapping Transitions

red in the figure. When combining τ1 with τ1, the result are the two transitions τ′11 and
τ′′11 displayed in Figure 3.5(b).

As described above, the new transition τ′11 does not contain the matching part anymore.
Instead, it contains a border node with the renamed state (p, τ1[u]) where u = 00. τ1[u]
is exactly the removed matching part. The new lower transition τ′′11 remains the same
except for the root which contains the same renamed state (p, τ1[u]) to ensure that these
two transitions can only be used together in a tiling.

The transition τ′′11 can be further combined with τ1, the result are the transitions τ′111

and τ′′111 as shown in Figure 3.5(c). As before, the matching part of the upper transition
τ′′11 is removed and substituted by the renamed border node (p, τ′′11[u])2. As discussed,
u = 00. The lower transition has the same renamed state at the root.

Note that the two renamed states (p, τ1[u]) and (p, τ′′11[u]) are actually equal because
the deleted subtrees are the same trees. The transitions τ′′11 and τ′′111 are therefore the
same. This shows another detail about the renamings: The construction ensures that
transitions with renamed root (q, χ[u]) contain the subtree χ[u] themselves. In a tiling,
the renamed border nodes of the upper transitions must be “glued together” with
another transition. These states are unique in such a way that they cannot be “glued”
to an original transition. But they are allowed to be “glued” to any new transition that
contains the same subtree in its root state. In the example, τ′11 can be used with τ′′11, τ′111

and τ′′111 together in a tiling.
The three new transitions can be used together in a non-overlapping tiling to simulate

the original overlapping. The simulation starts with τ′11 whose border node is the new
state (p, τ1[u]. From this state, it is possible to use transition τ′′11 (or τ′′111) to end the
simulation. Alternatively, the transition τ′111 can repeatedly be included in the middle
of the tiling to gain trees of arbitrary but even length.

Note that, contrary to the naive approach in the last example, further combinations of
these transitions do not yield any new transitions. O

The previous example simplifies the construction in one point: The only individual
subtrees in the previous example are contained in the lower transition. In the general
case, both the lower and the upper transition can contain individual subtrees. In this
case, the individual subtrees of the upper transition are “attached” to the matching
part. When removing the matching part, the individual subtrees must be moved to the
resulting lower transition. The following example shows how this works.

Example 3.5. Figure 3.6(a) shows two transitions τ1 and τ2 overlapping at position 0
of τ1. Both transitions have individual subtrees. τ1 provides the right subtree and τ2

provides the left one.
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Figure 3.6: Tree τ1 and combination τ11 for Example 3.5
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Figure 3.7: Tree τ1 and combination τ11 for Example 3.6

Combining the two transitions τ1 and τ2 yields two new transitions τ′12 and τ′′12 depicted
in Figure 3.6(b). The resulting upper transition τ′12 consists of the upper individual part
of τ1. τ′′12 consists of the matching part and the individual subtrees of both original
transitions. As the new transitions are not allowed to be used individually in a tiling,
they have renamed states. O

A special case of the previous example is the overlapping of two transitions that have
the same root but each transition has different subtrees. In this case, every transition can
act as the upper transition. Moving the individual subtrees of one transition to the other
transition and removing the matching part of the first transition results in a new upper
transition without any nodes. Therefore, this special case produces only one transition
created by joining the two input transitions. As there is no “partner”, the root of the
new transition is not renamed.

Example 3.6. Figure 3.7(a) shows two transitions τ1 and τ2 overlapping at position ε.
Both transitions have individual subtrees but none has an individual part above the
matching part.

Combining the two transitions τ1 and τ2 yields only one transitions τ′′′12 depicted in
Figure 3.7(b). The resulting transition τ′′′12 is τ1 joined with τ2. No renaming is needed.

Note that the joining discussed in Example 3.3 works in this special case because there
is no self-overlapping. But overlapping at the root never comprises self-overlapping. O
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3.2 From Overlapping to Non-Overlapping Transitions

3.2.1 Construction

Before we prove that we can eliminate overlappings in the general case, we formalize
the previous construction. The construction combines overlapping transitions into a set
of non-overlapping new transitions. Every pair of overlapping transitions including the
newly created ones are combined once. For some pairs of transitions, there might be
more than one way to combine them. The combination depends on which is the upper
and which is the lower transition and also on what position they will be combined.

Let the binary operator ⊗u denote the combination of two transitions. The position
u is part of the domain of the first operand that also acts as the upper transition. Let
τ1, τ2 ∈ TQ×(Σ∪{2}). τ1 and τ2 can be combined into the set of new transitions τ1⊕u τ2 ⊆
TQ′×(Σ∪{2}) as follows:

τ1 ⊕u τ2 =


{χ3}, if τ1 and τ2 overlap at position u = ε

{χ1, χ2}, if τ1 and τ2 overlap at position u 6= ε

∅, otherwise

For overlappings in the first case of the definition of ⊕u, i.e., with the same root, both
transitions, τ1 and τ2 are combined into one new transition χ3 without renamed states.
For overlappings with different roots (in the second case) the transitions χ1 and χ2 are
constructed by removing the matching part from the upper transition and renaming the
new border node of the upper transition and the root of the lower transition to include
the deleted subtree.

Let τ1 = (r1, t1) and τ2 = (r2, t2) ∈ ∆ be overlapping at position u ∈ dom(τ1).

χ1 is called the resulting upper transition. It is created by replacing the matching part
of τ1 with 2. As the matching part is the subtree at position u, the new domain is
dom(χ1) = dom(τ1) \ {p ∈ N | u ≺ p}. Otherwise, the transition χ1 equals τ1.
Formally:

χ1(p) =


( renamed state︷ ︸︸ ︷
(r1(p), τ1[u]),2

)
, if p = u

τ1(p), otherwise

χ2 is called the resulting lower transition. It is a copy of τ2 where the state of the root
is renamed and all individual subtrees of the upper transition τ1 are added. The new
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domain is dom(χ2) = dom(τ2) ∪ {uv | v ∈ dom(τ1[u])}. Formally:

χ2(p) =


( renamed state︷ ︸︸ ︷
(r2(p), τ1[u]), t2(p)

)
, if p = ε

τ1[u](p), if ∃v ∈ dom(τ1[u]) with t2(v) = 2 and v � p

τ2(p), otherwise

When combining two transitions overlapping at the root, the position of the overlap-
ping is u = ε. In this case, we just merge the two transitions τ1 and τ2 into χ3. It is build
similar to χ2 with the difference that no states are renamed because there is no “partner”
transition produced. The new domain is dom(χ3) = dom(τ2) ∪ {uv | v ∈ dom(τ1[u])}.
Formally:

χ3(p) =

τ1[u](p), if ∃v ∈ dom(τ1[u]) with t2(v) = 2 and v � p

τ2(p), otherwise

Additionally, it can happen that three or more transitions in ∆ overlap. Finally, self-
overlappings are possible. Both possibilities are dealt with by combining the newly
created transitions with old transitions in ∆ and with the newly created transitions. The
final set of new transitions is ∆⊕∗ which is defined as follows:

∆⊕0 = ∆

∆⊕n+1 = ∆⊕n ∪
⋃

τ1,τ2∈∆⊕n

u∈dom(τ1)

τ1 ⊕u τ2

∆⊕∗ =
⋃

n∈N

∆⊕n

Now, we want to show that ∆⊕∗ is always finite. For this, we need another definition.
We can flatten transitions τ with renamed state (q, τ′[u]) at a leaf v 6= ε. The resulting
transition is τ′[u] appended to τ at position v.

Definition 3.10. Let τ ∈ ∆⊕∗ and let v 6= ε be a leaf of τ. We write ↓vτ for the transition
τ flattened at position v ∈ dom(τ). For τ(v) = ((q, τ′[u]), σ) with arity(σ) = 0, the tree
↓vτ is defined as follows:

dom(↓vτ) = dom(τ) ∪ {vw | w ∈ dom(τ′[u])}
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3.2 From Overlapping to Non-Overlapping Transitions

↓vτ(p) =

τ(p), if v � p

τ′[u](q), if p = vq

Transitions can be flattened recursively such that they do not contain any renamed states
except at the root. Let ↓τ be the recursively flattened transition τ with the addition that
the state of the root is restored to original: (q, τ[u]) is replaced by q. H

Proposition 3.1. ∆⊕∗ is finite.

Proof. We show that there is some n ∈N such that ∆⊕n = ∆⊕∗.
First, we start with some observation. As defined in Section 2.1, the depth of transitions

is depth(τ) = max{|p| | p ∈ dom(τ)}. We call a renamed state (q, τ[u]) ∈ Q′ nestedly
renamed if the subtree τ[u] already contains a renamed state.

Now we generalize the depth of a transition to include the depth of the subtrees in
the renamed state. We call depth(↓t) the nested depth of transition t.

The combinations τ1 ⊕u τ2 result, depending on the position u, in different new
transitions χ1, χ2 and χ3. As defined above, the domains of these transitions are

dom(χ1) = dom(τ1) \ {p ∈N | u ≺ p}
dom(χ2) = dom(τ2) ∪ {uv | v ∈ dom(τ1[u])}
dom(χ3) = dom(τ2) ∪ {uv | v ∈ dom(τ1[u])}︸ ︷︷ ︸

⊆dom(τ1)

.

Because of the prefix condition (cf. Definition 2.1), it follows that the depths of the
resulting transitions are smaller than or equal to the depth of one of the input transitions.

This result can also be generalized to the nested depth. In comparison to τ2, χ2’s root
is renamed. χ3 has no new renamed states compared to τ1 and τ2. Compared to τ1, one
more border node of χ1 is renamed to include the deleted subtree of τ1. It follows that
the nested depth of χ1 equals the nested depth of τ1. Altogether, the nested depths of
the resulting transitions are smaller than or equal to the nested depth of one of the input
transitions.

Let d = max{depth(τ) | τ ∈ ∆}. Then depth(↓τ) ≤ d for all transitions τ ∈ ∆⊕∗.
As the operation ↓ only increases the depth, depth(τ) ≤ depth(↓τ) for all transitions
τ ∈ ∆⊕∗. As the arity is fixed, the size of all new transitions, i.e., the number of nodes,
is bounded from above.

Furthermore, ↓τ is a tree in TQ×(Σ∪{2}) because it does not contain any renamed states.
Together with the size bound discussed above that means the set {↓τ | τ ∈ ∆⊕∗} is
finite.
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Claim: For every tree τ ∈ TQ×(Σ∪{2}) there are only finitely many trees τ′ ∈ ∆⊕∗ with
↓τ′ = τ. That means the set of pre-images ↓−1(τ) = {τ′ ∈ ∆⊕∗ | ↓τ′ = τ} for every
transition is finite.

Now we prove the claim. Let τ ∈ TQ×(Σ∪{2}). Let τ′ ∈ ↓−1(τ). The renamed states
at the leaves of τ′ contain nested subtrees of transitions. The operator ↓ flattens these
subtrees. All differently nested versions are mapped to one flattened transition. The
transition τ is fixed. Thus, the amount of all possible subtrees of τ is bounded. Finally,
all possibilities to nest them are bounded.

It is possible that the state at the root of τ′ is renamed. Then τ′ is the resulting lower
transition of the combination τ1 ⊕u τ2 for some transitions τ1 and τ2 and some position
u 6= ε. The state at the root of τ′ is (q, τ1[u]) with q = τ2(ε). From the definition of χ2 of
the construction in Subsection 3.2.1, it follows that the resulting transition τ′ contains
the subtree τ1[u] possibly with more nodes from τ2 added to it. It follows that the
flattened transition τ contains a flattened version of τ1[u]. The same argument as above
holds: τ is fixed. The number of possible parts of τ is bounded. All nested versions of
these possible parts are bounded and thus the number of possibilities of subtrees in the
renamed state of the root is bounded.
This proves the claim.

Now,
∆⊕∗ =

⋃
{↓−1(τ) | τ ∈ TQ×Σ with depth(τ) ≤ d}.

As the righthand side is finite, so is the lefthand side. It follows that there is an n ∈N

such that ∆⊕n = ∆⊕∗.

The following theorem states that we can remove overlappings. Given a general finite
tree automaton A, we use the previous construction to define a new general finite tree
automaton A′ that NO-recognizes the language L(A).

Theorem 3.2 (Overlappings). If a tree language L is t-recognizable, then L is also NO-t-
recognizable.

Proof. Let L be a t-recognizable tree language. Let A = (Q, Σ, ∆, A) be a finite tree
automaton recognizing L.

We construct A′ for which there exists a NO-successful run on every t ∈ L (Part 1)
and for which no successful run on any t /∈ L exists (Part 2). LetA′ = (Q′, Σ, ∆′, A) with
∆′ = ∆⊕∗ be constructed as shown above. Define

Q′ = Q ∪Q× {τ[u] | τ ∈ ∆′, u ∈ dom(τ)}.
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Part 1: For the following induction, we need a new notion. Let π = {t1, ..., tn} be a
successful tiling of automaton A on a tree t with respect to the run r. Let v ∈ dom(t) be
a node of the tree t. Let α be the amount of partial subtrees ti ∈ π that contain v as a
core node. Then, the overlapping degree of a node v of t is OD(v) = α− 1.

For a successful run, every node is the core node of at least one partial subtree. The
overlapping degree denotes the amount of additional partial subtrees covering the node.
A degree other than zero signifies overlapping transitions.

The overlapping degree OD(π) of the tiling π for tree t is the amount of nodes v ∈ dom(t)
with OD(v) > 0. A successful tiling with overlapping degree of zero is NO-successful.

We need to show that all trees t that have been accepted by A are NO-accepted by A′.
Let t ∈ L(A). Let π be a successful tiling for t. We use induction on the overlapping
degree of π to show that there is a successful tiling π′ of A′ that is non-overlapping.

The tiling π ofA is also a successful tiling ofA′ because ∆′ and Q′ ofA′ are supersets
of ∆ and Q of A, respectively. The induction starts with the tiling π of A′ whose
overlapping degree is positive and reduces this degree in every induction step. The
tilings with reduced degrees will make use of the new transitions τ ∈ ∆⊕∗.

Induction Hypothesis: A successful tiling π of A′ with overlapping degree n can be
transformed into a successful non-overlapping tiling for the automaton A′.

Induction Start: For the overlapping degree n = 0, the tiling π is already non-overlap-
ping.

Induction Step: Assume the induction hypothesis is true for all overlapping degrees
smaller than n. Let π = {t1, ..., tk} be successful tiling with overlapping degree n. We
construct a successful tiling π′ with OD(π′) < n.

As n ≥ 1, there exists at least one node u ∈ dom(t) such that OD(u) ≥ 1. Pick one of
them which is closest to the root, i.e., such that there exists no other node v ∈ dom(t)
with OD(v) ≥ 1 and |v| < |u|. Let δ = OD(u).

As the overlapping degree of u is positive, it must be a core node in several partial
subtrees in π, all of them overlapping at u. Call these partial subtrees t′0, t′1, ..., t′δ and
the matching transitions τ0, τ1, ..., τδ. At most one of these transitions can have a root
higher than the node u because if two transitions contained the parent of node u, this
parent would have a positive overlapping degree and would be closer to the root than u.
All other transitions have node u as their root.

Distinguish two cases on how to remove the overlapping:

1. If there is no transition starting above u, all transitions τ0, τ1, ..., τδ have the same
root. Combining two of these transitions results in one new transition with the
same root. This new transition can be further combined with the remaining
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transitions resulting in one new transition τ′′′ = τ0 ⊕u τ1 ⊕u · · · ⊕u τδ.
Let t′′′ be the partial subtree corresponding to τ′′′. Define π′ = π \ {t′0, t′1, ..., t′δ} ∪
{t′′′}.

2. If there is a transition starting above u, call this transition τ0. First combine all
other transitions with the same root as in the first case. Then combine τ0 with the
resulting transition to obtain two new transitions τ′ and τ′′.
Let t′ and t′′ be the partial subtree corresponding to τ′ and τ′′, respectively. Define
π′ = π \ {t′0, t′1, ..., t′δ} ∪ {t′, t′′}.

The resulting tiling π′ corresponds to a run that is, depending on the case above, equal
to the old run or equal to the old run except for the renamed state at the node u in case
2.

As the overlapping at node u has been removed, there is no other transition containing
u as a core node. Any other overlappings take place at nodes further away from the
root than u. If these overlappings involved any of the transitions τ0, ..., τδ, then they
now involve τ′′′ or τ′′, because τ′ does only contain core nodes strictly between the root
and node u. Other transitions whose root node fit border nodes of τ0, ..., τδ now fit the
border nodes of τ′′′ or τ′′ because in case 1, no states have been renamed and in case 2,
the renamed state is not part of any other transition. The renamed state in case 2 is only
part of the overlapping transitions τ0, ..., τδ because every other transition containing
node u as a border node would have the parent of node u as a core node and would
therefore be overlapping with τ0 at a node closer to the root than u.

It follows that π′ is a valid tiling. As the state of the root is unchanged, the tiling is
still successful. The discussed combinations of transitions are also contained in ∆′ of A′.

Node u has overlapping degree zero in the new tiling π′. The transformation has not
produced more overlappings. Thus, π′ has an overlapping degree strictly smaller than
n. By induction hypothesis, the tiling π′ can be further transformed into a successful
non-overlapping tiling.

This completes the induction and it follows that there is a successful tiling π′ of A′

that is non-overlapping. For every successful run of the old automaton, there is now a
NO-successful run in the new automaton A′.

Part 2: It is left to show that no trees are accepted by A′ that have not been accepted by
A. As the set of accepting states A is the same for A and A′, we only need to show that
the construction of ∆′ for A′ does not allow tilings of trees that have not been accepted
by A.
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Let t be a tree accepted by A′. That means there is a successful run r of t and a
successful tiling π with respect to r of A′ for t. This tiling may contain partial subtrees
corresponding to new transitions in ∆′. We construct a new tiling π′ for t that only
contains original transitions, i.e., π′ ⊆ ∆.

The construction of ∆⊕∗ uses the operation ⊕u to create new transitions. Let τ1 and τ2

be transitions in ∆′. Then τ1⊕u τ2 results in new transitions χ1, χ2 or χ3. We distinguish
two cases.

1. u = ε and τ1 ⊕ε τ2 = {χ3}

2. u 6= ε and τ1 ⊕u τ2 = {χ1, χ2}

Let t1, t2 and x3 be the partial subtrees corresponding to the transitions τ1, τ2 and
χ3, respectively. In the first case, x3 contains the same core nodes as t1 and t2 together
because χ3 is τ1 and τ2 “joined”. This joining is done without any renamings (cf. con-
struction in Subsection 3.2.1). This means that x3 can be substituted by t1 and t2 in the
tiling without changing the run r. Then π′ = π \ {x3} ∪ {t1, t2} is a successful tiling for
t and all other partial subtrees in π can still be used because this substitution did not
change r.

In the second case, substituting the new partial subtrees by the old ones is not easily
possible because it reverts the renaming. There can be another transition µ overlapping
with χ1 or χ2 at the renamed node. When changing the run to the non-renamed state, µ

can no longer be used in the tiling.
To remove partial subtrees originating from case 2, we use a different approach by

iterating over the tree t. For every node v ∈ dom(t) whose state is renamed, restore
the name of the state in r and substitute all transitions in π by the transitions they
“originated” from. In the following we describe this approach in more detail.

Let π be a tiling for t. Let v ∈ dom(t) be a renamed node, i.e., r(v) = (q, τ). We
construct the new run

r′(p) =

q, if p = v

r(p), otherwise.

Let t1, ..., tk ∈ π be the partial subtrees including v as a node. Let τ1, ..., τk, respectively,
be the corresponding transitions. All transitions τi contain the renamed state (q, τ)

either at the root or at one of the leaves.
Claim: For every transition τi, there exists a pair τ′i , τ′′i ∈ ∆′ such that τi ∈ τ′i ⊕p τ′′i ,

where τ′i and τ′′i have been overlapping in the node v. τ′i and τ′′i contain one renamed
state less than τi. The other renamed states in τi are still contained in τ′i and τ′′i .
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This paragraph gives an intuition1 on how the claim can be proven. The transition τi

was constructed out of original transitions in ∆ by applying the operator ⊕ repeatedly.
If the last application of ⊕ combined two transitions τ′i and τ′′i overlapping at node
v, then the claim is easy to show. But it can happen that the operations ⊕ have been
applied in a different order. Let the operation that renamed the node v to (q, τ) be
the jth operation of ⊕ and there were other operations ⊕ applied afterwards. In this
case, “reverting” the changes made in the jth operation will not result in one of the
intermediate results. Instead, it will result in a transition τnew gained from applying
the operations ⊕ in another order. As all transitions in ∆′ have been combined by all
transitions in ∆′, τnew is also contained in ∆′ and this should prove the claim.

It follows that
π′ = π \ {τi}1≤i≤k ∪ {τ′i , τ′′i }1≤i≤k

is a successful tiling for t with respect to r′ which has one renamed state less than r.
Inductively, r′ can be changed stepwise until it consists only of original states such that
the tiling π′ with respect to r′ only contains original transitions.

This completes Part 2 and it follows that A′ NO-accepts t iff t ∈ L, i.e., L is NO-t-
recognizable.

3.3 From Non-Overlapping to Elementary Transitions

Assuming that transitions do not need to overlap to build successful runs, it is easily
possible to transform non-elementary transitions into elementary ones. Non-overlapping
transitions are connected to other transitions only by matching the state of the border
nodes to the state of the root node. Thus, all other states can be renamed. A simple
transformation uses this fact by renaming the states of all non-border nodes that are not
root nodes to make their states unique. After that, every transition can be split up into
elementary parts.

Example 3.7. Transition t1 in Figure 3.8(a) is not elementary. When transforming t1 into
elementary transitions, the states of all non-border and non-root nodes are renamed.
Then the transition can be split into smaller ones. The elementary transitions are shown
in Figure 3.8(b). For example, the right transition t′′′1 results from cutting the right
subtree of t1 at position 1. O

Theorem 3.3. If tree language L is NO-t-recognizable, then L is also e-recognizable.
1Shortly before handing in this work, the original proof for Part 2 was detected to be imprecise such that

this claim will not be exhaustively proven here for time reasons.
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3.3 From Non-Overlapping to Elementary Transitions

p 2

n 2

g 2 h 2

m 1

k 2

(a) t1

p 2

(n, t1, 0) 2 (m, t1, 1) 2

(n, t1, 0) 2

g 2 h 2

(m, t1, 1) 1

k 2

(b) t′1, t′′1 and t′′′1

Figure 3.8: Trees for Example 3.7

The transformation of non-elementary transitions to elementary ones is done by
the following construction. The first step is to rename the states of the non-root and
non-border nodes. The second step is to separate large transitions into smaller ones.

Let τ = (r, t) ∈ ∆ be a transition. Let τ̂ be the transition τ renamed as follows:

τ̂(p) =

τ(p), if p = ε or t(p) = 2

((r(p), τ, p), t(p)), otherwise

The second step of the transformation is done by an unary operator tu that isolates
the elementary part of a transition at position u. Let τ = (r, t) ∈ ∆ be a transition. The
new transition tu τ has the domain

dom(tu τ) = dom(τ[u]) ∩ ({ε} ∪N)

and is defined as follows:

tu τ(p) =

τ[u](p), if p = ε

(t[u](p),2), if p ∈N

The two operators can be applied to the entire set of transitions:

∆̂ = {τ̂ | τ ∈ ∆} and t∆ =
⋃

τ∈∆

{tu τ | u ∈ dom(τ)}

Finally, the set of elementary transitions is t ∆̂.
The following proof used the construction to prove the Theorem. It does not provide

any extra arguments but is presented here for completeness.

Proof for Theorem 3.3. Let L be a NO-t-recognizable tree language. Then there exists an
automaton A = (Q, Σ, ∆, A) NO-recognizing L.
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3 Increasing the Size of Transitions

We construct an elementary automaton A′ = (Q′, Σ, ∆′, A) recognizing L. The set
of new transitions is constructed as shown above, i.e., ∆′ = t ∆̂. Let the combined
domain of original transitions be D =

⋃
τ∈∆ dom(τ). The new set of states is then

Q′ = Q ∪ (Q× ∆× D).
We shall show that L(A) = L(A′). As A NO-recognizes L, no overlappings are

necessary. That means, in the tiling, the transitions are used such that the border node
of one transition matches the root node of another transition. It follows that the states
of nodes except the root and the border nodes can be renamed. As a consequence, an
automaton using ∆̂ as set of transitions would NO-recognize the same language as A
does.

The second step of the transformation, fulfilled by operator t, extracts elementary
transitions from the renamed transitions in ∆̂. This operation is applied to every node
of every transition. These nodes together with their children as border nodes form the
new elementary transitions. In this way, it is ensured that every core node in the old
transitions is still a core node in the new transitions. Some of the resulting transitions
contain only one border node that is also the root node. These transitions cannot be
used in the final automaton and can be ignored.

The resulting automaton A′ accepts only trees with the same root as A because roots
have not been renamed and the acceptance condition has not been altered. All transitions
in ∆ can still be applied because the separated, elementary transitions can be combined
to one original, big transition. Also, no separated transition can be used solely because
the renamed states are unique and only fit the next elementary transition created in the
separation.

It follows that A′ recognizes the same language L as A. As A′ is elementary, L is
e-recognizable.

Corollary 3.4. For a tree language L ⊆ TΣ the following statements are equivalent:

1. L is t-recognizable

2. L is e-recognizable

Proof. The equivalence is shown by two directions. Let L be e-recognizable. From
definition, L is also t-recognizable. Now let L be t-recognizable. From Theorem 3.2
follows that L is also NO-t-recognizable. Then from Theorem 3.3, it follows that L is
e-recognizable.
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4
Regular Transitions

The tree automata of the previous chapter contained their transitions explicitly in a
set ∆. In this chapter, we want to investigate another approach to generalize transitions
in tree automata. Its idea is to use an extra automaton to accept transitions, namely to
use a root-to-leaf automaton. This automaton model has interesting properties. And it
turns out that it does not have more expressive power than root-to-leaf automata.

The first section introduces and defines the mentioned tree automaton model. In
the second section, its expressive power is investigated. To prove that the defined
regular tree automaton has not more expressive power than finite root-to-leaf automata,
a simulation is described and a way to reconstruct the run out of the simulation.

4.1 Regular Tree Automata

The regular tree automaton is in fact similar to the general finite tree automaton. It uses
transitions of arbitrary size that are in the shape of partial trees and that are “glued
together” by the special symbol 2. But instead of an explicit set of transitions ∆, regular
tree automata use an inner transition automaton A∆. All trees accepted by A∆ are
interpreted as transitions of A.

Most of the necessary definitions of general tree automata essentially stay valid but
are recalled here to adapt them to the new automaton model.

Definition 4.1. A Regular Tree Automaton A = (Q, Σ,A∆, A) consists of

• a finite set Q of states

• a ranked alphabet Σ with arity function

• a finite set A of accepting states
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4 Regular Transitions

• a root-to-leaf automaton A∆ = (Q′, Q× (Σ ∪ {2}), I, ∆′, F), called the transition
automaton over Q-labeled (Σ ∪ {2})-trees H

2 is a new symbol with arity(q,2) = 0 and arity(q, σ) = arity(σ).
To distinguish transitions in A and A∆, we call transitions for A patterns. These

patterns are trees accepted by A∆ and composed of (elementary) transitions of A∆.
Furthermore, we distinguish states of A and A∆ by calling them A-states and A∆-states
respectively. We use the names q, q′, qi ∈ Q for A-states and s, s′, si ∈ Q′ for A∆-states.

The definition of partial subtrees are independent of the automaton model and remain
valid. This definition also distinguishes border and core nodes that are also used for
patterns of regular tree automata.

Definition 4.2. A run r of an automaton A = (Q, Σ,A∆, A) on t ∈ TΣ is a Q-tree with
dom(r) = dom(t). H

Definition 4.3. Let r be a run of an automaton A = (Q, Σ,A∆, A) on a tree t ∈ TΣ. A
tiling for t with respect to r is a set π = {t1, ..., tn} of partial subtrees of t such that every
partial subtree ti ∈ π matches some pattern accepted by A∆ and every node of t is the
core node of at least one partial subtree tj ∈ π. H

The definition of a tiling requires that the matching patterns are accepted byA∆. This
implicitly requires a successful run of A∆ for every used pattern. The definitions of a
successful run, acceptance and recognition stay valid:

Definition 4.4. A run r of A = (Q, Σ,A∆, A) on tree t ∈ TΣ is called successful if

1. r(ε) ∈ A

2. there exists a tiling for t with respect to r. H

Definition 4.5. A is said to accept t if there is a successful run of A on t. The automaton
A = (Q, Σ,A∆, A) recognizes the language L if for any tree t ∈ TΣ, t ∈ L iff A accepts t.
The language recognized by A = (Q, Σ,A∆, A) is L(A) = {t ∈ TΣ | A accepts t}. H

Note that patterns are no longer limited in size or amount. Instead, the transition
automaton can accept infinitely many patterns and these patterns can be arbitrary large.
The only requirement is that the set of transitions forms a regular tree language.

As for general finite tree automata, the definition of partial subtrees divides patterns
into core and border nodes. The symbol 2 is used for border nodes. As patterns are
trees accepted by A∆, the transition automaton has to use a different alphabet. More
precisely, the alphabet of A∆ consists of pairs of A-states and symbols in Σ ∪ {2}. For
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4.1 Regular Tree Automata

s1 (q1 1)

s2

τ11:

s2 (q2 1)

s3

τ12:

s3 (q3 1)

s4

τ13:

s4 (q4 2)τ14:

s5 (q3 1)

s6

τ21:

s6 (q4 1)

s7

τ22:

s7 (q5 1)

s8

τ23:

s8 (q6 2)τ24:

s9 (q6 0)τ31:

(a) Transitions of A∆

q1 1

q2 1

q3 1

q4 2

q3 1

q4 1

q5 1

q6 2 q6 0

(b) Patterns of A

Figure 4.1: Example trees for Example 4.1

A∆, symbols are pairs where the first element is an A-state and the second is a symbol
in Σ or the symbol 2.

To simplify our argumentation about the transition automaton, we shall introduce
some notation. The transition automaton A∆ is a root-to-leaf automaton. As such,
it contains an (inner) transition assignment ∆′. This assignment can be represented
as a function or as a relation. As a relation, the assignment is a set of transitions
τ = (q, σ, q0, ..., qn) ∈ Q× Σ× Qn. Every transition can be seen as a tree with a state
and a symbol at the root and the children having only states:

q σ

q0 ... qn

The root is at position τ(ε) = (q, σ) and the ith child is at position τ(i) = qi. This can be
generalized to the final assignment. We consider final states q ∈ F(σ) as assignments
(q, σ) ∈ F. As leaves do not have children, only position ε is valid and this position con-
tains the state and the symbol. In the following, we call elements of the final assignment
final transitions.

Example 4.1. We present a simple regular tree automaton. Let A = (Q, Σ,A∆, A) be a
regular tree automaton, with Q = {q1, q2, q3, q4, q5, q6}, Σ = {1, 0} and A = {q1}.

The transition automaton isA∆ = (Q′, Q× (Σ∪ {2}), I, ∆′, F), where Q′ = {si}1≤i≤9,
I = {s1, s5, s9} and F = {τ14 = (s4, (q4,2)), τ24 = (s8, (q6,2)), τ31 = (s9, (q6, 0))}. All
transitions ∆′ together with the final transitions are shown in Figure 4.1(a). The resulting
patterns of A are shown in Figure 4.1(b). Transitions related to the same pattern are
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4 Regular Transitions

colored in the same color. The only accepted tree is the linear tree with five ones and
one zero. O

4.2 Expressive Power of Regular Tree Automata

Even though the patterns of the regular tree automaton seem to be much more powerful,
the restriction to regular patterns does not gain more expressive power than usual tree
automata. This subsection proves that.

The overall structure of the proof is the following: Let A = (Q, Σ,A∆, A) be a regular
tree automaton with A∆ = (Q′, Q× (Σ ∪ {2}), I′, ∆′, F′). We construct a root-to-leaf
automaton B = (Q′′, Σ, I′′, ∆′′, F′′) that recognizes L(A). The automaton B is called a
simulating tree automaton. A run of B simulates the run of A together with all runs
of A∆ at once. Recall that there can be several runs of A∆ at the same time because
multiple patterns can overlap in the sense of the previous chapter.

Let D = {ε} ∪
{

0, ..., k− 1
}

with k = max{arity(σ) | σ ∈ Σ} be the set of all positions
in transitions τ ∈ ∆′. A configuration of A∆ is a triple (s, τ, p) ∈ Q′ × (∆′ ∪ F′) × D
consisting of an A∆-state s, a transition τ and a position p.

We call configurations (s, τ, ε) with s ∈ I′ initial configurations. Configurations (s, τ, ε)

with τ ∈ F′ are called final configurations. Furthermore, we call configurations (s, τ, ε)

epsilon configurations and configurations (s, τ, p) with p 6= ε are called non-epsilon con-
figurations.

Every final configuration is an epsilon configuration. Configurations do not include
a symbol or an A-state. Nevertheless, this information can be associated to epsilon
configurations. An epsilon configuration (s, τ, ε) is said to fit an A-state q or a symbol σ

iff τ(ε) = (s, (q, σ)).
We further need to be able to speak about how transitions are used in a tiling. A

transition τ ∈ ∆′ ∪ F′ is starting a pattern if it is used in the run of that pattern as transition
for position ε. A transition τ ∈ F′ is completing a pattern if it is used in the run of that
pattern for a leaf. If transition τ1 ∈ ∆′ is used in a run at position u and τ2 ∈ ∆′ ∪ F′ is
used in this run at position un for some n ∈N, then τ2 is succeeding τ1 and τ1 is preceding
τ2.

We give an example for the above defined notions: The Example 4.1 introduced a
set of transitions and a corresponding set of patterns. Both are shown in Figure 4.1
on page 31. τ11 is starting a pattern and τ14 is completing a pattern. Transition τ12 is
succeeding transition τ11 and τ11 is preceding τ12.

In the simulating tree automaton, transitions of the transition automaton are repre-
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4.2 Expressive Power of Regular Tree Automata

sented as configurations as follows. A non-final transition τ is a tree of depth one and
there exist one corresponding epsilon configuration and at least one corresponding
non-epsilon configuration. Here is an example for the arity two:

s1 (q 2)

s2 s3

τ:
(s1, τ, ε)

(s2, τ, 0) (s3, τ, 1)

If transition τ is used in a tiling of a pattern, then the simulation will use the above
shown configurations at the corresponding nodes. In a tiling, transition τ will be
succeeded by two other transitions with state s2 or s3, respectively, at the root. The
B-states will therefore always contain at least two configurations for every node v except
the root: one epsilon configuration for the transition having v as root and one non-
epsilon configuration for the transition having v as child. Additionally, when pattern
overlap, there can be more than two configurations in the set of the B-state.

After the introduction of notions, we can now continue the description of the simulat-
ing root-to-leaf automaton B = (Q′′, Σ, I′′, ∆′′, F′′). Let t be a tree and let r be a run of B
on t. Let q ∈ Q′′ be the state of r at node v of t. q is a pair with the first element being
theA-state at this node and the second element being a set of all possible configurations
of A∆ at this node. As patterns can overlap, there can be multiple configurations of A∆

for the same node of the input tree. The configurations are therefore arranged in a set.
Formally,

Q′′ = Q× 2Q′×(∆′∪F′)×D.

The sets I′′, ∆′′ and the mapping F′′ are rather complicated to define and therefore a
formal definition will only be given later. We present here only an intuitive description
of the sets:

I′′ consists of all possibilities of states (q, ϕ) where q ∈ A are accepting A-states and
ϕ consists of initial configurations (s, τ, ε). All these initial configurations correspond
to transitions starting a new pattern. I′′ contains multiple states combining multiple
possibilities of configurations in every ϕ. The choice on how many and which ini-
tial configurations will be used for the labeling of the root of the input tree is done
nondeterministically.

Transitions in ∆′′ make sure that non-final epsilon configurations are followed by
their corresponding non-epsilon configurations at the child node. They also ensure
that every A∆-transition is succeeded by another A∆-transition if the former is not final.
Furthermore, they allow new patterns to be started by including initial configurations
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4 Regular Transitions

q1 1

q2 1

q3 1

q4 2

q3 1

q4 1

q5 1

q6 2 q6 0

1

1

1

1

1

0

(
q1, {(s1, τ11, ε)}

)
(
q2, {(s2, τ11, 0), (s2, τ12, ε)}

)
(
q3, {(s3, τ13, ε), (s3, τ12, 0), (s5, τ21, ε)}

)
(
q4, {(s4, τ13, 0), (s4, τ14, ε), (s6, τ22, ε), (s6, τ21, 0)}

)
(
q5, {(s7, τ23, ε), (s7, τ22, 0)}

)
(
q6, {(s8, τ23, 0), (s8, τ24, ε), (s9, τ31, ε)}

)
Figure 4.2: Simulation in Example 4.2

in the set of configurations at the B-states of the children. Finally, transitions ensure
that all configurations agree on one A-state and on one symbol.

The set F′′(σ) contains three kinds of configurations: At least one configuration, say
(s, τ, ε), must be final and the symbol of the contained transition must be σ: τ(ε) =

(s, (q, σ)). These configuration correspond to the core node at a leaf of a pattern. Addi-
tionally, final configurations (s, τ, ε) with 2 being the symbol of the contained transition
τ(ε) = (s, (q,2)) can be included in every F′′(σ). They correspond to transitions com-
pleting a pattern. Finally, all above mentioned epsilon configurations that are not final
must be preceded by other transitions. The non-epsilon configurations of the preceding
transitions can also be contained in F′′(σ).

The following example illustrates the idea used in the main proof. It shows how the
configurations correspond to patterns and how the runs of A∆ connects the configura-
tions.

Example 4.2. We construct a new finite root-to-leaf automaton B = (Q′′, Σ, I′′, ∆′′, F′′)
simulating A from Example 4.1. Q is defined as discussed and I′′, ∆′′ and F′′ are de-
scribed above.

Figure 4.2 shows the accepting run for the only accepted tree of automata A and B.
The lefthand side shows the three patterns used in the tiling and in the middle is the
accepted linear tree with six zeros. The righthand side shows a successful run of B. The
first values in the tuple of the B-states correspond to the state of A, the set behind it
collects some configurations of A∆.

The patterns and the corresponding configurations are displayed in the same color.
Additionally, initial configurations are overlined and final configurations are under-
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4.2 Expressive Power of Regular Tree Automata

lined. There is also an example of an initial and a final B-state: (q1, {(s1, τ11, ε)}) ∈ I′′

and
(
q6, {(s8, τ23, 0), (s8, τ24, ε), (s9, τ31, ε)}

)
∈ F′′(0). The final state contains three con-

figurations, one configuration of every kind in the description of F′′(σ) above. The
last configuration (s9, τ31, ε) is needed to make the state a final state. The configura-
tion (s8, τ24, ε) completes a pattern and the third configuration is from the transition
preceding τ24.

The example also contains five transitions connecting the six B-states. Here are some
explanations: Every transition is split into epsilon and non-epsilon configurations. In the
figure, they are connected by vertical arrows. Every non-finalA∆-transition is succeeded
by another A∆-transition. The non-epsilon configuration of the former is together with
the epsilon configuration of the latter part of the same B-state. In the figure, they are
connected by bent horizontal arrows. As described above for the transition relation
∆′′, new patterns are allowed to start at every node. In the example, the red pattern is
started at the third node and the blue pattern is started at the last node. O

For the simulation, there is one pitfall. The transition automaton A∆ can accept an
unbounded number of patterns and it is possible to include arbitrarily many of them in
a run. The simulating tree automaton B uses a finite set of states. This means that many
possible runs of the regular tree automaton correspond to one run of B only.

For a regular tree automaton with unboundedly many patterns, it is not possible to
store all overlappings in the simulating root-to-leaf automaton B. But instead of storing
patterns, B-states contain a set of configurations corresponding to transitions. As the
transition automaton is a finite tree automaton, the set of possible configurations is finite
and the resulting set of states Q′′ is finite.

If two patterns are overlapping, both can be in the same configuration, i.e., both
patterns contain the same transition at the same position. Then it is enough to store
only one of these configurations. The intuitive meaning of a configuration in a B-state
is that at least one run of A∆ is in this configuration at that node. Because of storing only
one configuration instead of two, we have to ensure that once more than one successor
configuration exists for a given configuration, all these successor configurations can
be considered in a run of B at once. This is to ensure that all possible patterns of A
represented by a single configuration in a B-state are included in a successful run of
B. This means that transitions in ∆′′ allow for a given non-epsilon configuration to be
followed by several epsilon configurations of succeeding transitions.

The next example shows how unbounded overlapping in A is handled in B.

Example 4.3. Let A = (Q, Σ,A∆, A) be a regular tree automaton with Q = {q}, Σ =

{1, 0} and A = {q}. Let A∆ = (Q′, Q× (Σ ∪ {2}), I′, ∆′, F′), with Q′ = {s}, I′ = {s}
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Figure 4.3: Example trees for Example 4.3
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q, {(s, τ1, 0), (s, τ3, ε)}

)
Figure 4.4: Simulation in Example 4.3

and F′ = {τ2 = (s, (q,2)), τ3 = (s, (q, 0))}. The only other transition τ1 ∈ ∆′ together
with the final transitions are illustrated in Figure 4.3(a).

The transition τ1 can be succeeded by the two final transitions and by itself. The
resulting patterns of A are shown in Figure 4.3(b). As discussed, the given definition
of A and A∆ allows infinitely many patterns. Except for the final configurations, all
configurations for these patterns contain transition τ1.

Figure 4.4 shows an example of a successful run of A on the linear tree with two ones
and one zero. The accepted tree is shown in the middle. Left of it, there are two patterns
of A used to tile that tree. The right pattern is redundant but is accepted by A∆ and can
therefore be included in the tiling. The patterns and their corresponding configurations
are colored in the same color. If we consider a successful run for the automaton B, two
configurations of A∆ are used by both patterns. These configurations are colored in
both colors. As the triples are stored in a set, every triple will be contained at most once.

The configuration (s, τ1, 0)(s, τ1, 0) of the second node is succeeded by two configurations:
(s, τ1, ε) and (s, τ2, ε) (both at the second node). This is the point where the two patterns
“diverge” and where both paths are followed at the same time.

The simulation does not distinguish between this tiling and another tiling, both
visualized in Figure 4.5. For the simulation, there is no difference, if the second pattern
starts at the first or the second node. The corresponding run for both cases is successful
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4.2 Expressive Power of Regular Tree Automata
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Figure 4.5: Equality of two tilings in Example 4.3
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Figure 4.6: Example trees for Example 4.4

for the same input tree. O

Whenever there are unboundedly many patterns, most of these patterns are redundant.
They can be left out and can be ignored in the set of configurations in the simulation.
For the run of B to be successful, it is necessary that at least one pattern provides core
nodes for the nodes of the input tree. Multiple patterns are not necessary.

Overlapping patterns can have another consequence: it is possible that two patterns
overlap in such a way that it is not possible to unambiguously match patterns to config-
urations. Instead, when reconstructing a run of A, including the patterns accepted by
A∆, out of a run of B, there might exist multiple possibilities. The following example
illustrates this.

Example 4.4. This example shows a run of B that can be translated to a run of A
in multiple ways. Let A = (Q, Σ,A∆, A) with A = {q1}, Q = {q1, q2, q3, q4} and
Σ = {0, 1, 2}. The transition automaton A∆ = (Q′, Q× (Σ ∪ {2}), I, ∆′, F) consists of
Q = {si}1≤i≤4, I = {s1, s4} and F = {τ13, τ23}. All transitions ∆′ together with the
final assignments are depicted in Figure 4.6(b). This results in the pattern shown in
Figure 4.6(a).

A simulation of A by a new automaton B is shown in Figure 4.7. As in the examples
before, it shows the used patterns of A on the left, the accepted tree in the middle and it
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Figure 4.7: Simulation in Example 4.4
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Figure 4.8: Tilings and many-to-many connection for Example 4.4

shows the states of the corresponding successful run of B on the right. There are two
leaf nodes but the figure shows only one B-state for both of them. Depending on which
node, the configuration (s4, τ22, p) contains position p = 0 or p = 1.

The simulation works as seen before. But in contrast to before, there are now two
blue arrows connecting configurations at the third level: (s3, τ12, 0) → (s3, τ22, ε) and
(s3, τ21, 0) → (s3, τ12, ε). As discussed, the bent vertical arrows connect succeeding
transitions. As both transitions τ12 and τ21 enforce theA∆-state s3 at the child, they both
can be succeeded by τ13 and τ22.

In the depicted simulation, the black and red arrows connect the configurations so
that they correspond to the patterns depicted on the left side. Instead, it is also possible
to “cross” the patterns: in this case, we either start with one pattern and end with the
other or vice versa. Figure 4.8(a) shows two possibilities to cluster the configurations to
patterns.

At the third state in the simulation, the arrows form a graph that is shown again
in Figure 4.8(b). It has two inputs and two outputs. As all configurations contain
the same state of A∆, all non-epsilon configurations can be succeeded by all epsilon
configurations. When reconstructing a run of A out of a run of B, is is not possible to
distinguish between both possibilities. Both possibilities accept the same tree because in
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s (q 1)

s

τ1:

s (q2)τ2:

s (q 0)τ3:

Figure 4.9: Transitions for Example 4.5

both possibilities the core nodes of the patterns together are the same. In the example,
the leaf nodes q4 0 and the root node q1 1 can be either covered by the left or the right
pattern. O

The previous example showed that ambiguous runs of B can be interpreted in mul-
tiple ways to reconstruct a run of A. This can be generalized to all such situations.
Definition 4.3 of a tiling requires that every node of the input tree is the core node
of a partial subtree in the tiling. But in fact, being a core node of a partial subtree
corresponds to being covered by a transition of A∆. The only requirement is that these
transitions are clustered to patterns such that there is a successful run for every pattern.
The example above shows that if there are multiple possibilities to cluster transitions, or
configurations, to patterns, either possibility is either possibility leads to valid patterns.

4.2.1 The Simulating Root-to-Leaf Automaton

This subsection defines the simulating tree automaton formally. To facilitate the under-
standing of the definitions, the following example introduces some names first that will
be used in the definition of the simulating automaton B. It illustrates the construction
of the automaton B for Example 4.3 formally.

Example 4.5. Recall that the regular tree automaton defined in Example 4.3 is: A =

(Q, Σ,A∆, A)with Q = {q}, Σ = {1, 0} and A = {q}. The transition automaton isA∆ =

(Q′, Q× (Σ ∪ {2}), I′, ∆′, F′) with Q′ = {s}, I′ = {s} and F′ = {τ2 = (s, (q,2)), τ3 =

(s, (q, 0))}. The only other transition τ1 ∈ ∆′ together with the final transitions are
illustrated in Figure 4.9. To differentiate better between the position 0 ∈ N and the
symbol 0 ∈ Σ, we typeset the latter in bold font.

The simulating root-to-leaf automaton is B = (Q′′, Σ, I′′, ∆′′, F′′). The set of positions
occurring in transitions is D = {ε, 0}. The set of B-states is

Q′′ = Q× 2{s}×{τ1,τ2,τ3}×{ε,0}.
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initial configs(q) is the set of all initial configurations that fit A-state q:

initial configs(q) = {(s, τ1, ε), (s, τ2, ε), (s, τ3, ε)}

Then the set I′′ of initial states is

I′′ = {(q, {φ | φ 6= ∅, φ ⊆ initial configs(q)})}.

Next we are going to define the final assignment F′′:

F′′(0) =
{
(q, $ ∪ ξ ∪ ψ) | $ 6= ∅

}
The subsets of configurations $, ξ and ψ are defined by the following abbreviations.

final configs(q, σ) consists of all final configurations fitting A-state q and σ. F′′(0)
must contain at least one final configuration fitting the symbol 0 (the condition $ 6= ∅
ensures this). As there is only one, this has to be contained:

$ ⊆ final configs(q, 0) = {(s, τ3, ε)}

Furthermore, other patterns are allowed to be completed, but it is not required:

ξ ⊆ final configs(q,2) = {(s, τ2, ε)}

All final configurations belong to transitions that may be preceded by non-final config-
urations. prec(τ) consists of all non-epsilon configurations of transitions preceding τ:

ψ ⊆ prec(τ3) = {(s, τ1, 0)}

We can now fully define the set F′′ of final transitions. F′′ is only defined for symbols
with arity zero, i.e., for symbol 0. As stated above, the subsets ξ and ψ may or may not
contain configurations.

F′′(0) =
{
(q, {(s, τ3, ε)}),
(q, {(s, τ3, ε), (s, τ2, ε)}),
(q, {(s, τ3, ε), (s, τ1, 0)}),
(q, {(s, τ3, ε), (s, τ2, ε), (s, τ1, 0)})

}
Finally, we are going to introduce the transition relation ∆′′. Its formal definition is
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4.2 Expressive Power of Regular Tree Automata

rather complicated. In this example, we omit some abbreviations that are only used to
verify certain conditions and state the conditions intuitively instead. Transitions are
only defined for symbols with non-zero arity, i.e., in this example only for the symbol 1.
Additionally, there is only one A-state q. The conditions with respect to the transition
are thus simplified to

(
(q, ϕ), 1, (q, ϕ0)

)
∈ ∆′′ iff

all configurations in ϕ fit A-state q, and symbol 1 or 2

nonfinal ε configs(ϕ) 6= ∅ (4.1)

ϕ0 ∈ configs(ϕ, q, 0).

The B-state (q, ϕ) denotes the state at the current node and (q, ϕ0) denotes the state at
the 0th child.

The set nonfinal ε configs(ϕ) consists of all non-final epsilon configurations in
ϕ. There is only one such configuration for A∆. It follows that this configuration is
contained in nonfinal ε configs(ϕ) if it is contained in ϕ.

nonfinal ε configs(ϕ) =

{(s, τ1, ε)}, if (s, τ1, ε) ∈ φ

∅, otherwise

For the above stated Condition (4.1) on transitions in ∆′′, this means that (s, τ1, ε) must
be contained in ϕ because otherwise the state at the current node would be final.

It is left to define configs. This set contains all possible sets of configurations that can
be contained in the B-state at the child. configs depends on the set of configurations ϕ

at the current node. For this example, configs can be simplified to

configs(ϕ, q, 0) =
{

$ ∪ ξ ∪ ψ | $ 6= ∅, ξ 6= ∅ (4.2)

$ = {follow(τ1, 0)},
ξ contains epsilon configurations of succeeding transitions,

ψ ⊆ initial configs(q)
}

.

The subset ξ will be discussed in depth later. First, we discuss $ and ψ: follow(τ, p) is
the non-epsilon configuration of transition τ at position p.

follow(τ1, 0) = (s, τ1, 0)
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4 Regular Transitions

Thus, $ ensures that the epsilon configuration at the current node is followed by the
non-epsilon configuration of the same transition at the child’s node.
initial configs has been explained before. ψ allows new patterns to be started at

the child’s node.
Additionally, transitions in ∆′′must ensure that every non-final transition is succeeded

by another transition. ξ handles this. Its formal definition is

ξ ∈
{

P ⊆
⋃

all succ(ϕ)
∣∣ ∀S ∈ all succ(ϕ). P ∩ S 6= ∅

}
. (4.3)

First, we introduce the set succ(τ, p, q) which consists of all epsilon configurations of
transition that can succeed τ at position p and that fit A-state q. Only one transition has
succeeding transitions for A∆ because the other transitions are final:

succ(τ1, 0, q) = {(s, τ1, ε), (s, τ2, ε), (s, τ2, ε)}

For every non-final epsilon configuration, the set all succ(ϕ) contains one set con-
sisting of all succeeding transitions . As there is only one such configuration, all succ

only contains exactly one set:

all succ(ϕ) = {succ(τ1, 0, p)}

ξ ensures that every non-final transition must be succeeded by at least one successor
but multiple successors are allowed. Thus, all succ contains sets and of each of this
sets, P must contain at least one element. Now, we can define the set of transitions.

∆′′ =
{(

(q, {
(4.1)︷ ︸︸ ︷

(s, τ1, ε), (s, τ2, ε)︸ ︷︷ ︸
optional

, (s, τ1, 0)︸ ︷︷ ︸
optional

}
)
, 1, (q, {

$︷ ︸︸ ︷
(s, τ1, 0),

also part of ψ︷ ︸︸ ︷
(s, τi, ε)i=1,2,3︸ ︷︷ ︸
at least one, (4.3)

})
)}

The two configurations annotated optional are allowed to be in the transition but are
not necessary. So in fact, there are four possible choices for the state of the current
node. Additionally, the three configurations annotated at least one also denote seven
possibilities. Together, the set ∆′′ contains 4 · 7 = 28 transitions.

As discussed before, the first pair, in front of the 1, is the state of the current node,
the second pair is the state of the child node.

The current node must always contain the configuration (s, τ1, ε) as ensured by Condi-
tion 4.1. The child always contains (s, τ1, 0) which is included in $ of the Definition (4.2)
of configs. One of the three configurations (s, τi, ε)i=1,2,3 must be contained in the
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set of configurations at the child which is ensured by ξ of Equation (4.2) defined in
(4.3). Finally, the set ψ does not provide more configurations because all configurations
(s, τi, ε)i=1,2,3 are also contained in ψ of Equation (4.2). O

The remainder of this subsection defines the simulating tree automaton formally and
in general. Recall the setup: Let A = (Q, Σ,A∆, A) be a regular tree automaton with
transition automaton A∆ = (Q′, Q× (Σ ∪ {2}), I′, ∆′, F′). The set of all positions in the
internal transitions is D = {ε} ∪

{
0, ..., k − 1

}
with k = max{arity(σ) | σ ∈ Σ}. We

shall construct a root-to-leaf automaton B = (Q′′, Σ, I′′, ∆′′, F′′) such that L(A) = L(B).

The set of states has already been defined:

Q′′ = Q× 2Q′×(∆′∪F′)×D

Let Conf be the set of configurations of A∆:

Conf = Q′ × (∆′ ∪ F′)× D

The set initial configs(q) is the set of all initial configurations fitting A-state q:

initial configs(q) = {(s, τ, ε) ∈ Conf | s ∈ I′, τ(ε) = (s, (q, σ))}
for q ∈ Q

The initial states I′′ of B depend on the accepting states A of A and on the initial
states I′ of A∆. At least one pattern has to start at every initial state of B but multiple
patterns are possible.

I′′ =
{
(q, φ) | q ∈ A, φ 6= ∅, φ ⊆ initial configs(q)

}
(4.4)

The final assignment F′′ depends on F′ of A∆ because for a run of A on a tree t, every
pattern has to be completed. The definition uses two abbreviations final configs

and prec. final configs(q, σ) is the set of final configurations fitting A-state q and
symbol σ:

final configs(q, σ) = {(s, τ, ε) ∈ Conf | τ ∈ F′, τ(ε) = (s, (q, σ))}
for q ∈ Q, σ ∈ Σ
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Secondly, prec(τ) is the set of all non-epsilon configurations of transitions preceding τ:

prec(τ′) = {(s, τ, p) ∈ Conf | τ ∈ ∆′, p 6= ε, τ′(ε) = (s, (q, σ)), τ(p) = s}
for τ′ ∈ ∆′ ∪ F′

F′′ is a mapping defined for all symbols σ of arity zero. $ contains final configurations
fitting σ. At least one such configuration must be contained in F′′(σ). ξ contains final
configurations with transitions completing other patterns. Finally, ψ contains non-final
and non-epsilon configurations of transitions preceding one of the former configurations.

F′′(σ) =
{
(q, $ ∪ ψ ∪ ξ) | q ∈ Q, $ 6= ∅,

$ ⊆ final configs(q, σ), (4.5a)

ξ ⊆ final configs(q,2), (4.5b)

ψ ⊆ {prec(τ) | ∃(s, τ, ε) ∈ ($ ∪ ξ)}
}

(4.5c)

Note that F′′(σ) contains invalid B-states. For example, prec(τ) consists of non-epsilon
configurations with all positions allowed by the arity. F′′(σ) is globally defined and not
restricted to one position. The transition relation ∆′′ ensures that the positions are valid
in a run of B.

The set of transitions ∆′′ of B is built from transitions in ∆′ of A∆. The following
formula defines conditions that every transition in ∆′′ must satisfy:

(
(q, ϕ), σ, (q0, ϕ0), ..., (qk−1, ϕk−1)

)
∈ ∆′′ iff

∀(s, τ, ε) ∈ ϕ : τ(ε) = (s, (q, σ)) ∨ τ(ε) = (s, (q,2)) and (4.6a)

nonfinal ε configs(ϕ) 6= ∅ and (4.6b)

∀i : (qi, ϕi) ∈ {(qi, P) | qi ∈ Q, P ∈ configs(ϕ, qi, i), succ possible(ϕ, qi, i)} (4.6c)

for symbol σ ∈ Σ with arity(σ) = k > 0

(q, ϕ) is the B-state of the current node and (qi, ϕi) are the states at the children’s nodes.

Condition (4.6a) ensures that the configurations at the current node fit the A-state
q. Additionally, the condition ensures that the configurations fit the symbol σ or the
symbol 2. The set nonfinal ε configs(ϕ) returns all non-final epsilon configurations
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included in ϕ:

nonfinal ε configs(ϕ) = {(s, τ, ε) ∈ ϕ | τ ∈ ∆′}
for ϕ ⊆ Conf

Condition (4.6b) ensures that the set of configurations at the current node contains
at least one epsilon configuration of a non-final transition. This is necessary, because
otherwise the B-state at the current node is final.

The last condition (4.6c) defines the A-state and the configurations for the children of
the current node. It uses the mappings configs and succ possible that will be defined
in the following. Intuitively, if succ possible is false, any run of the automaton ends
in a “dead end” at this node. configs(ϕ, qi, i) ⊆ 2Conf consists of all possibilities to
distribute configurations to the states of the children. One such possibility P is selected.
succ possible uses the mappings follow and succ. Non-final epsilon configura-

tions at the current node have to be followed at the children’s nodes by a non-epsilon
configuration with the same transition. The mapping follow defines this configuration:

follow(τ, i) = (τ(i), τ, i) (4.7)

for τ ∈ ∆′, i ∈ D

The set succ(τ, p, q) consists of all epsilon configurations of succeeding transitions of τ

at position p that fit A-state q. It is dual to prec.

succ(τ, p, q) = {(s, τ′, ε) ∈ Conf | τ(p) = s, τ′(ε) = (s, (q, σ))} (4.8)

for τ ∈ ∆′, p ∈ D \ {ε}, q ∈ Q

succ possible tests that there exist succeeding transitions. If there are no succeeding
transitions available, then any run of B is in a “dead end” at the current node.

succ possible(ϕ, qi, i) = (∀(s, τ, ε) ∈ nonfinal ε configs(ϕ) : succ(τ, i, qi) 6= ∅)

for ϕ ⊆ Conf, qi ∈ Q, i ∈ D \ {ε}

The following set all succ ⊆ 2Conf defines all successors per non-final epsilon con-
figuration:

all succ(ϕ) = {succ(τ, i, qi) | (s, τ, ε) ∈ nonfinal ε configs(ϕ)}
for ϕ ⊆ Conf
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Now, we shall define configs(ϕ, qi, i) ⊆ 2Conf which is the set of all possibilities to
distribute configurations to the children’s states:

configs(ϕ, qi, i) ={
$ ∪ ξ ∪ ψ |

$ = {follow(τ, i) | (s, τ, ε) ∈ nonfinal ε configs(ϕ)}, (4.9a)

ξ ∈
{

P ⊆
⋃

all succ(ϕ)
∣∣ ∀S ∈ all succ(ϕ). P ∩ S 6= ∅

}
, (4.9b)

ψ ⊆ initial configs(qi)

}
(4.9c)

for ϕ ⊆ Conf, qi ∈ Q, i ∈ D \ {ε}

configs defines a set of possible sets of configurations. Every subset θ = $ ∪ ξ ∪ ψ of
configurations is possible at the children’s state if it follows three rules:

1. For every non-final epsilon configuration at the current node, exactly one epsilon
configuration of the same transition must be contained in θ. This is handled by $

in (4.9a).

2. Every transition has to be succeeded by at least one transition.
⋃
all succ defines

all successors possible. ξ defines a subset of all successors that contains at least
one successor per non-final epsilon configuration at the current node (cf. (4.9b)).

3. Finally, ψ (cf. (4.9c)) can contain initial configurations to allow the start of new
patterns.

This completes the construction.

4.2.2 Algorithm to Create Run of A Out of Run of B

For the proof below, it is necessary to construct a run of a regular tree automatonA from
a run of a simulating root-to-leaf automaton B. This paragraph describes an algorithm
for this. The idea is to annotate and color the run of B in the same way as shown in the
Figures 4.2, 4.4 and 4.7. Before describing the algorithm in general, we shall illustrate by
means of an example the general idea.

Example 4.6. Let A = (Q, Σ,A∆, A) be a regular tree automaton with transition au-
tomaton A∆ = (Q′, Q × (Σ ∪ {2}), I′, ∆′, F′) and let B = (Q′′, Σ, I′′, ∆′′, F′′) be the
corresponding simulating root-to-leaf automaton.
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s1 (q 1)

s2

τ1:

s2 (q 2)

s3 s4

τ2:
s2 (q 2)

s5 s6

τ3:

s3 (q 0)τ4: s4 (q2)τ5: s5 (q2)τ6: s6 (q 0)τ7:

Figure 4.10: A∆’s transitions for Example 4.6

1

2

0 0

t:
(
q, {(s1, τ1, ε)}

)
(
q, {(s2, τ2, ε), (s2, τ1, 0), (s2, τ3, ε)}

)
(
q, {(s3, τ4, ε), (s3, τ2, 0),

(s5, τ6, ε), (s5, τ3, 0)}
) (

q, {(s6, τ3, 1), (s6, τ7, ε)

(s4, τ2, 1), (s4, τ5, ε)}
)

r:

Figure 4.11: Run of B in Example 4.6 - Original run r

Let Q = {q}, Σ = {0, 1, 2} and A = {q}. Furthermore, let Q′ = {si}1≤i≤6, I′ = s1

and F′ = {τi}4≤i≤7. The set of transitions ∆′ is shown in Figure 4.10.
Figure 4.11 shows a run r of B on a simple tree t. The accepted tree is shown on the

left side and the run on the right. The states of B are shown in the same arrangement as
the nodes of the accepted tree.

The goal is to reconstruct a run of A out of run r. For this, it is necessary to “cluster”
the configurations of A∆ appearing in run r into patterns of A. We do this by coloring
the configurations that belong together in one pattern with the same color.

Let us first describe the general idea of the algorithm. The first three steps of the algo-
rithm are only to visualize what we know already about the run. These visualizations
are applied to Figure 4.12.

First, over- and underline initial and final configurations, respectively. Second, connect
the epsilon configurations and the non-epsilon configurations of the same transitions
by vertical arrows. Third, connect configurations part of the same B-state that belong
together because they are connected by the subformula succ by horizontal arrows. That
means, if configuration γ′ can possibly succeed configuration γ then connect γ with γ′.

The fourth step is to color the configurations. This may require backtracking. We
start at the root of the tree with one color. Then we follow the arrows applied in step
two and three to color the tree.

Figure 4.13 shows the first two configurations colored red. But now, the configuration
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(
q, {(s1, τ1, ε)}

)
(
q, {(s2, τ2, ε), (s2, τ1, 0), (s2, τ3, ε)}

)
(
q, {(s3, τ4, ε), (s3, τ2, 0),

(s5, τ6, ε), (s5, τ3, 0)}
) (

q, {(s6, τ3, 1), (s6, τ7, ε)

(s4, τ2, 1), (s4, τ5, ε)}
)

Figure 4.12: Run of B in Example 4.6 - First step(
q, {(s1, τ1, ε)}

)
(
q, {(s2, τ2, ε), (s2, τ1, 0), (s2, τ3, ε)}

)
(
q, {(s3, τ4, ε), (s3, τ2, 0),

(s5, τ6, ε), (s5, τ3, 0)}
) (

q, {(s6, τ3, 1), (s6, τ7, ε)

(s4, τ2, 1), (s4, τ5, ε)}
)

Figure 4.13: Run of B in Example 4.6 - Intermediate step

(s2, τ1, 0) has two successors. That means that from here on, intuitively two patterns are
used in parallel in the run ofA. Both patterns need to have an initial configuration where
the pattern begins. The beginning of the pattern that we colored red is the beginning of
two patterns. It is therefore necessary to backtrack and recolor all red configurations in
two colors at the same time. We choose the color blue in addition to red.

After that, the coloring continues without further issues as shown in Figure 4.14.
The first elements in the B-states of the run express the values of A’s run on t. Ad-

ditionally, from the coloring of the run, it is possible to recreate the patterns used in
the run of A as follows. The epsilon configurations in run r fit symbols and A-states.
Therefore, e.g., the configuration (s1, τ1, ε) for τ1(ε) = (s1 (q 1)) translates to q 1 for the
pattern. Translating all configurations this way and clustering them related to the colors
returns the patterns shown in Figure 4.15. O

We need to describe the algorithm sketched above in more detail. Let A be a regular
tree automaton, B a simulating root-to-leaf automaton, t a tree and r a run of B on t. We
want to recreate a successful run rA of A on t. As the A-states are already contained in
the B-states of run r, only the patterns have to be reconstructed.

The algorithm works on a certain graph structure imposed on the configurations in
the B-states of r. In the following, this graph structures is defined. Every B-state r(p)
for a position p ∈ dom(t) is of the form (q, {γ1, ..., γk}). We denote by r(p)2 the set of
configurations at position p of run r. Let G = (V, E) be a graph where V is the set of all
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(
q, {(s1, τ1, ε)(s1, τ1, ε) }

)
(
q, {(s2, τ2, ε), (s2, τ1, 0)(s2, τ1, 0), (s2, τ3, ε)}

)
(
q, {(s3, τ4, ε), (s3, τ2, 0),

(s5, τ6, ε), (s5, τ3, 0)}
) (

q, {(s6, τ3, 1), (s6, τ7, ε),

(s4, τ2, 1), (s4, τ5, ε)}
)

Figure 4.14: Run of B in Example 4.6 - Last step

q 1

q 2

q 0 q 2

q 1

q 2

q 2 q 0

Figure 4.15: A’s patterns for Example 4.6

configurations in r:
V =

⋃
p∈dom(t)

⋃
γ∈r(p)2

γ

The set E of edges consists of two subsets: E = E1 ∪ E2. The set of horizontal edges is
defined as follows:

E1 =
{(

(s, τ, n), (s, τ′, ε)
)
∈ V2

∣∣∣ p ∈ dom(t), n ∈N,

(s, τ, n) ∈ r(p)2, (s, τ′, ε) ∈ r(p)2

}
(4.10a)

The set of vertical edges is defined as follows:

E2 =
{(

(s, τ, ε), (s′, τ, n)
)
∈ V2

∣∣∣ p ∈ dom(t), n ∈N,

(s, τ, ε) ∈ r(p)2, (s′, τ, n) ∈ r(pn)2

}
(4.10b)

Note that horizontal edges corresponds to the relation induced by succ defined in
Equation (4.8) and vertical edges correspond to follow defined in Equation (4.7) of the
construction of the simulating tree automaton.

Proposition 4.1. There exist Γ1, ..., Γk ⊆ V such that
⋃

1≤i≤k Γi = V and every Γi with respect
to E ∩ Γi × Γi is a tree of configurations where the configuration at the root is initial and the
configurations at the leaves are final.
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In the examples above, the sets Γi correspond to all configurations in the same color.
Every set Γi represents one pattern used in the run rA of A. Thus, the proposition

can be rephrased that out of a run r of B, the successful runs of A∆ for all patterns of A
in rA can be reconstructed.

Proof. We prove the proposition by describing an algorithm to find the sets Γi. The
algorithm is recursive. Every execution path handles one pattern or set Γi. Whenever
a configuration has multiple successors or a new pattern is started, another execution
path of the algorithm is started to handle the other pattern.

Every recursive step of the algorithm starts with an epsilon configuration and a set
Γi and follows the graph for one transition of B. It adds all configurations to the set Γi

that belong to the same pattern. If the pattern is completed in this step, this execution
path stops and outputs a set Γi, otherwise, the algorithm recurses with the succeeding
epsilon configuration at the next node of tree t and the same set Γi.

The overall structure of the algorithm is as follows: We start an execution path for
every configuration at the root of t together with empty sets Γi. Every recursion path
will eventually stop and return a set Γi.

Algorithm: The B-state at the root must be contained in I′′ defined by Equation (4.4).
The only configurations contained in states of I′′ are initial configurations (s, τ, ε).

Let k be the amount of initial configuration γ1, ..., γk ∈ r(ε)2 at the root. Let m := k be
a global counter indicating how many sets Γi are already in use. We start the procedure
Step(γi, Γi) for 1 ≤ i ≤ k and where Γi are empty sets.

Recursive procedure: Step(γ = (s, τ, ε), Γi)

Add γ to Γi.
Let p ∈ dom(t) be the position of this node in tree t. If τ ∈ F′ then the pattern

induced by Γi is completed at this node t(p). Γi satisfies the condition of Proposition 4.1
because γ is final, the first configuration added to Γi was initial and all configurations
are connected by the graph.

Otherwise, τ is a non-final transition. Depending on the arity, the node t(p) has
several children. As (4.6c) defines successors for every child, every child must contain
a subtree of configurations belonging to Γi. All those configurations are added to the
same set Γi, thus the next part of the procedure Step can be thought of as an iterative
loop over all children.

Consider the iteration of the algorithm where the ith child of p is processed. Then
the current node is t(pi). Let Γ∗ be the set of configurations at this node. Let qi be the
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A-state at this node. It is possible to find qi from one of the epsilon configurations in Γ∗

because every B-state contains at least one epsilon configuration.
As γ is non-final and an epsilon configuration, it follows that it must be contained

in nonfinal ε configs(Γ∗) (cf. (4.6b)). In this case, there is a transition in B starting
at the node with γ as configuration. Condition (4.6a) must be true, as otherwise the
run r would not be successful. Condition (4.6c) consists of two parts: The first part is
succ possible(Γ∗, qi, i), which is true. The second part verifies that the configurations
in the child nodes are in configs(Γ∗, qi, i). This set contains several possibilities but
every possibility consists of three subsets:

1. The first subset contains exactly one configuration, namely γ′ = (τ(i), τ, i) for
the transition τ (cf. (4.9a)). The two configurations γ and γ′ are connected by a
vertical edge in E2 (cf. (4.10b)). Add γ′ to Γi.

2. The second subset (cf. (4.9b)) contains multiple configurations. There is at least
one configuration succeeding every element in nonfinal ε configs(Γ∗).
In particular, there is at least one configuration succeeding γ. Denote the configu-
rations succeeding γ by γ1, ..., γk. From the definition of succ, all configurations
γ1, ..., γk have the same state as γ′ and are therefore connected to γ′ by a horizontal
edge in E1 (cf. (4.10a)).
Call Step(γi, Γm+i) for 1 ≤ i ≤ k − 1 where Γm+i = Γi and recurse by calling
Step(γk, Γi). Increase the global counter m := m + k− 1.
Note that the other elements in nonfinal ε configs(Γ∗) are dealt with by another
execution path and therefore also that path will deal with the other configurations
succeeding those elements.

3. The third subset contains configurations of new patterns (cf. (4.9c)). For every
such configuration γ∗, call Step(γ∗, Γm) where Γm is an empty set and increase
the global counter m := m + 1.

The above algorithm adds every γ ∈ V to one of the subsets Γi because all initial
configurations and all configurations created by the transition relation ∆′′ are covered
by the steps above. It is easy to see that this algorithm works. It follows that every Γi is
a tree and can be interpreted as a pattern of A.

We can now state and prove the main result of this chapter.

Theorem 4.2. The expressive power of regular tree automata equals the expressive power of
finite root-to-leaf automata.
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Proof. There are two directions to show:
It can easily be seen that a finite root-to-leaf automaton A can be simulated by a

regular tree automaton B. As the transition relation of automaton A consists of finitely
many transitions, these transitions can easily be accepted by some other tree automaton
B′. In this case, B having B′ as transition automaton accepts the same language as A.

For the other direction, we need to show that regular tree automata do not have more
expressive power than root-to-leaf automata. We do so by simulating a regular tree
automaton A by a finite root-to-leaf automaton B as discussed in Subsection 4.2.1.

It remains to be shown thatA accepts the same language asB. There are two directions
to show.

L(A) ⊆ L(B):
Let t be a tree for which there exists a successful run r ofA. We construct a successful

run ofB for t. The first components on theB-states are the states of r at the corresponding
positions. Additionally, as the run r is successful, there is a tiling of A for t. This tiling
can be partitioned into patterns accepted by A∆. The successful runs of A∆ on these
patterns can be translated into the missing parts of the successful run of B on t. It can
happen that the patterns ofA overlap in a way that someA∆-states occur multiple times
at the same node. As illustrated in Example 4.3, the resulting run of B is still successful.

L(B) ⊆ L(A):
Let t be a tree for which there exists a successful run r of B. We construct a successful

run of A for t. The run r contains a run of A in the first component of every state. To
show that this run is successful, we need to find the successful runs ofA∆ on all patterns.

The second components of the states in r contain configurations ofA∆. The algorithm
on in Proposition 4.1 clusters these configurations into patterns. As the configurations
contain the transition, it is possible to recreate the runs of A∆ on these patterns. Thus,
the run of A on t must also be successful.
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5
Conclusion and Outlook

Finite tree automata can be extended in multiple ways. Extensions to more complex
input structures are one possibility. All these structures can be extended to its infinite
counterpart. Infinite tree automata are one example. This work does not change the
structure of the input but instead modifies the way how the input trees are processed.

Conventional finite tree automata use a transition relation that defines how the nodes
of the input tree are labeled by states. The transition relation verifies local properties
because it only accesses one node and its children. Thus, every transition is a tree of
depth one.

Two extensions are proposed. The general finite tree automaton allows transitions of
arbitrary size. They only need to be in tree shape. One major difference to conventional
tree automata is that larger transitions can overlap. Nevertheless, general finite tree au-
tomata turn out to have the same expressive power as conventional finite tree automaton
models from the literature. To prove this, the transitions of general finite tree automata
are translated into transitions that do not overlap. The translation converts overlapping
transitions into an upper and a lower part that are connected by a unique renaming.
The non-overlapping transitions can easily be split into elementary transitions that
technically correspond to the transitions of conventional finite tree automata.

The second extension changes the transition relation even further. Instead of using
a finite set of transitions, the regular tree automaton uses a regular tree language as
set of transitions. This implies that the amount of transitions can be infinite and the
size of transitions can be unbounded. Although this automaton model seems to be
more powerful, its expressive power is again equal to the conventional models from
the literature. The proof simulates regular tree automata by conventional root-to-leaf
automata. The states of the simulating automaton contain a set of configurations of
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the transition automaton. The configurations correspond to the states of the transition
automaton when it processes the patterns of the regular tree automaton.

Infinite trees were out of the scope of this work. But increasing the size of transitions
and even using a regular set of transitions can also be done for tree automata working on
infinite trees. One such automaton is the looping tree automaton whose only acceptance
condition is that a run exists.

General finite tree automata can easily be extended to general looping tree automata.
Everything can be adopted directly. Only a tiling is no longer a finite set of partial
subtrees but an infinite set. The construction defined in Subsection 3.2.1 on page 19 only
depends on the transitions. As the set of transitions stays finite even for infinite tree
automata, the construction still works.

Unfortunately, the induction in Theorem 3.2 is based on the overlapping degree of
a tiling, which is the sum of the overlapping degrees of all nodes in the tree t. In the
infinite case, a tree t has infinitely many nodes. The overlapping degree of a tiling for
an infinite tree can therefore be infinite. As a result, the proof provided for Theorem 3.2
does not work anymore in the infinite case.

To prove the correctness of the construction for infinite trees, a more local argument
is necessary. As there are still only finitely many transitions, there are also only finitely
many combinations and overlappings between them possible. This proof is left for
future work.

Similarly to the general finite tree automaton, the regular tree automaton can also
easily be adapted to infinite trees. The construction of a simulating tree automaton stays
the same and even the proof for Lemma 4.2 should still work in the infinite case.

There is one challenge that is left open: the regular tree automaton defines its patterns
by the transition automaton. Consequently, there might be arbitrary large patterns. In
the finite case, this is no problem because the size of the input tree is a natural bound
for every pattern. In the infinite case, it may happen that an infinite tree is tiled by one
infinite pattern.
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S. Tison, and M. Tommasi. Tree Automata Techniques and Applications. 2008.

[Tho90] W. Thomas. “Automata on Infinite Objects”. In: Handbook of Theoretical Com-
puter Science, Volume B (1990). Ed. by J. van Leeuwen, pp. 133–191.

[Tho91] W. Thomas. “On Logics, Tilings, and Automata”. In: Proceedings of the 18th
International Colloquium on Automata, Languages and Programming. Springer-
Verlag. 1991, pp. 441–454.

[Tho97a] W. Thomas. “Automata Theory on Trees and Partial Orders”. In: Proceed-
ings of the 7th International Joint Conference CAAP/FASE on Theory and Practice
of Software Development. TAPSOFT ’97. London, UK: Springer-Verlag, 1997,
pp. 20–38.

[Tho97b] W. Thomas. “Elements of an Automata Theory over Partial Orders”. In:
Proceedings of the DIMACS Workshop on Partial Order Methods in Verification.
New York, NY, USA: AMS Press, Inc., 1997, pp. 25–40.

[TW68] J. W. Thatcher and J. B. Wright. “Generalized Finite Automata Theory with an
Application to a Decision Problem of Second-Order Logic”. In: Mathematical
Systems Theory 2.1 (1968), pp. 57–81.

[VW86] M. Y. Vardi and P. Wolper. “Automata-Theoretic Techniques for Modal Logics
of Programs”. In: Journal of Computer and System Sciences 32 (1986), pp. 183–
221.

56



Declaration of Authorship

I hereby confirm that this Master’s thesis is my own work and that I have documented
all sources and material used.

Dresden, September 13th, 2016

Signature (Sven Dziadek)


	Introduction
	Contribution
	Related Work
	Organization

	Background
	Basics
	Finite Tree Automata
	Leaf-to-Root Automata
	Root-to-Leaf Automata


	Increasing the Size of Transitions
	General Finite Tree Automata
	From Overlapping to Non-Overlapping Transitions
	Construction

	From Non-Overlapping to Elementary Transitions

	Regular Transitions
	Regular Tree Automata
	Expressive Power of Regular Tree Automata
	The Simulating Root-to-Leaf Automaton
	Algorithm to Create Run of A Out of Run of B


	Conclusion and Outlook
	Bibliography

