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1 Introduction and Motivation

Description logics are used in several applications, where we develop concrete knowledge
bases to represent different systems. Because there is a huge variety of description logics
with distinct properties, the applications are just as varied. Description logics are used for
example in the semantic web as a background for several ontology languages like OWL, for
ontology languages used in the Ontology Based Data Access or in medical applications.
But the real motivation to study description logics in fact is the following. Description
logics are beautiful. On the one hand they are closely connected to the wide area of modal
logics, that can look back to a long tradition. But at the same time description logics
are just beginning to emerge and therefore working in this field is vivid and also open to
twisted thoughts. One special point about the research on description logics is that it is
always working at a border, as for example the border of being as fast as possible for huge
data sources. There we have the small description logics, designed to handle large data
amounts in reasonable time. Or they work at the border of being as expressive as possible,
but still decidable to meet todays requirements on knowledge engineering. Many results
on description logics concern the question, whether a systems with specific properties is
decidable or computable with reasonable effort.
In summary we can say description logics evolve rapidly to be always close to the technical
possibilities of today and therein it is not a closed field. All this together is what makes
description logics exciting and special.

1.1 The Description Logics Based Action Formalism

Description Logics have been developed to represent knowledge closer to the human mind
than for example first order logics. The description logics based action formalism has
been introduced by Franz Baader, Carsten Lutz, Maja Miličić, Ulrike Sattler and Frank
Wolter in their article [BLM+05] and the accompanying report [BML+05]. Not only do
they introduce the formalism, they also show how to reduce the major inference problem
for actions called projection to a well studied problem for description logics, namely ABox
consequence. Thereby they determine the limits of this approach—limitations for the
underlying description logics and in the construction of the actions. Also they consider
only a simple ABox assertion as a consequence in the projection problem.
Since 2005 this theory evolved to stretch the limits for possible applications. One task in
this thesis will be to investigate, whether the reduction obtained in the report [BML+05]
also works for description logics which contain a so-called universal role. A universal role
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1 Introduction and Motivation

is given by a role name and a fixed interpretation. The challenge will be to determine the
influence of this role statement on the construction of the reduction.
The other question is to decide whether it is possible to replace the simple ABox assertion
by the more expressive concept of a query. We will try to extend the reduction idea to
projection with Boolean conjunctive queries. As a result we reduce projection with such
queries to entailment with unions of conjunctive queries.
Due to the speed and complexity of the research on description logics it is not easy to
mention all the work related to this thesis. There are a lot of books, articles and reports
that have influenced my studies. Most of the work will be introduced in the process when
it is first referred to. But there are of course books and articles with a major impact on
this thesis, I have used almost daily.
First of all there is the already mentioned article "Integrating Description Logics and Action
Formalisms: First Results", accompanied by a technical report from Franz Baader, Carsten
Lutz, Maja Miličić, Ulrike Sattler and Frank Wolter. Because it is the task of this thesis to
develop the there presented ideas further, this article is the one with the greatest influence
and by far the most quoted work of this thesis.
The Description Logics Handbook has to be mentioned here, because it is a good start if
you want to become familiar with the history and applications of, and reasoning in various
description logics. Most of the definitions used in this thesis are based on this book.
Last but not least there is one of the most inspiring books at all—the Handbook of Modal
Logics edited by Patrick Blackburn, Johan van Bentheim and Frank Wolter. This book
provides inspiration and background knowledge throughout this thesis, because it places
description logics in a rich and inspiring context of related work, where topics are treated
in a depth that is directly proportional to the weight of this book.

1.2 Overview

What all chapters of this thesis have in common is the direct relation to the article
[BLM+05] and the accompanying report [BML+05]. Every chapter makes a different at-
tempt to develop the therein developed description logics based action formalism further.
Subsequent to this introduction we provide the most important basics to understanding
description logics and the thereon based action formalism. Several reasoning problems
for different situations, whose investigation will be subject of the following chapters, are
introduced.
Chapter three focuses on the influence the universal role has on different description logics
reasoning tasks. We derive complexity statements for ABox consequence in presence of
a universal role and use this results as a base for a reduction from the action inference
problem projection to ABox consequence. At the end of the third chapter we pursue some
thoughts on the extension of this calculus.
In chapter four we replace the simple ABox assertion by a Boolean conjunctive query. Based
on the results from the third chapter and the reduction developed in the report [BML+05],
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1.2 Overview

we reduce projection with Boolean conjunctive queries to entailment with unions of con-
junctive queries. From this reduction we can derive decidability and complexity statements
for projection with Boolean conjunctive queries.
The last chapter then summarizes the thoughts and obtained results of this thesis. Further
we will point to possible next steps and the perspectives of a future work.
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2 Description Logics Preliminaries

The roots of description logics go back to the 1970s when the connection between semantic

networks and knowledge representation was investigated. The terminus description logics

came up already in the 1980s with the introduction of concept descriptions and a TBox
formalism, used to abbreviate complex concept descriptions. Since then the theory evolved
rapidly, as for example with the tableau based algorithms a new algorithmic paradigm for
efficiently treating propositionally closed description logics has been introduced. Current
research concerns very expressive description logics which are used in applications like the
Semantic Web. Otherwise we are interested in basic properties of smaller description logics
to be able to handle very large knowledge bases [BCM+03,vHvHLP07].
Description logics consist of concepts, which are the expressions of this language used to
build statements. Further essential elements of description logics are individual names, role
names and a knowledge base, containing the terminological structure. The expressions of
description logics are built from atomic concepts and atomic roles using concept and role
constructors. The basic propositionally closed description language is called ALC, which
is an acronym for attributive language with complement. It plays an essential role as a
basis which can be extended by several constructors, where the resulting language will be
named by concatenation of the corresponding letters. Description logics have on the one
hand an easy to understand building structure that can be extended in different directions
and are on the other hand very powerful. Powerful here means, they are a subset of FOL,
extending propositional logics, while still being complete and decidable.
This chapter contains the basic definitions we are going to use through this thesis. We
start with the formal definition of the syntax and semantics of description logics and several
reasoning problems for these logics. Then we present the description logics based action
formalism and two reasoning problems, namely executability and projection for this action
formalism.

2.1 The Formal Definition of Description Logics

We start with the formal definition of the syntax and semantics of ALC and the several
constructors to extend the expressiveness of ALC, i.e. nominals, inverses, qualified number
restriction and we establish a universal role. Further we give the notion of a TBox and
an ABox and specify how they cover the terminological knowledge and the assertions of
an application. Afterwards we introduce three reasoning tasks for description logics. Most
of the formulations and problems in this sections are inspired by or included from the
Handbook [BCM+03] and the article [BLM+05].
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2.1 The Formal Definition of Description Logics

2.1.1 Syntax and Semantics

The syntax of ALC is given by inductively defined concepts and with the participation of
additional constructors.
Definition 2.1. Let NC be a countably infinite set of concept names, NR be a countably
infinite set of role names and NI be a countably infinite set of individual names, where we
understand the sets NC , NR and NI to be disjoint.
The concept descriptions in ALC are defined as follows:

C,D −→ A | > | ⊥ | ¬C | C uD | C tD | ∀r.C | ∃r.C

where A ∈ NC is called atomic concept and r ∈ NR.
ALC can be extended by the use of various concept constructors. In the following we
present the syntax of all fragments L of the description logic called ALCQIOU . The
availability of the corresponding constructors is indicated by concatenation of letters.
The letter O indicates the availability of nominals, i.e individuals occurring in concept
definitions, where for all a ∈ NI there is a concept {a} available. The letter Q represents
qualified number restriction. For C ∈ NC , r ∈ NR and n ∈ N the following concepts are
available

C −→ (≥ n r C) | (≤ n r C)
where the first rule defines at least and the second rule defines at most number restriction.
Further the letter I denotes the availability of inverse roles, where we require r− ∈ NR for
each r ∈ NR. When ALC is extended by adding a distinguished role element U to NR this
is indicated by the superscript U .
Some concept definitions can be given in terms of others. We first define the boolean
standard abbreviations for concepts A,B ∈ NC :

A→ B :⇐⇒ ¬A tB, A↔ B :⇐⇒ (A→ B) u (B → A)

The next four given concepts are used frequently in description logics.
∃r.C :⇐⇒ (≥ 1 r C), ∀r.C :⇐⇒ (≤ 0 r ¬C),
> :⇐⇒ A t ¬A, ⊥ :⇐⇒ ¬>

These concepts express value restriction and existential restriction in terms of qualified
number restriction. The two concepts below introduce the top and the bottom concept.
The next definition introduces the formal semantics for description logics based on inter-
pretations.
Definition 2.2. An interpretation I is a pair (∆I , .I) where ∆I is a non empty set, called
domain of I and .I is the interpretation function, assigning to each concept name A ∈ NC

a set AI ⊆ ∆I and to each role name r ∈ NR a binary relation rI ⊆ ∆I × ∆I . The
extension of the interpretation function to the previously defined concept descriptions is
given in Figure 2.1.
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2 Description Logics Preliminaries

Name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅
negation ¬C ∆I\CI
conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

value restriction ∀r.C {d ∈ ∆I | ∀e.(d, e) ∈ rI → e ∈ CI}
existential restriction ∃r.C {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}
inverse role r− {(d, e) | (e, d) ∈ rI}
universal role U ∆I ×∆I

nominal {a} {a}I = {aI}
at least number restriction (≥ n r C) {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ rI ∧ b ∈ CI}| ≥ n}
at most number restriction (≤ n r C) {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ rI ∧ b ∈ CI}| ≤ n}

Figure 2.1: Semantics of concept and role constructors.

Remark 2.3. When determining complexity some results differ whether they are made
under the assumption of unary coding of numbers in number restrictions. A natural number
n ∈ N is encoded in unary by listening n times the digit 1 followed by the delimiter symbol
0 and therefore unary coding uses n + 1 bits. In comparison coding a number in binary
needs blog(n + 1)c + 1 bits. If we consider a binary coded number, the unary coding of
the same number is of exponential size. As a consequence we can assume (≥ n r C) and
(≤ n r C) to be of the size n+ 1 + |C| if numbers are codes in unary. Although one would
not really use unary coding, some complexity bounds for reasoning problems in description
logics only hold under this requirement.

2.1.2 The Terminological and Assertional Formalism

The formal definition of a concept language is supplemented by the terminological and
assertional formalism. It describes the ontology and the initial state of the world. Ter-
minological knowledge is the intentional knowledge of a system making statements how
concepts or roles are related to each other. Its characteristics is timelessness, means it is
not supposed to change.
In defining the TBox we make a difference between a general TBox and its restriction to
an acyclic TBox. Acyclic concept definitions build new concepts based on already existing
concepts, neither defined in terms of themselves, nor in terms of other concepts, that
indirectly refer to them.

Definition 2.4. Let C, D be concepts, R, S roles. Then

C v D, R v S

C ≡ D, R ≡ S

6



2.1 The Formal Definition of Description Logics

are terminological axioms. Axioms of the first kind are called general concept inclusions,
abbreviated by GCI, whereas axioms of the second kind are called equalities. An equality
whose left-hand side is an atomic concept is a concept definition. A concept name is called
defined concept if it occurs on the left hand side of a concept definition and primitive

concept otherwise.
A general TBox is a finite set of general concept inclusions and the restriction to a finite
set of concept definitions is called TBox. Note that a concept definition C ≡ D can be
represented by the two GCIs C v D and D v C. A concept name A directly uses a concept
name B w.r.t a TBox T if there is a concept definition A ≡ C ∈ T with B occurring in C.
Let uses be the transitive closure of directly uses. Then a TBox T contains a terminological

cycle if there is a concept name that uses itself w.r.t. T . If a TBox containing only concept
definitions and thereby no terminological cycle is called acyclic TBox.

The interpretation based semantics for description logics, as introduced in Definition 2.2
for concept names, binary relations and concept descriptions can be continued to TBoxes.
There are basically three approaches of this continuation that became largely accepted,
namely the least and the greatest fixpoint semantics and descriptive semantics. The con-
tinuation of semantics to TBoxes has been subject of research in the 1990s, an introduc-
tion and comparison by Bernhard Nebel can be found in [Neb91]. For general and acyclic
TBoxes we use descriptive semantics, which is very intuitive because it is based on first
order logics semantics.

Definition 2.5. An interpretation I satisfies a GCI A v C if AI v CI and we write
I |= A v C. For concept definitions with the above representation follows A ≡ C if
AI ≡ CI . I is a model of the TBox T if it satisfies all concept definitions in T , we write
I |= T . The set of all models of a TBox T is denoted byM(T ).

Individuals, conceptual membership or role relationships are covered by the ABox where
the initial properties of and relationships between these individuals are presented. These
properties are meant to change and therefore dependency of circumstances and contingency
are characteristics of the assertional knowledge. So we introduce the ABox to give an actual
snapshot of what is known about the world at a concrete time.

Definition 2.6. Let a, b ∈ NI , C a concept, r ∈ NR then

C(a), r(a, b), ¬r(a, b)

are ABox assertions, where assertions of the first kind are called concept assertions and
the other two kinds of assertions are called positive or negated role assertion respectively.
An assertion of the form A(a), ¬A(a) or r(a, b), ¬r(a, b), where A ∈ NC a concept name
and r ∈ NR\{U} a role name, is called literal. In conclusion an ABox A is a finite set of
assertions.

To assign a semantics to ABoxes, we have to extend the interpretations introduced in Def-
inition 2.2 to individual names. Note that because the ABox describes an initial state, the
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2 Description Logics Preliminaries

semantics of ABoxes usually follows the open world assumption. It is represented by many
different interpretations, namely all its models. This means the absence of information in
an ABox only indicates a lack of knowledge, so an ABox can have several models which
may vary in content.
Definition 2.7. An Interpretation I = (∆I , .I) maps each individual name to an element
aI ∈ ∆I . As usual in description logics we adopt the unique name assumption which states
a 6= b⇒ aI 6= bI and is abbreviated by UNA.
The interpretation I satisfies the concept assertion C(a) if aI ∈ CI , we write I |= C(a).
Further I satisfies the role assertion r(a, b), if (aI , bI) ∈ rI and we write I |= r(a, b) . The
interpretation I satisfies the negated role assertion ¬r(a, b) if (aI , bI) /∈ rI , in this case we
write I |= ¬r(a, b). An interpretation I is a model of an ABox A, abbreviated by I |= A,
if I satisfies all assertions in A. The set of all models of an ABox A is denoted byM(A).
Mostly one is interested in the interaction between the terminological and the assertional
knowledge. So these both parts together form the so-called knowledge base.
Definition 2.8. For a TBox T and an ABox A we set K := (A, T ) and call K a knowledge

base. We introduced the continuation of semantics introduced on concepts and roles to the
ABox and TBox by descriptive semantics. If an interpretation I is is a common model of
the knowledge base K := (A, T ) then we say I is a model of an ABox A w.r.t. a TBox T .
Remark 2.9. Descriptive semantics admits classic negation, i.e. an ABox assertion ϕ is
mapped to the double negation ¬¬ϕ. For every model I of a knowledge base K we have
I |= ϕ ⇐⇒ I |= ¬¬ϕ.
The following example illustrates the different components of description logics. It will
be about a circle of friends connected by a friendship relationship, introduced also to be
continued later.
Example 2.10. For the sets of individuals, roles and concept names let

{Paul, Anna, Selma, Tom,Karl} :⊂ NI ,

{friend, U} :⊂ NR,

{human, happy} :⊂ NC .

The TBox contains a single definition stating, that those humans who have a human friend
are of the defined concept happy.

T := {happy ≡ human u ∃friend.human}

The ABox introduces the connection through the role friendships and membership in the
concept humans for the individuals.

A := {friend(Paul, Anna),¬friend(Anna, Selma),
human(Paul), human(Anna), human(Selma), human(Tom)}

8



2.1 The Formal Definition of Description Logics

Let us consider the following interpretation.

∆I := {Paul, Anna, Selma, Tom, Karl, Henri, Toto}

where the interpretation function is defined in the following way:

humanI := {Paul, Anna, Selma, Tom, Henri}
friendI := {(Paul,Anna), (Anna,Paul), (Paul,Henri), (Henri,Paul), }
happyI := {Anna,Paul,Henry}

UI := ∆I ×∆I .

For a description logics with nominals available let

PaulI := Paul, SelmaI := Selma, AnnaI := Anna, T omI := Tom, KarlI := Karl.

Obviously the interpretation I is a common model of A and T . Because this example
will be continued later we give all the important details in a short overview in Figure 2.2.
The grey nodes represent elements of the set humanI and the dark grey nodes symbolize
membership in the interpretation of the defined concept happy.

Selma

Paul Anna

Toto Karl

Henri Tom

UI

friendI

friendI

Figure 2.2: Interpretation I

2.1.3 Description Logics Reasoning Tasks

We introduce four important reasoning problems for description logics, which will play an
important role in the reduction and the complexity analysis we are going to derive in the
next chapter.

Definition 2.11. Let C be a concept, A an ABox and T a TBox.

9



2 Description Logics Preliminaries

Concept satisfiability: C is satisfiable w.r.t. the TBox T if there exists an interpretation I
that is a model of both C and T .
TBox satisfiability: A TBox T is satisfiable if there exists a model of T .
ABox consistency: A is consistent w.r.t. the TBox T if there exists an interpretation I
that is a model of both A and T .
ABox consequence: An ABox assertion ϕ is a consequence of an ABox A w.r.t. a TBox T ,
or A, T |= ϕ if every model of A and T satisfies ϕ.

In the next chapter we will gain a deeper understanding about the connection between
these problems considered in the different sublanguages of ALCQIOU .

2.2 Introducing an Action Formalism for Description
Logics

The idea of logically specifying dynamical systems has been introduced by John McCarthy
more than 50 years ago now, but has been developed further to one of the most popular
dynamical system in logics, namely the situation calculus established 1991 by Raymond
Reiter [Rei01]. Since then the situation calculus is inspiration and background for many
applications, like the logic programming language GOLOG in the field of artificial intelli-
gence. The description logics based action formalism is not only inspired by Reiters work,
it can be translated to the situation calculus. This translation is based on two recursive
mappings, which carry ALCQIO concepts over to a formula in one of two free object vari-
ables x or y and one free situation variable s, whereat this rests upon standard translation
of description logics into first order logics. In contrast to the situation calculus, which is
based on full first-order logic with all the accompanying problems, description logics is a
decidable fragment of first-order logic. But similarly to the situation calculus the design of
a description logics based action theory involves some difficulties. Applying a set of actions
within given domain constraints might have wanted or unwanted side effects. Dealing with
side effects in an action formalism is called considering the ramification problem.
By now the description logics based action formalism has evolved in different ways. First
introduced 2005 in the article [BLM+05], actions based on description logics where defined
with pre- and post-conditions and supplemented by so-called occlusions. The authors
have also proven the decidability of the major inference problem named projection for
all sublanguages of ALCQIO and the corresponding complexity bounds could be given.
But the derived results worked only for acyclic TBoxes and very restricted post-conditions
with the result, that the ramification problem has been avoided. In such a setting the
interpretations of primitive concepts and roles uniquely determine the whole interpretation
and therefore no side effects are to be expected.
Later the article [BLL10b] and the corresponding report [BLL10a] could give a formal-
ism, which contains general TBoxes and solves the ramification problem by introducing
causal relationships. Then this ideas have been abstracted 2013 in the article [BZ13a] and
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2.2 Introducing an Action Formalism for Description Logics

the accompanying report [BZ13b] where the authors presented a so-called effect function,
intended to pick up all possible side effects.

2.2.1 The Definition of the Action Formalism

To develop the theory of actions we merge the definitions given in [BML+05], [BLL10a]
and [BZ13b]. For a first understanding we point to the mentioned article [BZ13a], where
an overview, that establishes the association of an action formalism and description logics,
is given. To form an action formalism based on description logics the following ingredients
are necessary:

• The domain constraints given as a TBox T ;

• An incomplete description of the initial world given by an ABox A;

• A finite set of action names denoted by Σ;

• A finite set of relevant ABox assertions denoted by D.

An abstract action will be called by letter α, β ∈ Σ. The set of literals contained in D
is described by the set Lit. We further require A ⊆ D and the set D to be closed under
negation. When we work within the setting of actions for acyclic TBoxes the set D plays
a minor role, because it collects only assertions explicitly given by the pre- and post-
conditions of actions and the ABox. It will be shown in this section, how the set D can
be generated if no creative work to solve the ramification problem is necessary. However,
when defining a description logics action theory with regard to general TBoxes the major
design process has to be laid in the construction of D.
Let us formulate the straight forward definition of a concrete action without occlusions we
will favour in this thesis and take a deeper look how the later to be defined effect function
works together with this approach.

Definition 2.12. Let T be an acyclic TBox T . An atomic action

α = (pre,post)

for T consists of a finite set pre of ABox assertions, the pre-conditions, a finite set post of
post-conditions of the form ϕ/ψ where ϕ is an ABox assertion and ψ is a primitive literal,
i.e. a literal restricted to primitive concepts. A composite action for T is a finite sequence
α1, . . . , αk of atomic actions {α1, . . . , αk} ⊆ Σ for T .

To define a semantics of actions w.r.t. acyclic TBoxes, let D be the set of assertions
occurring in the initial ABox and in the pre- and post-conditions of action descriptions.
Remember the set D is closed under negation. The literals in D are supposed to specify
how an action changes the actual world and the semantics of actions should reflect how
the application of an action changes the world. Altogether the semantics will determine,
how the application of an action transforms an interpretation I into an interpretation I ′.

11



2 Description Logics Preliminaries

Definition 2.13. Let Σ be the set of action names, D be the set of relevant assertions
with Lit ⊆ D the set of literals occurring in D, and T the TBox specifying the domain
constraints. The effect function E : Σ ×M(T ) → 2Lit w.r.t. Σ, D and T is a partial
function. If the function E is defined for a pair (α, I) ∈ Σ×M(T ) and for such an I holds
I |= pre we say α is applicable to I. Otherwise we say α is not applicable to I.

Let D be the set of relevant assertions, Lit ⊆ D the set of literals in D. For every α ∈ Σ,
the effect function induces a binary relation ⇒Eα onM(T ).

Definition 2.14. Let E : Σ ×M(T ) → 2Lit be an effect function w.r.t. Σ, D and T .
Then for I, I ′ ∈M(T ) we have I ⇒Eα I ′ iff the following conditions are satisfied:

1. ∆I = ∆I′ and aI = aI
′ for all a ∈ NI .

2. AI′ :=
(
AI ∪ {aI | A(a) ∈ E(α, I)}

)
\{aI | ¬A(a) ∈ E(α, I)} for all A ∈ NC

3. rI′ :=
(
rI ∪ {(aI , bI) | r(a, b) ∈ E(α, I)}

)
\{(aI , bI) | ¬r(a, b) ∈ E(α, I)}

for all r ∈ NR.

For I, I ′ ∈M(T ) with I ⇒Eα I ′ we say α may transform the model I into the model I ′.
Let α1, . . . , αk ∈ Σ and E : Σ ×M(T ) → 2Lit the effect function w.r.t. Σ, D and T . We
say the composite action α1, . . . , αk may transform I to I ′ and write I ⇒Eα1,...,αk

I ′ if there
are models I0, . . . , Ik ∈M(T ) with I = I0, I ′ = Ik and Ii−1 ⇒Eαi

Ii for 1 ≤ i ≤ k.

Let us complete this definitions by some remarks.
Remark 2.15. The effect function is given as a function of an abstract action α ∈ Σ and an
interpretation I ∈ M(T ). If we have a concrete action α = (pre,post) with α ∈ Σ, A ABox,
T acyclic TBox and I ∈ M(T ), we can directly define the mapping E : Σ×M(T )→ 2Lit
by setting

E(α, I) := {ψ | ϕ/ψ ∈ post ∧ I |= ϕ} (2.1)
If such a function E is defined for a pair α and I and I |= pre then α is applicable to I.
We obtain for an interpretation I ∈ M(T ), the concept names A ∈ NC , the role assertions
r ∈ NR and a, b ∈ NI :

A(a) ∈ E(α, I) ⇐⇒ ϕ/A(a) ∈ post ∧ I |= ϕ

¬A(a) ∈ E(α, I) ⇐⇒ ϕ/¬A(a) ∈ post ∧ I |= ϕ

r(a, b) ∈ E(α, I) ⇐⇒ ϕ/r(a, b) ∈ post ∧ I |= ϕ

¬r(a, b) ∈ E(α, I) ⇐⇒ ϕ/¬r(a, b) ∈ post ∧ I |= ϕ

Obviously, with the effect function given by (2.1), Definition 2.14 states the same transition
of an interpretation I to an interpretation I ′ as the definition of the semantics of actions
given by Lemma 9 in the report [BML+05].
The next remark considers the effect function for concrete composite actions.

12
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Remark 2.16. Let α1, . . . , αn be a concrete composite action, where for 1 ≤ i ≤ n the
αi = {prei, posti} are concrete actions, A be an ABox, T an acyclic TBox and let further
I0, . . . , In ∈ M(T ) be interpretations. The set of relevant assertions D now contains not
only the ABox A but all assertions from pre1, . . . , pren to post1, . . . , postn. As supposed
by definition, the set D has to be closed under negation and the set Lit contains all literals
occurring in D. For a composite action α1, . . . , αn we construct only one effect function
E : Σ × M(T ) → 2Lit and therefore the notation I0 ⇒Eα1,...,αn

In for interpretations
I, . . . , In ∈M(T ) is justifiable. This function E can be defined for every pair (αi, Ii−1) by
(2.1).
The last remark concerns both, abstract and concrete actions.
Remark 2.17. If for the composite action α1, . . . , αn for a TBox T and interpretations
I0, . . . , In ∈ M(T ) with I0 ⇒Eα1,...,αn

In we know additionally, that for all 1 ≤ i ≤ n the
action αi is applicable to Ii−1 we say the composite action α1, . . . , αn is applicable to the
interpretation I0.
The authors of [BML+05] state the determinism of the action formalism without occlu-
sions and restricted to acyclic TBoxes and primitive literals. They also give a hint where
determinism fails due to semantic or computational problems. For the action formalism
given in [BZ13b] these limits could be extended, because in this setting for a given action
α and a model I ∈ M(T ) there is at most one I ′, such that I ⇒Eα I ′. This means the
transition of an interpretation I ∈ M(T ) to an interpretation I ′ ∈ M(T ) triggered by
an action α ∈ Σ and given by a function E : Σ ×M(T ) → 2Lit is deterministic even for
general TBoxes.

2.2.2 The Basic Reasoning Tasks for Actions

First we consider the possibility, that for I ∈ M(T ) and an action α ∈ Σ there exists no
I ′ with I ⇒Eα I ′.

Definition 2.18. Let α ∈ Σ, A an ABox, D the set of relevant assertions, Lit ⊆ D the
set of literals contained in D and E : Σ×M(T )→ 2Lit the effect function.
The action α is called consistent w.r.t. the TBox T if, for every I ∈ M(T ) to which α is
applicable, there is an interpretation I ′ ∈M(T ) such that I ⇒Eα I ′. Otherwise α is called
inconsistent with I.
If an action α, given for a TBox T , is applicable to an interpretation I ∈ M(T ) and not
inconsistent with I we say α transforms the interpretation I to an interpretation I ′.

Note that an action α is inconsistent with an interpretation I if and only if there exists
ψ ∈ Lit with {ψ,¬ψ} ⊆ E(α, I). For concrete actions this is the case if and only if there
are ϕ1/ψ, ϕ2/¬ψ ∈ post and I |= ϕ1, ϕ2.
Beside the question of consistence of actions, the article [BLM+05] introduces two im-
portant reasoning problems for reasoning within knowledge bases. We want to formulate
them in terms of actions with effect functions and start with the definition of the inference
problem named executability.

13
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Definition 2.19. Let T be an acyclic TBox, α1, . . . , αk ∈ Σ a composite action, A an
ABox, D the set of relevant assertions, Lit ⊆ D the set of literals contained in D and
E : Σ×M(T )→ 2Lit the effect function.
The composite action α1, . . . , αk is executable in A w.r.t. T if the following conditions are
true for all I ∈ M(A) ∩M(T ):

• α1 is applicable to I,

• for all i with 1 ≤ i < k and all interpretations I ′ with I ⇒Eα1,...,αi
I ′ the action αi+1

is applicable to I ′.

Remark 2.20. For concrete composite actions α1, . . . , αn, where for 1 ≤ i ≤ n we have
αi = {prei, posti} and all interpretations I ∈ M(A) ∩ M(T ) this corresponds to the
following requirements. The interpretation I |= pre1 and for all interpretations I ′ with
I ⇒Eα1,...,αi

I ′ we have I ′ |= prei+1.
Consider the composite action α1, . . . , αn. It is executable to an ABox A w.r.t. a TBox T
if and only if for all I ∈ M(T ) we know α1, . . . , αn is applicable to I and I |= A.
The next definition introduces the major inference problem named projection.

Definition 2.21. Let T be an acyclic TBox, α1, . . . , αk ∈ Σ a composite action, A an
ABox, D the set of relevant assertions, Lit ⊆ D the set of literals contained in D and
E : Σ×M(T )→ 2Lit the effect function w.r.t. Σ, D and T .
The assertion ϕ is a consequence of applying α1, . . . , αk in A w.r.t. T if for all models
I ∈ M(A) ∩M(T ) and all I ′ with I ⇒Eα1,...,αk

I ′ we have I ′ |= ϕ.

The following statement establishes a relationship between the above defined reasoning
problems for concrete actions.

Lemma 2.22. Executability and projection can be reduced in polynomial time to each

other.

We adopt the proof of Lemma 11 in [BML+05] but present it in terms of application
of actions given by the effect function, because this proof gives a compact example for
understanding actions for TBoxes and inference problems for actions and knowledge bases.

Proof. Let α1, . . . , αn ∈ Σ and for 1 ≤ i ≤ n let αi = (prei, posti) be a concrete composite
action for the acyclic TBox T , D the set of relevant assertions, Lit ⊆ D the set of literals
contained in D and E : Σ × M(T ) → 2Lit the effect function. The composite action
α1, . . . , αn is executable in A w.r.t. T if and only if

1. α1 is applicable to every model I ∈ M(A) ∩M(T ).

2. For 1 ≤ i < n all assertions in prei+1 are consequences of applying α1, . . . , αi in A
w.r.t. T .

14
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Condition two obviously is a projection problem and condition one can be seen as a pro-
jection problem for the empty action (∅, ∅).

Conversely assume we want to know whether ϕ is a consequence of applying α1, . . . , αn in
A w.r.t. T . We consider the composite action β1, . . . , βn, β ∈ Σ with βi := (∅, posti) for
1 ≤ i ≤ n and β := ({ϕ}, ∅). Then ϕ is a consequence of applying α1, . . . , αn in A w.r.t.
T if and only if β1, . . . , βn, β is executable.

Remark 2.23. Recently it has become important in some applications of the description
logics based action formalism to consider only action theories for which all actions are
consistent. This is hardly a difference to the approach presented in this thesis, because
this requirement can be reflected by minimally changing a few definitions. It should be
noted in this context, that the authors of the article [BZ13a] consider only consistent
actions and we point to comparing the definitions given in this article and in [BLM+05].
The effect function from Definition 2.13 can be defined for α ∈ Σ with α = {pre, post}
and interpretations I ∈ M(T ) which yield I |= pre only. In this context an action α is
applicable to I if and only if the function E is defined for α and I.
In Definition 2.14 we then require the action α to be applicable and consistent, which influ-
ences the semantics of actions and the transition I ⇒Eα I ′. As a result of this changes the
inference problem executability becomes a condition for the projection problem. Compare
the design of the projection problem from the article [BLM+05] and Definition 2.21, where
the satisfiability of the pre-conditions is not of interest. In practice only well constructed,
means consistent action theories are considered and therefore the projection problem will
mostly be defined under the assumption of executability. Lemma 2.22 yields the polyno-
mial reducibility of executability and projection as given in [BLM+05]. This had originally
been motivation to consider the projection problem only. But of course it also justifies the
mentioned changes in the definitions and the combination of both inference problems. As
a consequence it is a question of taste or necessity, whether we consider the satisfiability of
pre-conditions a requirement in the definition of a semantics of actions and the projection
problem. In practice one mostly chooses the newer versions, which are provided in [BZ13a].
One of the aims of this thesis is the extension of the results from [BLM+05] and therefore
here the earlier definitions are adopted.

In the next chapter we bring all the previous definitions and thoughts together to derive
complexity bounds and formulate a reduction theorem. Before we start, let us close this
introduction and envision actions and reasoning problems by continuing Example 2.10.

Example 2.24. Let A, T , I = (∆I , .I) be as defined in Example 2.10.
Let α1 = (pre1, post1), α2 = (pre2, post2) ∈ Σ with

pre1 := pre2 := {human(Tom)}

15
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post1 := {friend(Paul, Anna)/friend(Anna, Tom),
friend(Anna, Paul)/friend(Tom,Anna)}

post2 := {¬friend(Paul,Karl)/human(Karl)}

be two actions for T and I. The set D contains A, pre1, pre2 and the assertion from the
post-conditions post1 and post2. Additionally D is closed under negation but nothing else.
Lit is the set of literals in D. Let further E : Σ×M(T )→ 2Lit, where

E(α1, I) := {friends(Anna, Tom), friends(Tom,Anna)}
E(α2, I1) := {human(Karl)}

The actions α1 and α2 are executable in A w.r.t T . Clearly I ∈ M(A) ∩ M(T ) and
for all I1, I2 with I ⇒Eα1 I1, I ⇒Eα1,α2 I2 we know pre1 = pre2 = {human(Tom)} with
I1 |= {human(Tom)} and I2 |= {human(Tom)}. Therefore α1 and α2 are applicable to I.
The interpretation I1 is illustrated in Figure 2.3. Note that only I1 meets all requirement
from Definition 2.14, namely condition one to three and being a model for T . Interpretation

Selma

Paul Anna

Toto Karl

Henri Tom

UI1

friendI1

friendI1

friendI1

Figure 2.3: Interpretation I1

I2 is illustrated in Figure 2.4.
Let us consider β ∈ Σ with

β := ({human(Tom)}, {¬friend(Paul,Karl)/happy(Karl)}).

The composite action α, β is not applicable to I, because β does not meet the condition,
that happy(Karl) is a primitive literal. But the composite action α, β gives rise to showing
a perspective given by the more abstract approach. What is disturbing the determinism
and existence of a successor interpretation I2 is the fact, that all members of the set happyI1
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Selma

Paul Anna

Toto Karl

Henri Tom

UI2

f riendI2

f riendI2

f riendI2

Figure 2.4: Interpretation I2

need to be member of the set humanI1 and have to be related to an element of the set
humanI1 by the role friendI1 . This problems can be solved within the effect function.

E(β2, I1) := {happy(Karl), human(Karl), friend(Karl, Anna)}

This construction would require human(Karl) and friend(Karl, Anna) to be relevant
assertions, which is not the case in the setting we assume in this thesis.
Last but not least we give an example considering the projection problem. Let Toto ∈ NI

and ϕ := (∃U.(∀friend.{Selma})) (Toto). The question is whether ϕ is a consequence
of applying α1, α2 in A w.r.t. T . By definition this is the case if for all interpretations
J ∈ M(A) ∩M(T ) and all J ′ ∈ M(T ) with J ⇒Eα1,α2 J

′ we have J ′ |= ϕ. This is the
case if

TotoJ
′ ∈ (∃U.(∀friend.{Selma}))J

′
.

Consider J := I. In Figure 2.4 we observe the set of Selmas friends in ∆I2 and therefore
also the set (∃U.(∀friend.{Selma}))I2 is empty and so I2 6|= ϕ for all individuals in NI .
Therefore ϕ is not a consequence of applying α1, α2 in A w.r.t. T because there exists a
model, namely I with I |=Eα2,α2 I2 and I2 6|= ϕ.
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3 The Action Formalism for DLs
Admitting a Universal Role

In this chapter we investigate the influence of the universal role on the description logics
based action formalism. Despite the fact that the universal role is provided in one of the
most popular description logics, namely SROIQ, universality is not the most current
subject of interest in the field of description logics. Syntactically the universal role is
introduced by a special role name and its semantics is given by a fixed interpretation.
Because this interpretation always links all elements of the domain, the universal role can
be considered a kind of top role in analogy to the top concept. Beside this, the universal role
is one of the most simple possibilities to make global statements. Where global statements
are such declara beeing true for each element of the interpretation domain. Recent research
concerns more involved global properties like transitivity, but as we will observe most of the
description logics that make global statements contain a universal role. We will see further
adding universality to a description logic increases the complexity of reasoning problems
in most of the cases.
Our task in this chapter now is to include the universal role in the description logics action
formalism and to derive complexity statements for the inference problem projection. To
achieve this, the chapter consists of two parts. Where we first look at the general influence
of the universal role and its position in the world of description logics we make the above
mentioned observation on increasing complexity. The second part then contains the major
work. We will reduce the action reasoning problems executability and projection to the
results for ABox consequence obtained in the first part. In doing so we orient ourselves
on Theorem 14 from the report [BML+05]. All together this chapter contains various
complexity results for reasoning within description logics admitting a universal role.

3.1 Complexity Results for Description Logics admitting a
Universal Role

The aim of this section is to derive statements about the complexity class containing ABox
consequence in all fragments of ALCQIOU that include nominals and a universal role.
Much is known about description logics containing a universal role U one way ore another,
but things are different if we directly postulate the existence of such an U . To obtain
complexity results about a special fragment of ALCQIOU our argumentation therefore
follows a certain pattern. We consider several logics whose complexity is well studied and
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that contain the description logic of interest, or are contained in it respectively. This way
we cannot only touch on various fields of description logics but encircle the complexity of
different reasoning tasks. More concrete this means we try to evaluate the complexity of
several reasoning problems in fragments of ALCQIOU by transferring results from other
description logics. To understand the techniques used in doing so we give a brief overview
about the complexity theory used in this chapter.

3.1.1 Brief Review of Complexity Theory

Many tasks in computational logics deal with the question whether there exists an algo-
rithm, which solves a given problem. Moreover we ask, how fast this algorithm is at best.
The answer to this question is sometimes given by the reduction of one problem to another
one for which there exists an algorithm that solves the problem. If this reduction, that
takes problem A as input and maps it to problem B, is polynomial in the size of the input
than problem A is said to be polynomial reducible to Problem B.
The definition of a complexity class considers several parameters. First there is the model
of computation, then we distinguish between deterministic and nondeterministic mode
and we also look at the resource wished to be bound, basically time and space. For an
introduction to this broad field and the proves of the general statements on complexity
theory we refer the to the book [Pap94].
Figure 3.1 shows the hierarchy of the complexity classes used in this thesis. Note that some

decidable

co-NExpTime NExpTime

ExpTime

PSpace

co-NP NP

P

Figure 3.1: Hierarchy of complexity classes.

of these classes are only supposed to be unequal, but so far there exists no proof. What we
know by the time hierarchy theorem is that P ( ExpTime and NP ( NExpTime, so at
least one of the inclusions in Figure 3.1 must be real. What we do not know is one of the
unsolved questions of computational complexity theory, namely the question whether P
equals NP. It is also unknown for which of the inclusions NP ⊆ PSpace ⊆ ExpTime ⊆
NExpTime equality holds or can be excluded respectively.

19



3 The Action Formalism for DLs Admitting a Universal Role

The class co-NP, depicted in Figure 3.1, is the class of complements of problems in NP. In
computational complexity a decision problem B is the complement of problem A if whenever
for a given input the answer is yes for A then the answer for B is no. The complement of a
complexity class is the set of all complement problems of a given class. For deterministic
complexity classes it is known that they equal their complement class. Whereas equality
of the complement classes remains an open problem for the non-deterministic classes NP
and NExpTime.

3.1.2 General Results

In the first chapter we introduced several reasoning problem for description logics. These
tasks are of course related to each other in various ways and their complexity depends on
the description logics they are considered in. We want to start our considerations with a
little lemma we quote from [BML+05]. It considers the complexity of ABox consistency
and ABox consequence.

Lemma 3.1. ABox inconsistency and ABox consequence are of the same complexity.

The proof can be found in detail in [BML+05]. Therein it is shown ABox consequence can
be polynomially reduced to ABox consistency with negated role assertions and vice versa.
Then ABox consistency with negated role assertions is polynomially reduced to ABox
inconsistency without such assertions. Note that ABox inconsistency is the complement
problem of ABox consistency.
The next lemma is adopted from Chapter 2 of the book [BCM+03]. It deals with the
relationship between concept satisfiability and ABox consequence.

Lemma 3.2. Within the presence of nominals concept satisfiability and ABox consistency

are polynomial reducible to each other.

In this thesis we only need to consider reasoning problems for description logics containing
nominals and therefore the above stated reducibility is of special interest. Without nom-
inals available the lemma is not necessarily true, because ABox consistency may be more
difficult than concept satisfiability. This follows from the equivalence of ABox consistency
and a problem called instance checking observed in Chapter 2 of the book [BCM+03] and
the complexity calculations in [DLNS94]. In presence of nominals the proof can be given
as an easy consideration and the quotation of a prominent theorem.

Proof. Clearly concept satisfiability can be reduced to ABox consistency without any fur-
ther restriction on the underlying DL, because a concept C is satisfiable if and only if the
ABox {C(a)} is consistent for an arbitrary a ∈ NI .

Within the presence of nominals in a description logic Theorem 3.7 in [Sch94] shows ABox
consistency is polynomial reducible to concept satisfiability.
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3.1.3 Complexity Results with Universal Role

The main question of this section is how the influence of the universal role U will be
reflected in the complexity bounds of the inference problem ABox consequence in several
description logics. The universal role is not just an arbitrary role but a very powerful tool.
When added to ALC it can be used to define the concept ∀U.C = (≤ 0 U ¬C), which
is satisfiable if and only if C is globally satisfiable. Where C is global satisfiable if there
exists an interpretation I such that CI = ∆I . Another well known observation, which is
for example provided in the book [BL06], is that the universal role can be used to translate
a general TBox T into a single concept CT . Let

CT := ∀U.
l

DvE∈T

¬D t E

Because the proof of the two implications I |= T ⇒ CIT = ∆I and CIT 6= ∅ ⇒ I |= T
can be found in [BL06] as well, satisfiability in ALCU w.r.t. general TBoxes is reducible
to satisfiability in ALCU w.r.t. the empty TBox. A consequence of the above observations
now is the loss of the possibility to obtain a PSpace-algorithm for reasoning within ALCU
and beyond. ForALC ExpTime-hardness of concept satisfiability w.r.t general TBoxes has
originally been proven in [Sch91]. Another interesting proof, that uses the above mentioned
relation of the universal role and global concept satisfiability, is given by Theorem 3.18
in [Tob01]. We put this fact to record by the following lemma.

Lemma 3.3. ABox consequence in ALCU is ExpTime-hard.

Proof. The ExpTime-hardness of concept satisfiability w.r.t. general TBoxes for ALC
transfers to ExpTime-hardness of concept satisfiability for ALCU w.r.t acyclic TBoxes
with the above given internalisation. By the proof of Lemma 3.2 we obtain ExpTime-
hardness of ABox consistency and by Lemma 3.1 ExpTime-hardness of ABox consequence
in ALCU .
Note that Lemma 3.3 holds w.r.t. the empty TBox as well as w.r.t. general TBoxes
because of the possibility to internalize a TBox in presence of a universal role.

To transfer complexity results from other DLs we point to the following observation. A
universal role U is implicitly contained in many description logics based on ALC. As
discussed in the book [BCM+03], the universal role can be simulated by a role U∗ that is
universal w.r.t. a terminology T . Let for example U∗ be the reflexive transitive closure of
all roles and possible inverse roles occurring in T , then U∗ is universal w.r.t. T . Such an U∗
is contained in ALCreg, which is ALC admitting regular expressions over roles, i.e. union,
composition, role identity and the Kleene operator. From the simulation of a universal
role by U∗ in ALCreg we can derive several upper bounds for reasoning in fragments LU of
ALCQIOU .
Another possibility to construct an U∗ which is universal w.r.t. a TBox T , is defining U∗
to be transitive and contain all roles and possible inverse roles occurring in T . In this case

21



3 The Action Formalism for DLs Admitting a Universal Role

upper bounds for complexity results would transfer from SH, the extension of ALC with
transitive roles and role hierarchy.
With this notes on reasoning problems and the universal role we start our considerations on
the complexity of ABox consequence in fragments of ALCQIOU . As the interplay of role
constructors and qualified number restriction needs special care we first give the following
lemma about the two fragments of ALCQIOU , that contain nominals and a universal role
but not qualified number restriction.

Lemma 3.4. ABox consequence in ALCOU and ALCIOU is ExpTime-complete.

Proof. The lower bounds follow from the ExpTime-hardness of ABox consistence in ALCU
presented in Lemma 3.3.
In the Description Logics Handbook [BCM+03] Diego Calvanese and Giuseppe De Giacomo
argue concept satisfiability in ALCIOreg is ExpTime-complete. They reduce ExpTime-
decidability of concept satisfiability inALCIOreg to concept satisfiability inALCIreg by re-
ferring to the PhD thesis [Gia95] and the article [GL94]. ExpTime-decidability of concept
satisfiability in ALCIreg is then deduced from Theorem 5.18 in the book [BCM+03], which
states ExpTime-completeness of concept satisfiability in ALCQIreg. This result goes back
to the correspondence between ALCreg and PDL, first published by Klaus Schild in the
report [Sch91], but not only his work, see the notes in Section 5.2.3 of the book [BCM+03].
From Lemma 3.1 and Lemma 3.2 we obtain the polynomial reducibility of concept satis-
fiability to ABox consequence in presence of nominals which yields the upper bound that
proves this lemma.

Reasoning with qualified number restrictions in combination with special roles needs closer
consideration and is a matter of research for its own. In most of the cases the universal role
is excluded from qualified number restrictions. For example in any extension of ALCQreg
and SHQ complex roles are in general not allowed to occur in qualified number expressions.
With regard to this discussion we split the lemma about the remaining two fragments
ALCQOU and ALCQIOU , where we first consider the restriction that U is not occurring in
qualified number restriction. Note that parts of this lemma only hold under the assumption
of numbers coded in unary.

Lemma 3.5. Assume the universal role U is not occurring in qualified number restriction.

Then ABox consequence in

1. ALCQOU is ExpTime-complete;

2. ALCQIOU is co-NExpTime-complete if unary coding of numbers in the input is

assumed.

Proof. The lower bound for the first statement follows from the ExpTime-hardness of
ABox consequence in ALCU given in Lemma 3.3.
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From Corollary 4.13 of the article [Tob00] we know concept satisfiability in ALCQIO is
NExpTime-complete1, which yields together with Lemma 3.1 and Lemma 3.2 the lower
bound for the second statement.
Analogously to concept satisfiability in ALCIOreg Diego Calvanese and Giuseppe De Gi-
acomo argue in The Description Logic Handbook [BCM+03], that concept satisfiability
in ALCQOreg is polynomial reducible to concept satisfiability in ALCQreg by quoting the
PhD thesis [Gia95] and the article [GL94]. ExpTime-decidability of concept satisfiability
in ALCQreg follows again from Theorem 5.18 in the book [BCM+03] which states Exp-
Time-completeness of concept satisfiability in ALCQIreg. From Lemma 3.1 and Lemma
3.2 we obtain the polynomial reducibility of concept satisfiability to ABox consequence in
presence of nominals which yields the upper bound for point one.
From Corollary 6.31 in [Tob01] we know satisfiability of SHOIQ-concepts is NExpTime-
hard. The problem is NExpTime–complete if unary coding of numbers in the input is
assumed. Together with Lemma 3.1 and Lemma 3.2 this yields the upper bounds for the
second item and completes the proof.

This also completes the collection of results for all fragments of ALCQIOU containing
nominals and the universal role, but excluding the universal role from qualified number
restriction.
In his thesis [Tob01] Stephan Tobies investigated the extension of several fragments of
ALCQIO with boolean roles. A so-called ALCQIBO-role expression is build from normal
roles using role intersection, role union and role complement. Obviously the universal role
can be simulated in ALCQIBO by a role U∗ := r ∪ ¬r for an arbitrary r ∈ NR. In
ALCQIBO the role U∗ is allowed to occur within qualified number restriction. This is not
self-evident but the result of a long discussion. Based on the results for ALCQIBO we
start our considerations on ALCQOU and ALCQIOU .
Lemma 3.6. Assume the universal role U is allowed to occur in qualified number restric-

tions. Then ABox consequence in ALCQIOU is co-NExpTime-complete if unary coding

of numbers in the input is assumed.

Proof. The lower bound follows from point 2 in Lemma 3.5.
From Corollary 5.31 in [Tob01] we know satisfiability of ALCQIBO-concepts is NExp-
Time-hard. The problem is NExpTime–complete if unary coding of numbers in the input
is assumed. Together with Lemma 3.1 and Lemma 3.2 this yields the upper bounds and
completes the proof.

The case ALCQOU is more involved.
Lemma 3.7. Assume the universal role U is allowed to occur in qualified number restric-

tions. Then ABox consequence in ALCQOU is ExpTime-hard and in co-NExpTime if

unary coding of numbers in the input is assumed.

1This border also holds under the assumption of binary coding, because ALCQIO can be translated to

C2, the two variable fragment of first order logic with counting quantifiers, see for example [BML+05].

From [PH05] we know satisfiability in C2 is in NExpTime even for binary coding of numbers.
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3 The Action Formalism for DLs Admitting a Universal Role

Proof. Obviously the lower bound follows from Lemma 3.5 and Lemma 3.6 gives the upper
bound.

An approach to investigate the gap in Lemma 3.7 is the introduction of so-called CBoxes
from [Tob01].

Definition 3.8. Let n ∈ N and C a concept, then a cardinality restriction is of the form
(≤ n C) or (≥ n C). A finite set of cardinality restrictions is called CBox.
An interpretation I = (∆I , .I) satisfies a cardinality restriction (≤ n C) or (≥ n C) iff
|CI | ≤ n, or |CI | ≥ n respectively. An interpretation I satisfies a CBox C if I satisfies all
cardinal restrictions in C.

The notion of cardinality restrictions is motivated by the following lemma, which proves
the universal role can be used to simulate cardinality restrictions in presence of qualified
number restriction.

Lemma 3.9. The cardinality restriction (≤ n C) is satisfiable if and only if the qualified

number restriction (≤ n U C) is satisfiable, where U is the universal role.

Proof. Let I be an interpretation. Then (≤ n C)I is true if and only if (≤ n U C)I is true
because for 4 ∈ {≤,≥} we know (4 n U C)I = {a ∈ ∆I | |CI | 4 n}.

This enables us to express a cardinality restriction as an ALCQU concept. As an important
consequence we can use the universal role to transform a CBox into a single concept.

Lemma 3.10. CBox satisfiability for ALCQ is polynomial reducible to concept satisfiability

in ALCQU .

The proof is similar to the proof of Lemma 5.32 in [Tob01].

Proof. Let C be anALCQ-CBox. We transfer C into a singleALCQU -concept CC by setting

CC ≡
l

(≤ n C)∈C

(≤ n U C) u
l

(≥ n C)∈C

(≥ n U C)

Claim 3.11. The concept CC is satisfiable if and only if the CBox C is satisfiable.

Let C be satisfiable with I interpretation for C. Then by definition the interpretation I
satisfies all (≤ n C) ∈ C and all (≥ n C) ∈ C and thus by Lemma 3.9 I satisfies CC.
Let I be an interpretation for the concept CC. Then by definition I satisfies all conjuncts
of CC and thus by Lemma 3.9 the interpretation I satisfies all (≤ n C) ∈ C and all
(≥ n C) ∈ C.

Because Lemma 3.10 is true for all concepts occurring in cardinality restriction and roles
are not part of cardinality restriction, we get the following corollary.
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3.2 Deciding Executability and Projection with Universal Role

Corollary 3.12. Let L ∈ {ALCQ, ALCQU , ALCQO, ALCQOU , ALCQI, ALCQIU ,
ALCQIO, ALCQIOU}. Then CBox satisfiability in L is polynomial reducible to concept

satisfiability in LU .

This is of course especially true in case L ∈ {ALCQO,ALCQOU}. The next lemma
combines the complexity results from Corollary 5.8 and Corollary 5.20 in [Tob01]. Together
with the previous argumentation this cannot completely fill the gap in Lemma 3.7, but it
will be at least a hint how to proceed in this direction.

Lemma 3.13. CBox-satisfiability in ALCQO is ExpTime-complete if unary coding of

numbers is assumed. Satisfiability of ALCQ-CBoxes is NExpTime-hard if binary coding

is used to represent numbers in cardinality restrictions.

The first fact confirms together with Corollary 3.12 the lower from Lemma 3.7 under the
assumption of unary coding. But the second fact shows at least for binary coding, that
ABox consequence in ALCQOU cannot be decided in ExpTime.
This closes our considerations on the complexity of ABox consequence in presence of a
universal role.

3.2 Deciding Executability and Projection with Universal
Role

In the first chapter a Description Logics based action theory and one of the most important
inference problems for an action formalism, namely the projection problem, have been
introduced. One of the most important challenges in working with an action formalism
is finding practical solutions for this problem. For the description logics action formalism
mainly two different ideas are investigated. On the one side is the so called regression
approach. An ABox assertion ϕ, supposed to be a consequence of applying a composite
action to an interpretation, is together with the pre- and post-conditions developed into
one possibly huge formula. This formula is then asked to hold w.r.t. the initial ABox and
TBox.
The approach this thesis is going to follow, has been introduced 2005 in the article
[BLM+05]. Here a so-called reduction ABox and TBox are constructed from the input,
i.e. the initial ABox and TBox and the pre- and post-conditions of the composite action.
Time stamped copies of all relevant concept and role names of the input are with the
intense use of nominals supposed to simulate the application of a composite action to an
interpretation. The Abox assertion ϕ is then asked to hold w.r.t. this modified ABox and
TBox.
What the two ideas have in common is the reduction of the projection problem to the
well known question of ABox consequence. In practice there exist implementations of this
projection procedure for both approaches. For a detailed introduction and comparison of
the algorithms we recommend the article [YLL+12].
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3 The Action Formalism for DLs Admitting a Universal Role

The centrepiece of the idea to develop the ABox and TBox together with the composite
action into a so-called reduction ABox and TBox is given by Theorem 14 in the report
[BML+05]. It proves that the complexity of executability and projection for a fragment
L of ALCQIO coincides with the complexity of ABox consequence in LO, the extension
of L with nominals. In this section we want to improve the constructions this theorem
includes. We ask if Theorem 14 from [BML+05] holds for every fragment L of ALCQIOU .
Before we start to implement the previous thoughts on the reduction from reasoning with
actions to ABox consequence we want to prepend the main theorem we are going to prove
in the following.

Theorem 3.14. Let L be a fragment of ALCQIOU . Then projection of composite actions

formulated in L can be polynomially reduced to ABox consequence in LO w.r.t. acyclic

TBoxes.

The inspiring idea from [BML+05] is to define an ABox and a TBox, called Ared and
Tred, such that each single model of them encodes a sequence of interpretations I0, . . . , In
obtained by applying α1, . . . , αn in A. The assertion ϕ will be encoded in an appropriate
assertion ϕred. The proof of Theorem 3.14 then directly follows from a technical lemma,
which states that ϕ is a consequence of applying the actions α1, . . . , αn in A w.r.t. T if
and only if ϕred is a consequence of Ared w.r.t. Tred.
The design of the reduction ABox and the reduction TBox has to satisfy several require-
ments. We want the I0 component of a reduction model J to be a model of A and each
Ii should satisfy the post-conditions posti. The TBox Tred has to ensure for 0 ≤ i ≤ n
that each Ii is a model of T . Last but not least we need to describe, that no individual or
concept is supposed to change unless this is triggered by an action. We have to transform
the dynamic process of applying actions into the static problem of ABox consequence. This
will be a central point in the design of the reduction ABox and TBox. We need to ensure by
Ared and Tred that only the changes triggered by the actions occur in the encoded sequence
of the interpretations I1, . . . , In. The clue here is the distinction between so-called named
and unnamed elements. We encode the appliance of actions on the named elements in Ared

and the appliance of actions on unnamed elements in Tred. All this requirements will be
reflected in the following definitions.

3.2.1 Preliminaries

For a fragment LOU of ALCQIOU let A be an ABox, α1, . . . , αn a composite action with
αi = (prei, posti) for 1 ≤ i ≤ n, T an acyclic TBox and ϕ0 an assertion.
For a role assertion ϕ0 both r(a, b) and ¬r(a, b) can be replaced with (∃r.{b})(a) and
(∀r.¬{b})(a) respectively where {a} and {b} are nominals. If ϕ0 = C(a) with C not a
concept name, we add a concept definition A0 ≡ C to the TBox T and consider ϕ = A0(a).
Therefore we can assume w.l.o.g. that ϕ0 is of the form A0(a0) for a concept name A0.
We call A, T , α1, . . . , αn and ϕ0 the input, Ared the reduction ABox, Tred the reduction

TBox and ϕred the reduction assertion.
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3.2 Deciding Executability and Projection with Universal Role

To define the TBox Tred we have to make the above mentioned distinction between named
elements and unnamed ones. Let I = (∆I , ·I) be an interpretation. An element x ∈ ∆I
is called a named element of I if for some a ∈ NI used in the input we have aI = x.
Otherwise we call x ∈ ∆I an unnamed element.
Let N be an auxiliary concept name, denoting the set of individual names used in the
input, which are mapped to named elements of interpretations. Let Sub be the smallest set
containing all concepts occurring in the input and being closed under taking subconcepts.
Finally the labelled concepts and roles are to be introduced. For every C ∈ Sub and every
0 ≤ i ≤ n let T (i)

C be a concept name.
For every 0 ≤ i ≤ n let A(i) be an auxiliary concept name for every primitive concept name
A used in the input. For 1 ≤ i ≤ n the A(i) represent AIi restricted to the named elements.
Since concept membership of unnamed elements never changes the unnamed part of AIi

can be found in A(0).
For every 0 ≤ i ≤ n let r(i) be an auxiliary role name for every role name r 6= U used in
the input. For 1 ≤ i ≤ n the r(i) will represent rIi restricted to role relationships where
both involved domain elements are named. The role relationships of unnamed elements
are recorded in r(0).
Let Obj be a set of individual names used in the input and let ahelp be an auxiliary
individual with ahelp /∈ Obj.
Further for every 0 ≤ i ≤ n let U (i) be an auxiliary role name representing ∆Ii × ∆Ii .
Note that mapping U (i) to the full relation in every component is disturbing the intention
to cover only role relationships between named elements in the components labelled by
1 ≤ i ≤ n. But it certainly corresponds to the nature of a universal role.
Now, well equipped with this preparations we can give the definition of Tred and Ared. We
basically follow [BML+05] augmented with concept definitions and assertions reflecting the
addition of the universal role and the introduction of the effect function to the definition
of an action.
The reduction TBox Tred consists of several components. The first component states, that
every interpretation of a concept N contains exactly the named elements.

TN := {N ≡
⊔

a∈Obj

{a}}

The TBox component TSub, given in Figure 3.2, contains one concept definition for every
0 ≤ i ≤ n and every C ∈ Sub, which is not a defined concept name in T . These concept
definitions ensure T (i)

C stands for the interpretation of C after the application of α1, . . . , αi.
In the construction of TSub the concept A(i) only represents the extension of A in the ith
interpretation for the named elements. So, to get to the full extension T (i)

A , we have to use
A(i) for the named elements and A(0) for the unnamed ones. The idea of splitting can also
be recognized for role relationships in the lines (3.1) and (3.2) of Figure 3.2 .
Because of the addition of the universal role U the lines (3.3) to (3.6) have been added
to TSub. They reflect the fact, that the interpretation of U never changes and U ranges
over the whole domain. We need two different rules for the universal role, depending on
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T
(i)
A ≡ (N u A(i)) t (¬N u A(0)) if A is primitive in T

T
(i)
¬C ≡ ¬T (i)

C

T
(i)
CuD ≡ T

(i)
C u T

(i)
D

T
(i)
CtD ≡ T

(i)
C t T

(i)
D

T
(i)
(≥m r C) ≡

N u ⊔
0≤j≤m

(≥ j r(i) (N u T (i)
C )) u (≥ (m− j) r(0) (¬N u T (i)

C ))


t
(
¬N u (≥ m r(0) T

(i)
C )

)
(3.1)

T
(i)
(≤m r C) ≡

N u ⊔
0≤j≤m

(≤ j r(i) (N u T (i)
C )) u (≤ (m− j) r(0) (¬N u T (i)

C ))


t
(
¬N u (≤ m r(0) T

(i)
C )

)
(3.2)

T
(i)
(≥m U C) ≡

(
≥ m U (i) T

(i)
C

)
(3.3)

T
(i)
(≤m U C) ≡

(
≤ m U (i) T

(i)
C

)
(3.4)

T
(i)
∀U.C ≡

(
∀U (i).T

(i)
C

)
(3.5)

T
(i)
∃U.C ≡

(
∃U (i).T

(i)
C

)
(3.6)

Figure 3.2: The concept definitions in TSub.

whether we allow U to occur in number restriction, which will subsume existential and
value restriction, or not. In the first case the lines (3.3) and (3.4) of Figure 3.2 will be
part of TSub and in the other case we add the lines (3.5) and (3.6) to TSub.

Now we can join Tred:

Tred := TSub ∪ TN ∪ {T (i)
A ≡ T

(i)
E | A ≡ E ∈ T , 0 ≤ i ≤ n}
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The reduction ABox Ared also consists of several components. We first introduce abbrevi-
ations for 0 ≤ i ≤ n to simplify Ared. Note that this version differs from the construction
given in [BML+05], because we can benefit from the universal role.

pi(C(a)) := ∃U.({a} u T (i)
C )

pi(r(a, b)) := ∃U.({a} u ∃r(i).{b})
pi(¬r(a, b)) := ∃U.({a} u ∀r(i).¬{b})

The first component ofAred formalizes the satisfaction of the post-conditions. For 1 ≤ i ≤ n
let

A(i)
post = {ahelp : (pi−1(ϕ)→ pi(ψ)) | ϕ/ψ ∈ posti)}.

The next component of Ared formalizes the minimisation of changes on named elements.
For 1 ≤ i ≤ n the ABox A(i)

min contains the following assertions:

• for every a ∈ Obj and every primitive concept name A

a :

(A(i−1) u
l

ϕ/¬A(a)∈posti

¬p(i−1)(ϕ))→ A(i)



a :

(¬A(i−1) u
l

ϕ/A(a)∈posti

¬p(i−1)(ϕ))→ ¬A(i)


• for all a, b ∈ Obj and every role name r ∈ NR

a :

(∃r(i−1).{b} u
l

ϕ/¬r(a,b)∈posti

¬p(i−1)(ϕ))→ ∃r(i).{b}



a :

(∀r(i−1).¬{b} u
l

ϕ/r(a,b)∈posti

¬p(i−1)(ϕ))→ ∀r(i).¬{b}


The following component of Ared ensures the first interpretation I0 of the encoded sequence
is a model of A.

Aini := {T (0)
C | C(a) ∈ A} ∪ {r(0)(a, b) | r(a, b) ∈ A} ∪ {¬r(0)(a, b) | ¬r(a, b) ∈ A}

We can now assemble Ared:

Ared := Aini ∪ A(1)
post ∪ . . . ∪ A

(n)
post ∪ A

(1)
min ∪ . . . ∪ A

(n)
min
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3 The Action Formalism for DLs Admitting a Universal Role

Finally we define the reduction assertion:

ϕred := T
(n)
A0 (a0)

This completes the preliminaries we need to state the reduction lemma proving Theorem
3.14. But before we discuss the influence of the universal role on our action formalism we
want to continue Example 2.10 to support an understanding of the construction of time
stamped concepts evolving the named elements only.

Example 3.15. Recall in Example 2.10 we defined a circle of friends, the interpretation
I and the two actions

α1 := ({human(Tom)}, {friend(Paul, Anna)/friend(Anna, Tom),
friend(Anna, Paul)/friend(Tom,Anna)})

α2 := ({human(Tom)}, {¬friend(Paul,Karl)/human(Karl)}).

In this context Paul, Anna, Selma, Tom, Karl ∈ ∆I are the named elements of I and
the unnamed elements of I are Henri, Lisa and Toto from ∆I . Therefore everything that
concerns Henri can always be found in the zero-part of the concept and role names. We
can compare the evolution of these elements in Figures. 2.2, 2.3 and 2.4 as well.
The concept name N is used to denote the set of individuals that are mapped to named
elements by I:

N ≡ {Paul} t {Anna} t {Selma} t {Tom} t {Karl}

The concept names human(0), human(1) and human(2) evolve from the concept name
human by applying α1 and α2.

human(0) ≡ {Paul} t {Anna} t {Selma} t {Tom} t {Henri}
human(1) ≡ {Paul} t {Anna} t {Selma} t {Tom}
human(2) ≡ {Paul} t {Anna} t {Selma} t {Tom} t {Karl}

3.2.2 Considerations on Ared

In the report [BML+05] abbreviations named pi have been defined by the use of auxiliary
roles ra and an auxiliary individual ahelp with ahelp /∈ Obj. Where for each individual name
a ∈ NI there is an auxiliary role ra added to NR, which connects each individual name
with a and only with a:

Aaux := {(∃rb.{b} u ∀rb.{b})(a) | a ∈ Obj ∪ {ahelp}, b ∈ Obj}

pi1(C(a)) := ∀ra.T (i)
C
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3.2 Deciding Executability and Projection with Universal Role

The auxiliary role names can be replaced by the universal role U , because by definition U
connects all individuals with each other.

pi(C(a)) := ∃U.({a} u T (i)
C )

Note that with the use of nominals the assertion r(a, b) can be replaced by (∃r.{b})(a) and
the assertion ¬r(a, b) by (∀r.¬{b})(a) with {a}, {b} nominals. So the definition of pi and
pi1 covers role assertions and negated role assertions respectively.
The abbreviation pi is intended to indicate concept or role membership in the ith interpre-
tation, i.e. after the appliance of α1, . . . , αi to a given interpretation I. This is motivated
by the following calculations.
Recall that Obj ∪ {ahelp} ⊆ NI and therefore (Obj ∪ {ahelp})I ⊆ ∆I . Further we know
∆I 6= ∅ by definition and ahelp ∈ Obj ∪ {ahelp}, so Obj ∪ {ahelp} 6= ∅.

pi1(C(a))I =
(
∃U.({a} u T (i)

C )
)I

= {d ∈ ∆I | ∃e.(d, e) ∈ UI ∧ e ∈ ({a} u T (i)
C )I}

= {d ∈ ∆I | ∃e.(d, e) ∈ ∆I ×∆I ∧ e = aI ∧ aI ∈ (T (i)
C )I)}

= {d ∈ ∆I | (d, aI) ∈ ∆I × {a}I ∧ aI ∈ (T (i)
C )I)},

pi(C(a))I =
(
∀ra.T (i)

C

)I
= {d ∈ ∆I | ∀e.(d, e) ∈ rIa → e ∈ (T (i)

C )I}
= {d ∈ ∆I | ∀e.(d, e) ∈ (Obj ∪ {ahelp})I × {a}I → e ∈ (T (i)

C )I}
= {d ∈ ∆I | (d, aI) ∈ (Obj ∪ {ahelp})I × {a}I → aI ∈ (T (i)

C )I}

This shows pi1 and pi equally indicate membership in the ith interpretation. Let us make
note of an equivalence that is a direct consequence of the above calculations.

pi1(C(a))I 6= ∅ ⇐⇒ pi(C(a))I 6= ∅ ⇐⇒ aI ∈ (T (i)
C )I (3.7)

3.2.3 Reducing Projection with Universal Role to ABox Consequence

The reduction stated in Theorem 3.14 directly results from the construction of the ABox
Ared, the TBox Tred and the following lemma.

Lemma 3.16. Let α1, . . . , αn ∈ Σ, T TBox, A ABox and ϕ an ABox assertion. Further

let Ared, Tred, ϕred be constructed from A, T and ϕ as given in the previous section. Then

the following holds:

ϕ is a consequence of applying α1, . . . , αn in A w.r.t. T iff Ared, Tred |= ϕred.

We will outline the ideas of the indirect proof of Lemma 15 from [BML+05] and show the
reduction holds for all fragments LU of ALCQIOU
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Proof. We start giving some abbreviations used in the proof. Let Con denote the set of
concept names occurring in the input, Prim the concept names from the input which are
primitive in T , Rol the set of role names occurring in the input, ObjI for I interpretation
the set {aI | a ∈ Obj} and Assert the set of assertions occurring in the input.
Further let D be the set of relevant assertions, Lit ⊆ D the set of literals contained in D
and E : Σ×M(T )→ 2Lit the effect function w.r.t. Σ, D and T .
⇒:
Assume Ared, Tred 6|= ϕred. So there exists an interpretation J such that J |= Ared,
J |= Tred but J 6|= ϕred = T

(n)
A0 (a0). It is to show under this assumption the assertion

ϕ = A0(a0) is not a consequence of applying α1, . . . , αn in A w.r.t. T . This is achieved by
giving interpretations I0, . . . , In ∈M(T ) such that for 1 ≤ i ≤ n we have Ii−1 ⇒Eαi

Ii and
In 6|= A0(a0).
For 0 ≤ i ≤ n the interpretations Ii are constructed from J :

∆Ii := ∆J

aIi := aJ for a ∈ Obj
AIi := (T (i)

A )J for A ∈ Con
rIi :=

(
(r(i))J ∩ (NJ ×NJ )

)
∪
(
(r(0))J ∩ (∆J × (¬N)J ∪ (¬N)J ×∆J )

)
for r ∈ Rol\U

UIi := (U (i))J = ∆J ×∆J = ∆Ii ×∆Ii

According to Definition 2.14 applying an action α transforms a model I into a model I ′
and both models share the same domain. This is important here, because the universal
role U is defined to be always the full relation.
The next claim can be found in the proof of Lemma 15, given as Claim 1 in the report
[BML+05] It collects some technical equivalences where, based on this claim, it can be
shown for all 0 ≤ i ≤ n that Ii ∈ M(T ), I0 |= A and I0 ⇒Eα1,...,αn

In holds for the above
defined interpretations.

Claim 3.17. For 0 ≤ i ≤ n the following holds:

1. If a ∈ Obj, then aIi ∈ AIi ⇐⇒ aJ ∈ (A(i))J , for all A ∈ Prim.
If x /∈ ObjJ , then x ∈ AIi ⇐⇒ x ∈ (A(0))J , for all A ∈ Prim.

2. a) If a, b ∈ Obj then, for all r ∈ Rol\U : (aIi , bIi) ∈ rIi ⇐⇒ (aJ , bJ ) ∈ (r(i))J

If x /∈ ObjJ or y /∈ ObjJ then, for all r ∈ Rol\U :
(x, y) ∈ rIi ⇐⇒ (x, y) ∈ (r(0))J

b) If a, b ∈ Obj then: (aIi , bIi) ∈ UIi ⇐⇒ (aJ , bJ ) ∈ (U (i))J

If x /∈ ObjJ or y /∈ ObjJ then: (x, y) ∈ UIi ⇐⇒ (x, y) ∈ (U (0))J
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3. EIi = (T (i)
E )J for every E ∈ Sub

4. Ii |= ϕ ⇐⇒ J |= (pi(ϕ))(a) for all ϕ ∈ Assert and a ∈ Obj ∪ {ahelp}

Proof. We only proof the facts added due to the use of the universal role. For completeness
we refer to the report [BML+05]. Note that in comparison to the mentioned Claim 1 the
second point is split in two cases. This follows from the necessity to show the interpretations
for r = U fall into place.

2.b) Let a, b ∈ Obj and x /∈ ObjJ or y /∈ ObjJ . Then for 0 ≤ i ≤ n:

(aIi , bIi) ∈ UIi = ∆Ii ×∆Ii ⇐⇒ (aJ , bJ ) ∈ (U (i))J = ∆Ii ×∆Ii

(x, y) ∈ UIi = ∆Ii ×∆Ii ⇐⇒ (x, y) ∈ (U (0))J = ∆I0 ×∆I0

3. The equality is shown by structural induction on E. So the components (3.3) and
(3.4) or (3.5) and (3.6) respectively of TSub are missing cases.

First let E = (≥ m U C). Then for 0 ≤ i ≤ n we can evaluate:

(≥ m U C)Ii = {a ∈ ∆Ii | |{b ∈ ∆Ii | (a, b) ∈ UIi ∧ b ∈ CIi}| ≥ m}
= {a ∈ ∆J | |{b ∈ ∆J | (a, b) ∈ (U (i))J ∧ b ∈ (T (i)

C )J }| ≥ m}

=
(
≥ m U (i) T

(i)
C

)J
=
(
T

(i)
(≥m U C)

)J
This holds, because for all 0 ≤ i ≤ n we can apply the definition of U (i) and induction
on CIi . Further we know ∆Ii = ∆J by definition. The last line reflects the definition
of an interpretation of the at least number restriction and the last step follows from
line (3.3) in the definition of TSub.

E = (≤ m U C) can be shown similar to the previous case.

Let E = (∀U.C). With the same argumentation as above and line (3.5) we have for
0 ≤ i ≤ n

(∀U.C)Ii = {d ∈ ∆Ii | ∀e.(d, e) ∈ UIi → e ∈ CIi}
= {d ∈ ∆J | ∀e.(d, e) ∈ (U (i))J → e ∈ (T (i)

C )J }

=
(
∀U (i).T

(i)
C

)J
=
(
T

(i)
∀U.C

)J
E = (∃U.C) can be shown similar to the previous case.

4. For ϕ ∈ Assert and a ∈ Obj ∪ {ahelp} we know by definition

J |= (pi(ϕ))(a) ⇐⇒ aJ ∈ (pi(ϕ))J .
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3 The Action Formalism for DLs Admitting a Universal Role

Without loss of generality let ϕ = C(b) for C ∈ Con and b ∈ Obj ∪ {ahelp}, see in
Section 3.2.1 the comment on ϕ0, then for 0 ≤ i ≤ n

aJ ∈ (pi(C(b)))J =
∆J ⇐⇒ bJ ∈ (T (i)

C )J

∅ else.

This follows from the definition of pi and the equivalence in (3.7). For 0 ≤ i ≤ n

we know bIi = bJ ∈ (T (i)
C )J from the definition of Ii and (T (i)

C )J = CIi by the third
point of this claim. Summing up we obtain

J |= (pi(ϕ))(a) ⇐⇒ bIi ∈ CIi ⇐⇒ Ii |= C(b) = ϕ.

This completes the proof of the claim.

With Claim 3.17 we can show the above defined interpretations work as intended. The
proof outlines the ideas from the report [BML+05] where also missing details can be found.
In contrast to the original version we are using the notion of the effect function. We will
pay a special attention to the resulting differences.

I0 |= A follows from J |= Aini and point two and three of Claim 3.17. For 0 ≤ i ≤ n we
have Ii ∈ M(T ) because J |= {T (i)

A ≡ T
(i)
E | A ≡ E ∈ T , 0 ≤ i ≤ n} and point three of

Claim 3.17.

Let α1, . . . , αn be given for 1 ≤ i ≤ n by αi = (posti, prei). Then for all 1 ≤ i ≤ n and all
ϕ/ψ ∈ posti Equation (2.1) and Remark 2.16 give the effect function such that

Ii−1 |= ϕ⇒ ψ ∈ E(αi, Ii−1).

The implication Ii−1 |= ϕ ⇒ Ii |= ψ now holds because of point four of Claim 3.17 and
J |= Apost. To prove the necessary minimization of changes in the transition from Ii−1 to
Ii, let for all 1 ≤ i ≤ n be ϕ/ψ ∈ posti with ψ ∈ {A(a),¬A(a), r(a, b),¬r(a, b)} primitive
literal and Ii−1 |= ¬ψ. From J |= A(i)

min and Claim 3.17 we get Ii−1 6|= ϕ⇒ Ii |= ¬ψ.
From the atomic construction of the semantics of E : Σ ×M(T ) → 2Lit follows for all
1 ≤ i ≤ n that Ii−1 ⇒Eαi

Ii. The I1, . . . , In are unique and so I0 ⇒Eα1,...,αn
In.

With the fourth point of Claim 3.17 in mind, the implications

J 6|= T
(n)
A0 (a0)⇒ J 6|= ∃U.

(
{a0} u T (n)

A0

)
⇒ J 6|= (pn(A0)) (a0)⇒ In 6|= A0(a0)

show, that for an ABox assertion ϕ, if ϕred is not a consequence of J , the constructed
interpretations I0, . . . , In witness ϕ is not a consequence of applying the composite action
α1, . . . , αn in A w.r.t. T .
Together with the previously obtained fact I0 ⇒Eα1,...,αn

In this proves the implication.

⇐:
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To proof the other implication let us assume ϕ = A0(a0) is not a consequence of applying
α1, . . . , αn in A w.r.t. T . So there exist interpretations I0, . . . , In such that I0 |= A,
Ii−1 ⇒Eαi

Ii for all 1 ≤ i ≤ n and In 6|= A0(a0). We have to show T
(n)
A0 (a0) is not a

consequence of Ared w.r.t. Tred by construction of a model J |= Ared, Tred with J 6|= ϕred.
The proof of this implication starts with a claim about the evolution of the interpretations
I0, . . . , In. Thereby a special task will be to reflect the membership of the unnamed
elements. A pendant to this proof can be found in the proof of Lemma 15 in the report
[BML+05] under the name Claim 2.
Claim 3.18. Let 1 ≤ i ≤ n.

1. For all a ∈ Obj and A ∈ Prim the following holds:

Ii−1 |= A(a) ∧ ∀ϕ/¬A(a) ∈ posti, Ii−1 6|= ϕ ⇒ Ii |= A(a)
Ii−1 |= ¬A(a) ∧ ∀ϕ/A(a) ∈ posti, Ii−1 6|= ϕ ⇒ Ii |= ¬A(a)

For all a, b ∈ Obj and r ∈ Rol\U the following holds:

Ii−1 |= r(a, b) ∧ ∀ϕ/¬r(a, b) ∈ posti, Ii−1 6|= ϕ ⇒ Ii |= r(a, b)
Ii−1 |= ¬r(a, b) ∧ ∀ϕ/r(a, b) ∈ posti, Ii−1 6|= ϕ ⇒ Ii |= ¬r(a, b)

2. x /∈ ObjI0 ⇒ (x ∈ AIi ⇐⇒ x ∈ AI0) for all A ∈ Prim.

3. a) x /∈ ObjI0 ∨ y /∈ ObjI0 ⇒ ((x, y) ∈ rIi ⇐⇒ (x, y) ∈ rI0) for all r ∈ Rol\U .
b) x /∈ ObjI0 ∨ y /∈ ObjI0 ⇒ ((x, y) ∈ UIi ⇐⇒ (x, y) ∈ UI0)

Proof. Because ψ is a primitive literal the universal role U is not contained in ψ and
therefore we only need to complement the proof from [BML+05] by the case 3.b). So let
x /∈ ObjI0 or y /∈ ObjI0 . Then (x, y) ∈ UIi ⇐⇒ (x, y) ∈ UI0 . But this is just

(x, y) ∈ ∆Ii ×∆Ii ⇐⇒ (x, y) ∈ ∆I0 ×∆I0

because ∆Ii = ∆I0 by definition, which completes the proof.

We construct an interpretation J from the given interpretations I0, . . . , In as follows:

∆J := ∆I0 (= ∆I1 = . . . = ∆In)
aJ := aI0 (= aI1 = . . . = aIn) for a ∈ Obj

aJhelp := d for an arbitrary but unused d ∈ ∆J

NJ := {aJ | a ∈ Obj}
(U (i))J := UIi = ∆Ii ×∆Ii

(A(i))J := AIi for A ∈ Con and 0 ≤ i ≤ n

(r(i))J := rIi for r ∈ Rol and 0 ≤ i ≤ n

(T (i)
C )J := CIi for all C ∈ Sub and 0 ≤ i ≤ n
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3 The Action Formalism for DLs Admitting a Universal Role

For this interpretation J we are going to proof J |= Ared, Tred and J 6|= ϕred.
We start proving an important equality that holds for J for all 0 ≤ i ≤ n, ϕ ∈ Assert and
a ∈ NI :

Ii |= ϕ ⇐⇒ J |= (pi(ϕ))(a) (∗)
By the definition of the interpretation of assertions we know for all 0 ≤ i ≤ n that
J |= (pi(ϕ))(a) ⇐⇒ aJ ∈ (pi(ϕ))J . Without loss of generality let ϕ = C(b) with
C ∈ Con and b ∈ Obj ∪ {ahelp} arbitrary. From (3.7) follows for all 0 ≤ i ≤ n

aJ ∈ (pi(C(b)))J =
∆J ⇐⇒ bJ ∈ (T (i)

C )J

∅ else

By definition we have bIi = bJ ∈ (T (i)
C )J and (T (i)

C )J = CIi .
This together proofs equality in (∗), because:

J |= (pi(ϕ))(a) ⇐⇒ bJ ∈ (T (i)
C )J ⇐⇒ bIi ∈ CIi ⇐⇒ Ii |= C(b) = ϕ

The proof of J |= Ared is split into the three components of Ared.

1. J |= Aini follows from I0 |= A and the definition of J .

2. J |= A(i)
post: Let 1 ≤ i ≤ n and αi = {prei, posti}. For I0, . . . , In and all ϕ/ψ ∈ posti

we know Ii−1 |= ϕ⇒ Ii |= ψ.
From (∗) follows J |= (pi−1(ϕ)→ pi(ψ))(ahelp).

3. J |= A(i)
min: For 1 ≤ i ≤ n the first point of of Claim 3.18 gives the minimization of

changes in the transition from Ii−1 to Ii. Everything else follows from (∗) and the
definition of J .

Showing J |= Tred is split into the three components of Tred.

1. J |= TN from the definition of J .

2. For all 0 ≤ i ≤ n we have J |= {T (i)
A ≡ T

(i)
E | A ≡ E ∈ T } from the definition of J .

3. J |= TSub is shown in [BML+05] by structural induction on E ∈ Sub and the second
and third point of Claim 3.18. We will use the parts proven in [BML+05] and add
four cases. First let E = (≥ m U C). We show for 0 ≤ i ≤ n the interpretation J
satisfies the concept definitions T (i)

(≥ m U C) ≡
(
≥ m U (i) T

(i)
C

)
.

(
T

(i)
(≥ m U C)

)J
= (≥ m U C)Ii

= {a ∈ ∆Ii | |{b ∈ ∆Ii | (a, b) ∈ UIi ∧ b ∈ CIi}| ≥ m}
= {a ∈ ∆J | |{b ∈ ∆J | (a, b) ∈ (U (i))J ∧ b ∈ (T (i)

C )J }| ≥ m}

=
(
≥ m U (i) T

(i)
C

)J
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Which holds by the definition of J and induction on CIi = (T (i)
C )J . The case

E = (≤ m U C) can be shown by similar arguments.
Let E = (∃U.C). It is to show for 0 ≤ i ≤ n the interpretation J satisfies the concept
definitions T (i)

(∃U.C) ≡
(
∃U (i).T

(i)
C

)
.

(
T

(i)
(∃U.C)

)
= (∃U.C)Ii

= {d ∈ ∆Ii | ∃e.(d, e) ∈ UIi ∧ e ∈ CIi}
= {d ∈ ∆J | ∃e.(d, e) ∈ (U (i))J ∧ e ∈ (T (i)

C )J }

=
(
∃U (i).T

(i)
C

)J
This holds by the definition of J and induction on CIi = (T (i)

C )J . Again we can
show the case E = (∀U.C) by similar arguments.

For ϕ = A0(a0) we obtain (A0)In = (T (n)
A0 )J from the definition of J . Together with (∗)

we get for an arbitrary a ∈ NI :

In 6|= A0(a0)⇒ J 6|= (pi(A0(a0))) (a)⇒ aJ0 /∈ T (n)
A0 ⇒ J 6|= T

(n)
A0 (a0)

for a ∈ NI . This completes the proof of this implication and finally yields Lemma 3.16.

If we assume unary coding of numbers in qualified number restriction the size of Ared, Tred
and ϕred is clearly polynomial in the size of the input. So Lemma 3.16 immediately gives
Theorem 3.14.
Remark 3.19. If we assume binary coding the resulting upper bounds will increase by one
exponential, so the size of the knowledge base (Ared, Tred) is not anymore polynomial in
the size of the input. Note that a concept (≤ m r C) occuring in a concept definition in
T is in unary coding assumed to be of the size (|m|+ 1 + |C|) and in binary coding of the
size (log(m) + 1 + |C|). Therefore Tred is polynomial in the size of T if numbers are coded
in unary but increases by one exponential in case of binary coding.

3.3 Complexity Results for Executability and Projection

After discussing the complexity of ABox consequence in presence of a universal role in the
first part of this chapter and proving the reduction theorem in the second part we can
bring this thoughts together to obtain the following complexity bounds.

Corollary 3.20. Projection and executability of actions w.r.t. acyclic TBoxes are

1. ExpTime-complete for ALCU , ALCOU , ALCIU and ALCIOU ;

2. ExpTime-complete for ALCQU and ALCQOU if the universal role U is not occurring

in qualified number restriction;
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3 The Action Formalism for DLs Admitting a Universal Role

3. in co-NExpTime for ALCQU and ALCQOU if the universal role U is allowed in

qualified number restriction;

4. in co-NExpTime for ALCQIU ;

5. co-NExpTime-complete for ALCQIOU .

where 2,3,4 and 5 presuppose that numbers in number restrictions are coded in unary.

Proof. This complexity results follow from Theorem 3.14, which gives the reduction from
projection to ABox consequence and the three lemmata Lemma 3.4, Lemma 3.5 and
Lemma 3.6, which prove the complexity of ABox consequence in the different descrip-
tion logics.

Corollary 3.20 brings together all thoughts, presented in this chapter. It is therefore a
good last point for our considerations on description logics admitting a universal role.

3.4 Spin-off: Observations on Actions with Effect
Function

When writing the prove of Lemma 3.16 we came to the conclusion one of the most important
next steps now is to develop the process of abstraction further. Through this chapter we
integrated the most simple global property, namely the universal role to the description
logics action formalism. But we also had to note that the more important and more
involved global role statement is transitivity. Or on the side of concepts to investigate the
embedding of abstract TBoxes. In their report [BML+05] the authors argue, adding even
transitivity exceeds the possibilities of the action formalism so far. Therefore we want to
look again at Theorem 3.14 and the literature we used to introduce abstract actions. The
there discussed approach goes beyond the ideas we used in the proof of Theorem 3.14, but
the introduction of an effect function assures the determinism we need to cross the limits
given by simply avoiding the ramification problem. We presented the action formalism by
introducing a so-called effect function. Recall that this function presented in Definition
2.13 maps tuples of action names and interpretations satisfying the TBox to a set of literals.
It has its origin in the article [BZ13a] where it is introduced to construct a more abstract
action calculus. The there developed ideas, based also on the article [BLL10b], point the
way towards a more powerful action formalism, but in our proof of Theorem 3.14 the effect
function only played a minor role. It is used to form a new language but we are still
talking about the same circumstances as [BLM+05] and we used only half the possibilities
contained in this approach.
The authors of [BZ13a] start from the assumption that actions are given by abstract
names. Their effect, which has previously been defined by the pre- and post-conditions, is
then completely determined by a function. Such a function of course has to fulfil several
requirements we will take a look at later. The reduction ABox can be indexed by subsets
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3.4 Spin-off: Observations on Actions with Effect Function

of Lit which are the literals contained in the set of relevant assertions. This is done by
regarding so-called updated interpretations, which illustrate the interplay between actions
and their interpretation by a function mapping tuples of actions and interpretations to a
non-contradictory subset of Lit.
In the following we take a closer look at this abstraction and proof some small details we did
not find explicitly in the literature. First we introduce some notions and give the definition
of two kinds of types of interpretations from [BZ13a]. Then we show some properties of
these types, which motivate their influence on the set of interpretations, that hold after
applying an action. Recall that the authors of [BZ13a] consider only consistent actions.
To be concurrent at this point, we refer to Remark 2.23 and adopt this assumption.

Definition 3.21. Let E ⊆ Lit a non-contradictory set of literals. From the set E the
updated interpretation IE can be constructed:

AI
E :=

(
AI ∪ {aI | A(a) ∈ E}

)
\{aI | ¬A(a) ∈ E} for all A ∈ NC

rI
E :=

(
rI ∪ {(aI , bI) | r(a, b) ∈ E}

)
\{(aI , bI) | ¬r(a, b) ∈ E} for all r ∈ NR

Let ¬E := {¬L | L ∈ E} where double negation is eliminated in the sense of Remark 2.9.

Defining abstract actions unravels the satisfiability of the pre- and post-conditions into
the construction of the effect function. Now by updated interpretation this idea is again
abstracted by looking at the behaviour of arbitrary but non-contradictory subsets E ⊆ Lit.
As observed in the article [BZ13a] this gives rise to another simplification. By regarding
updated interpretations we can merge composite actions into a single action.

Definition 3.22. Let T , A TBox and ABox and α1, . . . , αn ∈ Σ. For I0 ∈ M(T ) and
1 ≤ i ≤ n let the interpretation Ii be defined by I0 ⇒Eα1,...,αi

Ii. Then for 1 < i ≤ n

E1 := E(α1, I0)
Ei := Ei−1\¬E(αi, Ii−1) ∪ E(αi, Ii−1)

Remark 3.23. Note that we have for all 1 ≤ i ≤ n the identity IEi
0 = Ii and especially

IEn
0 = In. Because from page 16 of the report [BZ13b] we know the following identity for

updated interpretations:
(IE)E′ = IE\¬E′∪E′

Where the set En is not the result of applying αn to In−1 but concentrates the process of
applying a sequence of actions in one subset of Lit.
For a given α ∈ Σ, we are actually interested in the non-contradictory sets E ⊆ Lit where
E = E(α, I) for an I ∈ M(T ). In the report [BZ13b] all non-contradictory subsets of
Lit are considered, regardless of whether the updated interpretations IE are models of
the TBox. Then these sets are sorted, where the sets for which there does not exists an
I ∈ M(T ) such that E = (α, I) are to be sorted out. How this can be done lies in the
answer to the following question: If we fix an α ∈ Σ, how does the set {E(α, I) | I ∈ M(T )}
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look like, and how can we wisely limit the set of interpretations we have to consider? In
their slides from the talk coming with the paper [BZ13a] Franz Baader Benjamin and
Zarrieß mention that the introduced types give rise to an equivalence relation on the set
of models for a TBox. For interpretations I, I ′ ∈ M(T ) we need a relation, which yields
I ∼= I ′ if and only if I and I ′ have the same to defined type.
An action theory is given by an ABox and TBox A, T , the set of relevant assertions D,
a finite set of actions Σ and the effect function E : Σ ×M(T ) → 2Lit. On the set of
interpretations for a given TBox the following definition presents two kinds of types for an
interpretation.

Definition 3.24. Let T , A be an TBox and ABox, I ∈ M(T )∩M(A) an interpretation,
D be the set of relevant assertions and Lit ⊆ D the set of literals occurring in D. Then
the static type and the dynamic type are defined as follows:

s− type(I) := {ϕ ∈ D | I |= ϕ}
d− type(I) := {(ϕ,E) | ϕ ∈ D, E ⊆ Lit non-contradictory, IE |= ϕ}

where IE is the updated interpretation from Definition 3.21.

At first we want to consider the relation on the set of interpretations induced by the static
type.

Definition 3.25. Let the relation ∼=s ∈M(T )×M(T ) be defined as follows:

I1
∼=s I2 :⇐⇒ s− type(I1) = s− type(I2)

Lemma 3.26. The relation ∼=s ∈M(T )×M(T ) is an equivalence relation.

Proof. Let I, I1, I2, I3 ∈ M(T ). Then ∼=s is reflexive (I ∼=s I) because s − type(I) is a
fixed set, symmetric (I1

∼=s I2 ⇒ I2
∼=s I1) and transitive (I1

∼=s I2, I2
∼=s I3 ⇒ I1

∼=s I3)
because ∼=s is defined by equality of the static types.

As mentioned in the previous chapter, developing an action formalism can also start from
the construction of the sets D and Lit, the function E and abstracting actions. Using the
notion of static types the authors of the report [BZ13b] formulate some requirements the
effect function has to meet to generate a solid action formalism.

Definition 3.27. A DL based action formalism given by A, T ,Σ,D, E is called admissible,
if all actions contained in Σ are consistent and the following conditions hold.

A1 If s − type(I1) = s − type(I2), then α ∈ Σ is applicable to I1 if and only if α is
applicable to I2.

A2 If s− type(I1) = s− type(I2) and α ∈ Σ is applicable to I1 then E(α, I1) = E(α, I2).

If the conditions A1 and A2 are satisfied for our action formalism then for I ∈ M(T )
arbitrary and t := s− type(I) a static type the set E(α, t) := E(α, I) is well defined.
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A3 For a given static type t := d− type(I) it is decidable whether E(α, t) is defined and
can be effectively computed.

We show these requirements are reasonable by proving the action formalism introduced in
Section 2.2 is admissible.

Lemma 3.28. Let T be an acyclic TBox, A ABox, Σ a finite set of consistent actions

where all α ∈ Σ are concrete actions, i.e. given by a set of pre- and post-conditions.

Further let the set D be closed under negation and contain A, the set of ABox assertions

in the pre-conditions and all assertions contained in the post-conditions. Let the effect

function E : Σ ×M(T ) → 2Lit be defined by 2.1. Then the action formalism given by

A, T ,Σ,D, E is admissible.

Proof. Let α = (pre, post) ∈ Σ be a concrete consistent action and I, I1, I2 ∈M(T ).
A1: Let s − type(I1) = s − type(I2). By definition of the static type we know that
I1 ∈ M(A) ⇐⇒ I2 ∈ M(A) and I1 |= pre ⇐⇒ I2 |= pre. Further we know by
definition the effect function E is defined for (α, I1) and (α, I2) if and only if I1, I2 ∈M(A).
Summing up we conclude the action α is applicable to I1 if and only if the effect function E
is defined for (α, I1) and I1 |= pre. This is the case if and only if the function E is defined
for (α, I2) and I2 |= pre, which means α is applicable to I2.
A2: Let s− type(I1) = s− type(I2) and α be applicable to I1. For all ϕ ∈ D we know by
the equality of the static types I1 |= ϕ ⇐⇒ I2 |= ϕ. We conclude from the construction
of the set D:

E(α, I1) = {ψ | ϕ/ψ ∈ post ∧ I1 |= ϕ}
= {ψ | ϕ/ψ ∈ post ∧ I2 |= ϕ}
= E(α, I2)

A3: The ABox A is finite, the set Σ is finite and every α ∈ Σ is given by a finite set of pre-
and post-conditions. So the set D is finite and every non-contrary t ⊆ D that contains A
and the set of assertions pre is a possible static type for an I ∈ M(A) ∩M(T ). For all
such t, we can decide whether an interpretation I ∈ M(T ) with ∀ϕ∈tI |= ϕ exists. If this
is the case we can compute such an interpretation and the set E(α, t).

Because for an admissible action formalism the effect function does not distinguish between
interpretations of the same static type, we can give a first answer to the question about
the properties of the set of effects of an action.

{E(α, I) | I ∈ M(T )} = {E(α, t) | t = s− type(I) for an I ∈ M(T )} (3.8)

Can we just look at the different static types we can construct over a well formed set D?
No because as Franz Baader and Benjamin Zarrieß observe we need to distinguish between
interpretations that are mapped by an action to different types of interpretations. Look at
Example 20 from [BZ13b]. It gives an admissible action formalism and two interpretations

41



3 The Action Formalism for DLs Admitting a Universal Role

of the same static type. But the interpretations they are transformed to, are of different
static type. What we really need is a relation that satisfies all the properties of ∼=s and
that is further compatible with an action.
Remark 3.29. The ordered pair 〈M(T ), α〉 with α :M(T )→M(T ) is a unary algebra.
Note that we are only slightly double using notation. On the one hand α is nothing more
that an action name and the other α is a function taking one interpretation to another.
For α ∈ Σ the assignment α :M(T )→M(T ), where α : I → I ′ ⇐⇒ I ⇒Eα I ′ is defined
for all I ∈ M(T ) and further for all I ∈ M(T ) there is a unique I ′ ∈M(T ) with I ⇒Eα I ′
if and only if we assume all actions to be consistent.
Due to the simplicity of 〈M(T ), α〉 one could argue seeing an algebra is overdone. But
only with this perspective we can properly refine ∼=s to an equivalence relation onM(T )
that is compatible with an action.

Definition 3.30. Let I1, I2 ∈ M(T ). The relation ∼=d ∈ M(T ) ×M(T ) is defined as
follows:

I1
∼=d I2 :⇐⇒ d− type(I1) = d− type(I2)

Lemma 3.31. The relation ∼=d ∈M(T )×M(T ) is a congruence relation on 〈M(T ), α〉.

Proof. Let I0, I1,J0,J1 ∈ M(T ), α ∈ Σ. The proof ∼=d is an equivalence relation on the
setM(T ) is analogous to the proof of Lemma 3.26.
From Lemma 22 in the report [BZ13b] we can conclude, that ∼=d ∈M(T )×M(T ) is also
a congruence relation. Because this Lemma states in case I0 ⇒Eα I1 and J0 ⇒Eα J1 the
implication d− type(I0) = d− type(J0)⇒ d− type(I1) = d− type(J1) holds.

The next lemma proves that the congruence relation ∼=d really is a refinement of the relation
∼=s as recommended.

Lemma 3.32. Let ∼=d,∼=s ∈ M(T ) ×M(T ) be the equivalence relations induced by the

static and dynamic types. Then the following holds:

∼=d ⊆ ∼=s (3.9)

Proof. The authors of the report [BZ13b] conclude from the equivalence

(ϕ, ∅) ∈ d− type(I) ⇐⇒ I |= ϕ ⇐⇒ ϕ ∈ s− type(I)

that
d− type(I1) = d− type(I2)⇒ s− type(I1) = s− type(I2)

We conclude I1
∼=d I2 ⇒ I1

∼=s I2 and therefore I1 × I2 ∈∼=d⇒ I1 × I2 ∈∼=s.

Remark 3.33. From (3.8) and (3.9) we obtain for an admissible action formalism

{E(α, I) | I ∈ M(T )} = {E(α, I) | [I]∼=d
∈ (M(I)/ ∼=d)}
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where every [I]∼=d
∈ (M(I)/ ∼=d) represents a different dynamic type of an interpretation

I ∈ M(T ). Lemma 23 from the report [BZ13b] implies, that we can compute effectively
for every pair (ϕ,E) with ϕ ∈ D an assertion and E ⊂ Lit a non-contradictory set of
literals, whether it is a dynamic type for an interpretation I ∈ M(T ). Thus for finite D
the quotient algebra (〈M(T ), α〉 / ∼=d) and therefore also the set {E(α, I) | I ∈ M(T )} is
finite and computable.
With this background we can now start to investigate for description logics with various
properties what is needed to form an admissible action formalism. For a given assertion ϕ,
an interesting knowledge base K = (A, T ) and a composite action α let ϕ(E), A(E)

red := A
(E)
eff

be as defined in the report [BZ13b] and T (E)
red = Tred ∪ {T (E)

C v T
(E)
D | E v D ∈ T } where

we understand Tred as introduced in [BZ13b]. The next step will be to prove, based on
the previously obtained knowledge on types and updated interpretations, if the following
holds for the knowledge base K: The assertion ϕ is a consequence of applying α1, . . . , αn
in A w.r.t. T if and only if for all E ∈ {E(α, I) | [I]∼=d

∈ (M(I)/ ∼=d)} it is true for all
J ∈M

(
T (E)
red

)
∩M

(
A(E)

red

)
that J |= ϕ(E).

We would like to let these reflections rest for the time being and close the observations on
the effect function at this point.
Let us summarize this chapter. At the beginning we pursued a line of thoughts how
a universal role and description logics work together. We investigated the complexity
of ABox consequence for the fragments of ALCQIOU in presence of nominals and the
universal role. Furthermore we discussed the pros and cons of allowing the universal role
in qualified number restriction and investigated the correspondence between the universal
role and CBoxes in this context.
In the second part of this chapter we deduced complexity results for the action inference
problem projection in the fragments of ALCQIOU which contain a universal role. This
was based on the previously obtained bounds for ABox consequence and the construction
of a reduction ABox and a reduction TBox, mainly inspired by [BML+05]. As an idea that
appeared out of the thoughts on this section we presented some remarks about the direction
the research of the description logics based action formalism is going at the moment. Some
observations on this powerful new ideas, that might give a whole new drive to the action
formalism closed this chapter.
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Conjunctive Queries

Through the last chapter we have been dealing with a simple ABox assertion ϕ as a
consequence of an ABox or as a consequence of applying actions α1, . . . , αn in an ABox
w.r.t. a TBox respectively. If we want to consider more complex assertions, enriched by
restricted existential quantification and the use of variables this leads to queries. This idea
is not only of theoretic interest but comes from database querying. Formerly a database
has usually been a relational structure where much effort has been put in a constructive
design. This closed system could then be considered to entail a query. Lately, mainly
triggered by growing use and range of the internet, it has turned into focus to consider
also possibly distributed unsorted data source. This data storage can be managed by
the so-called Ontology-Based Data Access, or in short OBDA. This approach enables us
to query a data source w.r.t. an ontology. A good introduction how this works with a
description logics TBox as ontology is given in [Cal12]. OBDA generalizes query answering
in relational databases and Figure 4.1 gives an impression of how description logics work
as an ontology. The ABox is understood to organize the data and the TBox to link it with

data
source

A

T
|=Φ

mapping

Figure 4.1: Ontology-based data access.

each other.
In the previous chapter the projection problem for ABox assertions has been reduced to
a well studied problem for description logics, namely ABox consequence. Considering the
description logics action formalism and reasoning problems related to query answering
an attempt to reduce the projection problem to query entailment is self-evident. In this
chapter we want to adopt the previously obtained results and the idea of the construction of
a reduction ABox and TBox. Based on the techniques developed in the report [BML+05]
we want to decide whether a query holds in an ABox w.r.t. a TBox after applying a
sequence of actions.
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4.1 Introducing Queries over Description Logics Knowledge Bases

4.1 Introducing Queries over Description Logics
Knowledge Bases

The concept of a query is very powerful because queries contain variables in a precisely
defined syntax. They enable us to express the situation that there exists an element which
is connected to an individual a ∈ NI by a relation r ∈ NR without naming it. This not
further specified element can be represented by a variable.
The chapter starts with the definition of the syntactic and semantic concept of queries in
terms of description logics. To distinguish queries from assertions we will denote them
by capital Greek letters. In the following the idea of a homomorphism from a query to
an interpretation and how it is used to fully characterize the semantics of queries will
be given. Well prepared with this formal introduction we bring together the description
logics based action formalism and queries. The question if a query is true after applying a
finite sequence of actions will be called projection problem. Finally our considerations will
converge in a version of Theorem 3.14 that concerns queries.
Bringing together description logics and queries of course doesn’t appear out of nowhere.
The following definitions and results are based on the paper [CDGL+09] where database
access, by use of a popular family of description logics called DL − Lite, is introduced.
Especially the idea of a homomorphism is presented in Definition 2.5, Theorem 2.6 and
Example 2.7 at great length. A short but precise introduction into conjunctive queries, the
semantics given by a match for an interpretation and a query and also the query entailment
problem can be found in the article [GLHS08]. Where this article treats conjunctive query
answering for the description logic SHIQ. Last but not least the article [BBL13] about
temporal query answering inDL−Lite has influenced this thesis. The detailed introduction
and examples have been of great benefit to understand Boolean conjunctive queries in
context of description logics.

4.1.1 Syntax and Semantics of Conjunctive Queries

Under various conditions query answering becomes undecidable. In this thesis therefore
we want to consider a common restriction on queries, namely Boolean conjunctive queries.
Generally speaking a query for description logics is a first order formula q = ϕ(v1, . . . , vk)
built from variables and individual names. The unary and binary predicates come from
NC and NR respectively and the free variables of the first order formula ϕ are among the
variables v1, . . . , vk ⊆ NV which are called answer variables. The formal definition of a
Boolean conjunctive query will be presented in the following definition.
Definition 4.1. Let NV be a countably infinite set of variables, NI , NR and NC be count-
ably infinite sets of individual names, role names and concept names. The sets NV , NI ,
NR and NC are supposed to be disjoint.
A conjunctive query is a restriction of a first order query Φ = ∃u1, . . . , un.ψ, where
u1, . . . , un ⊆ NV are distinct variables and ψ is a possibly empty conjunction of atoms
of the form
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4 Deciding Projection with Boolean Conjunctive Queries

• A(t) with A ∈ NC and t ∈ NV ∪NI a concept atom or

• r(s, t) with r ∈ NR and s, t ∈ NV ∪NI a role atom.

The free variables of a conjunctive query are among the answer variables. The number of
free variables is called arity. Conjunctive queries of arity 0, i.e. conjunctive queries without
free occurring variables, are called Boolean conjunctive queries and abbreviated by BCQ.
We denote the set of variables occurring in a query Φ by V ar(Φ) and the set of individual
names occurring in Φ by Ind(Φ). By α ∈ Φ we denote the occurrence of the concept or
role atom α in Φ.

The next definition gives the semantics of conjunctive queries. This is done by introducing
a partial function from the individuals and variables of a query to a non-empty set which
will be called a match for an interpretation. Some authors give the semantics of queries
using the notion of a homomorphism. We present the technical approach first and introduce
homomorphisms as an equivalent characterisation later.

Definition 4.2. Let I = (∆I , .I) be an interpretation and π : NV ∪ NI → ∆I a partial
function such that π(a) = aI for all a ∈ dom(π)∩NI . The relation I |=π ψ for a quantifier
free first-order formula ψ with V ar(ψ) ⊆ dom(π) is inductively defined:

I |=π A(t) ⇐⇒ π(t) ∈ AI

I |=π r(t1, t2) ⇐⇒ (π(t1), π(t2)) ∈ rI

I |=π ψ1 ∧ ψ2 ⇐⇒ I |=π ψ1 ∧ I |=π ψ2

Let Φ = ∃u1, . . . , un.ψ be a conjunctive query. A match for an interpretation I and Φ is a
mapping π : V ar(Φ) ∪ Ind(Φ)→ ∆I such that π(a) = aI for all a ∈ Ind(Φ) and I |=π ψ.
Let {v1, . . . , vk} ⊆ NV be the set of all free variables occurring in Φ. If we have π(vi) = aIi
for 1 ≤ i ≤ k, then π is called an (a1, . . . , ak)-match for I and Φ.
If a match for I and Φ exists, we say I satisfies Φ and write I |= Φ, if we want to give a
specific match we write I |= Φ[a1, . . . , ak].
A certain answer for a k-ary conjunctive query Φ(v1, . . . , vk) and a knowledge base K is a
tuple (a1, . . . , ak) ⊆ NI such that a1, . . . , ak occur in K and I |= Φ[a1, . . . , ak]. The answer
to a Boolean query is either the empty tuple (, ) considered as true or the empty set ∅
considered as false.

The role constructor U has been introduced to talk about unnamed elements. Boolean
conjunctive queries now enlarge our possibilities to get general information about unnamed
elements by introducing variables.
Remark 4.3. As observed in the article [BBL13] Boolean conjunctive queries extend what
can be expressed by an ALCQIO assertion. An arbitrary ABox assertion can without loss
of generality be given by ϕ = A0(a) with A0 ∈ NC . Such an assertion ϕ can be expressed by
the Boolean conjunctive query ∃u.A0(u). On the other hand the Boolean conjunctive query
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Φ = ∃y.r(y, y), which says there exists a loop in the model without naming the individual
which has the loop, can neither be expressed in ALCQIO nor with the additional use of
a universal role.

4.1.2 A Homomorphism of a Query to an Interpretation

The semantics of queries can also be defined using the notion of a homomorphism. The
identity of the two approaches is a remarkable result we will give following the definition of
a homomorphism from a Boolean conjunctive query to an interpretation. This definition
is based upon the one given in [BBL13], whereas an approach to extend the definition of a
homomorphism to general conjunctive queries can be found in [CDGL+09].
Definition 4.4. Let I = (∆I , .I) be an interpretation and Φ = ∃u1, . . . , un.ψ(u1, . . . , un)
a Boolean conjunctive query. A mapping µ : V ar(Φ) ∪ Ind(Φ)→ ∆I is a homomorphism
from Φ to I if

µ(a) = aI for all a ∈ Ind(Φ)
µ(s) ∈ AI for all A ∈ NC and A(s) ∈ Φ
(µ(s), µ(t)) ∈ rI for all r ∈ NR and r(s, t) ∈ Φ

The characterisation of the semantics of queries by a homomorphism has originally been
stated by Ashok K. Chandra and Philip M. Merlin in [CM77]. Because this observation
is of such importance it is also known as the Chandra and Merlin Theorem. It basically
states an interpretation I is a model of Φ if and only if there exists a homomorphism
µ : V ar(Φ) ∪ Ind(Φ) → ∆I . The context of Boolean conjunctive queries makes the proof
easy. Nevertheless the proof also teaches us how to construct a homomorphism from an
interpretation and backwards and this will enable us to switch between the constructive
and abstract level.
Theorem 4.5. Let Φ = ∃u1, . . . , un.ψ(u1, . . . , un) be a Boolean conjunctive query and

I = (∆I , .I) an interpretation. Then I |= Φ if and only if there is a homomorphism from

Φ to I.
The proof is done by technical comparing the definitions. Due to our specific interest the
result is formulated for Boolean conjunctive queries only, but it can easily be extended to
conjunctive queries. Given a Boolean conjunctive query Φ and an interpretation I we will
show that, if we have a match π for I and Φ, we can construct a homomorphism from Φ
to I and vice versa.

Proof. Recall I is model of a Boolean conjunctive query Φ if there is a match

π : V ar(Φ) ∪ Ind(Φ)→ ∆I

for I and Φ. Whereas a homomorphism is a mapping

µ : V ar(Φ) ∪ Ind(Φ)→ ∆I
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from Φ to I. By setting π = µ the equivalence of the two approaches is obvious. We prove
the simultaneous satisfiability of the conditions for µ being a homomorphism and π being
a match that determines an interpretation from the atomic items:

• For all a ∈ Ind(Φ) we know π(a) = µ(a) = aI .

• Let α ∈ Φ be a concept atom where α = A(s) with A ∈ NC . We know for every
s ∈ V ar(Φ) ∪ Ind(Φ) with µ(s) = π(s) that µ(s) ∈ AI if and only if π(s) ∈ AI if
and only if I |=π A(s).

• Let α ∈ Φ be a role atom α = r(s, t) with r ∈ NC and s, t ∈ V ar(Φ) ∪ Ind(Φ).
We know from µ(s) = π(s) and µ(t) = π(t) that (µ(s), µ(t)) ∈ rI if and only if
(π(s), π(t)) ∈ rI if and only if I |=π r(s, t).

• Let ψ = α1∧ . . .∧αk with αa, . . . , αk concept atoms. From the above items we gather
I |=π α1 ∧ . . . ∧ αk if and only if for all α ∈ {α1, . . . , αk} it is true that I |=π α.
Therefore π is a match for every atom α1, . . . , αk if and only if the homomorphism
conditions are true for all concept atoms α ∈ Φ.

This completes the proof.

4.1.3 The Query Entailment Problem

This section introduces one of the most important problems for Boolean conjunctive
queries, namely query answering over a description logics ontology. For a given knowl-
edge base K and a Boolean conjunctive query Φ, it is the question whether every model of
K entails Φ.

Definition 4.6. Let K = (A, T ) be an knowledge base and Φ a Boolean conjunctive query.
If for every I ∈ M(A) ∩M(T ) the interpretation I is a model of Φ then Φ is called a
consequence of an ABox A w.r.t. a TBox T and we write K |= Φ.

The question, whether a Boolean conjunctive query Φ is a consequence of an ABox A w.r.t.
a TBox T is called the query entailment problem.

The next theorem includes statements about decidability of the query entailment problem
for description logics knowledge bases, that include nominals, inverses and qualified number
restriction. It is a direct consequence of a theorem from Birte Glimm and Sebastian
Rudolph, namely Theorem 2 presented in the joint article [GR09].

Theorem 4.7. Let K be an ALCQIO knowledge base and Φ a Boolean conjunctive query.

Then K |= Φ is decidable.

The introduction into Boolean conjunctive queries closes with an example.
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Example 4.8. Let the sets NI , NC and NR, the knowledge base K = (A, T ) and the
interpretation I = (∆I , ·I) be defined as in Example 2.10 and illustrated in Figure 2.2 .
Let NV be a set of variables with u1, u2 ∈ NV . Then

Φ := ∃u1, u2(friend(u1, Anna)) ∧ friend(u2, T om))

is a Boolean conjunctive query.

The interpretation I is not a model of Φ. There cannot exist a homomorphism from Φ to I
because by definition of I we cannot get (µ(u2), µ(Tom)) ∈ friendI with µ(Tom) = TomI .
There does not exist a ∈ ∆I with (a, Tom) ∈ friendI . Therefore I 6|= friend(u2, T om),
and so I 6|= Φ. Because I is a common model of A and T , it follows Φ is not a consequence
of A w.r.t. T and so K does not entail Φ.

4.1.4 The Action Formalism for Description Logics and Boolean
Conjunctive Queries

In this section we bring together query answering for Boolean conjunctive queries and the
description logics based action formalism. We start with the introduction of a Boolean
conjunctive query as a consequence of applying actions to a knowledge base. Then we
define the projection problem within this setting and ask if we can obtain a result similar
to Theorem 3.14 that states the reducibility of projection for Boolean conjunctive queries
to query entailment. This reduction will again be based on the definition of a reduction
ABox and TBox presented in the report [BML+05]. We therefore have to require the
description logic on which we base the action formalism to contain nominals.
The first definition introduces the projection problem for Boolean conjunctive queries with
respect to a knowledge base and composite actions.

Definition 4.9. Let Φ be a Boolean conjunctive query. Let further T be an acyclic TBox,
A an ABox, α1, . . . , αk ∈ Σ a composite action for T , D the set of relevant assertions,
Lit ⊆ D the set of literals contained in D and E : Σ × T → 2Lit the effect function w.r.t.
Σ,D and T .

Projection: The Boolean conjunctive query Φ is a consequence of applying α1, . . . , αk in A
w.r.t. T if for all models I ∈ M(A)∩M(T ) and all I ′ with I ⇒Eα1,...,αn

I ′ we have I ′ |= Φ.

Remark 4.10. Executability of actions, as defined in Definition 2.19, and projection with
queries cannot be proven to be reducible to each other the same way as shown in Lemma
2.22 because an action α ∈ Σ is not defined to contain Boolean conjunctive queries in the
pre-conditions. But of course we can consider Boolean conjunctive queries as a consequence
of consistent actions as well and Lemma 2.22 would yield the justification, see Remark 2.23.

Example 4.11. Recall from Example 2.10 the sets NI , NC and NR, the ABox A, the
TBox T and the interpretation I given in Figure 2.2 and further from Example 2.24 the
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actions α1, α2 ∈ Σ, the effect function E : Σ× T → 2Lit and the interpretations I1 and I2

given in Figures. 2.3 and 2.4. Let us look again at the Boolean conjunctive query

Φ := ∃u1, u2(friend(u1, Anna)) ∧ friend(u2, T om))

From Example 2.24 we know I ⇒Eα1,α2 I2. If for µ : V ar(Φ) ∪ Ind(Φ) → ∆I2 we
set µ(Tom) := TomI , µ(Anna) := AnnaI , µ(u1) := TomI2 , µ(u2) := AnnaI2 then
(µ(Anna), µ(Tom)) ∈ friendI2 and (µ(Tom), µ(Anna)) ∈ friendI2 . This proofs µ is a
homomorphism from Φ to I2 and therefore I2 |= Φ.

4.2 Reducing Projection with Boolean Conjunctive
Queries to Query Entailment

We are now well prepared to state the reduction theorem which we would like to have for
Boolean conjunctive queries. We will look how far we can go, if we walk on the lines of the
ideas from Theorem 14 and Lemma 15 in [BML+05]. Recall that these two results show
with use of nominals that projection of composite actions can be polynomially reduced to
ABox consequence. In the next theorem we will state this result for Boolean conjunctive
queries, that will now take the place of the ABox assertion ϕ in Lemma 3.16.

Theorem 4.12. Let L be a fragment of ALCQIO. Then projection of composite actions

with Boolean conjunctive queries formulated in L can be exponentially reduced to query

entailment in LO w.r.t. acyclic TBoxes.

The proof of this theorem will occupy us for the remaining part of this chapter. It will be the
consequence of a lemma, showing that the Boolean conjunctive query Φ is a consequence
of applying composite action α to a knowledge base if and only if we can construct a
reduction query Ψ from Φ and a reduction knowledge base Kred from K and K entails Ψ.

4.2.1 Considering Boolean Conjunctive Queries

Let us illustrate in the following discussion and examples what we have to regard in the
construction of reduction query, which can be considered a consequence of Ared w.r.t. Tred.
Thereby we understand the reduction ABox Ared and the reduction TBox Tred to be as
constructed in the proof of Theorem 3.14.

Discussion The unary and binary predicates of a query Φ come from concepts and roles
occurring in the knowledge base. If we want to define a Boolean conjunctive query Φred

for which we can ask whether it is a consequence of Ared w.r.t. Tred, we have to replace the
predicates in Φ with their labelled copies and pendants.
Let us start with the example Φ = ∃a.A(a) where A ∈ NC and a ∈ NV . We have to
formulate this simple query as a consequence of an ABox Ared w.r.t. a TBox Tred, but we
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do not know whether the variable x ∈ NV will be mapped to a named or unnamed element
by an interpretation I.

Φred := ∃x.(A(n)(x) ∧N(x)) ∨ (A(0)(x) ∧ ¬N(x))
= ∃x.((A(n) uN)) t (A(0) u ¬N))(x)

By adding a concept definition A(∗) ≡ (A(n) uN))t (A(0) u¬N) to Tred this would yield a
conjunctive query.

The other atomic example considers the Boolean conjunctive query Φ = ∃a, b.r(a, b) with
r ∈ NR and a ∈ NI ∪ NV , b ∈ NV . We can express the same content for Tred and Ared,
where we split the named and unnamed elements:

Φred = ∃x, y.
(
r(n)(x, y) ∧N(x) ∧N(y)

)
∨
(
r(0)(x, y) ∧ (¬N(x) ∨ ¬N(y))

)
We cannot obtain a concept definition for Tred similar to the above example for concept
atoms. In the construction of Tred, Ared and ϕred we have used nominals to transform role
assertions into concept assertions. But the process of forming nominals from variables is
subject of current research. It is presented in the article [KMKH11], where it is called
nominal schemas and its semantics is defined by interpreting variables as place holders for
named individuals. This approach does not cover our whole problem and because it has
an own influence on complexity we will not make use of the there developed technique in
this thesis. Any approach to formulate a query analogous to the first example is either not
a conjunctive query or not a query over ALCQIO.

Let us make a last observation, before we present a solution approach. It shows, that there
is no abbreviation to obtain a reduction query, because we need to know for every variable
in the input and every interpretation, whether it is mapped to a named or unnamed element
by this interpretation. We have talked about the splitting of named and unnamed elements
before, but using variables brings up a problem in the construction of Ared, we have to be
aware of. Consider the following example:

Example 4.13. Let A,B ∈ NC , x ∈ NV , a ∈ NI . Further let K = (A, T ) be a knowledge
base with the TBox T = ∅ and the ABox A = {A(a)}, let Φ = ∃x.A(x) be a Boolean
conjunctive query and α = (∅, {A(a)/¬B(a), A(a)/¬A(a)}) an action for T . For the
interpretations I0 ∈ M(A) ∩M(T ) and I1 ∈ M(T ) given in Figure 4.2 with I0 ⇒Eα I1

we observe I1 6|= Φ and therefore K 6|= Φ.

I0

a

A

α I1

a

B

Figure 4.2: Interpretations I0 and I1 for K and α.
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We know about the labelled concepts A(0), B(0), A(1), B(1) ∈ NC and about the reduction
ABox, the membership A(0)(a) ∈ Ared, (p0(A(a)) → p1(B(a)))(ahelp) ∈ Ared and further
(p0(A(a)) → p1(¬A(a)))(ahelp) ∈ Ared. For an interpretation J ∈ M(Ared) ∩ M(Tred),
given in Figure 4.3, we observe Tred,Ared |= ∃x.A(0)(x) and Tred,Ared 6|= ∃x.A(1)(x).

J
a

A(0) B(1)

Figure 4.3: Interpretation J for Ared and Tred.

This example demonstrates the following problem. We collect the knowledge about the
unnamed elements in the zero labelled concepts, but these concepts also indicate member-
ship in the initial ABox. We have to make sure for the variables in the reduction query,
that they only stand for the unnamed elements of the zero labelled part. We will imple-
ment these preliminaries by requiring a concept membership for every input element of the
reduction query, either in the named elements or in the unnamed elements.

4.2.2 Considering Unions of Conjunctive Queries

In their article [GR10] and the accompanying report [RG10] on conjunctive query answering
in presence of nominals, inverses and qualified number restriction Birte Glimm and Sebas-
tian Rudolph show decidability of entailment for ALCQIO knowledge bases for so-called
unions of conjunctive queries. Because these queries include a moment of choosing they
turn into our focus to overcome the problem of deciding for the right Boolean conjunctive
query for every interpretation J ∈M(Ared) ∩M(Tred).
First we introduce unions of conjunctive queries and their semantics and give the extension
of the query entailment problem for unions of conjunctive queries. The following discussion
is then already the preparation for the lemma, which proves Theorem 4.12 by reducing
projection with Boolean conjunctive queries to query entailment with unions of conjunctive
queries.

Definition 4.14. A union of conjunctive queries, abbreviated by UCQ, is the disjunction
of a finite set of conjunctive queries. For Ψ := Φ1 ∨ . . . ∨ Φn with Φ1, . . . ,Φn conjunctive
queries V ar(Ψ) = ⋃

Φ∈{Φ1,...,Φn} V ar(Φ) and Ind(Ψ) = ⋃
Φ∈{Φ1,...,Φn} Ind(Φ).

By α ∈ Ψ and Ψ := Φ1 ∨ . . . ∨ Φn where Φ1 ∨ . . . ∨ Φn conjunctive queries and α concept
or role atom we denote the existence of a Φ ∈ {Φ1, . . . ,Φn} with α ∈ Φ.
The semantics of unions of conjunctive queries is based on the semantics of its conjuncts.
Let I = (∆I , ·I) and Ψ a union of conjunctive queries. For Ψ = Φ1 ∨ . . . ∨ Φn with
Φ1, . . . ,Φn conjunctive queries we set I |= Ψ :⇐⇒ ∃Φ∈{Φ1,...,Φn}I |= Φ.

The above definition gives the notion of a union of conjunctive queries for a disjunction
of general conjunctive queries. Note that in this thesis we are only talking about unions
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of Boolean conjunctive queries. With these reservations, we can extend our notion of a
homomorphism to unions of conjunctive queries.
Definition 4.15. Let Ψ = Φ1∨ . . .∨Φn be a union of conjunctive queries where Φ1, . . . ,Φn

are Boolean conjunctive queries. A mapping µ : V ar(Ψ) ∪ Ind(Ψ) → ∆I is a homomor-

phism from Ψ to I if and only if there is at least one disjunct Φi ∈ {Φ1, . . . ,Φn} such that
µ is a homomorphism from Φi to I.
The interpretation for a union of conjunctive queries and a homomorphism of a union of
conjunctive queries to an interpretation is defined to be compatible.
Lemma 4.16. Let Ψ = Φ1 ∨ . . . ∨ Φn be a union of Boolean conjunctive queries and

I = (∆I , .I) be an interpretation. Then I |= Ψ if and only if there is a homomorphism

from Ψ to I.
Proof. This in an obvious consequence of Definition 4.14, where the semantics of unions of
conjunctive queries is introduced, Definition 4.15, where a homomorphism from a union of
conjunctive queries to an interpretation is given and Theorem 4.5, stating the characteri-
sation of semantics of Boolean conjunctive queries by homomorphisms.
Definition 4.17. Let K = (A, T ) be a knowledge base and Ψ = Φ1 ∨ . . . ∨ Φn a union of
conjunctive queries. We say K entails Ψ if for every interpretation I ∈ M(T ) ∩M(A)
there exists an Φi ∈ {Φ1, . . . ,Φn} such that I |= Φi.
The next lemma is a result from the already mentioned work of Birte Glimm and Sebastian
Rudolph.
Theorem 4.18. Let K be an ALCQIO knowledge base and Ψ = Φ1 ∨ . . .∨Φn a union of

conjunctive queries. The question whether K |= Ψ is decidable.

Proof. This is a direct consequence of Theorem 43 in the report [RG10], where the decid-
ability of query entailment is stated for the description logic ALCOIFb. In Section 3.2.1.
Birte Glimm and Sebastian Rudolph derive, why this result also holds for an ALCHOIQb
knowledge base, which is an extension of ALCQIO.

The preliminaries for proving the reduction theorem will be to form a union of conjunctive
queries Ψ from a given Boolean conjunctive query Φ and the construction of the reduction
ABox and TBox. Based on this we show the equivalence we need to prove Theorem 4.12.
Thereby we do not want to change the construction of the reduction knowledge base, given
by Tred and Ared provided by the report [BML+05], because we are going to exploit the
proof of Theorem 3.14. We start with discussing examples of simple Boolean conjunctive
queries and derive requirements for the resulting union of conjunctive queries.
Discussion Consider first Φ1 = ∃x.A(x). We form

Ψ1 =
(
∃x.A(n)(x) ∧N(x)

)
∨
(
∃x.A(0)(x) ∧M(x)

)
which is a union of Boolean conjunctive queries, providing the right information if we add
M ∈ NC and the concept definition M ≡ ¬N to Tred.
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4 Deciding Projection with Boolean Conjunctive Queries

Consider Φ2 = ∃y, z.r(y, z). We form

Ψ2 =
(
∃y, z.r(n)(y, z) ∧N(y) ∧N(z)

)
∨
(
∃y, z.r(0)(y, z) ∧M(y)

)
∨
(
∃y, z.r(0)(y, z) ∧M(z)

)
which is a union of Boolean conjunctive queries.

To transform the BCQ Φ = ∃x, y, z.A(x) ∧ r(y, z) we need to keep in mind that two
variables can be mapped to the same element of ∆I by an interpretation I. So the union
of conjunctive queries Ψ, that caries the same information as Φ, needs to be a union of all
possible combinations of named and unnamed elements:

Ψ = ∃x, y, z.A(n)(x) ∧N(x) ∧ r(n)(y, z) ∧N(y) ∧N(z)
∨ ∃x, y, z.A(n)(x) ∧N(x) ∧ r(0)(y, z) ∧M(y)
∨ ∃x, y, z.A(n)(x) ∧N(x) ∧ r(0)(y, z) ∧M(z)
∨ ∃x, y, z.A(0)(x) ∧M(x) ∧ r(n)(y, z) ∧N(y) ∧N(z)
∨ ∃x, y, z.A(0)(x) ∧M(x) ∧ r(0)(y, z) ∧M(y)
∨ ∃x, y, z.A(0)(x) ∧M(x) ∧ r(0)(y, z) ∧M(z)

This is a very small example and already a huge resulting union of conjunctive queries.
But from the above discussion we know every disjunct in Ψ can be necessary.

We observe, especially for x ∈ V ar(Φ), the mark M(x), always combined with the concept
A(0)(x) assures, that this disjunct is never unintentional satisfied by any interpretation.

With this examples in mind we start to formulate the construction of a union of Boolean
conjunctive queries Ψ from a Boolean conjunctive query Φ.

Preliminaries Let Ared, Tred05 be the reduction ABox and TBox defined in the report
[BML+05] and set Tred := Tred05 ∪ {M ≡ ¬N}.
Let Φ be a Boolean conjunctive query. Step by step we construct the union of conjunctive
queries Ψ.

1. V ar(Ψ) = V ar(Φ) and Ind(Ψ) = Ind(Φ)

2. For Φ = ∃u1, . . . , um.ϕ(u1, . . . , um) we start with Ψ := ∃u1, . . . , um.∅.

3. For each occurrence A(s) ∈ Φ we need to copy all the already existing conjuncts of
Ψ. To one half we add the atoms A(n)(s) and N(s) and to the other half we add the
atoms A(0)(s) and M(s).

4. For each occurrence r(s, t) ∈ Φ we triplicate all the already existing conjuncts of Ψ.
To the first group we add the atoms r(n)(s, t) and N(s) and N(t). To the second
group we add the atoms r(0)(s, t) and M(s) and to the last group we add the atoms
r(0)(s, t) and M(t).
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4.2 Reducing Projection with Boolean Conjunctive Queries to Query Entailment

Remark 4.19. Consider the Boolean conjunctive query Φ and the union of Boolean con-
junctive queries Ψ = Φ1 ∨ . . . ∨ Φn, obtained from the above instructions. For individuals
a ∈ Ind(Φ) every disjunct Φi ∈ {Φ1, . . . ,Φn} that contains the term M(a) is always false,
because all individuals used in the input are by definition mapped to named elements. In
an implementation one could drop this terms. Because they do no harm in a union of
queries we leave them here. Another observation is every disjunct, that contains for an
u ∈ V ar(Φ) ∪ Ind(Φ) both terms M(u) and N(u), is in itself contradictory and there-
fore not satisfiable. They can also be cancelled in an implementation. There are several
arguments how to reduce the conjuncts of this query. Ignoring these practical issues is
just laziness to do the more involved definition, not to think of a later distinction of cases.
Note that there are example where every conjunct is necessary. So this distinction has no
influence on the worst case complexity, but it shows in best case the union of conjunctive
queries can contain a single conjunct.

Let us illustrate the construction of the union of conjunctive queries Ψ from the Boolean
conjunctive query Φ by Figures 4.4. From this construction we obtain a UCQ Ψ, which
contains a disjunct for all possible combinations where the variables are mapped to named
and unnamed elements and we respect the unique name assumption. Obviously this is

Φ

Φ1

Φ2

Φ1. . .

Φ2. . .

Φ4. . .

Φ5. . .

Φ1

Φ2

. . .

Ψ
| |
Φ1

∨
...

∨
Φn

Figure 4.4: Construction of the union of conjunctive queries Ψ from the Boolean conjunc-
tive query Φ.

always possible and the above instruction gives the desired result.

The following lemma states the reduction we need to proof the main result of this chapter,
namely Theorem 4.12.

Lemma 4.20. Let α1, . . . , αn ∈ Σ, T TBox, A ABox and Φ a Boolean conjunctive query.

Further let Ared, Tred and Ψ be constructed from A, T and Φ as given in the preliminaries.

The Boolean conjunctive query Φ is a consequence of applying the composite action

α1, . . . , αn in A w.r.t. T if and only if the union of conjunctive queries Ψ is a conse-

quence of Ared w.r.t. Tred.
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4 Deciding Projection with Boolean Conjunctive Queries

We show the following: Every time there exists for every interpretation I0 ∈M(T )∩M(A)
and In ∈ M(T ) with I0 ⇒Eα1,...,αn

In a homomorphism from Φ to In we can construct for
every interpretation J ∈M(Tred)∩M(Ared) a homomorphism from Ψ to J and backwards.

Proof. ⇒:

Let J ∈ M(Ared) ∩ M(Tred) arbitrary and assume Φ is a consequence of applying the
composite action α1, . . . , αn in A w.r.t. T . Therefore we know for all interpretations
I0, . . . , In ∈ M(T ) with I0 |= A and I0 ⇒Eα1,...,αn

In that there exists a homomorphism
from Φ to In. We are going to show by construction the existence of a homomorphism µ2

from Ψ to J .

Let I0, . . . , In be constructed from J , where for 0 ≤ i ≤ n

∆Ii := ∆J

aIi := aJ for a ∈ Obj
AIi := (T (i)

A )J for A ∈ Con
rIi :=

(
(r(i))J ∩ (NJ ×NJ )

)
∪
(
(r(0))J ∩ (∆J × (M)J ∪ (M)J ×∆J )

)
for r ∈ Rol

For 0 ≤ i ≤ n we know by the proof of Lemma 15 presented in the report [BML+05]
(see the similar Lemma 3.16 with Claim 3.17 in this thesis, which works in presence of a
universal role) that Ii ∈M(T ), I0 |= A and I0 ⇒Eα1,...,αn

In.

By assumption In |= Φ, so for all x ∈ V ar(Φ) ∪ Ind(Φ) there exists a homomorphism
µ1 : V ar(Φ) ∪ Ind(Φ)→ ∆In from Φ to In. Because Ψ is a union of Boolean conjunctive
queries, let Ψ = Φ1 ∨ . . . ∨ Φn with Φ1, . . . ,Φn Boolean conjunctive queries and further
µ2 : V ar(Ψ) ∪ Ind(Ψ)→ ∆J is a function with

µ2(a) := µ1(a) for all a ∈ Ind(Ψ)
µ2(u) := µ1(u) for all u ∈ V ar(Ψ)

The function µ2 : V ar(Ψ) ∪ Ind(Ψ) → ∆J is well defined, because Ind(Ψ) = Ind(Φ),
V ar(Ψ) = V ar(Φ) and ∆In = ∆J by definition. The proof that µ2 from Ψ to J is a
homomorphism from a union of conjunctive queries to an interpretation checks Definition
4.15 and the depending Definition 4.4. It is therefore split in three steps.

1. By definition µ2(a) = µ1(a) = aIn = aJ for all a ∈ Ind(Ψ).

2. Every disjunct of the union of conjunctive queries Ψ contains either A(n)(x)∧N(x) or
A(0)(x)∧M(x) where x ∈ V ar(Ψ)∪ Ind(Ψ). In both cases we know by construction
of Ψ from Φ, that A(x) ∈ Φ with A ∈ NC and M,N ∈ NC . By the definition of µ2

and the fact, that µ1 is a homomorphism from Φ to In, it follows µ2(x) = µ1(x) ∈ AIn

where
AIn =

(
T

(n)
A

)J
=
(
N u (A(n))

)J
∪
(
(¬N u (A(0))

)J
.
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4.2 Reducing Projection with Boolean Conjunctive Queries to Query Entailment

Note that the two sets are disjoint and so µ2(x) is contained in exactly one of them.
For the concept atoms N(x) ∈ Ψ, M(x) ∈ Ψ we know by the definition of J that
NJ = ⋃

a∈Obj{a}J = ⋃
a∈Obj{a}In and MJ = (¬N)J = ∆J \NJ .

Let µ2(x) ∈
(
N u (A(n))

)J
. Then µ2(x) ∈ NJ and µ2(x) ∈ (A(n))J .

Let µ2(x) ∈
(
¬N u (A(0))

)J
. Then µ2(x) ∈MJ and µ2(x) ∈ (A(0))J .

3. Every disjunct of Ψ contains either r(n)(y, z) ∧ N(y) ∧ N(z) or r(0)(y, z) ∧ M(y)
or r(0)(y, z) ∧ M(z) where y, z ∈ V ar(Ψ) ∪ Ind(Ψ). In both cases we know by
construction of Ψ from Φ, that r(y, z) ∈ Φ with r ∈ NR and M,N ∈ NC . By the
definition of µ2 and the fact, that µ1 is a homomorphism from Φ to In we know
(µ2(y), µ2(z)) = (µ1(y), µ1(z)) ∈ rIn where

rIn =
(
(r(n))J ∩ (NJ ×NJ )

)
∪
(
(r(0))J ∩ (∆J ×MJ ∪MJ ×∆J )

)
=

(
(r(n))J ∩ (NJ ×NJ )

)
∪
(
(r(0))J ∩∆J ×MJ

)
∪
(
(r(0))J ∩MJ ×∆J )

)
.

Clearly now (µ2(y), µ2(z)) is either contained in the first or in the last two sets.

Let (µ2(y), µ2(z)) ∈
(
(r(n))J ∩ (NJ ×NJ )

)
. Then we know for the role and concept

atoms (µ2(y), µ2(z)) ∈ (r(n))J , µ1(y) ∈ NJ , µ2(z) ∈ NJ .

Let (µ2(y), µ2(z)) ∈
(
(r(0))J ∩∆J ×MJ

)
or (µ2(y), µ2(z)) ∈

(
(r(0))J ∩MJ ×∆J )

)
.

Then (µ2(y), µ2(z)) ∈ (r(0))J and µ1(y) ∈MJ or µ2(z) ∈MJ .

By the construction of Ψ from all possible combinations of the discussed atoms, µ2 is
a homomorphism from at least one of the disjuncts Φi of Ψ to J and therefore µ2 is a
homomorphism from Ψ to J .

⇐:

Let there be arbitrary interpretations I0, . . . , In with I0 ⇒Eα1,...,αn
In and let for all inter-

pretations J ∈ M(Ared) ∩M(Tred) be true that J |= Ψ with Ψ = Φ1 ∨ . . . ∨ Φn where
every Φi ∈ {Φ1, . . . ,Φn} is a Boolean conjunctive queries.

Consider the interpretation J be constructed from I0, . . . , In, where for 0 ≤ i ≤ n

∆J := ∆In (= ∆I0 = . . . = ∆In−1)
aJ := aIn (= aI0 = . . . = aIn−1) for a ∈ Obj
NJ := {aJ | a ∈ Obj}
MJ := ∆J \NJ

(A(i))J := AIi for A ∈ Con
(r(i))J := rIi for r ∈ Rol
(T (i)

C )J := CIi for all C ∈ Sub
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4 Deciding Projection with Boolean Conjunctive Queries

From the obvious fact, that J |= M ≡ ¬N and the proof of Lemma 15 presented in the
report [BML+05] (see also Lemma 3.16 in this thesis) we know J |= Ared and J |= Tred.
By assumption there exists a homomorphism µ2 : V ar(Ψ) ∪ Ind(Ψ) → ∆J from Ψ to J .
We can construct µ1 from Φ to In composed of µ2. For µ1 : V ar(Φ) ∪ Ind(Φ)→ ∆In let

µ1(a) := µ2(a) for all a ∈ Ind(Φ)
µ1(u) := µ2(u) for all u ∈ V ar(Φ)

The function µ1 : V ar(Φ) ∪ Ind(Φ) → ∆In is well defined, because Ind(Φ) = Ind(Ψ),
V ar(Φ) = V ar(Ψ) by definition of Φf and ∆J = ∆In by definition of J . The proof that
µ1 from Φ to In is a homomorphism from a union of conjunctive queries checks Definition
4.15 and the depending Definition 4.4. It will be split in three steps.

1. By definition µ1(a) = µ2(a) = aJ = aIn for all a ∈ Ind(Φ).

2. Consider A(s) ∈ Φ arbitrary with A ∈ NC and s ∈ V ar(Φ) ∪ Ind(Φ). From the
construction of the union of conjunctive queries Ψ from Φ we know every disjunct of
Ψ contains either A(n)(s) ∧N(s) or A(0)(s) ∧M(s). Further µ2 is a homomorphism
from Ψ = Φ1∨ . . .∨Φn to the interpretation J and by definition there exists at least
one disjunct Φi ∈ {Φ1, . . . ,Φn} such that µ2 is a homomorphism from Φi to J .
Let A(n)(s) ∈ Φi and N(s) ∈ Φi. Then we know, because by definition µ2 is a
homomorphism from the Boolean conjunctive query Φi to the interpretation J , that
µ1(s) = µ2(s) ∈ (A(n))J , where (A(n))J = AIn and µ1(s) = µ2(s) ∈ NJ , where by
definition of J we know NJ = {aJ | a ∈ Obj}. In conclusion µ1(s) ∈ AIn and µ1(s)
is a named element.
Let A(0)(s) ∈ Φi andM(s) ∈ Φi. Then we know, because µ2 : V ar(Ψ)∪Ind(Ψ)→ ∆J
is a homomorphism from the BCQ Φi to J , that µ1(s) = µ2(s) ∈ (A(0))J and
µ1(s) = µ2(s) ∈ MJ , where (A(0))J = AI0 and MJ = ∆J \NJ = {aJ | a /∈ Obj}.
We know the equivalence µ1(s) /∈ ObjI0 ⇐⇒ µ2(s) /∈ NJ by the definition of J .
By Claim 2 from the proof of Lemma 15 in [BML+05] (see the similar Claim 3.18 in
this thesis) we know for µ1(s) /∈ ObjI0 that µ1(s) ∈ AI0 ⇐⇒ µ1(s) ∈ AIn .

3. Consider r(s, t) ∈ Φ arbitrary with r ∈ NR and s, t ∈ V ar(Φ) ∪ Ind(Φ). From
the definition of the UCQ Ψ = Φ1 ∨ . . . ∨ Φn we know every disjunct of Ψ contains
either r(n)(s, t) ∧ N(s) ∧ N(t) or r(0)(s, t) ∧M(s) or r(0)(s, t) ∧M(t). By definition
and assumption there is at least one disjunct Φi ∈ {Φ1, . . . ,Φn} such that µ2 is a
homomorphism from Φi to J .
Let r(n)(s, t) ∈ Φi, N(s) ∈ Φi and N(t) ∈ Φi. Then we know from considerations,
similar to the previous point, (µ1(s), µ1(t)) = (µ2(s), µ2(t)) ∈ (r(n))J = rIn and µ1(s)
and µ1(t) are named elements.
Let r(0)(s, t) ∈ Φi and M(s) ∈ Φi or r(0)(s, t) ∈ Φi and M(t) ∈ Φi respectively. Then
(µ1(s), µ1(t)) = (µ2(s), µ2(t)) ∈ (r(0))J = rI0 and µ1(s) /∈ ObjI0 or µ2(s) /∈ ObjI0 .
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4.2 Reducing Projection with Boolean Conjunctive Queries to Query Entailment

Therefore by Claim 2 from [BML+05] (or again the similar Claim 3.18 in this thesis)
we get (µ1(s), µ1(t)) ∈ rI0 ⇐⇒ (µ1(s), µ1(t)) ∈ rIn .

By assumption there is at least one disjunct Φi of Ψ such that µ2 is a homomorphism from
Φi to J . By construction of the union of conjunctive queries Ψ from the input query Φ we
know from the above argumentation µ1 is a homomorphism from Φ to In.

The union of conjunctive queries generated in the preliminaries of Lemma 4.20 is exponen-
tial in the size of the Boolean conjunctive query from the input. For Tred and Ared we know
from the report [BML+05] that they are polynomial in the size of the initial ABox and
TBox if we assume unary coding. If we assume numbers in number restrictions are coded
in binary, the size of the TBox Tred given in [BML+05] is exponential in size of the input.
Hence, this lemma gives the ExpTime reduction from projection with Boolean conjunctive
queries to entailment with unions of conjunctive queries and therefore Theorem 4.12 is a
direct consequence. This gives rise to the following results about projection.

Corollary 4.21. Let K be an ALCQIO knowledge base. Projection with Boolean con-

junctive queries is decidable.

Proof. This is a consequence of Theorem 4.12 and Lemma 4.20 which yield exponential re-
ducibility of projection with Boolean conjunctive queries to query entailment with unions of
Boolean conjunctive queries. The decidability of query entailment for unions of conjunctive
queries is given in Theorem 4.18.

Corollary 4.22. Projection with Boolean conjunctive queries is in 3-ExpTime for ALC,
ALCO, ALCQ and ALCQO.

Proof. This is a consequence of Theorem 4.12 and Lemma 4.20. Further Birte Glimm,
Ulrike Sattler and Ian Horrocks provide in the proof of Theorem 9 and Lemma 10 in
their article [GHS08] an algorithm that solves the query entailment problem for unions of
conjunctive queries in SHOQ in deterministic time single exponential in the size of the
knowledge base and double exponential in the size of the query. Together with the above
calculations for Ared, Tred and the union of conjunctive queries Ψ this yields an algorithm
that solves projection with Boolean conjunctive queries in time double exponential in the
size of the knowledge base and three times exponential in size of the query.

4.2.3 Improvements to Reduce Complexity in the Reduction

We constructed the union of conjunctive queries Ψ from the Boolean conjunctive query Φ
by a recursive rule. This is easy to handle in a proof, but not very efficient, when it comes
to complexity considerations and implementations. Let us construct Ψ from Φ with the
help of an explicit mapping rather than by recursion.
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Definition 4.23. Let Φ = ∃u1, . . . , um.φ(u1, . . . , um) be a boolean conjunctive query and
f : V ar(Φ) ∪ Ind(Φ)→ {0, 1} a function. Then Φf := ∃u1, . . . , um.ϕf (u1, . . . , um), where

A(t) ∈ Φ ∧ f(t) = 1 ⇐⇒ A(n)(t) ∈ Φf ∧N(t) ∈ Φf

A(t) ∈ Φ ∧ f(t) = 0 ⇐⇒ A(0)(t) ∈ Φf ∧M(t) ∈ Φf

r(s, t) ∈ Φ ∧ f(s) = 1 ∧ f(t) = 1 ⇐⇒ r(n)(s, t) ∈ Φf ∧N(s) ∈ Φf ∧N(t) ∈ Φf

r(s, t) ∈ Φ ∧ f(s) = 0 ⇐⇒ r(0)(s, t) ∈ Φf ∧M(s) ∈ Φf

r(s, t) ∈ Φ ∧ f(t) = 0 ⇐⇒ r(0)(s, t) ∈ Φf ∧M(t) ∈ Φf

is a Boolean conjunctive query with V ar(Φf ) = V ar(Φ) and Ind(Φf ) = Ind(Φ).
It is well known, that there exist for n = |V ar(Φ)∪Ind(Φ)| a total of 2n different functions
f : (V ar(Φ) ∪ Ind(Φ))→ {0, 1}.
From the different Boolean conjunctive queries we construct the union of conjunctive
queries:

Ψ :=
∨

f :V ar(Φ)∪Ind(Φ)→{0,1}
Φf

with V ar(Ψ) = V ar(Φ) and Ind(Ψ) = Ind(Φ)

Let us prove for a given Boolean conjunctive query Φ and a knowledge base K, that entail-
ment with a union of conjunctive queries obtained by the recursive approach is equivalent to
entailment with a union of conjunctive queries obtained by construction from the functions
f : (V ar(Φ) ∪ Ind(Φ))→ {0, 1}.

Lemma 4.24. Let K = (A, T ) be a knowledge base, Φ a Boolean conjunctive query.

Ψ1 = Φ1 ∨ . . . ∨ Φn is the union of conjunctive queries obtained from Φ by the recursive

rule and Ψ2 = Θ1 ∨ . . .∨Θm is the union of conjunctive queries explicitly obtained from Φ
and the functions f : (V ar(Φ) ∪ Ind(Φ))→ {0, 1}. Then the following is true:

K |= Ψ1 ⇐⇒ K |= Ψ2

Proof. First of all we know by construction of the unions of conjunctive queries from Φ,
that V ar(Ψ1) = V ar(Ψ2) = V ar(Φ) and Ind(Ψ1) = Ind(Ψ2) = Ind(Φ)
Assume K |= Ψ1.
For every disjunct Φi ∈ Ψ1 we can either construct f : (V ar(Φ) ∪ Ind(Φ)) → {0, 1} with
f(x) = 1 ⇐⇒ N(x) ∈ Φi, f(x) = 0 ⇐⇒ M(x) ∈ Φi, or the disjunct Φi is contradictory,
because for an x ∈ V ar(Ψ1) ∪ Ind(Ψ1) it contains both M(x) and N(x).
Consider an arbitrary I ∈ M(A)∩M(T ) with I |= Ψ1, where for Φi ∈ Ψ1 we have I |= Φi.
Then Φi is not contradictory. Thus there exists a function f : V ar((Φ)∪ Ind(Φ))→ {0, 1}
and we know by construction for all s, t ∈ V ar(Ψ1) ∪ Ind(Ψ1) and j ∈ {0, n}:

A(j)(s, t) ∈ Φf ⇐⇒ A(j)(s, t) ∈ Φi, r(j)(s, t) ∈ Φf ⇐⇒ r(j)(s, t) ∈ Φi

N(t) ∈ Φf ⇐⇒ N(t) ∈ Φi, M(t) ∈ Φf ⇐⇒ M(t) ∈ Φi
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Therefore I |= Φf ⇐⇒ I |= Φi and also K |= Ψ2.
Assume K |= Ψ2.
For every function f : (V ar((Ψ2) ∪ Ind(Φ))→ {0, 1} we can find a disjunct Φi in Ψ1 with
f(x) = 1 ⇐⇒ N(x) ∈ Φi, f(x) = 0 ⇐⇒ M(x) ∈ Φi and for all x ∈ V ar(Φ) ∪ Ind(Φ)
there are not both concept atomsM(x) and N(x) conjuncts in Φi, because by construction
Ψ1 contains all suitable combinations of labelled concept and role atoms.
Consider an arbitrary I ∈ M(A) ∩ M(T ) with I |= Ψ2, where for Φf ∈ Ψ2 we have
I |= Φf . Then for the corresponding function f : (V ar(Φ) ∪ Ind(Φ)) → {0, 1} we choose
the above discussed disjunct Φi ∈ Ψ1 with I |= Φf ⇐⇒ I |= Φi and also K |= Ψ1.

The definition of a knowledge base K = (A, T ) entailing a union conjunctive queries yields
the following:

K |=
∨

f :V ar(Φ)∪Ind(Φ)→{0,1}
Φf ⇐⇒ ∀J∈M(A)∩M(T )∃f :V ar(Φ)∪Ind(Φ)→{0,1}J |= Φf

Remark 4.25. We can exclude for all a ∈ NI the concepts M(a), because by definition
the individuals used in the input are always mapped to named elements. But we need the
concepts M and N as labels in the proof, where they are used to mark every element from
the input. In practice, when forming this union of conjunctive queries, we can exclude all
functions mapping f(a) = 0 for a ∈ NI .

Let us summarize what we have done in this chapter. We started with the introduction
of Boolean conjunctive queries, their semantics and the notion of a homomorphism from a
query to an interpretation. Some examples and considerations about the reduction ABox
and TBox and a suitable query where then leading to unions of conjunctive queries. These
queries crossed our way because they enable us to choose the right Boolean conjunctive
query for every interpretation of the reduction ABox and TBox. Then we have proven a
lemma, which yielded the exponential reducibility from the inference problem projection
with Boolean conjunctive queries to entailment with unions of conjunctive queries. From
this reduction we obtained a decision result for ALCQIO and a reference for an ExpTime-
algorithm that solves the projection problem with Boolean conjunctive queries in ALCQO.
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5 Summary and Future Work

This thesis contains, beside an introduction to description logics, two chapters where action
problems are reduced to reasoning problems. This reduction basically follows the ideas and
constructions first introduced by Franz Baader, Carsten Lutz, Maja Miličić, Ulrike Sattler
and Frank Wolter in the article [BLM+05] and the accompanying report [BML+05].
At this point what remains is to review the results obtained in this thesis and to point to
open problems and thoughts.
In the second chapter we introduced actions, given by an effect function, where we have used
the terms of a concrete and an abstract action. It is left to show what are the requirements
for the abstract approach to subsume the different attempts to give a concrete description
logics action formalism.
In the third chapter we extended the reduction from executability and projection of com-
posite actions to ABox consequence by the universal role. To obtain complexity results
from this reduction we needed to investigate ABox consequence in the several sublanguages
of ALCQIOU that contain nominals and a universal role. Unfortunately there is a gap in
Lemma 3.7. We do not have a completeness result for ABox consequence in ALCQOU ,
where the universal role is allowed to occur in qualified number restriction. I suspect
for unary coding of numbers NExpTime-hardness can be proven by a reduction from a
bounded domino problem.
In more than one case we had to assume unary coding of numbers in number restriction.
The upper bound for concept satisfiability in ALCQIOU , where numbers are coded in
binary remains an open problem whose solution would derestrict all limitations we had to
make in this direction.
In the proof of the reduction theorem also several thoughts remain open, for example
on nominals. Every r(a, b) occurring in the ABox is split into a concept definition using
nominals Arb

≡ ∃r.{b} and a concept assertion Arb
(a). Up to now we do not know whether

this is really necessary. Tobies tells us in [Tob01] that a set of cardinality restrictions
contained in a so-called CBox can be used to replace nominals. It could be interesting to
examine, whether this approach leads to satisfying observations for the description logics
action formalism. But as CBoxes also play a minor role in research on description logics we
do not know how a CBox could find its place in the reduction. However the correspondence
between cardinality restrictions and nominals, observed in Lemma 5.5. by [Tob01] can be
interesting, particularly together with the observed connection between the universal role
and CBoxes.
Finally we took a closer look at the development of the description logics based action
formalism and the new introduced effect function. Whereas we know now that the most
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simple global statement is covered by the approach developed in the report [BML+05],
with regard to transitivity the limits of semantic expressiveness have been reached. But
it is not unlikely that the abstraction of applying actions by the introduction of an effect
function yields a solution to the semantic problems arising from transitive roles in the
knowledge base or even as a part of an action. As observed before transitive roles play an
important role as they are contained in the most powerful, but still decidable description
logics. Therefore it can be a next step to investigate which conditions an admissible action
formalism has to meet to cover transitivity.
In the fourth chapter we considered queries as a consequence of actions and we thought
about projection with Boolean conjunctive queries. Our considerations about reduction
queries were leading to unions of conjunctive queries. We could prove reducibility of pro-
jection with Boolean conjunctive queries to entailment with unions of conjunctive queries,
where this reduction is based on the reduction for projection with assertions and the
construction of the reduction ABox and TBox introduced in the report [BML+05]. The
discussion about an extension of this results will also lead to better results and greater
knowledge of solving the projection problem with Boolean conjunctive queries. An im-
portant question here again is under which circumstances this reduction can be extended
to description logics that allow for transitive roles. Because we reduce projection with
Boolean conjunctive queries to entailment with unions of conjunctive queries it would be
important to have more complexity results for this problem. Obviously we can only obtain
strong complexity bounds for projection with Boolean conjunctive queries if we know more
about query entailment for knowledge bases that contain nominals. At the end of the
fourth chapter we gave an explicit construction of the union of conjunctive queries from
the Boolean conjunctive query, considered in the input. Clearly there are exponentially
many functions f : V ar(Φ) ∪ Ind(Φ) → {0, 1}, but each of them determines a conjunct,
that is only polynomial in the input. The last discussion about this thesis was to use this
alternative approach, to push the 3-ExpTime result from Corollary 4.22 to a 2-ExpTime
border. Because of a lack of time, this issue remains open for further exploration.
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