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Abstract

Because of the simplicity in the structure of the Description Logic (DL) FL0,
it has been commonly taken as the first example for the presentation of new
notions and their associated problems [1],[2]. Fuzzy Description Logics extend
classical Description Logics by allowing truth degrees to deal with imprecise con-
cepts. In this work we show that in the fuzzy DL FL0 with greatest fixed-point
semantics, the subsumption problem can be stated in terms of finite automata.
Furthermore, following the new characterization, it was shown that this infer-
ence problem lies in the PSPACE-complete complexity class.
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1 Introduction

In this thesis, we obtain a new characterization completely stated in terms of fi-
nite automata for the Subsumption Problem in the Fuzzy Description Logic FL0

with greatest fixed-point semantics (gfp-semantics ). As a direct consequence of
this characterization, we show that this problem lies in the PSPACE-complete
complexity class.

Description Logics (DLs) is the most recent name for a family of knowledge
representation formalisms [1, p.43] that can be used for representing knowledge
from a given universe. On the one hand, from a syntactic point of view, this
form of knowledge representation first requires the identification of the classes
(atomic concepts), relations (atomic roles) and objects (individual names) that
are basic in the universe that we want to describe. From them, more complex
concepts (concept descriptions) can be built inductively with the assistance of
the concept constructors that are allowed in each particular Description Logic.
From a semantic point of view, every concrete Description Logic comes with
a formal (logic–based) semantics that specifies what an interpretation is and
how to use it for interpreting (give meaning to) each concept description in the
given formalism.

In a broad sense, the Subsumption Problem in a DL involves the question: given
two concept descriptions, is the first concept less general than (subsumed by)
the second one in all those settings (models), from the given universe, that are
represented by our description (TBox)? After introducing the Fuzzy DL FL0,
the semantics that we are interested in (i.e, gfp-semantics) and the notion of
less general that we are going to consider, we obtain a particular instance of
this problem in Chapter 2.

As happens in the case of several logics [3], also in the area of Description
Logic, automata-based algorithms are frequently used to show decidability and
complexity results for basic inference problems (see [2], [4] or [5]). In Chap-
ter 3 we show that, for the particular case of Fuzzy FL0 with gfp-semantics,
Weighted Semi-Automata with word transitions allows us to give an alternative
formulation of the subsumption problem. This alternative formulation is writ-
ten in the language of weighted automata. Starting from it, we make a second
transformation of the problem, this time in order to obtain an equivalent char-
acterization of the subsumption problem in terms of Semi-Automata with word
transitions. The second characterization involves several tests of language in-
clusion, where the languages are defined over the structure of a Semi-Automata
with word transitions. Along these two transformations we keep the size of the
new problems inside of a polynomial growing factor. This, together with the
fact that the languages defined over the structure of a semi-automaton with
word transitions are regular [2, p.182] and because the inclusion problem of reg-
ular languages is known to be in PSPACE-complete [7], allows us to show, in
Chapter 4, that the subsumption problem is in PSPACE-complete.
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2 Preliminaries

In this chapter we present formal definitions, introduce new notions and show
some results that are relevant for the following chapters. Because they are going
to be necessary for introducing the semantics that we consider here, we start
by recalling some definitions about posets, ordinals and fixed-points. Next, we
formalize the syntax and the greatest fixed-point semantics of the Fuzzy De-
scription Logic FL0. In this step, the notion of model of a TBox is of particular
significance as it justifies the presence of some results that explain, in more
detail the structure of what we regard here as a model. Then, the inference
problem of deciding subsumption w.r.t. greatest fixed-point semantics is intro-
duced, which crucial for the next chapters. Finally, we present the Weighted
Semi-Automata with word transitions that, as mentioned, will serve in Chapter
3, as an equivalent representation formalism.

2.1 Order, Ordinals and Fixed-Points

The notions introduced in this section can be found in [8, p. 26-29], in some
cases with a slightly different notation.

In mathematics, especially order theory, a partially ordered set formalizes and
generalizes the intuitive concept of an ordering of the elements of a set. A poset
consists of a set together with a binary relation that indicates that, for certain
pairs of elements in the set, one of the elements precedes the other. Such a re-
lation is called a partial order to reflect the fact that not every pair of elements
need be related: for some pairs, it may be that neither element precedes the
other in the poset.

Definition 2.1.1. A relation R on a set S is a partial order if the following
conditions are satisfied:
a) xRx for all x ∈ S.
b) xRy and yRx implies x = y for all x, y ∈ S.
c) xRy and yRz implies xRz for all x, y, z ∈ S.

In a partial order, as we show next, the idea of the existence of an element
that is bigger (smaller) than a group of elements can be formalized through the
notion of upper (lower) bound.

Definition 2.1.2. Let R be a partial order on a set S. Then u ∈ S is an upper
bound of a subset X of S if xRu for all x ∈ X. Similarly, l ∈ S is a lower bound
of X if lRx for all x ∈ X.

Sometimes it is possible to draw a clear border between the elements of a pre-
order and their bounds. Next, in the definitions of least upper bound and
greatest lower bound the notion of border is captured.

Definition 2.1.3. Let R be a partial order on a set S. Then u ∈ S is the least
upper bound of a subset X of S if u is an upper bound of X and, for all upper
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bound ū of X, we have that uRū. Similarly, l ∈ S is the greatest lower bound
of a subset X of S if l us a lower bound of X and, for all lower bound l̄ of X,
we have that l̄Rl.

When the least upper bound or the greatest lower bound of a set X exist, they
are unique. Here we denoted them by lub(L) and glb(L). Now, by adding two
properties to the rather general definition of partial order, we get (as we show
later) a quite practical notion of order.

Definition 2.1.4. A partially ordered set L is a complete lattice if every subset
X of L has a lub(X) and a glb(X) in L. We let Top denote the element lub(L).

The greatest fiexed-point semantics is presented in the next chapter. Informally,
here we can say that under this semantics the meaning of imprecise concepts
is given by functions with finite domain and image in [0, 1]. The following
examples (in particular the second) are important steps for showing that the
space of interpretations (from a group of concepts) can be regarded as a partially
ordered set.

Example 2.1.5. Given a finite set S, the set of functions F : S → [0,1] together
with the following order is a partially ordered set. Let f1,f2 ∈ F , f1 � f2 iff
f1(x) ≤ f2(x) for all x ∈ S.
In addition, for any subset X of F , the functions finf (x):= inff∈X{f(x)} and
fsup(x):= supf∈X{f(x)} are the greatest lower bound and the least upper bound
of X w.r.t. �. This fact is trivial when the set X is finite, if X is infinite it also
holds because the real unit interval [0,1] is a complete lattice with respect to
the usual order of the reals [9, p.304]. Therefore, the poset (F , �) is a complete
lattice.

Example 2.1.6. Let F be defined as in the previous example, consider now the
n-fold cartesian product H = F×· · ·×F . The set H is ordered componentwise by
the �n order relation as follows, (f1, . . . , fn) �n (h1, . . . , hn) iff f1 � h1, . . . , fn �
hn. Greatest lower bounds and least upper bounds with respect to �n are
obtained componentwise from the greatest lower bounds and least upper bounds
of each component. Thus, (H, �n) is a complete lattice.

As its name suggest, the greatest fixed-point semantics is connected with the
notion of greatest fixed-point. Through this notion we formalize in the next
chapter that only a certain kind of interpretations are going to be relevant for
us.

Definition 2.1.7. Let L be a complete lattice, and T : L → L be a mapping.
We say that f ∈ L is the greatest fixed-point of T , denoted as gfp(T ), if f is
a fixed-point of T , i.e., T (f) = f , and for any other fixed-point g of T we have
f ≥ g.

Mappings that preserve orders are strongly connected with the notion of fixed-
point. The following definition formalizes them.
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Definition 2.1.8. Let L be a partially ordered set, and let T : L → L be a
mapping. Then T is monotonic iff for all x, y in L, x ≤ y implies T (x) ≤ T (y).

The next result is a week form of a theorem due to Tarski [6]. It gives sufficient
conditions for the existence of the greatest fixed-point of a monotonic mapping.

Theorem 2.1.9. Let L be a complete lattice and let T : L → L be a monotonic
mapping. Then T has a greatest fixed-point.

If the existence of the greatest fixed-point of a mapping is known, it is possible
to describe its structure in terms of a (potentially) transfinite iteration of the
mapping. The formal presentation of this result involves the concept of ordinal
number, which is informally introduced in the next paragraphs.

Intuitively, the ordinal numbers are what we use to count with. The first ordi-
nal 0 is defined to be ∅. Then we define 1 := {∅} = {0}, 2 := {∅, {∅}} = {0, 1},
3 := {∅, {∅}, {∅, {∅}}} = {0, 1, 2} and so on. These are finite ordinals; the first
infinite ordinal is ω, the set of non-negative integers. Ordinals can be ordered as
follows: α < β iff α ∈ β. For example, 1 < 2 and n < ω for all finite ordinal n. In
addition, the presented ordering is well-founded and linear; thus, any set of ordinals
numbers has a least element and a least upper bound.

If α is an ordinal, by α + 1 we denote the least ordinal greater than α, which is
α∪{α}. When an ordinal is of the form α+1 for some α, it is called succesor ordinal;
otherwise it is a limit ordinal. For example, 2 is a succesor ordinal and ω is a limit
ordinal. The smallest limit ordinal (apart from 0) is ω; which is followed by ω + 1:=
ω ∪ {ω}, ω + 2:= (ω + 1) + 1, ω + 3 and so on. Regarding the structure of ordinals,
on the one hand, we already saw that a succesor ordinal is of the form α+ 1 for some
ordinal α; on the other hand, a limit ordinal can be obtained as the least upper bound
of all smaller ordinals, i.e., α = lub({β |β < α}).

Transfinite induction is the extension of mathematical induction to ordinals. It says
that to prove that a property P on the ordinals, holds at all ordinals, it is enough to
prove that for all ordinals α : if P(β) holds for all ordinals β < α, then also P(α)
holds.

Definition 2.1.10. Let L be a complete lattice, and T : L → L be a monotonic
mapping. Then we define the ordinal powers of T as follows:
T 0 := Top
T γ+1 := T (T γ) If γ is a succesor ordinal
T γ+1 := glb({T β | β < γ}) If γ is a limit ordinal

The following theorem explains the definition of greatest fixed point with the notion of
iterations, which is a common term in automata theory. As we will see, many results
in the next chapter are consequence of this starting point.

Theorem 2.1.11. Let L be a complete lattice and let T : L → L be a monotonic
mapping. Then, for any ordinal γ, T γ≥ gfp(T). Furthermore, there exists an ordinal
β, such that T β= gfp(T).
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2.2 FL0

Definition 2.2.1. (Concept Description in FL0)
Let NC and NR be disjoint sets of concept names and role names respectively. The
set of FL0-concept descriptions is the smallest set satisfying the following conditions:

• Every atomic concept A ∈NC is a FL0–concept description.

• If C and D are FL0–concept descriptions and r ∈NR is an atomic role,
then C u D and ∀r.C are also FL0–concept descriptions.

Here we are interested in the representation of imprecise knowledge through FL0, that
is why a fuzzy interpretation of the concepts from this DL will be considered.

Definition 2.2.2. (Fuzzy semantics)
A fuzzy interpretation is a pair I := (∆I , .I) where ∆I is a non-empty set, called the
domain and ·I is a function mapping:

• every atomic concept A to a function AI : ∆I → [0, 1], and

• every atomic role r to a function rI : ∆I × ∆I → [0, 1]

What characterizes the Gödel semantics is how this interpretation is extended to com-
plex concepts as we show in the next definition.

Definition 2.2.3. (Gödel semantics)

(A uB)I(x) := min(AI(x), BI(x))

x⇒ y =

{
1 if x ≤ y
y otherwise

(∀r.A)I(x) := infy∈∆I{rI(x, y)⇒ AI(y)}

Lemma 2.2.4. Let v1, v2, v3 and v4 be real values in [0, 1]. Then, (v1 ⇒ min(v2, v3)) ≥
v4 iff (v1 ⇒ v2) ≥ v4 and (v1 ⇒ v3) ≥ v4.

Proof
Let assume that min(v2, v3) = v2. From the definition of ⇒ , we have that (v1 ⇒
v3) ≥ (v1 ⇒ v2). Thus it is inmediate that (v1 ⇒ v2) ≥ v4 iff (v1 ⇒ v2) ≥ v4

and (v1 ⇒ v3) ≥ v4. If min(v2, v3) = v3, from the definition of ⇒ , we have that
(v1 ⇒ v2) ≥ (v1 ⇒ v3). Thus it is inmediate that (v1 ⇒ v3) ≥ v4 iff (v1 ⇒ v2) ≥ v4

and (v1 ⇒ v3) ≥ v4. 2

Lemma 2.2.5. Let v1, v2, v3 and v4 be real values in [0, 1]. Then, (v1 ⇒ v2) ≥ v3 and
(v1 ⇒ v2) ≥ v4 iff (v1 ⇒ v2) ≥ max(v3, v4).

Proof
Both directions are immediate. 2

Lemma 2.2.6. Given r ∈ NR and two FL0–concept descriptions C and D; for every
interpretation I = (∆I , .I) and d ∈ ∆I , (∀r.(C uD))I(d) = (∀r.C u ∀r.D)I(d).
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Proof
For proving that these two terms have the same value, we expand both expressions
and then, by a simple case-analysis, the equality becomes clear.

(∀r(C uD))I(d)
= infy∈∆I{rI(d, y)⇒ (C uD)I(y)}
= miny∈∆I{rI(d, y)⇒ (C uD)I(y)} since the set ∆I is finite

= miny∈∆I{rI(d, y)⇒ min{CI(y), DI(y)}} (∗)

(∀rC u ∀rD)I(d)
= min{(∀rC)I(d), (∀rD)I(d)}
= min{infy∈∆I{rI(d, y)⇒ CI(y)}, infy∈∆I{rI(d, y)⇒ DI(y)}}
= min{miny∈∆I{rI(d, y) ⇒ CI(y)},miny∈∆I{rI(d, y) ⇒ DI(y)}} since the set ∆I

is finite
= miny∈∆I{min{rI(d, y)⇒ CI(y) , rI(d, y)⇒ DI(y)}} (∗∗)

For every y ∈ ∆I , each of the 13 possible order relation among rI(d, y), CI(y) and
DI(y) results in the equality of rI(d, y) ⇒ min{CI(y), DI(y)} and min{rI(d, y) ⇒
CI(y) , rI(d, y)⇒ DI(y)}. Thus we have that (∗) and (∗∗) are equal. 2

Definition 2.2.7. (Fuzzy TBox)
A (labeled) terminological axiom is of the form 〈A v C, q〉, where A is an atomic
concept, C is a concept description and q ∈ [0, 1]. A fuzzy TBox is a finite set of
terminological axioms.

In a TBox there are two kinds of atomic concepts: primitive concep ts and defined
concep ts. An atomic concept B is defined if it appears on the left-hand-side of a
terminological axiom in the TBox. Otherwise, it is primitive.

Definition 2.2.8. (Primitive Interpretation)
Let P1, . . . , Pm and r1, . . . , rl be the primitive concepts and roles in a TBox T . A
primitive interpretation J consists of a set ∆J and a function ·J , where ∆J is the
domain of the primitive interpretation and the function ·J links Pi and rj with PJi :
∆J→[0, 1] and rJj : ∆J×∆J→[0, 1] respectively.

Definition 2.2.9. (Extension of an interpretation)
Let P1, . . . , Pm and r1, . . . , rl be the primitive concepts and roles contained in a TBox
T . An interpretation I is the extension of the primitive interpretation J iff ∆I =
∆J , P I1 = PJ1 ,. . . ,P Im = PJm and rI1 = rJ1 ,. . . ,rIl = rJl . When this is the case, we
could also say that J is the primitive interpretation of I

Definition 2.2.10. (Components of an interpretation)
Assume that D1, . . . , Dn is an order of the defined concepts in a TBox T . We say that
the interpretation I is defined by J and f iff J is the primitive interpretation of I
and f = (DI1 , . . . , D

I
n).

Clearly, this separation of an interpretation is always possible and unique up to the
order of the defined concepts. Here, without loss of generality, we assume that this
order is fixed, i.e., for a defined concept B, its order is denoted by index(B). Then,
given an interpretation I, defined by J and f , each defined concept in T is interpreted
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as a component of the n-tuple f , i.e., if for a defined concept B we have index(B) = i
then (B)I = fi.

Next, we show that a possible order between two interpretations is propagated into
the interpretation of concepts. The notions of order that we use here, for compar-
ing functions (�) and tuples of functions (�n), are the same that we introduced in
Example 2.1.5 and in Example 2.1.6. The same applies for the nexts sections.

Proposition 2.2.11. Let If and Ig be two interpretations defined by J ,f and J ,g
respectively. Then, f �n g implies that for all FL0-concept descriptions C, it holds
that CIf � CIg .

Proof
We proceed by induction on the structure of the concept C:
- If C is a primitive concept, ∀x ∈ ∆J : CJ (x) = CIf (x) = CIg (x). Thus CIf � CIg .
- If C is a defined concept, CIf � CIg by the definition of �n, and because the
interpretations If , Ig are defined by J ,f and J ,g respectively.
- If C = ∀r.D, by induction, the proposition holds for the concept D. Then we have
that ∀x, y ∈ ∆J : {rJ (x, y)⇒ DIf (y)} ≤ {rJ (x, y)⇒ DIg (y)}, which directly implies
that ∀x ∈ ∆J : infy∈∆J {rJ (x, y)⇒ DIf (y)} ≤ infy∈∆J {rJ (x, y)⇒ DIg (y)}. Thus

(∀r.D)If � (∀r.D)Ig .
- If C = DuE, by induction, the proposition holds for the concepts D and E. Then we
have that ∀x ∈ ∆J : min(DIf (x), EIf (x)) ≤ min(DIg (x), EIg (x)). Thus, (D uE)If

� (D u E)Ig . 2

Definition 2.2.12. (Model of a TBox)
Let I be an interpretation. We say that I satisfies the terminological axiom 〈A v
C, q〉 iff AI(x) ⇒ CI(x) ≥ q for every x ∈ ∆I . An interpretation I is a model of the
TBox T iff it satisfies every terminological axiom in T .

Definition 2.2.13. (TJ )
LetD1, . . . , Dn be the defined concepts contained in a TBox T , and let J be a primitive

interpretation. The mapping TJ : Fn→Fn, where F = [0, 1]∆
J

, is defined as follows.
Let f be an element of Fn and let I be the interpretation defined by J and f . Then:
TJ (f):= (h1,. . . ,hn), where hi(x):= min〈DivY,q〉∈T {q ⇒ Y I(x)}.

Example 2.2.14. (TJ)
Consider the TBox T = {〈Z v ∀c.G, 0.7〉, 〈K v ∀c.G, 0.3〉, 〈K v Z, 0.2〉} with
index(Z) := 1, index(K) := 2; and the primitive interpretation J := (∆J , .J ),
where ∆J = {d0, d1}, GJ (d0) = 1, GJ (d1) = 0, cJ (d0, d0) = 1, cJ (d1, d0) = 1,
cJ (d1, d1) = 0 and cJ (d0, d1) = 0. Let the particular function f = (f1, f2) be the
defined by f1(di) = f2(di) = 1, for all i ∈ {0, 1}. Let If be the interpretation de-
fined by J and f , then TJ (f) = (h1, h2), where h1(x) = (0.7 ⇒ (∀c.G)If (x)) and
h2(x) = min((0.3⇒ (∀c.G)If (x)), (0.2⇒ (Z)If (x))).

Lemma 2.2.15. Let T be a TBox and let J be a primitive interpretation. The
mapping TJ is monotonic.

Proof
We need to show that for all f, g ∈ Fn, f �n g implies TJ (f) �n TJ (g). In Propo-
sition 2.2.11 it was proved that f �n g implies CIf � CIg for every FL0-concept
description C. With this in mind we can see why TJ is monotonic. By definition
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of TJ , we know that (TJ (f))i(x) = min〈DivY,q〉∈T {q ⇒ Y If (x)} and (TJ (g))i(x) =
min〈DivY,q〉∈T {q ⇒ Y Ig (x)} but, because the Proposition 2.2.11, we know that if f
�n g then Y If � Y Ig which implies that (TJ (f))i(x) = min〈DivY,q〉∈T {q ⇒ Y If (x)}
≤ min〈DivY,q〉∈T {q ⇒ Y Ig (x)} = (TJ (g))i(x) and thus TJ is monotonic. 2

Proposition 2.2.16. Let I be a model of a TBox T and let I be defined by the
primitive interpretation J and the tuple f . Then it holds that f �n TJ (f).

Proof
Assume that I is a model of T and that f �n TJ (f) does not hold. Then, following the
definition of �n, we have that there exist a defined concept C, a number i ≤ n and d ∈
∆J such that i = index(C) in f and fi(d) > (TJ (f))i(d). Without loss of generality,
we may assume that in the definition of TJ the value (TJ (f))i(d) is produced by an
axiom with the form 〈C v Y, q〉. Then we have that CI(d) = fi(d) > (TJ (f))i(d) =
(q ⇒ Y I(d)). But, from fi(d) > (TJ (f))i(d), we get that (TJ (f))i(d) < 1, which
means that q > Y I(d). Then (q ⇒ Y I(d)) = Y I(d) and CI(d) > (Y I(d)). Thus
(CI(d) ⇒ Y I(d)) < q and this is means that I can not be a model of T , which is in
contradiction with our assumption. 2

Proposition 2.2.17. Let I be a model of a TBox T and let I be defined by the
primitive interpretation J and the tuple f . Then, for all γ, it holds that f �n T γJ .

Proof
We proceed by induction on γ. For γ = 0 the proposition is trivially fulfilled because
of the definition of ordinal power. Assuming that for all α < γ, f �n TαJ holds, next
we show that it also holds for γ.

Case: γ > 0 and limit ordinal
From the assumption, we get that f is a lower bound for the setX = {TαJ |α < γ}. Also,
by definition of ordinal power (in the case of limit ordinal) we know that T γJ = glb(X).
Now, since f is a lower bound of X and T γJ = glb(X), because of the definition of
greatest lower bound, we get that f �n T γJ .

Case: γ is successor ordinal
Without loss of generality we may assume that γ = β + 1. Then, from the as-
sumptions we have that f �n T βJ , and because TJ is a monotonic mapping, we

get that TJ (f) �n TJ (T βJ ). This, together with the Proposition 2.2.16, give us that

f �n TJ (f) �n TJ (T βJ ). Thus, f �n T γJ . 2

Proposition 2.2.18. Let I be a model of a TBox T and let I be defined by the
primitive interpretation J and the tuple f . Then, there exists a fixed-point fp of TJ
such that f �n fp.

Proof
Since we know that TJ is a monotonic mapping and it is defined over a complete
lattice, we have that the gfp(TJ ) exists and for some ordinal β, gfp(TJ ) = T βJ .

Finally, following the Proposition 2.2.17, we get that m �n T βJ . Thus, fp := T βJ . 2

Definition 2.2.19. (gfp–semantics)
Let T be a TBox. The greatest fixed–point semantics (gfp–semantics) allows only
those models (gfp–models) of T that are defined by an initial interpretation J and
the greatest fixed-point of the mapping TJ .

13



Definition 2.2.20. (gfp-Subsumption of concepts)
Given two concept names C,D and q ∈ [0, 1]. We say that C is subsumed to a degree
q by D w.r.t. a TBox T (denoted as 〈C vgfp,T D , q〉) if for every gfp–model I of T
it holds that infx∈∆I{CI(x) ⇒ DI(x)} ≥ q.

Then, for deciding (from the definition) whether a concept is subsumed to a certain
degree by another concept, it is necessary to make an iteration over the whole space
of primitive interpretations. Since this space is infinite, we are not going to do that.
Instead, in the next chapter, we present an equivalent characterization for the notion
of gfp-Subsumption. Following that, we will provide a short argumentation as to why,
for instance, in the Example 2.2.14, it does not hold that 〈K vgfp,T Z , 0.4〉.

2.3 Automata and Words

In [2], semi-automata with words transitions are used for capturing the effect of the
greatest fixed-point semantics in FL0 (with the possible presence of terminological
cylces). Here, for extending this analysis to fuzzy FL0, weighted semi-automata with
words transitions seems to be the suitable formalism.

Let Σ be a finite alphabet. The set of all finite words over Σ is denoted by Σ∗ and the
empty word by ε. A word W = σ0. . .σn−1 over Σ (of length n) can be regarded as a
mapping W from the finite ordinal n = {0 . . . n− 1} into Σ, i.e. W (i) := σi.

Definition 2.3.1. A weighted semi-automaton (WSA) is a tuple A = (Σ, Q,E,wt)
where Σ is a finite alphabet, Q is a finite set of states, E ⊆ Q×Σ∗×Q is a finite set of
transitions and wt: E → [0, 1] is a transition weight function.

Therefore, a transition connects two states and each connection is labeled by a word
in Σ∗ and by its corresponding weight from wt.

Example 2.3.2. ( A weighted semi-automaton)

pa

pb

pc

b, 0.5

bc, 0.4

bb, 0.4

c, 0.2

Σ = {b, c}
Q = {pa, pb, pc}
E = {(pa, b, pb), (pb, bb, pb), (pb, c, pc), (pa, bc, pc)}
wt((pa, b, pb)) = 0.5 ; wt((pb, bb, pb)) = 0.4
wt((pa, b, pb)) = 0.2 ; wt((pa, bc, pc)) = 0.4

Let A be a WSA and let p,q be two states of A. A finite path from p to q in
A is a sequence p0,U0,p1,U2,. . . ,Un−1,pn, where p = p0, q = pn, and for each i,
1 ≤ i ≤ n, (pi−1, Ui−1, pi) is a transition of A. The label of this path, is the fi-
nite word U0U1. . .Un−1, and the particular case of the empty path from p to p is
labeled the empty word ε. By LA(p, q) we denote the set of all finite words that are
labels of paths from p to q.

Let p,q be two states in a WSA A, and let W be a finite word; the set of finite
paths from p to q that are labeled by W is denoted paths(A,W, p, q). The weight of
a path l = p0,U0,p1,U1,. . . ,Un−1,pn ∈ paths(A,W, p, q) is defined as the value:
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valA(l) := inf(
⋃n−1
i=0 {wt(pi, Ui, pi+1)})

The behavior of A from p to q on a finite word W is defined as the value:

val(Ap,q,W ) := sup(
⋃
l∈paths(A,W,p,q){valA(l)})

Since the image of wt is finite, the infima and suprema in the given definitions are re-
stricted to minimum and maximum. Then, the behavior of a weighted semi-automata
can be seen as a function that assocites each word with the weight of its execu-
tion between to given states. For instance, in the Example 2.3.2 we can see that
val(Apa,pc , “bc”) = max(min(0.5, 0.2), 0.4) = 0.4.

Finally, it is necessary to mention that in the next chapters we will also take ad-
vantage of the semi-automaton with words transitions that was defined in [2, p.181],
which is a particular case of the WSA when the transition weight function is not taken
into account.
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3 Semantics Through Finite Automata

3.1 WSA Associated with a TBox

As a preliminary step, before we can associate a WSA AT with a TBox T , we need
to transform T into an equivalent TBox T ′ such that T ′ is in normal form. Here, by
normal form we mean that the axioms in T ′ do not contain any constructor of concept
conjunction.

Definition 3.1.1. (TBox in Normal Form)
We say that a terminological axiom 〈C v D, q〉 is in normal form if the concept
constructor u does not occur in D. A TBox is in normal form if it only contains
axioms that are in normal form.

Next we explain how to transform a TBox T into an equivalent TBox T ′ which is
in normal form. For each axiom 〈C v D, q〉 ∈ T we proceed in three steps. First,
the Lemma 2.2.6 allows us to make expansions in the right-hand side of the axiom
in order to express D as a conjunction of concepts that do not contain conjuntion,
i.e., every concept ∀r.(D1 uD2) is expanded to ∀r.D1 u ∀r.D2. Then, assuming that
〈C v D1 uD2 u · · · uDj , q〉 is the result of the previous step, the Lemma 2.2.4 allows
the replacement of this axiom by the j axioms {〈C v Di, q〉}. Next, after this division,
there could be groups of axioms that only differ in the weights; if this is the case, the
Lemma 2.2.5 allows us to keep, from each group, only the axiom with the biggest
weight value. Now we can assume, as we wanted, that all the axioms in T ′ are in
the form 〈C v ∀r1.∀r2. . . .∀rn.B, q〉 where B is an atomic concept. In addition, the
prefix ∀r1.∀r2. . . .∀.rn is abbreviated to ∀W , where W = r1r2 . . . rn is a word over
NR. In the case that n = 0 we write ∀ε.B instead of B. Finally, it is clear that the
presented transformations are not computationaly heavy; as they were introduced, the
expansion, division and removing of some axioms are all tasks that can be completed
in polynomial time with respect to the size of the original TBox.

Example 3.1.2. (TBox in Normal Form)
T = {〈Z v Z u ∀c.G, 0.7〉, 〈Z v Z, 0.8〉, 〈K v ∀c.(Z uG), 0.2〉}

T1 = {〈Z v Z u ∀c.G, 0.7〉, 〈Z v Z, 0.8〉, 〈K v ∀c.Z u ∀c.G, 0.2〉}

T2 = {〈Z v Z, 0.7〉, 〈Z v ∀c.G, 0.7〉, 〈Z v Z, 0.8〉, 〈K v ∀c.Z, 0.2〉}, 〈K v ∀c.G, 0.2〉}

T3 = {〈Z v ∀c.G, 0.7〉, 〈Z v ∀ε.Z, 0.8〉, 〈K v ∀c.Z, 0.2〉}, 〈K v ∀c.G, 0.2〉}

T ′ = T3

Definition 3.1.3. (WSA associated with a TBox)
Let T be a TBox in normal form, the WSA AT = (Σ, Q,E,wt) associated with T is
defined as follows. The alphabet Σ is defined as the set of role names occuring in the
axioms of T . The set of states Q is defined as the set of concept names occurring in
the axioms of T . Transitions and their weights are determined in the following way:
A terminological axiom of the form 〈C v ∀W.B, q〉, produce the transition (C,W,B),
and wt((C,W,B)) := q. Moreover, each primitive concept P produce the transition
(P, ε, P ) with wt((P, ε, P )) = 1.

Example 3.1.4. (WSA associated with a TBox)

16



K

Z

G

c, 0.2

c, 0.2

ε, 0.8

c, 0.7
ε, 1

Σ = {c}
Q = {Z,K,G}
E = {(Z, c,G), (Z, ε, Z), (K, c, Z), (K, c,G), (G, ε,G)}
wt((Z, c,G)) = 0.7 ; wt((Z, ε, Z)) = 0.8
wt((K, c, Z)) = 0.2 ; wt((K, c,G)) = 0.2
wt((G, c,G)) = 1

3.2 Characterization of the gfp-Semantics

As we have seen, in the formalization of our semantics, our only interest is in gfp-
models. This kinds of models are defined by an initial interpretation J and the greatest
fixed-point of TJ . Moreover, by using Theorem 2.1.11, we are allowed to represent the
greatest fixed-point of TJ as an ordinal power of TJ . Thus, in the next two lemmata,
behind some results that involve ordinal powers at the same time, accepted words
and behaviors of words, there are the first steps for rewriting the gretest fixed-point
semantics in terms of finite automata.

Lemma 3.2.1. Given a TBox T , let AT be the corresponding WSA associated with
T . Let I be a gfp-model of T with primitive interpretation J . Let C be a defined
concept ocurring in T , i = index(C) and d ∈ ∆I . If there exist a primitive concept P
in T , a word W ∈ LAT (C,P ) and e ∈ ∆I such that: P I(e) < q, (∀W.P )I(d) = P I(e)
and val(AC,P ,W ) > P I(e); then there exist an ordinal β such that (T βJ )i(d) ≤ P I(e).

Proof
Consider in AT the paths from C to P that are labeled by W and their weight is
equal to val(AC,P ,W ). Now, among all the possibilities, by CU0C1U1 . . . CmUmP we
denote one of them with minimal length. We proceed by induction on m.

For m = 0:
We have that W = U0, besides, one of the defining axioms for C is of the form
〈C v ∀W.P, val(AC,P ,W )〉. From the assumptions of that (∀W.P )I(d) = P I(e) and
val(AC,P ,W ) > P I(e) together with the definition of primitive interpretation, we get
that val(AC,P ,W ) > (∀W.P )I(d) = (∀W.P )J (d). Thus, (TJ (Top))i(d) ≤ P I(e), and
β = 1.

For m > 0:
Since ∀(W.P )I(d) = P I(e), there exist a d̄ ∈ ∆I such that ∀(U1 . . . Um.P )I(d̄)=P I(e).
From the assumptions, CU0C1U1 . . . CmUmP causes that val(AC,P ,W ) > P I(e),
which implies that val(AC1,P , U1 . . . Um) > P I(e). Then, by applying the induc-
tion hypothesis we get that (TλJ )j(d̄) ≤ P I(e) for some λ > 0 (where j = index(C1)).
The previous idea, together with the assumption of that ∀(W.P )I(d) = P I(e) and
∀(U1 . . . Um.P )I(d̄)=P I(e), implies that ∀(U0.C1)Iλ(d) ≤ P I(e), where Iλ is the in-
terpretation defined by J and the tuple TλJ . Thus, because val(AC,P ,W ) > P I(e),
we get that for the next ordinal λ+ 1, (Tλ+1

J )i(d) ≤ P I(e) and β = λ+ 1. 2

Lemma 3.2.2. Given a TBox T , let AT be the corresponding WSA associated with T .
Let I be a gfp-model of T with primitive interpretation J . Let C be a defined concept
ocurring in T , i = index(C), d ∈ ∆I and q ∈ [0, 1]. If there exist an ordinal k such

17



that (T kJ )i(d) < q then there exist a primitive concept P in T , a word W ∈ LAT (C,P )
and an individual e ∈ ∆I such that P I(e) < q, (∀W.P )I(d) = P I(e), val(AC,P ,W ) >
P I(e) and (T kJ )i(d) ≥ P I(e).

Proof
We proceed by induction on k:

For k = 0
We have that (Top)i(d) <q which is in contradiction with the definition of Top. Thus,
this case can not hold.

For k > 0 and succesor ordinal
We have that (TJ (T k−1

J ))i(d) < q. Assume that the concept ∀W.B in the ax-

iom 〈C v ∀W.B, v〉 is the responsible for (TJ (T k−1
J ))i(d) < q. If B is a primi-

tive concept, there exists an e ∈ ∆I such that BI(e) < q, (∀W.B)I(d) = BI(e),
v > BI(e) and (TJ (T k−1

J ))i(d) = (∀W.B)I(d). From v > BI(e), we have that

val(AC,B ,W ) > BI(e), which together with BI(e) < q, (∀W.B)I(d) = BI(e) and
(TJ (T k−1

J ))i(d) = (∀W.B)I(d) = BI(e) completes the proof of this case.

When B is a defined concept (with index(B) = j), there exists an e ∈ ∆I such that
(T k−1
J )j(e) < q, (∀W.B)Ik−1(d) = (T k−1

J )j(e) and also v > (T k−1
J )j(e). Here Ik−1 is

the interpretation defined by the primitive interpretation J and the tuple T k−1
J . In

the particular case in which W = ε, from (∀W.B)Ik−1(d) = (T k−1
J )j(e), it is not hard

to see that e = d. Now we can apply the induction hypothesis to (T k−1
J )j(e) < q ;

then we know that there exist a primitive concept P̄ , a word W̄ ∈ LAT (B, P̄ ), and an
individual ē ∈ ∆I such that P̄ I(ē) < q, (∀W̄ .P̄ )I(e) = P̄ I(ē), val(AB,P̄ , W̄ ) > P̄ I(ē)

and (T k−1
J )j(e) ≥ P̄ I(ē). Under the previous assumptions, we first notice (as we

will show) that (∀WW̄.P̄ )I(d) ≤ P̄ I(ē). Then, by e′ we denote the element of
the domain that satisfies (∀WW̄.P̄ )I(d) = P̄ I(e′). We now show that P̄ I(e′) < q,
(∀WW̄.P̄ )I(d) = P̄ I(e′), val(AC,P̄ ,WW̄ ) > P̄ I(e′) and (T kJ )i(d) ≥ P̄ I(e′).

For doing that, first we see why (∀WW̄.P̄ )I(d) ≤ P̄ I(ē) holds: As mentioned be-
fore, if W = ε we have that e = d. Thus, (∀WW̄.P̄ )I(d) = (∀WW̄.P̄ )I(e) =
(∀W̄ .P̄ )I(e) = P̄ I(ē). In the case that W 6= ε (with length n), from the assump-
tions we have that (∀W.B)Ik−1(d) = (T k−1

J )j(e). Then, after unfolding the left
part in the previous equality we get that there exist d0 = d, . . . , dn = e such that
W I0 (d, d1) ⇒ (· · · ⇒ (W In−1(dn−1, e) ⇒ (T k−1

J )j(e)) . . . ) = (T k−1
J )j(e). But, since

from the induction step we know that (T k−1
J )j(e) ≥ P̄ I(ē), it follows that W I0 (d, d1)⇒

(· · · ⇒ (W In−1(dn−1, e) ⇒ (∀W̄ .P̄ )I(e)) . . . ) = (∀W̄ .P̄ )I(e), which together with
(∀W̄ .P̄ )I(e) = P̄ I(ē) makes clear what we wanted to show i.e., that (∀WW̄.P̄ )I(d) ≤
P̄ I(ē).

Now, since P̄ I(e′) ≤ P̄ I(ē), we have that P̄ I(e′) < q. From the definition of e′, we get
directly that (∀WW̄.P̄ )I(d) = P̄ I(e′). Following the assumptions and the induction
step we know that v > (T k−1

J )j(e), (T k−1
J )j(e) ≥ P̄ I(ē), val(AB,P̄ , W̄ ) > P̄ I(ē); then

because P̄ I(e′) ≤ P̄ I(ē) it is not hard to see that val(AC,P̄ ,WW̄ ) > P̄ I(e′). Moreover,

since ∀W.B is the responsible for (TJ (T k−1
J ))i(d) < q, we have that (TJ (T k−1

J ))i(d)

= (∀W.B)Ik−1(d) = (T k−1
J )j(e) ≥ P̄ I(ē) ≥ P̄ I(e′). With the last argument this part

of the proof is already completed.
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For k > 0 and limit ordinal
As before, we have to show that there exist a primitive concept P , a word W ∈
LAT (C,P ) and e ∈ ∆I such that P I(e) < q, (∀W.P )I(d) = P I(e), val(AC,P ,W ) >
P I(e) and (T kJ )i(d) ≥ P I(e).

If we assume that (T kJ )i(d)<q, it implies the existence of at least an ordinal α (0 <
α < k) such that (TαJ )i(d)<q. This is true because k is a limit ordinal, and then (T kJ )i
is defined as the glb{(TαJ )i;α < k}. Now that we know that an ordinal α (0 < α < k)
exists, such that (TαJ )i(d)<q, we will consider not only this, but all the ordinals η
(0 < η < k) such that (T ηJ )i(d)<q. Since all of them are smaller than k, we can
apply the induction hypothesis to each (T ηJ )i(d)<q. Then we have that for each η,
there exist a primitive concept Pη , a word Wη ∈ LAT (C,Pη), and also an individ-
ual eη such that P Iη (eη) < q, (∀Wη.Pη)I(d) = P Iη (eη), val(AC,Pη ,Wη) > P Iη (eη) and
(T ηJ )i(d) ≥ P Iη (eη).

Now we keep our attention in the ordinal β with smallest value of P Iβ (eβ) (if there are
more than one sharing the same value we take any of them) among all of the values
P Iη (eη). This action is always possible because even when the set of all the ordinals η
could be infinite, the set of primitive concepts is finite and also the set of individuals
is finite (we only consider finite domains). Now we can make P := Pβ , W := Wβ

and e := eβ . From the application of the induction hypothesis to (T βJ )i(d)<q, it fol-

lows that P I(e) < q, (∀W.P )I(d) = P I(e) and val(AC,P ,W ) > P I(e). For showing
that also (T kJ )i(d) ≥ P I(e) holds, we notice that because of the form in which β
was defined, we get that for all η (T ηJ )i(d) ≥ P Iβ (eβ). Which means, this time be-

cause the definition of η, that for all α (0 < α < k), (TαJ )i(d) ≥ P Iβ (eβ). From the

last statement, and because k is a limit ordinal, and we know that (T kJ )i is defined as
the glb{(TαJ )i;α < k}, we have that (T kJ )i(d) ≥ P I(e). Thus, the proof is completed.2

Now, in the following proposition we make use of the two previous lemmata for de-
scribing the conditions under which the degree of membership of an individual d in a
concept C is greater or equal to a certain value q. Later, this result will be crucial for
proving that subsumption can be reduced to inclusion of regular languages.

Proposition 3.2.3. Let T be a TBox and let AT be the corresponding WSA associ-
ated with T . Let I be a gfp-model of T and let C be a concept name ocurring in T .
For each d ∈ ∆I and q ∈ [0, 1], the following are equivalent.

1) CI(d) ≥ q

2) For all primitive concepts P , for all words W ∈ LAT (C,P ) and all individuals
e ∈ ∆I : P I(e) < q and (∀W.P )I(d) = P I(e) implies val(AC,P ,W ) ≤ P I(e).

Proof
1) ⇒ 2) Assume that 2) does not hold, i.e., there exist a primitive concept P , a
word W ∈ LAT (C,P ) and e ∈ ∆I such that: P I(e) < q, (∀W.P )I(d) = P I(e) and
val(AC,P ,W ) > P I(e).

First we take care of the case in wich C is a primitive concept. From the Defini-
tion 3.1.3, we know that (in AT ) states representing primitive concepts are not reach-
able from each other. Then we get that C = P , W = ε and from (∀W.P )I(d) = P I(e)
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we have that (P )I(d) = P I(e). Thus, since P I(e) < q, it also holds that P I(d) < q,
which means that 1) does not hold.

If C is a defined concept and i = index(C), from the Lemma 3.2.1 we have that there
exist an ordinal β such that (T βJ )i(d) ≤ P I(e), where J is the primitive interpretation

of I. But, from Theorem 2.1.11 we know that gfp(TJ )�nT βJ . Thus, from the defi-

nition of �n and � we get that CI(d) ≤ P I(e) < q, which means that 1) does not hold.

2)⇒ 1) Assume that 1) does not hold, i.e., CI(d) < q. Again, first we take care of the
case in wich C is a primitive concept. Now, by taking P := C, W := ε, e := d, we have
that P I(e) < q, (∀W.P )I(d) = P I(e) and val(AC,P ,W ) = val(AP,P ,W ) = 1 > P I(e),
which means that 2) does not hold.

If C is a defined concept and i = index(C), assume that J is the primitive inter-
pretation of I. Then, from the assumption of CI(d) < q, we know that there exist
an ordinal k≥0 such that (T kJ )i(d)<q. But, by applying the Lemma 3.2.2 we get that
there exist a primitive concept P in T , a word W ∈ LAT (C,P ) and an individual
e ∈ ∆I such that P I(e) < q, (∀W.P )I(d) = P I(e) and val(AC,P ,W ) > P I(e). Thus,
2) does not hold. 2

The following lemma makes use of the previous proposition for expressing the gfp-
subsumption problem in terms of finite weighted automata.

Lemma 3.2.4. Let T be a TBox and let AT be the corresponding WSA associated
with T . Let C,D be atomic concepts occurring in T and q ∈ [0, 1], the following are
equivalent:

i) 〈C vgfp,T D , q〉

ii)For all primitive concepts P and words W∈ Σ∗: min(q, val(AD,P ,W )) ≤ val(AC,P ,W )

Proof
i) ⇒ ii) Assume that there exists a primitive concept P and a word W such that
min(q, val(AD,P ,W )) > val(AC,P ,W ). Next we show that there exists a gfp–model
I of T that makes 〈C vgfp,T D , q〉 to be false. The primitive interpretation J is
defined as follows:

∆J := {d0, d1, . . . , dn} where n is the length of W .

If a role name r takes place in the position i of the word W , x = di and y = di+1 then
rJ (x, y) := 1, in other case rJ (x, y) := 0.

QJ (x) := 1 for all primitive concepts Q 6= P and x ∈ ∆J .

PJ (x) :=
min(q,val(AD,P ,W ))+val(AC,P ,W )

2
if x = dn.

PJ (x) := 1 if x 6= dn.

Let I be the gfp–model defined by J . From min(q, val(AD,P ,W )) > val(AC,P ,W ), it
follows that P I(dn) < q. Thus, dn is the only individual with a degree of membership
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into a primitive concept smaller than q. From the definition of J , it is not hard to
see that for all words V , ∀V.P I(d0) = P I(dn) iff V = W . Then, we know by Propo-
sition 3.2.3 that CI(d0) ≥ q and DI(d0) < q which directly implies that 〈C vgfp,T D
, q〉 does not hold.

ii) ⇒ i) Assume that 〈C vgfp,T D , q〉 does not hold, it means that there exists
a gfp–model I of T , and an individual d ∈ ∆I , such that CI(d) > DI(d) and
DI(d) < q. In addition, assume that for all primitive concepts P and words W ∈ Σ∗,
min(q, val(AD,P ,W )) ≤ val(AC,P ,W ). Next we show that following the previous as-
sumptions we can reach a contradiction.

Since from the assumptions we have that CI(d) > DI(d) and DI(d) < q, then we
know that there exist a q̂ ∈ [0, 1] such that CI(d) > q̂ > DI(d) and q̂ < q. Thus, by
the application of the Proposition 3.2.3 to q̂ > DI(d) we get that there exist a prim-
itive concept P̂ , a word Ŵ ∈ LAT (D, P̂ ) and an individual ê such that P̂ I(ê) < q̂,
(∀Ŵ .P̂ )I(d) = P̂ I(ê) and val(AD,P̂ , Ŵ ) > P̂ I(ê). But, since P̂ I(ê) < q̂ and q̂ < q we

get that min(q, val(AD,P̂ , Ŵ )) > P̂ I(ê). This, together with the last of the assump-

tions, results in val(AC,P̂ , Ŵ ) > P̂ I(ê).

Then, in the case of Ŵ ∈ LAT (C, P̂ ), since P̂ I(ê) < q̂, (∀Ŵ .P̂ )I(d) = P̂ I(ê) and
val(AC,P̂ , Ŵ ) > P̂ I(ê), we get by Proposition 3.2.3 that CI(d) < q̂ which is in contra-

diction with CI(d) > q̂ > DI(d). If Ŵ /∈ LAT (C, P̂ ), then val(AC,P̂ , Ŵ ) = 0 which

is in contradiction with val(AC,P̂ , Ŵ ) > P̂ I(ê). 2

Now we can reconsider the following. In the WSA A associated with the TBox
from the Example 2.2.14, it holds that min(0.4, val(AZ,G, c)) = min(0.4, 0.7) = 0.4 >
val(AK,G, c) = 0.3. Thus, taking into account the Lemma 3.2.4, we get directly that
〈K vgfp,T Z , 0.4〉 does not hold.

Definition 3.2.5. Let A = (Q,Σ, E, wt) be a WSA automaton; q1, q2 ∈ Q and p ∈
[0, 1]. By A≥p we denote the semi-automaton with words transitions (Q,Σ, E′), where
E′ := {e ∈ E| wt(e) ≥ p}.

Proposition 3.2.6. Let A = (Q,Σ, E, wt) be a WSA, q1, q2 ∈ Q and p ∈ (0, 1]. Then,
for all words W∈ Σ∗, W ∈ LA≥p(q1, q2) iff val(Aq1,q2 ,W ) ≥ p.

Proof
W ∈ LA≥p(q1, q2) iff there exists in A≥p a path l from q1 to q2 which is labeled by
W . By definition Definition 3.2.5 this is possible iff there exists in A, a path l′ ∈
paths(A,W, q1, q2) such that valA(l′) ≥ p, which can happen iff val(Aq1,q2 ,W ) ≥ p.2

Let T be a TBox, by weights(T ) we denote the set of weights that occur in the
terminological axioms of T . Formally, weights(T ) := {p | 〈C v D, p〉 ∈ T }

Lemma 3.2.7. Let T be a TBox and let A be the corresponding WSA associated with
T . Let C and D be atomic concepts occurring in T and q ∈ [0, 1], the following are
equivalent:

i)For all primitive concepts P and words W∈ Σ∗: min(q, val(AD,P ,W )) ≤ val(AC,P ,W )
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ii) For all primitive concepts P and for all p ∈weights(T ) ∪ { q} such that 0 < p ≤ q,
it holds that LA≥p(D,P ) ⊆ LA≥p(C,P ).

Proof
i) ⇒ ii)
Assume that ii) does not hold. This means that there exist a primitive concept P
and a positive weight p ≤ q such that LA≥p(D,P ) * LA≥p(C,P ). Then we know
that there exist a word W , such that W ∈ LA≥p(D,P ) and W /∈ LA≥p(C,P ), which
by Proposition 3.2.6 implies that val(AD,P ,W ) ≥ p and val(AC,P ,W ) < p. Thus,
min(q, val(AD,P ,W )) ≥ p > val(AC,P ,W ), which means that i) does not hold.

ii) ⇒ i)
Assume that i) does not hold. Then, there exists a primitive concept P and a word W
such that min(q, val(AD,P ,W ))> val(AC,P ,W ). Now we make p := min(q, val(AD,P ,W )),
and by applying the Proposition 3.2.6 it results that, W ∈ LA≥p(D,P ) and W /∈
LA≥p(C,P ). Thus, ii) does not hold. 2
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4 Complexity results

This small chapter is devoted to the analysis of the computational complexity of de-
ciding whether a concept is subsumed to a certain degree by another concept (see
Definition 2.2.20).

4.1 The gfp-Subsumption Problem

Next we rewrite the notion of subsumption of concepts as a decision procedure. In our
analysis we need to make use of an analogous complexity result that was shown for the
crisp Description Logic FL0 in [2, p.191]. Here, we make a clear distintion between the
crisp and the fuzzy cases by the name of each problem, i.e., GFP–SUBSUMPTION
and FUZZY GFP–SUBSUMPTION.

Problem: GFP–SUBSUMPTION
Input: A TBox T and two atomic concepts C,D.
Question: Does C vgfp,T D hold?

Problem: FUZZY GFP–SUBSUMPTION
Input: A TBox T , two atomic concepts C,D and a value q ∈ [0, 1].
Question: Does 〈C vgfp,T D , q〉 hold?

The proof of the following theorem can be found in [2, p.207]. In the proof of the re-
duction from GFP–SUBSUMPTION to FUZZY GFP–SUBSUMPTION we will make
use of it .

Theorem 4.1.1. Let T be a terminology and let AT be the corresponding semi-
automaton. Let C,D be concept names occurring in T . Subsumption in T can be
reduced to inclusion of regular languages defined by AT . More precisely,

C vgfp,T D iff L(D,P) ⊆ L(C,P) for all primitive concepts P.

In the following theorem the complexity of the FUZZY GFP-SUBSUMPTION problem
is stated. From it we can see that from a computaional complexity point of view, we
can regard FUZZY GFP-SUBSUMPTION and GFP–SUBSUMPTION as equivalent
problems.

Theorem 4.1.2. The FUZZY GFP-SUBSUMPTION problem is PSPACE-complete.

Proof
We proceed in two steps: First we show that the FUZZY GFP–SUBSUMPTION prob-
lem is in PSPACE. After that, the PSPACE-hardness is shown by a reduction from the
GFP–SUBSUMPTION problem, which is known to be in PSPACE-complete [2, p.191].

1) We have seen that by the combination of Lemma 3.2.4 and Lemma 3.2.7, the
FUZZY GFP-SUBSUMPTION problem can be reduced to inclusion of regular lan-
guages (defined by nondeterministic automata) in polynomial time. Since it is well-
known that the inclusion problem for regular languages defined in terms of nondeter-
ministic automata is PSPACE-complete [7, p.265], we also have that FUZZY GFP-
SUBSUMPTION is in PSPACE.

2) Let the TBox T0 together with the atomic concepts C0, D0 be an instance of
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the GFP- SUBSUMPTION problem. We construct an instance of FUZZY GFP-
SUBSUMPTION as follows:

T := {〈A v B, 1〉| where A = B is an axiom in T0}
C := C0

D := D0

q := 1

It is clear that this construction indeed creates an instance of the FUZZY GFP-
SUBSUMPTION problem and it can be done in time polynomial in the size of the
original instance of the GFP- SUBSUMPTION problem. Next we present two claims.
The first one is a direct result from the previous transformation and from the defini-
tions of semi-automaton associated with a TBox. The equivalence of the introduced
instances is shown in the second claim.

Claim 1: Let AT0 and AT be the corresponding semi-automaton of T0 and T re-
spectively. Let D̂ be an atomic concept of T0 and let P be a primitive concepts of T0.
For a word W, it holds thatW ∈ L(D̂, P ) in AT0 if and only if val(AD̂,P ,W ) = 1 in AT .

Claim 2: C vgfp,T0 D iff 〈C vgfp,T D, 1〉.
(⇒)Assume that 〈C vgfp,T D , 1〉 does not hold. Because of the Lemma 3.2.4, we know
that there exist a primitive concept P and a word W such that min(1, val(AD,P ,W ))
> val(AC,P ,W ). Now, since the only possible weights in AT are 0 or 1, we get that
val(AC,P ,W ) = 0 and val(AD,P ,W ) = 1. Thus, by applying the Claim 1 to C,P and
W we get that W /∈ L(C,P ); and by applying the Claim 1 to D,P and W we get that
W ∈ L(D,P ). Then, the last argument together with the Theorem 4.1.1, give us that
C vgfp,T0 D does not hold.
(⇐) Assume that C vgfp,T0 D does not hold; then because of the Theorem 4.1.1 we
know that there exist a primitive concept P and a word W such that W /∈ L(C,P )
and W ∈ L(D,P ). Now, by applying the Claim 1 to C,P and W we get that
val(AC,P ,W ) 6= 1, which actually means that val(AC,P ,W ) = 0. In the same way,
by applying the Claim 1 to D,P and W we get that val(AD,P ,W ) = 1. Thus, since
val(AC,P ,W ) = 0 and val(AD,P ,W ) = 1, following the Lemma 3.2.4, we have that
〈C vgfp,T D , 1〉 does not hold. 2
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5 Conclusions

In this thesis, we have considered the Subsumption Problem in the Fuzzy Description
Logic FL0 w.r.t. greatest fixed-point semantics. The main objective was to investigate
whether it is possible to obtain for this problem, an alternative characterization com-
pletely stated in terms of finite automata. In addition, the computational complexity
of this problem was investigated.

In Chapter 2 we gave a positive answer to the first question. To that purpose, we
proceeded in three steps: First, weighted automata over finite words was introduced
as the suitable formalism for the representation of TBoxes. This means that for a
given TBox we showed how to build a weighted automaton such that weighted runs
in the automaton correspond to dependencies of concepts in the TBox. Next, the
conditions under which the degree of membership of an individual in to a concept is
greater than a certain value was formally described. This was a useful tool for the
last step where it was shown that the Subsumption Problem in the Fuzzy FL0 can be
reduced to several tests of language inclusion. More specifically, from a given instance
of the Subsumption Problem we have a TBox, from this TBox we build an associated
weighted automaton and over the structure of this automaton we define the language
inclusion tests that we are interested in.

Starting from the new characterization it was also possible to show, in Chapter 3,
that the Subsumption Problem in the Fuzzy Description Logic FL0 is in PSPACE-
complete. On the one hand, the PSPACE-hardness was proved by a reduction from
the crisp version of our problem, which is known to be in PSPACE-complete [2]. On
the other hand, the main idea underlying the “in PSPACE” proof relies on the possibil-
ity of deciding inclusion of weighted automata through the inclusion of non-weighted
automata, which is known to be in PSPACE [7, p.265].

Finally, despite the computational complexity of the Subsumption Problem, we also
get some benefit. Because the given characterization is completely explained in terms
of inclusion of languages, which is a well known problem from automata theory, any
practical optimization developed for this problem is also inherited by our approach.
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