
Diplomarbeit

About
Expanding Spiking Neural P Systems

Daniel Schröder
Daniel.Schroeder@mailbox.tu-dresden.de

Technische Universität Dresden
Fakultät Informatik

Institut für Theoretische Informatik
Lehrstuhl für Automatentheorie

Betreuerin: Dr.-Ing. Monika Sturm
Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. Franz Baader

Eingereicht am 8. Februar 2011

“The creation of something new is not accomplished by the intellect but by the play
instinct acting from inner necessity. The creative mind plays with the objects it loves.”

– Carl Jung (1875 - 1961)

Technische Universität Dresden 02.08.2010
Institut für Theoretische Informatik
Lehrstuhl für Automatentheorie

Aufgabenstellung Diplomthema

Bearbeiter: Daniel Schröder (Informatik)

Auf dem Gebiet des Membrane-Computing haben sich in den letzten Jahren die so genan-
nten SNP-Systeme (Spiking Neural P-Systeme) wissenschaftlich etabliert. Die Beson-
derheit dieser Systeme besteht darin, nicht nur Zellhierarchien zu betrachten, wie das
üblicherweise bei P-Systemen gemacht wird, sondern auch andere Membranorganisatio-
nen mittels P-Systeme abzubilden. Ein Vorschlag ist dabei, P-Systeme zu modellieren,
in denen die Membranen netzförmige Strukturen bilden. In der Theorie der Spiking
Neural P-Systeme wird als Netz ein Neuronennetz verwendet. In der Diplomarbeit ist
die Modellierung der SNP-Systeme vorzustellen und ein bisher offenes Problem aus der
aktuellen Forschung zu lösen. Letztere Aufgabe soll den eigenen wissenschaftlichen
Beitrag in der Diplomarbeit darstellen.

Auf folgende Punkte soll in der Arbeit eingegangen werden:

• Definition der Spiking Neural P-Systeme,

• Erweiterung der Modellierung mit der Zielstellung, einen exponentiell großen
Space durch das Modell selbst aufzubauen,

• Vergleich mit anderen bekannten Ansätzen,

• Modellierung einer konkreten Anwendung (z. B. Entscheidung eines NP- oder
PSPACE-Problems),

• Zusammenfassung wissenschaftlicher Fragestellungen auf diesem Gebiet.

Die Bearbeitung des Themas setzt ein intensives Literaturstudium voraus, insbeson-
dere folgender Quellen:

• Alberto Leporati, Claudio Zandron, Claudio Ferretti and Giancarlo Mauri. Solving
Numerical NP-Complete Problems with Spiking Neural P Systems. Membrane
Computing, Lecture Notes in Computer Science, Volume 4860, 336-352, 2007.

• Gheorghe Păun. Spike trains in spiking neural P systems. International Journal
of Foundations of Computer Science, 17(4):975, 2006.

• Haiming Chen, Mihai Ionescu, Tseren-Onolt Ishdorj, Andrei Păun, Gheorghe Păun
and Mario J. Pérez-Jiménez. Spiking neural P systems with extended rules: uni-
versality and languages. Natural Computing, Volume 7, Number 2, 147-166,
2008.

iii

Organisation und Termine:
Betreuerin: Dr.-Ing. Monika Sturm
Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. Franz Baader
Bearbeitungszeitraum: 02.08.2010–02.02.2011
Zwischenbericht: 10/2010

iv

Erklärung
Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit selbstständig und nur unter
Zuhilfenahme der angegebenen Literatur verfasst habe.

Daniel Schröder
Dresden, 8. Februar 2011

v

Contents

1. Introduction 1

2. Preliminaries 5
2.1. Mathematical Prerequisites . 5
2.2. Formal Languages and Regular Expressions 5
2.3. The Quantified Boolean Formula Problem 6

3. Spiking Neural P Systems 9
3.1. Formal Definition and Representation 9
3.2. Operation . 10
3.3. An Example SN P System . 12
3.4. Utilization and Computational Completeness 13
3.5. Variants of SN P Systems . 15
3.6. A Solution to QBF Utilizing SN P Systems 16

4. Expanding Spiking Neural P Systems 23
4.1. Overview . 23
4.2. Formal Definition . 25

5. Polynomial ESN P Systems Solving QBF 37
5.1. Input Encoding and Input Module . 40
5.2. Input Bridge Neurons . 41
5.3. Assignment Module: Assignment-Layer 42
5.4. Assignment Module: Sat-Layer . 47
5.5. Quantification Module . 48
5.6. Properties . 52

6. Similar Extensions 55
6.1. SN P Systems with Budding Rules . 55
6.2. SN P Systems with Neuron Division and Budding 56
6.3. Comparison to ESN P Systems . 57

7. Conclusions and Remarks 59

Appendix 61

A. Formal Implementation of the ESN P Systems solving QBF 61

vii

About ESN P Systems

B. Expansion Phase of an ESN P System Solving an Instance of QBF 65

viii

1. Introduction
The scientific approach of studying information and data processing found in nature
to gain new insights into the nature of computing and computing problems is known
as Natural computing. Based on the results, new nature inspired computing models,
computing paradigms or problem-solving techniques are found, which may have benefits
over conventional methods or even solve conventionally-hard problems efficiently. Some
well known natural computing based fields of research include evolutionary algorithms,
neural networks, DNA computing and membrane computing.
Most natural computing based models fall into one of the following three categories:

In-vivo models characterize processes in living organisms. For example the process of
reordering of DNA strands in living cells. Another example are the cell divisions
based ESN P systems introduced in this diploma thesis.

In-vitro models characterize natural processes applied outside of living organisms. For
example, in-vitro models are used in DNA computing, where DNA molecules are
manipulated in test tubes to perform conventionally-hard computations efficiently.

In-silico models/algorithms target conventional computer architectures. Natural pro-
cesses are either simulated or adapted. Evolutionary algorithms are an example
where the natural process of evolution is adapted to solve optimization problems.

Membrane computing is a natural computing based field of computer science. In
membrane computing in-vivo computation models based on processes in biological cells
are developed. The most important model is the P system conceived by (and named
after) Gheorghe Păun. P systems were first mentioned in [PRS98]. A P system models
a tree structure of membranes (i. e. a single root membrane contains other membranes
which in turn may contain further membranes etc.). Rules then define the transport
of different types of objects between the membranes of the system or even into the
environment. This is inspired by object transport processes occurring in biological cells.
Based on P systems, the spiking neural P systems (in short, SN P systems) were in-

troduced as a new in-vivo membrane computing model in [IPY06]. SN P systems adapt
the tree-like hierarchy of membranes in P systems to a net-like structure of membranes—
now representing neurons—inspired by the information processing of the brain. Unlike
object transport in P systems, only one type of objects called spike—representing one
unit of information—is transported between neurons of SN P systems. This as well is
inspired by the brain in which all electrical impulses transmitted by synapses between
neurons are almost identical. SN P systems can be utilized in various ways as number
generating devices, accepting devices or even function computing devices as for exam-
ple shown in [IPY06] and [PP07]. In all three cases, SN P systems were found to be
computationally complete.

1

About ESN P Systems

Since neurons of SN P systems work in parallel to a high degree, the usage of these
SN P systems to efficiently solve conventionally-hard problems is the focal point of
current research. Until now, two possible approaches were published. On the one hand,
nondeterministic SN P systems are used. On the other hand, deterministic SN P sys-
tems are used, which, however, depend on a very large pre-compiled workspace (i. e. a
very large number of neurons and synapses given before computation starts). Efficient
solutions to the well known problems SAT and Subset Sum (which are NP-complete)
using the nondeterministic approach were introduced in [LMZ+09]. Deterministic sys-
tems efficiently solving SAT are shown in [IL08] and will also be covered in more detail
in Chapter 3 of this diploma thesis. Furthermore, a deterministic SN P system effi-
ciently solving the PSPACE-complete problem QBF is shown in [ILP+10]. Although
these deterministic systems solve the problems in a polynomial or even constant num-
ber of steps—depending on how the problem instance is injected into the system—the
required pre-compiled workspace needs to be exponentially large with respect to the
problem size. In fact, a deterministic SN P system cannot solve an NP-hard problem
efficiently unless it employs an exponentially large pre-compiled workspace as proved
in [Nea08] (assuming NP , P).
Unfortunately, the dependency on exponentially large pre-compiled workspaces is un-

desirable. The reason is that the question of if and how such a workspace can be built
efficiently in time is not answered by the system itself. However, pre-compiled exponen-
tial workspaces can be avoided by extending the standard SN P system. Although it is
unavoidable to eventually generate an exponentially large workspace—which is necessary
to solve the problem efficiently in time—, the workspace can be build during computa-
tion by the system itself, starting from a non-exponential workspace. The basic idea to
achieve this is to add the ability to grow new neurons and synapses in a structured way
during the actual computation, using the high degree of parallelism in SN P systems.
In this case, the resulting exponential workspace is indeed not pre-compiled anymore.
One such extension is developed in [WIP09]. There, additional budding rules allow

the creation of new synapses and neurons based on the structural environment of a
neuron but independent of spikes contained in the system. In this diploma thesis an
alternative extension to SN P systems is proposed, which allows to create neurons as
well as synapses based on the amount of spikes contained in a neuron. The proposed
extension introduces two additional types of rules: expanding rules create new neurons
by dividing existing neurons, whereas connecting rules create synapses between existing
neurons. The two new types of rules are biologically inspired by cell division and
dendritic growth. SN P systems using these additional rules are named expanding
spiking neural P systems (in short, ESN P systems). Although their primary purpose
is the same as with the budding rule extension—i. e. avoiding exponentially large pre-
compiled workspaces—, we are confident that this extension is also of interest for other
essential applications.
To show the important properties of this new extension, an application is shown: A de-

terministic ESN P system capable of efficiently (in time) solving the PSPACE-complete
problem QBF. To achieve that, the system builds an exponentially large workspace in
only a polynomial number of steps. Further good properties distinguishing this sys-
tem from other such systems are the just polynomially large initial configuration (this

2

1. Introduction

includes the number of neurons, spikes and synapses) and the polynomial number of
rules the system uses.
The remainder of this diploma thesis is structured in the following way: In Chapter 2,

fundamental definitions are recalled. SN P systems are introduced and formally defined
in the subsequent Chapter 3. This includes an overview of previous findings as well as
current research in this field. Furthermore, an application of SN P systems solving the
QBF problem is given. This system is the foundation for the following chapters. Chap-
ter 4 introduces and formally defines the proposed extension to SN P systems, which
is then applied in Chapter 5 to solve QBF with better properties. In Chapter 6, similar
approaches are introduced and compared to the extension proposed in this diploma
thesis. Finally, the relevance of this solution is discussed in Chapter 7.

3

2. Preliminaries

This chapter briefly recalls basic mathematical definitions as well as definitions for formal
languages, regular expressions and the quantified Boolean formula problem. The
reader is assumed to have basic knowledge of complexity theory and furthermore to be
familiar with propositional logic and P systems. An introduction to complexity theory
can be found in [WP10] and an introduction to propositional logic in [Sch10]. Finally,
P systems are introduced in [PRS98] and [Pau02].

2.1. Mathematical Prerequisites

The usual definitions of natural numbers N (including 0), sets, relations and functions,
as used for example in [Ihr98], are assumed in this diploma thesis. N≥i denotes the
set of all natural numbers greater or equal to i ∈ N. The composition of two relations
(denoted by ◦), as used in this diploma thesis, is defined by:

Definition 2.1. If R ⊆ X × Y and S ⊆ Y × Z are two binary relations, then their
composition S ◦R is the relation

S ◦R = {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R ∧ (y, z) ∈ S} ⊆ X × Z . ^

2.2. Formal Languages and Regular Expressions

The formal languages and regular expressions used in this diploma thesis are defined as
follows:

Definition 2.2. An alphabet is a finite nonempty set. ^

Definition 2.3. Let Σ be an alphabet. Then the set Σ∗ of all words over Σ is defined
as the set of all finite sequences (or strings) over Σ. Words are denoted by listing the
elements of the sequence. The length of a word w = a1a2 · · · ak with k ≥ 0, denoted
by |w|, is defined as |w| B k. The empty word is the word of length 0 and is denoted
by ε. ^

Definition 2.4. Let Σ be an alphabet. A formal language L over Σ is a subset of Σ∗,
i. e. a set of words over Σ. ^

Definition 2.5. Let Σ be an alphabet and L1, L2 two formal languages over Σ. Then
the two operations concatenation (denoted by ·) and Kleene star (denoted by ∗), are

5

About ESN P Systems

defined as follows:

L1 · L2 B {u · v | (u ∈ L1) ∧ (v ∈ L2)} where u · v B uv ,

L0 B {ε} ,
Ln+1 B Ln · L ,

L∗ B
⋃
n≥0

Ln . ^

Definition 2.6. Let Σ be an alphabet. The set of regular expressions over Σ, denoted
by RegΣ, is the smallest set Reg′Σ such that:

• {∅, ε} ⊆ Reg′Σ ,

• Σ ⊆ Reg′Σ ,

• ∀n ∈ N≥0 : ∀r, s ∈ Reg′Σ : (r + s), (r · s), r∗, r+, rn ∈ Reg′Σ . ^

Priorities for the operators of regular expressions are defined as follows: ·∗, ·+ and ·n
have the highest priority, followed by (·). The operator (+) has the lowest priority.
Considering these priorities, unnecessary parentheses may be omitted. The operator (·)
may be omitted as well. For example, the regular expression ((x · y) + (a2 · b)) can also
be written as xy + a2b. Note that conventional definitions of RegΣ do not include the
operators ·+ and ·n. In fact, expressions using these operators can equivalently be sub-
stituted by expressions using the standard operators (see Definition 2.7). However, the
additional operators allow more compact expressions and are therefore used throughout
this diploma thesis.

Definition 2.7. Let Σ be an alphabet, r, s, t ∈ RegΣ, a ∈ Σ and n ∈ N≥0. The formal
language defined by the regular expression t, denoted by L(t), is defined inductively:

• L(∅) B ∅, L(ε) B {ε}, L(a) B {a} ,

• L(r + s) B L(r) ∪ L(s), L(r · s) B L(r) · L(s) ,

• L(r∗) B L(r)∗, L(r+) B L(r · r∗) ,

• L(rn) B L(r · r · . . . · r︸ ︷︷ ︸
n times

) . ^

2.3. The Quantified Boolean Formula Problem

The well known PSPACE-complete quantified Boolean formula problem (QBF)
asks whether a given fully quantified Boolean formula evaluates to true or false.
Without loss of generality, we assume that those formulas are given in conjunctive

6

2. Preliminaries

normal form (CNF) and with no literal occurring twice within the same clause. Fur-
thermore, we assume that a literal x and its complement ¬x never appear in the
same clause (e. g. x ∨ ¬x). Therefore, every formula with n variables and m clauses
is of the form γn,m = Q1x1Q2x2 . . . Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm) where n ∈ N≥0,
m ∈ N≥1, Q1, . . . , Qn ∈ {∃,∀} and where the clauses C1, . . . , Cm are disjunctions of
literals using the variables x1, . . . , xn. QBF(n,m) denotes the set of all problem in-
stances (formulas) of QBF consisting of n variables and m clauses in the presented form.
For each instance γn,m in QBF(n,m) there exists an equivalent formula of the form
γ′2n,m = ∀x′1 . . . ∀x′n∃x′n+1 . . . ∃x′2n(C ′1 ∧ C ′2 ∧ . . . ∧ C ′m) where for all j ∈ {1, . . . ,m},
the clause C ′j is obtained from Cj by replacing xi by x′i if Qi = ∀ or by x′i+n if Qi = ∃
for all i ∈ {1, . . . , n}. For example, an equivalent (of the afore mentioned form) of the
formula ∀x1∃x2

(
(¬x1 ∨ x2) ∧ (¬x2)

)
is ∀x1∀x2∃x3∃x4

(
(¬x1 ∨ x4) ∧ (¬x4)

)
. The set

of all instances of this form consisting of y = 2n variables and m clauses is denoted by
QBFS(y = 2n,m). Note that this form always consists of an even amount of variables
where the index of a variable fully determines its quantification. As one can easily see,
the transformation of any given instance of QBF(n,m) into an equivalent instance of
QBFS(y = 2n,m) is polynomial in time.

7

3. Spiking Neural P Systems

In this chapter spiking neural P systems are covered in detail. Since an extension to
this model is proposed in Chapter 4, the term traditional SN P systems will be used
synonymously for the model, introduced in the current chapter, whenever it is necessary
to distinguish between both models. Section 3.6 concludes this chapter by presenting
an efficient solution to QBF, utilizing an SN P system and a pre-compiled workspace.
SN P systems are derived from P systems. The hierarchy of membranes in P systems

is always a tree structure. Membranes contain other membranes which may in turn
contain further membranes. Removing this restriction—and therefore allowing arbitrary
relations between membranes—leads to spiking neural P systems. These systems no
longer model membrane structures but neural networks (consisting of neurons and con-
necting synapses instead of membranes). Consequently, only a single type of object
(called spike) is transported between neurons. These spikes represent the electrical im-
pulses transmitted between biological neurons. Like the P systems they are based on,
spiking neural P systems can be utilized to efficiently solve conventionally-hard prob-
lems, because of their high degree of parallelism. Spiking neural P systems and possible
extensions are defined in numerous publications (first in [IPY06]) and often in slightly
different ways. The definition used throughout this diploma thesis is based on [ILP+10]
and uses so called extended firing rules1.

3.1. Formal Definition and Representation
In essence, SN P systems consist of a number of neurons. Each such neuron contains a
number of objects (called spikes and represented by the symbol a) of the same type and
a set of extended firing rules. Furthermore, neurons can be connected to each other by
directed synapses. This structure of an SN P system is formally defined as a tuple in
the following way (see [ILP+10]):

Definition 3.1. A spiking neural P system is a tuple

Π = (O, σ1, σ2, . . . , σm, syn, in, out)

where

1. O = {a} is the alphabet with only one element a called spike,
1As the name “extended firing rules” suggests, there are other variants using so called “standard rules”.
Standard rules are a more restricted form of the extended firing rules used throughout this diploma
thesis. The exact nature of standard rules is covered in Section 3.5. Furthermore, extended firing
rules are part of the traditional SN P systems and should not be confused with the new types of
rules introduced in Chapter 4 as an extension of the traditional SN P systems.

9

About ESN P Systems

2. σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m where
a) ni ≥ 0 is the initial number of spikes contained in σi,
b) Ri is a finite set of extended firing rules of the form E/ac → ap; d where E

is a regular expression over O, and c ≥ 1, c ≥ p, p ≥ 0, d ≥ 0 ,

3. syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) < syn for every 1 ≤ i ≤ m, is the
directed graph of synapses between neurons, and

4. in, out ∈ {1, . . . ,m} indicate the input neuron and the output neuron of Π. ^

As a graphical representation of SN P systems, neurons are drawn as nodes of a graph
and synapses as directed edges of the same graph. Rules and spikes are listed inside
of the neuron shapes. To indicate input and output neurons, “pseudo edges” are used.
Each of them connects one neuron with the environment—rather than connecting two
neurons as normal edges do—as shown in Figure 3.1.

(aa)∗/a3 → a2

a∗/a2 → a; 5

rules of the neuron

a4contained spikes (if any)

σ1label of the neuron

indicates an input neuron

a/a → λ; 0

aa/a2 → a; 1

neuron

σ2

synapse

indicates an output neuron

Figure 3.1.: Graphical representation of an SN P system.

3.2. Operation

The dynamic of an SN P system lies in the amount of spikes and their distribution over
the neurons of the system. By application of extended firing rules, this distribution is
altered. The exact syntax of these rules is simple: E/ac → ap; d. Table 3.1 describes
the meaning of the four elements of a rule. Under certain conditions, rules may be
abbreviated: A regular expression equivalent to ac can be omitted as well as a delay
of 0. Thus, ac → ap is equivalent to ac/ac → ap; 0. Furthermore, rules with p = 0
are additionally also called extended forgetting rules and may as well be written in the
form E/ac → λ; d.
A rule may only be applied on a neuron if the following three conditions are met:

10

3. Spiking Neural P Systems

Elements of the rule E/ac → ap; d Description

E a regular expression over the symbol a
c the number of spikes to be consumed
p the number of spikes to be generated
d the delay

Table 3.1.: The elements of rules of SN P systems.

1. The rule is contained in the neuron it is to be applied to.

2. The neuron contains at least as many spikes as the rule specifies to be consumed.

3. The neuron contains an amount of spikes (interpreted as word over O = {a}),
which is in the language, described by the associated regular expression of the
rule. For example, a rule with the expression (aa)∗ may be applicable on a neuron
containing two, four or any other even number of spikes but not for example on
a neuron containing three spikes.

As effect of the application of a rule, the amount of spikes given by the rule is con-
sumed (subtracted from contained spikes of the neuron). Furthermore, the application
generates a number of new spikes. The amount is again given by the rule. These new
spikes are not directly stored in the neuron but transmitted along each outward-directed
synapse of the neuron to connected neurons. That means each connected neuron re-
ceives as many spikes as the applied rule specifies to be generated. Spikes just received
and spikes already stored are accumulated in the connected neurons. Although rules
consuming no spikes are not possible, there is a subset of rules which consume spikes
but do not generate any new spikes in the process. These rules are called extended
forgetting rules and may use the special syntax shown above.
In SN P systems, the described application of rules always happens synchronously.

This means that a global clock is assumed which defines time steps. During each step,
every neuron must apply exactly one contained rule, except if no rule is applicable or
the neuron is closed (closed neurons are explained later on). If at a time more than
one rule is applicable, then one of the applicable rules is chosen nondeterministically
for application during that time step. Therefore, a system is deterministic if and only if
for every neuron of the system at any given time at most one of its rules is applicable.
Otherwise, it is called nondeterministic.
Finally, each rule comprises a delay which defines how many time steps are necessary

to apply the rule. If an applied rule has an associated delay greater than zero, then the
corresponding neuron is closed for that many steps and opens again afterwards. While
the neuron is closed, no rules are applied, and incoming spikes are ignored instead
of stored during time steps. Only at the end of the last closed time step, spikes are
consumed and transmitted as specified by the delayed rule to end the application of
this rule. A delay of zero causes the neuron to never close while applying the rule.
Consequently, spikes are consumed, transmitted and stored in the same time step as

11

About ESN P Systems

the rule is applied. In the following time step, the neuron may already apply a rule
again.
By indicating one neuron as input neuron, a predefined number of spikes—given as

input to the system beforehand—can be stored in this neuron in each time step. This
models a stimulation of the system from outside via synapses between the environment
and the special input neuron. For example, prior to execution one may define the input
of a system to be three spikes in the first time step, two spikes in the next time step and
none in all other steps. Such sequences of amounts of spikes are called spiketrains. An
input of an SN P system is therefore given as spiketrain. Similarly, a neuron indicated
as output neuron produces an amount of spikes in each time step and therefore a
spiketrain as output. To denote a spiketrain, a sequence of spike symbols a per time
step is used. Each spike symbol is associated with a number indicating the amount of
spikes of this step. In case the amount of spikes is exactly one, the number may be
omitted. An example is a2a10aaa0a0a. The empty spiketrain is the spiketrain of length
zero, denoted by ε. A formal definition of spiketrains is given later in Section 4.2.
The distribution of spikes, the remaining input spiketrain, the so far computed output

spiketrain, and the remaining delay of applied but delayed rules define a configuration
of an SN P system. With each time step (where rules are applied and input/output
is calculated as explained above) the system passes from one configuration to another
configuration. This is called a transition between configurations of the system. The
initial distribution of spikes (as defined by the SN P system), a chosen input spiketrain
and the empty output spiketrain form an initial configuration for the system. A con-
figuration where no further rules can be applied and no input is left is called a halting
configuration. A sequence of transitions beginning with an initial configuration and
reaching a halting configuration—which must be the only halting configuration of the
sequence—is called a computation. The output spiketrain of the halting configuration
is considered as the result of the computation.

3.3. An Example SN P System

Figure 3.2 shows an example SN P system. Note that there is no neuron marked as
input neuron for the system. This was omitted because the system does not need
any input. One may equivalently define any arbitrary neuron as input neuron and use
the spiketrain of length zero as input. An output neuron exists. The interpretation
of output spiketrains used in this example is the following: Every spiketrain produced
by this system has more than zero spikes only at exactly two different time steps. A
spiketrain is interpreted as the number of time steps elapsed between these two time
steps. I. e. a natural number n ∈ N≥1. Since the system is nondeterministic (see rules
a2 → a2 and a2 → a in n1), different computations exist, possibly resulting in different
spiketrains which in turn may represent different natural numbers. The given system
therefore characterizes a set of natural numbers, the set of all numbers represented by
possible output spiketrains.
To find the characterized set of natural numbers, consider the possible computations:

Initially, only the neurons n1 and n4 contain any spikes (two spikes each). In time step

12

3. Spiking Neural P Systems

a2 → a

a2 → a2

a2

n1

a → a

a2 → λ

n2

a → a

a2 → λ

n3

a → λ

a2 → a

a2

n4

Figure 3.2.: An example SN P system.

1, the neuron n4 applies the rule a2 → a. This generates the first spike in the output
spiketrain. During the same time step, the neuron n1 decides nondeterministically
between applying a2 → a2 and a2 → a. If a2 → a2 is applied, the neurons n2, n3
and n4 receive two spikes each. In the following time step 2, the neurons n2 and n3
delete their spikes, while n4 produces the second spike in the output spiketrain. The
computation halts, since no spikes are left in the system. The represented number is 1,
since the two spikes happened at time steps 1 and 2 with exactly one time step elapsed.
If instead the rule a2 → a is applied for n1 at time step 1, the neurons n2, n3 and
n4 receive only one spike each. The neuron n4 then deletes this spike in the following
time step 2. In the same time step, the neurons n2 and n3 apply the rule a → a. Two
spikes are received by n1. In time step 3, the neuron n1 decides nondeterministically
between applying a2 → a2 and a2 → a again. As long as a2 → a is chosen, the same
configuration as prior to time step 3 is reached again two steps later, i. e. at time steps
2m + 1 for m ∈ N≥1. If the rule a2 → a2 is chosen for application by n1 at any time
step 2m+ 1 with m ∈ N≥1, the neuron n4 receives two spikes and applies a2 → a one
time step later (2m+ 2), creating the second spike of the spiketrain. The system halts
and the represented number is 2m+ 1, since 2m+ 1 time steps have elapsed between
steps 1 and 2m+ 2.
Considering that computations for 1 and for 2m + 1 for all m ∈ N≥1 are possible,

the characterized set is {2m+ 1 | m ∈ N≥0}, i. e. the set of all odd numbers.

3.4. Utilization and Computational Completeness

SN P systems can be utilized in various ways, depending on the interpretation of in-
put and output spiketrains. There are four important utilizations which are regularly
employed and well understood:

• as number generating device,

13

About ESN P Systems

• as accepting device,
• as language generating device and
• as function computing device.

SN P systems as number generating devices and accepting devices were introduced
in [IPY06]. In both cases, spiketrains are interpreted as numbers. The number a
spiketrain represents is the number of time steps elapsed between the first two time
steps of the spiketrain with more than zero spikes. A number generating device receives
no input and produces an output spiketrain per computation which can be interpreted as
a number, as explained above. For the same initial configuration of a system, more than
one computation is possible (if the system is nondeterministic). The system therefore
generates a set of numbers: the set of all numbers represented by the output spiketrains
of all possible computations. The example system given in Section 3.3 works in this
way. An SN P system as accepting device, on the other hand, takes a number (encoded
as spiketrain) as input but produces no output. Instead, the number is accepted if
a halting configuration can be reached. Otherwise, the number is not accepted. In
both cases, SN P systems are computationally complete. This is proved in [IPY06]2.
The basic idea is to construct an SN P system for an arbitrary given register machine
such that the constructed SN P system simulates this register machine. This system is
then extended such that the input of the SN P system, encoded as described above, is
translated to a register value before the simulation starts, to obtain an accepting device.
Alternatively, it is extended such that the value of the output register is encoded as
spiketrain after the simulation ends, to obtain a number generating device.
A third utilization of SN P systems is the language generating device. This works

similarly to the utilization as number generating device. However, an output spiketrain
does not represent a number but a word of the generated language. Each time step
of the spiketrain encodes exactly one symbol of the word. This means all possible
amounts of spikes in a time step of the output spiketrain are mapped to one symbol of
the alphabet. However, as a result of this encoding, the system needs to output one
symbol in every time step. This is often referred to as the restricted case, since this
heavily restricts the languages that can be characterized by such a system. SN P systems
in this mode are not computationally complete (see [CII+08] for more details). The
introduction of time steps which do not produce a symbol (for example by encoding
ε, which is not in the alphabet) leads to a characterization of recursive enumerable
languages (proved in [CII+08]). This is referred to as the unrestricted case.
To use SN P systems as function computing devices, the parameters of the function

are encoded as spiketrain and injected into the system via input neuron. A spiketrain
is produced as output and encodes the result. This is similar to a combination of
generating and accepting devices. An encoding as spiketrain can be chosen freely. A
binary encoding of input parameters is, for example, used in [PP07]. SN P systems

2Actually, computational completeness is proven for SN P systems using standard rules (see Section
3.5). However, these standard rules are a subset of the extended rules used for SN P systems in
this diploma thesis. Every SN P system using standard rules is therefore an SN P system using
extended rules, too. For this reason, the computational completeness result holds for SN P systems
using extended rules.

14

3. Spiking Neural P Systems

used as function computing devices are still computationally complete. This is easy to
see, since all input parameters can be mapped to a single natural number and then used
as input for the simulated register machine. By not reaching a halting configuration
for certain input spiketrains, partial functions can be characterized. Consequently, the
other utilizations are special cases of the utilization as function computing device.

3.5. Variants of SN P Systems
Besides the introduced standard variant of SN P Systems, other variants of SN P Sys-
tems can be derived by restricting the allowed rules or other properties of the model. It
is of interest how far SN P Systems can be restricted while still retaining computational
completeness. This section gives a short overview of some notable variants and their
properties.

SN P Systems with Standard Rules: Standard rules are a more restricted form of
the extended firing rules used in this diploma thesis. On the one hand, there are
standard firing rules (or just firing rules) which are almost identical to extended
firing rules, except that exactly one spike must be produced by the application of
these rules (for instance (aa)∗/a4 → a; 5). On the other hand, there are forgetting
rules. These are just differently restricted firing rules. Forgetting rules must always
consume all spikes of a neuron and may not produce any new spikes. Furthermore,
forgetting rules may not define delays greater than zero. Therefore, the syntax
of forgetting rules is always ac → λ. Additionally, firing rules and forgetting rules
may never be applicable at the same time. That means, nondeterminism is only
allowed within the same type of rule.
In spite of all these restrictions, SN P systems with standard rules are still com-
putationally complete as shown in [IPY06].
As the name suggests, standard rules were used in the very first definitions of
SN P systems. Only later, firing rules and forgetting rules were generalized to ex-
tended firing rules. While extended firing rules add nothing to the computational
power of the model3, they are much more elegant (as only a single type of rule
is necessary) and allow much smaller systems, as shown in [PP07] and [CII+08].
For these reasons, extended firing rules are used throughout this diploma thesis
instead of standard rules.

SN P Systems with Restricted Standard Rules: As it turns out, standard rules can
be restricted even further without loss of computational power. As summarized
in [GAPRPS08], any one of the following features may be removed (yet not
necessarily combinations of them):

• unbounded indegree of neurons,
3However, that is only if the SN P system is utilized as function computing device, since both variants
are computationally complete. If used as language generating device, extended rules allow a charac-
terization of all finite languages even in the restricted case. SN P systems with standard rules can
not characterize all finite languages in the restricted case. See [CII+08] for further details.

15

About ESN P Systems

• unbounded outdegree of neurons,
• delays, and
• forgetting rules.

Certain combinations can even be removed simultaneously: for instance delays
and forgetting rules.

Asynchronous SN P Systems: In standard (synchronized) SN P systems, every neu-
ron applies a rule in every time step (except for neurons which are closed or
where no rule is applicable). In asynchronous SN P systems, a neuron with an
applicable rule may chose to apply the rule or not at any time step as long as the
rule is applicable. Since the neuron still receives spikes a rule may even become
inapplicable again without being applied. Such systems are studied in [CEI+08].
If extended rules are used, asynchronous SN P systems are computationally com-
plete (shown in [CEI+08]). However, it remains an open problem whether asyn-
chronous SN P systems using standard rules are computationally complete as well
or not.

Sequential SN P Systems: A sequential SN P system applies at most one rule per
time step. If more than one neuron has one or more applicable rules, one neu-
ron is non-deterministically chosen and then one of its applicable rules is non-
deterministically chosen and applied.
Sequential SN P systems are computationally complete using standard rules or
using extended rules (see [IW07]).

3.6. A Solution to QBF Utilizing SN P Systems

In this section, it is shown how SN P systems are applied to solve the quantified
Boolean formula problem, as introduced in Section 2.3. Since the QBF problem is in
the focus of this section, the terms “polynomial” and “exponential” relate to the size
(which is the number of variables) n of the QBF instance that is to be solved, unless
stated otherwise. Recall that m denotes the number of clauses in an instance of QBF
and y = 2n the number of variables of the equivalent instance of QBFS(y = 2n,m).
These variables will be used throughout the section with these meanings.

The solution to QBF given in this section is an exp-uniform solution. That means a
family of SN P systems parametrized by the problem size is defined. For the size of any
given problem instance a deterministic Turing machine constructs the corresponding
SN P system of the family in exponential time with respect to problem size (this is
called pre-compilation). Then a polynomial number of spikes is introduced to the input
neuron in form of a spiketrain. Subsequently, The SN P system computes a result in
polynomial time.
Since for every instance of QBF(n,m) an equivalent instance of QBFS(y = 2n,m)

can be computed efficiently, a family of SN P systems with parameters n and m effi-
ciently solving instances of QBFS(y = 2n,m) is sufficient to efficiently solve QBF. The
general idea for such systems is simple: For each possible assignment of variables of

16

3. Spiking Neural P Systems

a → λ

a2 → λ

a3 → a3; y − 1

a4 → a4; y − 1
Cx1

a → λ

a2 → λ

a3 → a3; y − 2

a4 → a4; y − 2
Cx2

· · ·

a → λ

a2 → λ

a3 → a3; 0

a4 → a4; 0
Cxy

a3 → a2

a4 → λ

Cx11

a3 → λ

a4 → a2

Cx10

a3 → a2

a4 → λ

Cx21

a3 → λ

a4 → a2

Cx20

· · · a3 → a2

a4 → λ

Cxy1

a3 → λ

a4 → a2

Cxy0

a2 → a2

a → a

in

a2 → a2

sel1

a2 → a2

sel2

· · · a2 → a2

a3 → λ

sely

a2

a2 → a2

start

a
a → a;my

stop

Input module

Figure 3.3.: The input module used by the traditional SN P system family in Figure 3.4 to
solve instances of QBFS(y = 2n,m).

the formula, a dedicated neuron exists within the system to compute the evaluation of
the consumed formula (at this point ignoring any quantifications of variables). Further
neurons perform logical and-operations on these evaluations to account for ∀-quantified
variables. If this finally yields true, then the formula is satisfiable. Since all neurons
apply their rules in parallel, this is efficient in time. However, an exponential number of
neurons is necessary to represent all variable assignments. Due to the fact that all these
neurons and their synapses must be part of the systems specification, this is called an
exponential pre-compiled workspace.
Figures 3.3 and 3.4 show an implementation of this idea as a family of SN P sys-

tems parametrized by the number of variables and clauses. The shown systems are a
modification of similar systems introduced in [ILP+10] solving the same problem. The
reason for modifying these systems is to use a slightly different form of formulas as input
(instances of QBFS(y = 2n,m) as constructed above), since this is more suitable for
later extension.
The systems of that family work as function computing devices. One input neu-

17

About ESN P Systems

Input module

a3 → a2

a4 → λ

Cx11

a3 → λ

a4 → a2

Cx10

a3 → a2

a4 → λ

Cx21

a3 → λ

a4 → a2

Cx20

· · · a3 → a2

a4 → λCxy1
a3 → λ

a4 → a2

Cxy0

(aa)∗/a → a

a2k−1 → λ

k = 1, . . . , y
C111 . . . 1

am → a

111 . . . 1

(aa)∗/a → a

a2k−1 → λ

k = 1, . . . , y
C111 . . . 0

am → a

111 . . . 0

· · ·

· · ·

(aa)∗/a → a

a2k−1 → λ

k = 1, . . . , y
C100 . . . 0

am → a

100 . . . 0

(aa)∗/a → a

a2k−1 → λ

k = 1, . . . , y
C011 . . . 1

am → a

011 . . . 1

(aa)∗/a → a

a2k−1 → λ

k = 1, . . . , y
C011 . . . 0

am → a

011 . . . 0

· · ·

· · ·

(aa)∗/a → a

a2k−1 → λ

k = 1, . . . , y
C000 . . . 0

am → a

000 . . . 0

a2 → a
x111 . . . 1

a2 → a
x111 . . . 0

· · · a2 → a
x100 . . . 0

a2 → a
x1x21 . . . 1

a2 → a
x1x21 . . . 0

a2 → a
x1x20 . . . 0

· · ·

a2 → a2

x1 . . . xn1 . . . 1

...
...

a2 → a2

x1 . . . xn1 . . . 0

...
...

· · · a2 → a2

x1 . . . xn0 . . . 0

...
...

(aa)∗/a → a

out

Figure 3.4.: A traditional SN P system family solving instances of QBFS(y = 2n,m) using
a pre-compiled workspace similar to the system given in [ILP+10] including the input module
given in Figure 3.3.

18

3. Spiking Neural P Systems

ron is responsible for consuming the spiketrain-encoded formula. A problem instance
given as instance of QBFS(y = 2n,m) is encoded as input spiketrain by the func-
tion encn,m in the following way: Quantifications of variables are fixed in instances
of QBFS(y = 2n,m) and are therefore not encoded at all. All clauses are encoded
sequentially in y time steps of the spiketrain per clause—hence y · m time steps are
necessary to consume the complete formula. Within each clause all y possible variables
of the formula are sequentially encoded by one time step per variable and three possible
amounts of spikes transmitted during the step.

• If the variable does not appear in the clause, no spikes are transmitted.
• If the variable occurs as positive literal, one spike is transmitted, and
• if the variable occurs as negative literal (i. e. ¬x), two spikes are transmitted.

As an example consider the formula ∀x1∀x2∃x3∃x4
(
(¬x1 ∨x4)∧ (¬x4)

)
. This formula

has four variables and two clauses. The first clause (¬x1∨x4) contains the first variable
as negative literal, therefore encoded as a2. The second and third variables do not occur
in the clause and are encoded as a0 each. The last variable occurs as positive literal and
is encoded as a1. Hence, the spiketrain encoding the complete first clause is a2a0a0a1.
Similarly, the second clause is encoded as a0a0a0a2 because it only consists of the fourth
variable as negative literal. The complete encoding of the formula is a2a0a0a1a0a0a0a2.

One output neuron is responsible to publish the result. This output neuron signals
the satisfiability by generating a spike at one point in time, if the formula is satisfiable,
or never generating a spike, if not.
To give a detailed description of the computation, the neurons of Figure 3.4 are

grouped into different layers of neurons. Thereby, each layer is a set of all neurons
which are aligned in the same horizontal line of neurons in the graphical representation;
e. g. the neurons Cx11, . . . , Cxy0 form a layer.
The input neuron in consumes the problem instance encoded by encn,m. The input

module processes this in the following way: Every time after consuming the spikes of
y time steps—describing one complete clause—the input module sends spikes to the
next layer of neurons (the input bridge neurons (Cx11), (Cx10), . . . , (Cxy1), (Cxy0)).
This is done in a way so that for every variable xi the neuron (Cxi1) will produce
two spikes if and only if the literal xi occurred in the clause; and (Cxi0) will produce
two spikes if and only if the literal ¬xi occurred. The neurons of this layer fire always
simultaneously and at most one time per clause—always one time step after a complete
clause is consumed. This represents the formerly serialized clause now within one time
step.
Of the neurons (C11 . . . 1), (C11 . . . 0), . . . , (C00 . . . 0)—one layer below—each one

represents one of the possible 2y assignments for the y variables. Depending on the
assignment they represent, these assignment neurons are connected by a synapse to
either (Cxi1) or (Cxi0) for every variable xi occurring in the formula. An assignment
neuron fires and produces a spike transmitted to the next layer of neurons if it receives
two or more spikes in one time step. This is the case if at least one literal of the
clause is evaluated to true and therefore the whole clause is evaluated to true by
the represented assignment. For example the assignment neuron (C01 . . . 1)—which
assigns false to x1—is connected to (Cx10) and therefore receives two spikes from it

19

About ESN P Systems

if a clause contains ¬x1—which evaluates to true under the represented assignment—
but no spikes if the clause contains x1—which would evaluate to false—since it is not
connected to (Cx11). Note that (C01 . . . 1) would also receive two or more spikes from
corresponding neurons if at least one of the other variables occurs as positive literal,
since true is assigned to all other variables by the represented assignment.
The next layer (denoted by sat-layer) consists of 2y sat neurons. Each one of them

is connected to exactly one of the assignment neurons. The sat neurons accumulate
spikes produced by the corresponding assignment neurons. A sat neuron fires when it
stores exactlym spikes. This happens if the corresponding assignment neuron fires once
for each clause, i. e. m times. That in turn means, the represented assignment satisfies
all m clauses and therefore the whole formula (at this point ignoring any quantifications
of variables).
Let n1 and n2 be neurons of the sat-layer representing the same assignments except

for the first variable x1, which differs in value under these assignments. Let n3 be a
neuron performing a logical and-operation on n1 and n2; i. e. n3 fires only if n1 and
n2 fire both within one time step. It is easy to see that n3 represents an assignment
identical to n1 and n2 except for the first variable which is ∀-quantified. I. e. n3 fires
only if the represented assignment yields true for the input formula for both possible
assigned values of x1. We call this a ∀1-assignment. The neurons of the first layer below
the sat-layer represent all 2y−1 such ∀1-assignments. Therefore, the layer is denoted by
∀1-layer.
Performing a similar and-operation on two neurons of the ∀1-layer—which differ only

in the assigned value of the variable x2—yields the 2y−2 neurons of the ∀2-layer below
the ∀1-layer. Naturally, they represent all variable assignments where x1 and x2 are
∀-quantified. More ∀i-layer follow for i ≤ n, constructed in the same way. The last
such layer is the ∀n-layer which represents the 2n assignments where the first n variables
are ∀-quantified.
At this point, the problem is reduced to test whether at least one ∀n-assignment exists

such that the formula is evaluated to true. The output neuron out simply performs a
logical or-operation on all ∀n-layer neurons to achieve this.
The two interesting properties of these systems are the maximum number of time

steps necessary to solve an instance of QBFS(y = 2n,m) and the number of neurons
necessary for the initial workspace of the system corresponding to the problem instance.
As one can see in Figure 3.3 and Figure 3.4, the number of neurons is independent of

the number of clauses. It depends only on the number of variables used by the problem
instance. The following neurons are necessary (grouped by modules or layers):

• input module: 2y + 3 neurons,
• input bridge neurons: 2y neurons,
• assignment neurons: 2y neurons,
• sat neurons: 2y neurons,
• ∀i-layer for all i ∈ {1, . . . , n}: 22n−1 + 22n−2 + · · ·+ 2n = 22n− 2n neurons, and
• the output neuron: 1 neuron.

The amount of neurons necessary for the initial workspace is indeed exponential in the
number of variables used by the problem instance.

20

3. Spiking Neural P Systems

The number of of steps necessary to solve an instance of QBFS(y = 2n,m) can
easily be found. Note that the used SN P systems are designed to work similar to a
pipeline. Input is collected in the input module and subsequently forwarded to the next
layer. In all following time steps it is then deleted or forwarded one layer further while
the next element of the input spiketrain is already “fetched” by the input module. After
m ·y time steps, the input module receives the last element of the input spiketrain. The
last clause of the formula is complete and the input module sends its representation to
the input bridge neurons exactly 2 time steps later. There are 2 +n layers (assignment,
sat, ∀1, . . . , ∀n) as well as the output neuron left to pass. Thus, the output neuron
receives the results of the last clause of the problem instance after m · y + n+ 5 time
steps and might fire in the following time step. This implies that the output neuron
fires within the first m · y + n+ 6 time steps or never. A decision is therefore reached
in polynomial time.

21

4. Expanding Spiking Neural P Systems

4.1. Overview
As motivated in the introduction, this diploma thesis aims to extend the traditional
spiking neural P systems, shown in the previous section, in order to add capabilities
to grow new neurons and synapses during a computation. The extended model will
be compatible to the traditional spiking neural P systems—i. e. firing rules (now called
spiking rules) are retained and behave like in traditional systems. Therefore, the new
capability can be used to efficiently grow a (possibly exponential) workspace first but
then proceed the computation like a traditional SN P system afterwards. To achieve
such a system, it is sufficient to extend the traditional SN P systems by two new types
of rules in addition to the spiking rules. These new types of rules are called expanding
rules and connecting rules. The respective purpose and behavior of the three types of
rules is as follows:

Spiking rules have the form E/ac → ag; d. If a spiking rule is applied on a neuron
(which is therefore the spiking neuron), then c spikes from the spiking neuron are
consumed while g new spikes are generated and sent to all neurons connected by
a synapse originating from the spiking neuron. Therefore, spiking rules are similar
to the rules of traditional SN P systems. Note that there is no explicit rule to
delete spikes needed. Deletion of spikes can be accomplished by a rule of the
form E/ac → a0; d, equivalently written as E/ac → λ; d, which indeed consumes
spikes without creating new spikes.

Expanding rules have the form E/ac → [p]; d. Such a rule also consumes c spikes,
but instead of creating new spikes, a new neuron is created by dividing the neuron
that applies the rule. The neuron applying the rule is called parent neuron. The
newly created neuron is called child neuron. Both neurons have the same amount
of spikes after the divide, which is the amount of spikes the parent neuron retains
after consuming c spikes. The prototype definition associated with p—as given
by the applied rule—specifies the rules of the child neuron. Furthermore, all
incoming and outgoing synapses of the parent neuron are cloned for the child
neuron. Since a synapse always connects two neurons, there are two cases to be
considered. If both neurons of a synapse apply an expanding rule at the same
time (i. e. in the same time step), the synapse between the two parent neurons is
reproduced in the same direction between the respective child neurons. Otherwise,
if only one of both neurons of a synapse applies an expanding rule, there is a non-
dividing neuron, a parent neuron and a child neuron involved. In this case, the
synapse between the non-dividing and the parent neuron is reproduced in the
same direction between the non-dividing and the child neuron. Figure 4.1 shows

23

About ESN P Systems

a5/a2 → [p1]; 0

a5

(aaa)∗/a → [p2]; 0
a6

a5/a2 → [p1]; 0

a3

parent 1

(aaa)∗/a → [p2]; 0
a5

parent 2

rules of p2

a5

child 2

rules of p1

a3

child 1

(a) Both neurons are divided. The synapse between the parents is replicated between the children.

non-dividing
a5/a2 → [p]; 0

a5 non-dividing
a5/a2 → [p]; 0

a3

parent

rules of p
a3

child

(b) Just one neuron is divided. The synapse between the non-dividing neuron and the parent neuron is
replicated between the non-dividing neuron and the child.

Figure 4.1.: ESN P systems before neuron division on the left side and after, on the right side.

both cases. If the non-dividing neuron applies a spiking rule in the same time step,
spikes are transmitted along both synapses (between the non-dividing neuron and
the parent neuron and between the non-dividing neuron and the child neuron),
assuming the synapse is directed from the non-dividing neuron to the parent
neuron.

Connecting rules have the form E/ac → out; d or E/ac → in; d. By using this type
of rules, synapses connecting already existing neurons can be created. In each
step, synapses are created from all neurons applying an out-connecting rule to all
neurons applying an in-connecting rule in the same step as shown in Figure 4.2.
Just as with the other types of rules, the application of a connecting rule consumes
c spikes.

Generally, rules (regardless of type) are only applicable to a neuron if the amount of
spikes stored in the neuron is in the language defined by the regular expression E and
is greater or equal to c. All three types of rules are delayed if d , 0. In this case,
the neuron is closed for d time steps before the rule is finally applied and the neuron
is opened again in this same step. While a neuron is closed, all incoming spikes are
ignored and no rule can be applied. To ease the definition of ESN P systems, certain
rule abbreviations are possible: a1 can be abbreviated to a, E/ can be omitted if E = ac,
and ; d can be omitted if d = 0.

24

4. Expanding Spiking Neural P Systems

a5/a2 → out; 0

a5

a5/a3 → in; 0

a5

a5/a → out; 0

a5

a5/a4 → in; 0

a5

a5/a2 → out; 0

a3

a5/a3 → in; 0

a2

a5/a4 → in; 0

a

a5/a → out; 0

a4

Figure 4.2.: ESN P system before applying connecting rules (shown on the left side) and after
applying (shown on the right side).

All these definitions extend traditional SN P systems consistently to ESN P systems.
That means, delays and regular expressions of all three types of rules are handled
in exactly the same way as delays and regular expressions of the rules in traditional
SN P systems.

4.2. Formal Definition
The formal definition of ESN P systems is structured as follows: In Definitions 4.1–
4.7, basic components of ESN P systems (like labels, rules and spiketrains) and op-
erations on these components are introduced. In the subsequent Definitions 4.8–4.11,
ESN P systems and configurations of such systems are covered. Finally, Definitions 4.12–
4.23 introduce state transitions between configurations, and describe computations of
SN P systems.

Definition 4.1. A set P of prototype labels (or prototypes for short) is a finite, non-
empty set. ^

Definition 4.2. Let P be a set of prototype labels. A rule over P is a construct of the
form E/ac → result; d where

• E is a regular expression over a singleton alphabet O = {a} ,
• c ≥ 1 ,
• d ≥ 0 and
• result is one of the following:

(1) result = ag with 0 ≤ g ≤ c (then the rule is called spiking rule),
(2) result = [p] with p ∈ P (then the rule is called expanding rule),
(3) result ∈ {in, out} (then the rule is called connecting rule).

Furthermore, the set of all such rules over P is denoted by RulesP . ^

The set of all rules over P comprises all possible spiking, expanding and connecting
rules. All rules define an amount of spikes c to be consumed and a delay d. Spiking
rules define a number of spikes to be generated. Expanding rules specify a prototype

25

About ESN P Systems

p that is to be used for a newly created neuron. This must be a prototype out of P .
Connecting rules specify if created synapses are inward-directed or outward-directed.

Definition 4.3. Let r = (E/ac → result; d) ∈ RulesP be a rule over P . Then,
projections to the components of r are defined by

• r|E B E ,

• r|c B c ,

• r|g B

{
g if result = ag (and therefore r is a spiking rule)
⊥ otherwise,

• r|p B

{
p if result = [p] with p ∈ P (and therefore r is an expanding rule)
⊥ otherwise,

• r|δ B

{
result if result ∈ {in, out} (and therefore r is a connecting rule)
⊥ otherwise,

• r|d B d .

Furthermore, a function decrease : RulesP → RulesP is defined by

decrease : r 7→
{
E/ac → result; (d− 1) if d > 0
E/ac → result; 0 otherwise.

^

Definition 4.4. A set N of neuron labels (or neurons for short) is a finite, non-empty
set such that there exists an alphabet Σ with Σ ∩ {:} = ∅ and N ⊆ Σ∗. ^

Definition 4.5. Let N be a set of neuron labels and e ∈ N≥0. The set of extended
neuron labels based on N restricted by e, denoted by Exte(N), is defined as

Ext0(N) B N ,
Exte(N) B Exte−1(N) · (ε ∪ {:} · {e}) .

The set of all extended neuron labels based on N , denoted by Ext(N), is defined as

Ext(N) B
⋃
e≥0

Exte(N) . ^

Since an ESN P system can grow neurons using expanding rules of already existing
neurons, a unique label for each of these new neurons must be generated. This is
simply done by appending a number onto the label of the parent neuron that generates
a new neuron label (using a “:”-symbol as separation). The exact strategy to construct
such new labels is defined later on. However, the set of extended neuron labels restricted
by e comprises all labels the ESN P system Π may generate in e or less steps from
labels of N . A subset of this generally describes existing neurons after e time steps.
The set of all extended neuron labels Ext(N) comprises all labels an ESN P system
based on neuron labels N may generate.

26

4. Expanding Spiking Neural P Systems

Definition 4.6. Let N be a set of neuron labels and e ∈ N≥1. Then, the function
childe−1 : Exte−1(N)→ Exte(N) is defined by

childe−1 : n 7→ (n:e) .

Furthermore, the function parent : Ext(N) \N → Ext(N) is defined by

parent : (n:i) 7→ n

where n ∈ Ext(N) and i ∈ N≥0. ^

This defines parent-child relationships between neuron labels. Note that for all e ≥ 0,
n1, n2 ∈ Exte(N):

• n1 , n2 =⇒ childe(n1) , childe(n2) and

• childe(n1), childe(n2) < Exte(N).

Because of these two properties, every new neuron label generated by a system—as
defined later—is unique (i. e. not already present).

labA

labA

labA

...

=

...

:3

=

labA:2

...

=

...

:3

:2

=

labA:1

labA:1

...

=

...

:3

=

labA:1:2

...

=

...

:3

:2

:1

labB

labB

labB

...

=

...

:3

=

labB:2

...

=

...

:3

:2

=

labB:1

labB:1

...

=

...

:3

=

labB:1:2

...

=

...

:3

:2

:1

= N = Ext0(N)

= Ext1(N)

= Ext2(N)

...

Figure 4.3.: Construction of extended neuron labels.

Definition 4.7. A spiketrain of length l ∈ N≥0 is a sequence denoted by ax1 · · · axl ,
where x1, . . . , xl ∈ N≥0. The symbol ε refers to the spiketrain of length 0, which is the
empty sequence. ^

A spiketrain represents the flow of spikes along a certain synapse. That is the number
of spikes transmitted over that synapse on each of a number of consecutive time steps.
Reading direction is from left to right, which means the leftmost element of the spike-
train sequence represents the oldest time step. For example, a3a20a0a10 means that
3 spikes were transmitted before 20 spikes in the following step and so on. Since the
input of an ESN P system is transmitted from the environment to the input neuron
and the output from the output neuron into the environment, spiketrains are suitable
to represent input as well as output of an ESN P system.

27

About ESN P Systems

Definition 4.8. An expanding spiking neural P system (ESN P system, for short) is a
tuple

Π = (O,P,N, ru, spn, proto, syn, nin, nout)

where:

1. O = {a} is the alphabet with only one element a called spike.

2. P is a set of prototype labels.

3. N is a set of neuron labels.

4. ru : P → {R | R ⊆ RulesP } maps a prototype label to a prototype definition,
i. e. a set of rules over P .

5. spn : N → N≥0 maps a neuron label to the initial number of spikes contained in
that neuron.

6. proto : N → P maps a neuron label to the associated prototype of that neuron.

7. syn ⊆ N × N , such that for all n ∈ N : (n, n) < syn, is a relation defining the
initial synaptic connections between neuron labels.

8. nin ∈ N is the label of the so called input neuron and

9. nout ∈ N is the label of the so called output neuron. ^

In ESN P systems, initial neurons are represented by the set of neuron labels N . Ev-
ery such neuron is mapped to a prototype as well as to the amount of spikes initially
contained in the neuron. Associated prototype and initial number of spikes are called at-
tributes of the neuron. Furthermore, prototypes are mapped to sets of rules. Therefore,
each neuron is indirectly associated with a set of rules as well.
A slightly different graphical representation of neurons is used in contrast to the repre-

sentation of SN P systems. The new representation is shown in Figure 4.4. A prototype
of the system is completely defined by the representation of a neuron using that proto-
type. In case there are prototypes which are not used by any initial neuron of a system,
a neuron prototype is represented independently of neurons, as in Figure 4.5. Figure 4.6
uses neuron and prototype representations to show an example of an ESN P system.
Initial synapses between neurons are hereby presented as directed edges.
In the remainder of this diploma thesis, the rule abbreviations—introduced in Sec-

tion 4.1—are considered to be synonymous to the respective long forms.

Definition 4.9. An ESN P system Π is deterministic if and only if for every possible
choice of two rules of the same prototype definition of Π, the two rules do not conflict.
Two rules conflict if and only if the two languages defined by the regular expression
components of the rules are not disjunct. ^

28

4. Expanding Spiking Neural P Systems

fooneuron label [bar] prototype label
= proto(foo)

(aa)∗/a3 → a2; 5

a2 → a

rules of the prototype
definition
= ru(bar)

a4contained spikes
= spn(foo)

Figure 4.4.: Graphical representation of a neuron and its prototype.

[bar] prototype label

(aa)∗/a3 → a2; 5

a2 → a

rules of the prototype
definition
= ru(bar)

Figure 4.5.: Graphical representation of a prototype.

ex [ex]

a2 → [mult]

a → a0

out [out]

a∗/a → a

[mult]

a2 → a0

a → a

in [in]

a2 → a2

a → a

Figure 4.6.: A simple unary multiplication ESN P system. Example for 4 · 2: An input of
a2a2a2a2aa yields an output of a0a0a0a0a0a0a0aaaaaaaa. The resulting spiketrain is inter-
preted as number by counting the spikes.

29

About ESN P Systems

Definition 4.10. LetΠ = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system.
Then the set of schedules for a prototype p ∈ P , denoted by SchedΠ(p), is defined as
the smallest set S such that:

1. ⊥ ∈ S ,
2. ru(p) ⊆ S ,
3. ∀r ∈ S \ {⊥} : decrease(r) ∈ S .

The projections of Definition 4.3 are extended for ⊥, such that

⊥|E B ⊥|c B ⊥|g B ⊥|p B ⊥|δ B ⊥|d B ⊥ .

Finally, the set of all schedules of the ESN P system Π, denoted by SchedΠ , is defined
as

SchedΠ B
⋃
p∈P

SchedΠ(p) . ^

The set of schedules of a prototype comprises all rules of the prototype definition (i. e.
set of rules) associated by ru. Additionally, it comprises all variants of these rules with
delays lower than the delays the original rules have. These schedules are called derived
from their corresponding prototype definition rule. Schedules represent the application
progress of a rule on a neuron at one point in time by counting down the remaining
delay.

Definition 4.11. LetΠ = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system.
A configuration of Π is a tuple

Conf = (e,N ′, spn′, proto′, scd, syn′, in, out)

where:

1. e ∈ N≥0 is the restriction of extended neuron labels in this configuration.

2. N ′ ⊆ Exte(N) is the set of extended neuron labels restricted by e the net consists
of in this configuration. It must adhere to N ⊆ N ′.

3. spn′ : N ′ → N≥0 maps an extended neuron label of the configuration to the
number of spikes contained by that neuron in this configuration.

4. proto′ : N ′ → P maps an extended neuron label of the configuration to the
associated prototype of that neuron. It must adhere to ∀n ∈ N : proto′(n) =
proto(n).

5. scd : N ′ → SchedΠ maps an extended neuron label to an active schedule describ-
ing the state of rule application of the neuron. It must adhere to
∀n ∈ N ′ : scd(n) ∈ SchedΠ(proto′(n)).

6. syn′ ⊆ N ′ × N ′ such that ∀n ∈ N ′ : (n, n) < syn′. This relation defines the
synaptic connections between the extended neuron labels of this configuration. It
must adhere to syn ⊆ syn′.

30

4. Expanding Spiking Neural P Systems

7. in is a spiketrain.

8. out is a spiketrain of length e.

The number of spikes, the associated prototype and the active schedule of a neuron are
called state attributes of this neuron. For all n ∈ N ′, the state attributes r = scd(n)
and p = proto′(n) must adhere to the restriction r ∈ SchedΠ(p), i. e. an active schedule
of a neuron n must be derived from a rule of the prototype definition of the neuron n.
If a schedule is the active schedule in a configuration, then the rule of the prototype
definition it is derived from is said to be scheduled. The set of all configurations of Π
is denoted by ConfigΠ and out is called the output of Conf . ^

A configuration describes the state of an ESN P system after a number of time steps
and is similar in definition to the ESN P system itself. However, the set of neuron
labels in a configuration is a subset of all extended neuron labels. It is not necessarily
a subset of the set of neurons labels N , because there may be neurons present that
were not present in the description of the system, but were generated later. Note that
a restriction for label extensions is present in a configuration. This ensures that a new
label—i. e. a label that is not already used—can be derived by adding a number greater
than the restriction to an already used label.
Another difference is the additional attribute of a configuration: the active schedule.

This attribute describes the progress of rule application, since rules may need more than
one step to be applied. If no rule is currently applied—i. e. ⊥ is the active schedule—the
neuron is open. An open neuron may select a rule of its prototype definition as new
active schedule in the next step. Otherwise the neuron is closed.
Figure 4.7 shows how this additional attribute is represented graphically: The active

schedule is underlined, or nothing is underlined if ⊥ is the active schedule. Note that
in a neuron representation only rules of the associated prototype definition are shown.
This ensures that the prototype definition of the represented neuron can always be
derived. However, by definition of SchedΠ , a schedule may define a delay lower than
the rule of the prototype it is derived from. In case such a schedule is the active
schedule of a neuron, the rule the schedule is derived from is underlined instead. The
actual delay of the active schedule is given in addition. As an example, consider the
rule (aa)∗/a3 → a2; 5. If this rule is part of the prototype definition of a neuron
and active schedule, then the corresponding representation is (aa)∗/a3 → a2; 5. Since
(aa)∗/a3 → a2; 5 is in SchedΠ , the schedule (aa)∗/a3 → a2; 2 is in SchedΠ as well. If
(aa)∗/a3 → a2; 2 becomes the active schedule, then the corresponding representation
is (aa)∗/a3 → a2; 5 〈2〉 to indicate that (aa)∗/a3 → a2; 2 is not part of the prototype
definition but active schedule in this configuration.
Finally, the configuration contains two spiketrains. These represent not yet consumed

input and already generated output respectively.

Definition 4.12. Let Π = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system
and in a spiketrain. The initial configuration with in of Π is defined as

Conf init = (0, N, spn, proto, scd, syn, in, ε)

where scd : n 7→ ⊥. ^

31

About ESN P Systems

foo:1:3extended neuron label [bar] prototype label
= proto′(foo:1:3)

(aa)∗/a3 → a2; 5 〈2〉

a2 → a

rules of the prototype
definition
= ru(bar)

originally selected rule,
active schedule is derived from

actual remaining delay (if differing
from originally selected rule)

a4contained spikes
= spn′(foo:1:3)

= scd(foo:1:3)

Figure 4.7.: Graphical representation of a neuron configuration.

Definition 4.13. LetΠ = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system,
Conf = (e,N ′, spn′, proto′, scd, syn′, in, out) a configuration of Π and n ∈ N ′ an
extended neuron label of the configuration. A rule r ∈ RulesP is called applicable on
the neuron n in Conf , denoted by r Confapp n, if and only if:

1. r ∈ ru(proto′(n)) ,
2. spn′(n) ≥ r|c ,
3. aspn′(n) ∈ L(r|E) , and
4. scd(n) = ⊥ . ^

That means, a rule is applicable on a neuron n if and only if
1. the rule is part of the prototype definition of n,
2. the rule does not consume more spikes than n contains,
3. the number of spikes contained in n matches against the regular expression of

the rule, and
4. n is open.

Definition 4.14. Let Π = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system
and Conf = (e,N ′, spn′, proto′, scd, syn′, in, out) a configuration of Π. A function
sel : N ′ → SchedΠ is called a selection for Conf if and only if ∀n ∈ N ′:

1. (∃r ∈ ru(proto′(n)) : r Confapp n) =⇒ sel(n) Confapp n and
2. (@r ∈ ru(proto′(n)) : r Confapp n) =⇒ sel(n) = ⊥ . ^

A selection represents the choice of rules which are to be applied in the next time step.
For each neuron of the configuration, exactly one applicable rule must be chosen as
long as there is at least one rule applicable. No rule may be chosen (expressed by ⊥)
otherwise.
Definition 4.15. LetΠ = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system.
A binary relation RescheduledΠ ⊆ ConfigΠ ×ConfigΠ is defined as follows: Let

Conf 1 = (e,N ′, spn′, proto′, scd1, syn′, in, out) and
Conf 2 = (e,N ′, spn′, proto′, scd2, syn′, in, out)

32

4. Expanding Spiking Neural P Systems

be configurations of Π. Then, (Conf 1,Conf 2) ∈ RescheduledΠ if and only if there
exists a selection sel for Conf 1 such that

∀n ∈ N ′ : scd2(n) =
{

sel(n) if sel(n) , ⊥
scd1(n) otherwise.

^

A configuration of Π can be rescheduled with a selection (for that configuration) to
a new configuration in the following way: For every neuron of Π, if a rule is selected
for a neuron, the selected rule is written into the state of that neuron as new schedule.
However, if no rule (⊥) is selected for that neuron, the state attributes of that neuron
remain unchanged.
The relation RescheduledΠ relates two configurations Conf 1 and Conf 2 if and only

if there exists a selection for Conf 1 such that Conf 1 can be rescheduled to Conf 2.

Definition 4.16. Let Π = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system
and Conf = (e,N ′, spn′, proto′, scd, syn′, in, out) a configuration of Π. Then the
function growΠ : ConfigΠ → ConfigΠ is defined by

growΠ : Conf 7→ (e+ 1, N ′ ∪N ′new, spn′′, proto′′, scd ′, syn′′, in, out)

where

N ′new = {childe(n) | n ∈ N ′, scd(n)|p , ⊥, scd(n)|d = 0} ,

spn′′ : n 7→
{

spn′(n) if n ∈ N ′

spn′(parent(n)) if n ∈ N ′new ,

proto′′ : n 7→
{

proto′(n) if n ∈ N ′

scd(parent(n))|p if n ∈ N ′new ,

scd ′ : n 7→
{

scd(n) if n ∈ N ′

scd(parent(n)) if n ∈ N ′new ,

syn′′ = syn′

∪ {(n1, n2) | n1, n2 ∈ N ′new, (parent(n1),parent(n2)) ∈ syn′}

∪ {(n1, n2) | n1 ∈ N ′, childe(n1) < N ′new,

n2 ∈ N ′new, (n1, parent(n2)) ∈ syn′}

∪ {(n1, n2) | n2 ∈ N ′, childe(n2) < N ′new,

n1 ∈ N ′new, (parent(n1), n2) ∈ syn′} . ^

33

About ESN P Systems

The function growΠ computes the effects of application of expanding rules. New labels
are generated for every neuron with a scheduled expanding rule and zero delay. All state
attributes—except for the corresponding prototype—of the new neurons are cloned from
the parent neurons. The corresponding prototype of new neurons is a component of the
rule dividing the parent neuron. New synapses are added as was shown in Figure 4.1.

Definition 4.17. Let Π = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system
and Conf = (e,N ′, spn′, proto′, scd, syn′, in, out) a configuration of Π. Then the
function connectΠ : ConfigΠ → ConfigΠ is defined by

connectΠ : Conf 7→ (e,N ′, spn′, proto′, scd, syn′′, in, out)

where

syn′′ = syn′ ∪ {(n1, n2) | n1, n2 ∈ N ′,
scd(n1)|δ = out, scd(n2)|δ = in,
scd(n1)|d = scd(n2)|d = 0} . ^

The function connectΠ computes the effects of applications of connecting rules. New
synapses are added for each pair of neurons applying an out-connecting rule with a
delay of zero and an in-connecting rule with a delay of zero.

Definition 4.18. Let Π = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system
and Conf = (e,N ′, spn′, proto′, scd, syn′, in, out = ay1 · · · aye) a configuration of Π.
Then the function spikeΠ : ConfigΠ → ConfigΠ is defined by

spikeΠ : Conf 7→ (e,N ′, spn′′, proto′, scd, syn′, in, out ′)

where

out ′ =
{
ay1 . . . ayeai if scd(nout)|d = 0, i , ⊥ where i = scd(nout)|g
ay1 . . . ayea0 otherwise.

spn′′ : n 7→

spn′(n) +

∑
n̂∈N ′

income(n̂, n) if scd(n)|d ∈ {⊥, 0}

spn′(n) otherwise

where income: N ′ ×N ′ → N≥0 is defined by

income: (n̂, n) 7→
{

scd(n̂)|g if scd(n̂)|g , ⊥, scd(n̂)|d = 0 and (n̂, n) ∈ syn′

0 otherwise.
^

The function spikeΠ computes the effects of application of spiking rules. Open neurons
receive and accumulate spikes from neurons applying a spiking rule with delay zero if
a synapse from the applying neuron to the receiving neuron exists. Neurons applying
a rule with a delay of zero are considered as open since they will be open as soon as
the time step is completed. If the output neuron generates spikes, the current output
spiketrain is modified accordingly.

34

4. Expanding Spiking Neural P Systems

Definition 4.19. Let Π = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system
and Conf = (e,N ′, spn′, proto′, scd, syn′, in, out) a configuration of Π. Then the
function tickΠ : ConfigΠ → ConfigΠ is defined by

tickΠ : Conf 7→ (e,N ′, spn′′, proto′, scd ′, syn′, in, out)

where

spn′′ : n 7→
{

spn′(n)− scd(n)|c if scd(n)|d = 0
spn′(n) otherwise,

scd ′ : n 7→
{
⊥ if scd(n)|d ∈ {⊥, 0}
decrease(scd(n)) otherwise.

^

The function tickΠ ends application of rules in the current time step. All schedules
with a remaining delay greater than zero are decreased by one. Furthermore, schedules
with a delay of zero are removed from their neurons. All neurons removing a schedule
consume an amount of spikes according to the applied rule.

Definition 4.20. Let Π = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system
and Conf = (e,N ′, spn′, proto′, scd, syn, in = ax1 · · · axj , out) a configuration of Π
with j ∈ N≥0. Then the function stimΠ : ConfigΠ → ConfigΠ is defined by

stimΠ : Conf 7→ (e,N ′, spn′′, proto′, scd, syn, in′, out)

where

spn′′ : n 7→
{

spn′(n) + x1 if n = nin, scd(n)|d = ⊥ and j > 0
spn′(n) otherwise,

in′ = ax2 . . . axj . ^

The function stimΠ ends a time step by computing the effects of input. The number of
spikes specified as input for the current time step are added to the spikes of the input
neuron (if that neuron is open). The name stim is derived from “stimulating” the net.

Definition 4.21. Let Π = (O,P,N, ru, spn, proto, syn, nin, nout) be an ESN P system
and Conf = (e,N ′, spn′, proto′, scd, syn′, in, out) a configuration of Π. Then, Conf
is called a halting configuration of Π if and only if:

1. ∀n ∈ N ′ : @r ∈ ru(proto(l)) : r Confapp n ,
2. ∀n ∈ N ′ : scd(n) = ⊥ , and
3. in = ε . ^

A configuration is a halting configuration if no rules are scheduled, no rules are applicable
and there is no more input to be consumed.

35

About ESN P Systems

Definition 4.22. Let Π be an ESN P system and ◦ denote the composition of relations.
Then the transition relation of Π `Π ⊂ ConfigΠ ×ConfigΠ is defined by

`Π = (stimΠ ◦ tickΠ ◦ spikeΠ ◦ connectΠ ◦ growΠ ◦ RescheduledΠ) . ^

A transition between configurations as specified by the relation `Π defines time steps
of the system. Note that SelectΠ is a relation but usually not a function. Therefore,
◦ denotes the composition of relations (right hand side relation first, as defined in the
preliminaries), with stimΠ ,tickΠ , spikeΠ , connectΠ and growΠ interpreted as relations.
Since the composition of functions is obtained as a special case of the composition
of relations, ◦ can equally be interpreted as function composition in all cases where
RescheduledΠ is a function (for example in deterministic ESN P systems).

Definition 4.23. Let Π be an ESN P system and in a spiketrain. Then Comp =
(Conf 0, . . . ,Conf z) is a computation with in of Π if and only if

1. Conf i ∈ ConfigΠ for all i ∈ {0, . . . , z} ,
2. Conf i `Π Conf i+1 for all i ∈ {0, . . . , z − 1} ,
3. Conf 0 is the initial configuration with in of Π ,
4. Conf i is not a halting configuration for all i ∈ {0, . . . , z − 1} ,
5. Conf z is a halting configuration of Π .

The output of the computation Comp is defined as the output of Conf z. ^

A computation with input of an ESN P system defines a series of time steps, beginning
at the initial configuration (corresponding to the input) and ending at the first halting
configuration yielding the output.
If an ESN P system is deterministic, there is exactly one selection for any given

configuration of this system. Therefore, RescheduledΠ , is a function and only one state
transition for a configuration is possible. Since there is exactly one initial configuration
for each input spiketrain, at most one computation of the system for that input exists.

36

5. Polynomial ESN P Systems Solving
QBF

In this chapter, an application of ESN P systems is demonstrated: A solution to QBF
which is deterministic and efficient in time without relying on pre-compiled exponential
workspaces.

Section 2.3 presents the QBF problem, and furthermore a polynomial transformation
to instances of QBFS(y = 2n,m). This was used in Section 3.6 to define a family of
SN P systems solving the problem efficiently in time by solving instances of QBFS(y =
2n,m) efficiently.
The same conventions as in Section 3.6 are used throughout this chapter: The terms

“polynomial” and “exponential” relate to the size (which is the number of variables) n
of the QBF instance that is to be solved. Furthermore, m denotes the number of clauses
in an instance of QBF and y = 2n the number of variables of the equivalent instance of
QBFS(y = 2n,m).
Although, the systems given in Section 3.6 are deterministic, they depend on pre-

compiled exponential workspaces. To eliminate the need for this pre-compiled expo-
nential workspace, a new family of ESN P systems is constructed based on the original
family. Every ESN P system constructed in that way (as described below) will be called
extended system. Every extended system is based on an SN P system of the original
family, called its base system. For every system in the original family, one extended
system is constructed which has the same function but does not rely on a pre-compiled
workspace.

The intended principle of operation of extended systems is summarized as follows:

1) An extended system of the new family starts on a polynomial workspace. This
workspace is then expanded in a polynomial number of time steps (via expanding
and connecting rules) until the (originally pre-compiled) exponential workspace
of its base system is built. These time steps form the expansion phase.

2) After the original workspace is reached, an extended system will not apply any
expanding or connecting rules in future time steps. Therefore, only spiking rules
are applied (like in an SN P system) and the execution from here on is identical
to the base system. Naturally, this means, the extended system yields the same
result as the base system (if the input problem instance is identical). These time
steps form the computation phase.

To facilitate 2), the basic structure with all its neurons and synapses of the base
system is kept, although not necessarily present in the initial workspace but generated
later during the expansion phase. Additionally, the spiking rules of these neurons are

37

About ESN P Systems

mostly kept as well. Because of that, the explanations on the structure of the base
systems in Section 3.6 still apply, and these inherited parts in an extended system are
not discussed any further in this chapter. Nor is the computation phase of the extended
systems discussed, as this process is identical to the execution of the base system for
the same reason. Although, input processing and input encoding still follow the same
strategy, too, some aspects are modified to account for the delay of input processing
caused by the addition of an expansion phase to the net. This is addressed later on
in connection with the input module. On the other hand, output interpretation is
unchanged. The system is still used as function computing device in the same way
(again already covered by Section 3.6).

To facilitate 1), the initial workspace must be reduced and new rules must be added to
the neurons of the original structure. To retain the determinism of this system, the new
rules must not conflict with the spiking rules kept from the base system. This chapter
covers the implementation of the expansion phase and avoidance of rule conflicts with
inherited spiking rules.
The initial workspace of the new extended systems is shown in Figure 5.1. Rules and

initial spikes of the neurons are omitted from the figure for clarity. However, they are
subject of the following sections and can also be gathered from the formal definition of
the ESN P system family given in Appendix A.
In comparison to the base systems of Section 3.6, some neurons are renamed (or rather

have different labels) but the structural and functional relationship is easy to see. Similar
to the base systems, the neurons of each extended system are grouped into modules
(input module, assignment module and quantification module), and additionally the
input bridge neurons which are labeled 1x1, 0x1, 1x2, 0x2, . . . , 1xy, 0xy.1 Neurons
of each module in turn are grouped by horizontal layers. While the input module
and the input bridge neurons are completely retained from the base system, the other
two modules are reduced to one neuron per layer. Missing neurons of a layer will be
generated by the existing neuron of the layer or one of its descendants during execution.
Synapses need to be generated as well.
In the base systems, the input module drives the rest of the net. That means, there

are no neurons outside of the input module having spikes in their initial configuration.
None of these neurons can apply any rules, before the input module sends spikes for
the first time. This allows to add initial spikes and matching rules to these neurons
without causing side effects, if the additional rules are carefully chosen such that:

• No spikes are generated.

• All initial spikes are consumed, before spikes arrive for the first time.

• None of the additional rules may become applicable again, after all initial spikes
are consumed.

1Actually, neurons of the SN P systems of Section 3.6 are only grouped into neurons of the input
module and all other neurons. For the extended systems this grouping is retained for the input
module, while the other neurons are separated into the two new modules and the input bridge
neurons.

38

5. Polynomial ESN P Systems Solving QBF

x1 x2 · · · xy

1x1 0x1 1x2 0x2 · · · 1xy 0xy

in

sel1 sel2 · · · sely

start stop

input module

as

sat

assignment module

quan1

. . .

quann

out

quantification module

Figure 5.1.: Family of ESN P systems solving instances of QBFS(y = 2n,m)

39

About ESN P Systems

• The additional rules may not conflict with the spiking rules already present, to
retain determinism.

By adding rules under these restrictions to the reduced workspace of an extended system,
the original workspace of its base system can be generated during the expansion phase.
The subsequent computation phase is not influenced by the workspace expansion at all
and therefore indeed identical to the base systems. However, to make this possible, the
input module needs to delay the start of the computation phase until the expansion
phase is finished. This requires some modifications on the input module and on the
input encoding.
A detailed description of necessary rule additions and the strategies involved in

handling the expansion phase without conflicting with spiking rules is given separately
for each module in the following sections. The last section of this chapter discusses
the properties of the constructed systems. The complete formal definition of the con-
structed systems is given in Appendix A. Finally, a step by step example, showing the
complete expansion phase of such an extended system, can be found in Appendix B.

5.1. Input Encoding and Input Module
The amount of neurons necessary for the input module of the base systems in Section 3.6
depends linearly on the problem size (to be specific, 2y+ 3 neurons are necessary). For
this reason, the initial structure of the input module of the base SN P system does not
need to be reduced. Its structure is completely retained, although neurons are slightly
modified (as seen in a moment), without causing an exponential workspace. Since the
input module is retained, the input encoding of the problem instance (enc) is reused,
too. However, it needs an additional step to adapt to the input module changes detailed
in the following.
Since, initially, the input module is already complete, no further neurons or synapses

need to be created during the expansion phase. The single reason to modify the input
module anyway is to wait for the expansion phase of other modules to finish, before
starting the computation phase. As seen later, the maximum number of time steps
necessary to finish expanding for all modules is 3 · y. Both neurons with initial spikes
(the neurons start and stop) have a delay of 3·y added to their respective rules matching
the initial number of spikes. Since all other neurons are driven by these two neurons,
the complete input module is automatically delayed by 3 · y time steps, too.
An exception to this is the input neuron in. The consumption of the input spiketrain

by this neuron starts immediately in the first time step and cannot be delayed by a rule
(input as spiketrain is associated with time steps, it can be ignored but not delayed). To
solve this problem, 3 ·y arbitrary elements are prepended to the input spiketrain as addi-
tional step in the encoding of the problem instance using enc. The prepended elements
are then consumed completely during the expansion phase, such that only the original
encoded spiketrain remains as input at the beginning of the computation phase. The
new function to encode a problem instance, working in the described way, is denoted by
enc′. As an example, consider the formula ∀x1∀x2∃x3∃x4

(
(¬x1∨x4)∧(¬x4)

)
from Sec-

tion 3.6 again. Encoding it by enc yields the spiketrain a2a0a0a1a0a0a0a2. Since there

40

5. Polynomial ESN P Systems Solving QBF

in [in]

a3 → a0; 3y

a → a
a2 → a2

a3
start [start]

a2 → a2; 3y
a2

stop [stop]

a → a;my + 3y
a

Figure 5.2.: Modifications on the input module. Normal font: retained from base system; gray
highlight: additions and modifications.

are four different variables, 12 time steps are prepended to the result of enc. The number
of spikes in each prepended step is chosen to be three spikes per step in this example to
distinguish the prepended time steps from following steps of the original encoding. The
finally resulting spiketrain therefore is a3a3a3a3a3a3a3a3a3a3a3a3a2a0a0a1a0a0a0a2.
Since the prepended elements of an input encoding are not supposed to influence

the net in any way, an additional rule a3 → a0; 3y and 3 initial spikes are added to the
neuron in. This effectively closes the input neuron during the expansion phase, thereby
ignoring any input during these time steps.
Figure 5.2 shows the described modifications on the input module (compared to the

base system input module in Figure 3.3).
The delay of the input module ensures that no spikes reach the input bridge neurons

in the first 3 · y time steps, the assignment-layer neurons in the first 3 · y+ 1 time steps,
etc.

5.2. Input Bridge Neurons

Like the neurons of the input module, all input bridge neurons are already completely
defined in the initial workspace and no new neurons need to be created during the
expansion phase. However, synapses to neurons in the assignment-layer need to be
created. This is achieved by adding an out-connecting rule and a single initial spike to
each input bridge neuron of an extended system. The new connecting rule consumes
the initial spike and therefore leaves the neuron with zero spikes (as in the base system)
before the computation phase starts. Since input bridge neurons of the base systems
have no initial spikes and can never receive only a single spike (to trigger the connecting
rule again), this does not interfere with the execution of the computation phase. The
delay of the added connecting rule is chosen such that for every 1 ≤ i ≤ y the neuron
1xi applies its connecting rule in time step 1 and executes its effects in time step 3i−1.
Similarly, for every 1 ≤ i ≤ y the neuron 0xi applies its connecting rule in time step
1 and executes its effects in time step 3i. This translates to a delay of 3i − 2 for the
connecting rule in 1xi and a delay of 3i − 1 for the connecting rule in 0xi. Note that
1xi always executes its connecting rule one time step before 0xi.
The implemented timing of these rules is entirely based on the timing of the corres-

ponding in-connecting rules in the assignment module which is further discussed in the

41

About ESN P Systems

1xi [1xi]

a → out; 3i− 2
a4 → a0

a3 → a2

a
0xi [0xi]

a → out; 3i− 1
a4 → a2

a3 → a0

a

Figure 5.3.: Modifications on the input bridge neurons for 1 ≤ i ≤ y. Normal font: retained
from base system; gray highlight: additions and modifications.

following section.
Figure 5.3 shows the additions.

5.3. Assignment Module: Assignment-Layer

The assignment module of the base systems consists of 2 layers. Both layers are re-
duced to a single neuron in the extended systems and must be expanded again during
the expansion phase: Assignment neurons as descendants of the neuron as in the
assignment-layer and sat neurons as descendants of the neuron sat in the sat-layer.
The assignment-layer is subject of this section and the sat-layer is subject of the subse-
quent section.
Recall that assignment neurons represent an assignment of the variables of the input

formula. All assignment neurons of the base system use the same set of spiking rules.
Therefore, the represented variable assignment of a certain input neuron solely arises
from existing synapses between this neuron and the input bridge neurons. Since in
extended systems these synapses are created during the expansion phase of the system,
the meaning of the assignment neurons changes during that phase. The other way
around, the current meaning (i. e. variable assignments) of an assignment neuron de-
scribes the set of synapses existing between this neuron and the input bridge neurons.
Note that although this representation of variable assignments is ultimately related to
the function of this neuron in the computation phase (detailed in Section 3.6), during
the expansion phase it has no further meaning than to describe existing synapses.
In the initial configuration of every extended system there exists exactly one assign-

ment neuron (as) and no synapses between assignment-layer and input bridge neurons.
This neuron represents the one possible variable assignment of zero variables. In y
identical periods—each one consisting of 3 time steps—the complete assignment-layer
is generated. I. e. a layer consisting of 2y assignment neurons representing the 2y pos-
sible assignments of the y variables in the input formula. All these neurons are initially
present in the corresponding base system. After the first period there are two neurons
representing the two possible assignments of the first variable x1. After the second
period there are four neurons representing the four possible assignments of the first two
variables x1 and x2 etc.

To understand the three time steps of each period, recall that dividing a neuron

42

5. Polynomial ESN P Systems Solving QBF

also clones all its synapses. In terms of variable assignment, that means, dividing
an assignment neuron yields two neurons representing the same variable assignments.
Such a division of all existing assignment neurons happens in the first step of each
period. At the beginning of a period i, neurons representing the 2i−1 assignments of
x1, . . . , xi−1 are already present. The division yields parent neurons still representing
all these assignments and new child neurons representing the exact same assignments.
In time step 2 of a period i, all parent neurons assign true to the next unassigned
variable, which is xi, by creating a synapse to the corresponding input bridge neuron
1xi via in-connecting rule. The second time step of the period i is the absolute time
step 3(i − 1) + 2 = 3i − 1. Note that this is indeed the timing chosen for the input
bridge neuron 1xi to execute an out-connecting rule in the previous section. Finally in
time step 3 of period i, all child neurons assign false to the variable xi by creating
a synapse to the corresponding input bridge neuron 0xi. This timing is the same as
chosen for the input bridge neuron 0xi to execute its out-connecting rule. The variable
xi—that is assigned to in the period i—is called the variable of period i. Figure 5.4
illustrates this strategy.
As an example consider the third period (the first period after the periods shown in

Figure 5.4). At this point, four neurons representing all possible assignments of the two
variables x1 and x2 already exists. The division in the first step of the period yields two
identical sets of four neurons. Each set represents all four possible variable assignments
for the variables x1 and x2. In step 2, true is assigned to the variable x3 for all variable
assignments in the first set. In step 3, false is assigned to the variable x3 for all
variable assignments in the second set. Combined, this yields all eight possible variable
assignments for the variables x1, x2 and x3.
Note that this requires all child neurons created in the first step of any given period to

behave differently in comparison to their corresponding parent neurons in the following
two time steps. I. e. they apply different rules. However, they do behave identically in
all following periods, because they are parents in these periods themselves. Furthermore,
all neurons of the same status (either parent or child) always execute the exact same
operations during a period.
To implement this behavior, each generation of child neurons is created with an (at

this point) unused prototype (associated to the generation). This prototype defines
rules to assign false to the variable of the associated period and to assign true during
all following periods to the respective variables of these periods. Since there are y
periods, y + 1 prototypes p0, . . . , py are necessary, where pi is the prototype of the
i-th generation, and p0 is the prototype of the initial neuron of the assignment-layer:
as. Table 5.1 lists the intended behavior of these prototypes. As seen in this table,
the prototypes p0 and p1 need rules implementing periods 1, . . . , y, while p2 only needs
rules to implement periods 2, . . . , y; p3 only needs rules to implement periods 3, . . . , y
etc., since no neuron of a prototype pi exists in an earlier period than i.
Naturally, spiking rules of the base system are retained for any prototype of the

assignment-layer. During the computation phase, this ensures that all assignment neu-
rons generated during the expansion phase behave exactly like the assignment neurons
initially present in the base systems. However, this causes the implementation of periods
by adding expanding and connecting rules to the new prototypes to be complex. The

43

About ESN P Systems

as ⇐ initially no variables
are assigned

period
time
step

0

as
parent

as:1
child

⇐ the first division
yields a new neu-
ron representing the
same assignment

1

as
x1 = 1

as:1 ⇐ connecting all parent
neurons to neuron
1x1

2

as
x1 = 1

as:1
x1 = 0

⇐ connecting all child
neurons to neuron
0x1

3

as
parent

x1 = 1
as:4
child

x1 = 1
as:1
parent

x1 = 0
as:1:4
child

x1 = 0
⇐ after the second di-

vision all assignment
neurons are cloned

4

as
x1 = 1
x2 = 1

as:4
x1 = 1

as:1
x1 = 0
x2 = 1

as:1:4
x1 = 0

⇐ connecting all parent
neurons to neuron
1x2

5

as
x1 = 1
x2 = 1

as:4
x1 = 1
x2 = 0

as:1
x1 = 0
x2 = 1

as:1:4
x1 = 0
x2 = 0

⇐ connecting all child
neurons to neuron
0x2

...

6

1

2

Figure 5.4.: The strategy employed to create all assignment neurons.

44

5. Polynomial ESN P Systems Solving QBF

Neuron Prototype, Neurons with this Prototype and Behavior
[p0] [p1] [p2] [p3] . . .
as as:1 as:4, as:1:4 as:7, as:1:7, as:4:7, as:1:4:7 . . .

Period k

0 – – – – . . .
1 parent child – – . . .
2 parent parent child – . . .
3 parent parent parent child . . .
4 parent parent parent parent . . .
...

...
...

...
...

. . .

Legend of behavior: – neuron does not exist or assigns no variable during the period
parent neuron assigns true to xk during the period k
child neuron assigns false to xk during the period k

Table 5.1.: The behavior of different prototypes of the assignment module.

reason for this is that these additional expanding and connecting rules now may only
match on uneven amounts of spikes which are greater than 2y − 1. Otherwise, they
would conflict with the retained spiking rules. Figure 5.5 shows prototypes p0 and pi for
1 ≤ i ≤ y, retaining the spiking rules and implementing the periods without conflicts.
The new rules shown in Figure 5.5 work in the following way:

The neuron as has the prototype p0. It applies 3 · y rules (y periods, 3 time steps
each) during the expansion phase. Each such rule consumes 2 spikes. At the beginning
of a period k, the neuron contains exactly 8y + 5 − 6k spikes. Consequently, the
neuron is initialized with 8y − 1 spikes for the first period. As first step of a period,
an expanding rule a8y+5−6k/a2 → [pk] is applied. Thereby, a child neuron is created
with a prototype [pk] corresponding to the current period k. The next applicable rule
for step two is a8y+5−6k−2/a2 → in. Since the input bridge neuron 1xk executes an
out-connecting rule in the exact same time step, a new synapse is created. Finally, the
rule a8y+5−6k−4/a2 → a0 becomes applicable to conclude the period in the third step.
This rule does nothing except for consuming two spikes. Now, 8y+ 5− 6(k+ 1) spikes
remain, starting the next period k + 1.
Since the neuron as with its prototype p0 is initially present, it is always the parent

neuron. The other prototypes p1, . . . , py, however, belong to neurons created at the
beginning of one of the periods. Since these are child neurons in this period, they must
create a synapse to 0xi instead of 1xi during the period i of their creation. A neuron
with prototype pi is created in the first time step of period i by its parent neuron.
Therefore, it inherits the 8y+ 5− 6i− 2 spikes the parent neuron has left at this point.
In the following second time step of the period, the rule a8y+5−6i−2/a2 → a0 is applied.
This rule has no effect except for consuming two spikes. At the same time step, the
parent neuron applies a connecting rule and connects to the input bridge neuron 1xi.
In the third time step, a8y+5−6i−4/a2 → in is applicable. This creates a synapse to

45

About ESN P Systems

[pi]

a8y+5−6k′−4/a2 → a0

a8y+5−6k′−2/a2 → in

a8y+5−6k′/a2 → [pk]

∀k′ ∈ {i+ 1, . . . , y} :

a8y+5−6i−2/a2 → a0

a8y+5−6i−4/a2 → in

a2k−1 → a0

(aa)∗/a → a

∀k ∈ {1, . . . , y} :

as [p0]

a8y+5−6k−4/a2 → a0

a8y+5−6k−2/a2 → in

a8y+5−6k/a2 → [pk]

∀k ∈ {1, . . . , y} :

a2k−1 → a0

(aa)∗/a → a

∀k ∈ {1, . . . , y} :

a8y−1

Figure 5.5.: Modifications on assignment-layer prototypes p0 and pi for 1 ≤ i ≤ y. Normal
font: retained from base system; gray highlight: additions and modifications

46

5. Polynomial ESN P Systems Solving QBF

the input bridge neuron 0xi for the child neuron. Note that this works because 0xi
executes an out-connecting rule one time step after 1xi. Meanwhile, the parent neuron
does nothing but consuming two spikes during this third time step. For further periods
k′ ∈ {i+ 1, . . . , y}, the prototype pi has the same rules as p0, since it will be a parent
neuron in these periods. There are no rules for periods less than i necessary as explained
before.
Since as is initialized with 8y − 1 spikes, (8y − 1)− 2(3y) = 2y − 1 spikes remain

after execution of all y periods. Similarly, 2y − 1 spikes remain in all other assignment
neurons created during the expansion phase. In fact, it is easy to see that all assignment
neurons contain the same amount of spikes in every time step of the expansion phase,
since upon creation, they inherit the amount of spikes their parent neuron contains,
and every assignment neuron consumes 2 spikes in every step of the expansion phase.
At 2y − 1 spikes, the spiking rule a2y−1 → a0 (retained from the base system) deletes
these remaining spikes. Therefore, all assignment neurons are in the same state as in
the base system at the beginning of the computation phase (zero stored spikes and
correct synaptic connections to the input bridge neurons).
Furthermore, none of the additional rules can be applied again, after the expansion

phase finishes. This is guaranteed because an assignment neuron cannot collect more
than 2y spikes at any time during the computation phase.

5.4. Assignment Module: Sat-Layer

The second layer of the assignment module is the sat-layer. The family of base systems
defines exactly one sat neuron in this layer for each assignment neuron of the assignment-
layer. Furthermore, each sat neuron is connected to its assignment neuron by a synapse.
Initially, only one of these sat neurons (labeled sat) is present in the extended systems
as seen in Figure 5.1. However, generating the missing sat neurons proves to be not
complicated.
Recall that all assignment neurons are divided in the first step of each period. Dividing

all sat neurons each time at the exact same time step yields one newly generated sat
neuron for each newly generated assignment neuron. Since the division of neurons also
clones all connected synapses by definition, the necessary synapse between new sat
neuron and new assignment neuron is generated automatically in this step by cloning
the existing synapse between their parents.
The implementation of this behavior is shown in Figure 5.6. All neurons of the sat-

layer use the shown prototype. The initial neuron of the layer (labeled sat) is initialized
with m + y + 1 spikes. Therefore, the rule am+y+1/a → [sat] is applied in the first
time step, which is also the first step of the first period. The neuron is divided and the
newly created neuron has the prototype sat as well. After a division in the first step of
a period k, exactly m+y+1−k spikes are left. Thus, the rule am+y+1−k/a → [sat]; 2
is applied. The delay of this rule causes the neuron to be closed for steps 2 and 3 of
the current period. The division therefore becomes effective in the first time step of
the following period. The rules of the prototype are chosen such that this is repeated
until a division occurred in every period (recall that the final period y ends after time

47

About ESN P Systems

sat [sat]

am+y+1−k/a → [sat]; 2

∀k ∈ {1, . . . , y − 1} :

am+y+1/a → [sat]

am+1 → a0

am → a

am+y+1

Figure 5.6.: Modifications on the sat prototype. Normal font: retained from base system; gray
highlight: additions and modifications.

step 3 · y). Since all generated neurons of this layer inherit the same prototype sat and
the remaining amount of spikes of their parent, all existing neurons of the layer behave
identical in every time step, and therefore are divided once in every period.
After the final period y, there are m+ 1 spikes left in every neuron of the layer. At

this point, the rule am+1 → a0 is applied removing all remaining spikes and therefore
establishing the same state sat neurons are in initially in the base system. None of the
additional rules are applied in future time steps again, since sat neurons cannot collect
more than m spikes during the computation phase. The only rule adopted from the
base system is am → a which does not conflict with the added rules.

5.5. Quantification Module

The final module is the quantification module. Consider the situation shown in Fig-
ure 5.7: Between three neurons n1, n2 and n3 there exist two synapses (n1, n2) and
(n3, n2). To describe such a structure we say: The neuron n2 links the neurons n1
and n3. Recall that the quantification module of a base system consists of the output
neuron (out) and n neuron layers (named ∀1, . . . ,∀n). Since there is only one output
neuron in every base system, the neuron is simply retained for the extended systems
and no division of the output neuron is necessary. Each of the n neuron layers of the
quantification module consists of neurons linking two neurons of the respective layer
above. More specifically, for all i ∈ {1, . . . , n}, two neurons of the ∀i−1-layer are linked
by a neuron of the ∀i-layer if and only if the two neurons differ exclusively in the vari-
able xi of their respectively represented variable assignments. In case of the ∀1-layer,
neurons of the sat-layer are linked, since there is no ∀0-layer.
The fully expanded sat-layer consists of exponentially many neurons, and therefore

exponentially many neurons are required for the fully expanded quantification module
as well. This can also be observed in the base systems of Figure 3.4. To avoid an
exponential amount of neurons in the initial workspace of the extended systems, each

48

5. Polynomial ESN P Systems Solving QBF

n2

n1 n3

Figure 5.7.: The neuron n2 links the neurons n1 and n3

layer is reduced to one neuron labeled quani and a synapse from quani−1 to quani
for 1 ≤ i ≤ n (consider quan0 as a synonym to sat, see Figure 5.1). Each of these
neurons and their descendants will form one complete layer of the quantification module
after the expansion phase. Furthermore, there is a synapse from the neuron quann to
the neuron out. In the following, the construction strategy for the ∀1-layer during the
expansion phase is explained. Afterwards, it is generalized to a strategy for any layer
and finally implemented via expansion rules.
To “grow” the neurons and synapses of the ∀1-layer, the behavior of the neurons

of the sat-layer is exploited. Recall that in every period i new assignment neurons
are created. The new assignment neurons of every period inherit the assignments of
the variables x1, . . . , xi−1 from their parents (by means of synapse cloning). False is
assigned to xi for the child neurons while true is assigned to xi for the parent neurons.
Then true is assigned to every still undefined variable xi+1, . . . , xy during the future
periods for all existing neurons. At the same time, a corresponding sat neuron is created
with every new assignment neuron as covered in the last section. These new sat neurons
represent the same variable assignments as the corresponding assignment neuron. This
implies:

• At the end of the expansion phase, the initial neuron of the sat-layer (labeled
sat) will represent the assignment of true to all variables. Its first child neuron
(labeled sat:1) will represent the assignment of false to x1 and true to all
other variables. In the base systems, these neurons are linked by a neuron of the
∀1-layer, since they differ only in the represented assignment to x1. To grow this
same structure within the extended systems, it is sufficient to not divide quan1
in the first period (in which sat is divided to create sat:1). The initially existing
synapse from sat to quan1 is cloned to a synapse from sat:1 to quan1 . As a
result, after period 1, all existing sat-layer neurons (that is sat and sat:1) are
properly linked by a ∀1-layer neuron (quan1).

• The represented variable assignments of two new sat neurons differ exclusively in
the assignment of the variable x1 if and only if their parent neurons already differ
exclusively in that variable. Assume that all existing sat-layer neurons are properly
linked by a ∀1-layer neuron at the beginning of a period i ≥ 2 (i. e. a period after
the first period). Then, after the division of the neurons in the sat-layer, two
newly created sat neurons need to be linked by a newly created ∀1-layer neuron if
and only if their parent neurons are already linked by an existing ∀1-layer neuron.

49

About ESN P Systems

This can be achieved simply by dividing all existing ∀1-layer neurons at the same
time the sat-layer neurons are divided. Therefore, after the period, all existing
sat-layer neurons are still properly linked by a ∀1-layer neuron.

Using this leads to a simple strategy: The initial neuron of the ∀1-layer is inactive until
the first period (in which the sat neurons are divided for the first time) is finished. In
all following periods, all existing neurons of the ∀1-layer are divided at the same time
step as the neurons of the sat-layer are divided.
As a result, neurons of the ∀1-layer behave similar to neurons of the sat-layer. In

each period after the first one, the represented variable assignments are copied. During
the period, different values are assigned (or rather are inherited from the layer above)
to the variable of the period for parent and child neurons. The represented variable
assignments of two new ∀1-layer neurons differ exclusively in the assignment of the
variable x2 if and only if their parent neurons already differ exclusively in that variable.
Therefore, the same strategy can be used to generate the ∀2-layer, except that the
initial neuron of the ∀2-layer is inactive until the second period (in which the ∀1-layer
neurons are divided for the first time) is finished.
Further generalized to an arbitrary layer, the resulting strategy is: The initial neuron

of the ∀i-layer is inactive until the period i—in which the layer above is divided for the
first time—is finished. In all following periods, all neurons of the ∀i-layer are divided in
the first time step of the period. Figure 5.8 illustrates this.
The implementation of this behavior is shown in Figure 5.9. It employs n different

prototypes: q1, . . . , qn. That is one prototype qi for each of the n initial neurons quani
of the n ∀i-layers. In addition to the inherited spiking rule a2 → a, each prototype
defines one rule for each necessary division. An initial neuron quani must be inactive
until the period i is finished. It must subsequently be divided in each of the y − i
periods left. Let stepsi B y − i. Then the prototype qi defines stepsi expanding rules
to implement this. Each such rule consumes one spike and creates another neuron of
the same prototype. To avoid conflicts, the new rules may only match on three or
more spikes. A neuron quani (with prototype qi) is initialized with 3 + stepsi spikes.
Consequently, the rule a3+stepsi/a → [qi]; 3i is applicable in the first time step. The
delay of 3i ensures that the neuron is closed for i periods. In time step 1 of period i+1,
the division becomes effective. After this initial division, stepsi − 1 further divisions
are necessary. Let k be the number of divisions already executed by the neuron. Then,
3 + stepsi− k spikes are left. The rule a3+stepsi−k/a → [qi]; 2 is now applicable. Again
the neuron is divided. The delay of 2 ensures that the division becomes effective in the
first time step of the next period. After stepsi divisions (and therefore at the end of
the expansion phase), only three spikes are left. The additional rule a3 → a0 deletes
these remaining spikes at this point.
Since other neurons of the same layer inherit the prototype and the remaining spikes

of their parent neuron upon creation, they behave identically to the initial neuron of the
layer in every time step. Therefore, all neurons of the quantification module contain
zero spikes at the end of the expansion phase. None of the additional rules are applied
in future time steps again, since neurons of the quantification module cannot collect
more than two spikes during the computation phase. Furthermore, the only retained

50

5. Polynomial ESN P Systems Solving QBF

quan2

quan1

sat

initial

quan2

∀x1

quan1

∀x1

sat

x1 = 1

sat:1

x1 = 0

after period 1

quan2

∀x1
∀x2

quan1

∀x1
x2 = 1

quan1:4

∀x1
x2 = 0

sat

x1 = 1
x2 = 1

sat:4

x1 = 1
x2 = 0

sat:1

x1 = 0
x2 = 1

sat:1:4

x1 = 0
x2 = 0

after period 2

Figure 5.8.: The strategy employed to generate the quantification module.

51

About ESN P Systems

quani [qi]

a3+stepsi−k/a → [qi]; 2

∀k ∈ {1, . . . , stepsi − 1} :

a3+stepsi/a → [qi]; 3i

a3 → a0

a2 → a

a3+stepsi

Figure 5.9.: Modifications on the prototypes qi for 1 ≤ i ≤ n and stepsi = y− i. Normal font:
retained from base system; gray highlight: additions and modifications.

rule of the base system (a2 → a) does not conflict with the additional rules.
The synapses of the base system between every neuron of the ∀n-layer and the output

neuron out are automatically created. The reason is that on every division of neurons
of the ∀n-layer, all newly created neurons clone the already existing synapse between
their parent neuron and the output neuron.

5.6. Properties

The improvement of properties of the ESN P systems solving QBF, as introduced in
this chapter, compared to the properties of their base systems (the SN P systems of
Chapter 3) is obvious by now. As rules are carefully chosen, the extended systems
are still deterministic. The workspace of an ESN P system solving an instance of
QBFS(y = 2n,m) is reduced to 2y + 3 neurons of the input module, 2y input bridge
neurons, 2 + n neurons for the following layers (which were all reduced to one neuron)
and the output neuron. Clearly, this is a polynomial amount of neurons with respect
to the number of variables y used. The number of time steps necessary is increased in
comparison to the corresponding base system. The reason for this is the addition of the
expansion phase. However, this expansion phase is finished after 3y time steps and the
following computation phase is identical to the computation of the corresponding base
system which is finished after 3y+n+6. That results in a total of (3+m)y+n+6 time
steps for the extended systems. Therefore, a decision is still reached in polynomial time.
The size of the definition of an ESN P system solving an instance of QBFS(y = 2n,m) is
polynomial in y as well. That means, the number of neurons, synapses and spikes in the
initial workspace as well as the number of prototypes and rules defined within the system
is polynomial in y. Therefore, the presented solution to QBF is an uniform solution. In
comparison to the exp-uniform solution presented earlier, for any problem instance an
ESN System of the family defined in this chapter can be built by a deterministic Turing

52

5. Polynomial ESN P Systems Solving QBF

machine in polynomial time with respect to the problem size.
The expansion phase of the extended systems has further interesting properties to

analyze. Naturally, since the extended systems generate an exponential workspace from
a polynomial workspace in only a polynomial number of steps, in at least one step an
exponential number of neurons must be generated. The same is true for synapses. The
production resources for new neurons and synapses are the already existing neurons
which do produce in parallel. Therefore, it is of interest whether any neuron of the
systems needs to create an exponential amount of new neurons or synapses within a
single time step.
By definition of ESN P systems, a neuron cannot create more than one new neuron

per time step.
The number of synapses that need to be cloned by a neuron division is not bounded

by the definition. However, in the family of ESN P systems given in Figure 3.4, all
neurons which are divided in the expansion phase have a number of connected synapses
bounded by y+ 1 at any given point in time: Neurons of the assignment-layer define at
most y different synapses to input bridge neurons and one synapse to the corresponding
sat-layer neuron. Neurons of the sat-layer have a synapse to the respective assignment
neuron and another synapse to a neuron of the first quantification layer. Neurons of
the quantification module have two synapses to link two neurons of the previous layer
and one synapse to a neuron of the subsequent layer.
Synapses can also be created using connecting rules. Connecting rules are only

used to grow synapses between input bridge neurons and assignment neurons. An
assignment neuron never generates more than one synapse within a single time step
using connecting rules. Since there is an exponential number of assignment neurons,
the input bridge neurons do create an exponential amount of synapses within a single
time step. Improving on this property is an open problem. A solution may require
the extension of ESN P systems by additional types of rules. See Chapter 7 for some
proposals. However, one can argue that still less synapses are created than neurons
are involved in creating them. That is, i assignment neurons create i synapses to one
single input bridge neuron. Therefore, the maximum number of synapses created in a
single time step (via cloning and via connecting rules) is actually polynomially bounded
by the number of existing neurons.

53

6. Similar Extensions

There are two notable similar approaches to extend SN P systems in order to avoid
exponential initial workspaces. On the one hand, SN P systems with budding rules
extend SN P systems by so called budding rules which enable the construction of neurons
as well as synapses. On the other hand, SN P systems with neuron division and budding
modify the budding rules of the former approach and introduce new neuron division rules
as well as a synapse dictionary. In both cases the basic mechanics of SN P systems are
kept but extended by new types of rules. In this chapter, both systems are introduced
shortly and are subsequently compared to the proposed ESN P systems of this diploma
thesis.

6.1. SN P Systems with Budding Rules

SN P systems with budding rules were introduced in [WIP09]. SN P systems are
extended to develop new synapses and neurons based on the environment of the existing
neurons. To achieve this, neurons are uniquely identified by a label. These labels are
subsequently used by the newly introduced budding rules. These rules have the following
syntax: x[]i → y[]j . While i and j are neuron labels, x and y describe synapses. The
synapse described by x may be any synapse of any direction connected to i (it is also
possible to specify λ, which means no synapse at all). The synapse described by y must
be a synapse of any direction between i and j.
Application of such a rule is possible if and only if the neuron i is connected to

just the synapse x (no less and no more). Clearly, the application of budding rules
indeed depends on the environment of a neuron. As effect of the application of a rule
x[]i → y[]j , the neuron j and the synapse y between i and j are created. If j already
exists, only the synapse is created. If the synapse already exists, too, the rule has no
effect. In every time step all applicable budding rules of a neuron are applied in parallel.
Firing rules are retained from SN P systems and work as usual. This means, in

particular, a single neuron applies at most one spiking rule per time step. It is worth
noting that budding rules are independent of firing rules, since their application does not
depend on spikes and they also do not consume spikes. Because of that independence,
it is relatively easy to reduce the workspace of an existing SN P system. Rules added
to re-expand during computation can never conflict with retained rules.
The disadvantage of this independence is that the application of budding rules cannot

be influenced by the input of the system. Therefore, SN P systems with budding rules
are not interesting for applications outside of eliminating pre-compiled workspaces. A
second problem arises from the fact that a single budding rule can not create more
than one neuron and one synapse during the entire computation. Therefore, at least

55

About ESN P Systems

an exponential number of budding rules must be present in the definition of a system
generating an exponential workspace.

6.2. SN P Systems with Neuron Division and Budding

SN P systems with neuron division and budding were introduced very recently in
[PPPJ09]. In this extension, a synapse directory is used to create synapses without
involving spikes. Additionally, two new types of rules are introduced to create new
neurons and synapses based on spikes contained in the neurons of the system.
Neurons are represented by labels again. However, these labels are not unique any-

more in this extension (i. e. two neurons with the same label may exist). The synapse
dictionary specifies which labels are connected by a synapse and in which direction.
It has two functions. First, the synapses defined by the dictionary are used as ini-
tial synapses between the initial neurons. Second, whenever new neurons are created,
synapses are added to the system according to the labels of the new neurons and the
information in the dictionary.
The first new type of rule is the neuron division rule. This type of rule uses the

following syntax: [E]i → []j || []k where E is a regular expression over {a} and i, j, k
are neuron labels. Such a neuron division rule is only applicable on a neuron with label
i and only if the contained amount of spikes matches the regular expression E (i. e.
as ∈ L(E) where s is the amount of contained spikes). After application, the applying
neuron i is replaced by two new neurons j and k. Synapses connected to i are inherited
by both created neurons. For example, a synapse (i, h) for any neuron h is replaced
by two synapses (j, h) and (k, h). The same is true for synapses directed to i, as for
example (h, i) for any neuron h which is replaced by (h, j) and (h, k)1. Furthermore,
all spikes of i are consumed in the process and j and k are both initialized with zero
spikes.
The second new type of rule is the neuron budding rule. Although it is derived from

the budding rules introduced in the previous section, it works differently. The syntax
used for neuron budding rules is the following: [E]i → []i/[]j where E is a regular
expression over {a} and i, j are neuron labels. Again, such a rule is only applicable on
a neuron with label i and only if the contained amount of spikes matches the regular
expression E. After application, a new neuron j is created as well as a synapse (i, j)
connecting the applying neuron with the newly created neuron. While the neuron i
keeps all incoming synapses, all outgoing synapses are transferred to the neuron j. As
an example consider the following situation: There exist three neurons i, h and k.
Furthermore, two synapses (h, i) and (i, k) exist. After applying a neuron budding rule
[E]i → []i/[]j , a new neuron j and a synapse (i, j) is created. While (h, i) is kept,
(i, k) is replaced by (j, k). In the process all spikes contained in i are consumed and
both i and j contain zero spikes.
Firing rules are retained from SN P systems and work as usual. Regardless of type,

every neuron applies at most one rule per time step. If more then one rule is applicable,
1It is worth mentioning that no behavior is defined in a case where two neurons i and m both apply
a neuron division rule and a synapse (i,m) exists.

56

6. Similar Extensions

one rule is chosen nondeterministically.
SN P systems with neuron division and budding as well as ESN P systems are both

motivated by cell division. Both define a neuron division rule (called expanding rule in
ESN P systems) that creates a new neuron and clones connected synapses. However,
there are also differences. One disadvantage of SN P systems with neuron division and
budding is the consumption of all spikes in the process. Often a combination of auxiliary
neurons and the synapse dictionary is necessary to initialize the created neuron with
spikes.
There is a second disadvantage of SN P systems with neuron division and budding.

Despite two additional types of rules and the synapse dictionary, it not possible to create
synapses between existing neurons based on spikes. Both new types of rules involve
the creation of a new neuron. The dictionary is not influenced by spikes and can only
create synapses for neurons which were created in the same time step. This limits the
versatility of these systems for applications outside of reducing initial workspaces (see
Chapter 7 for some suggestions of other applications).
The strong point of SN P systems with neuron division and budding are budding rules.

Multiple applications of these rules allow to exchange a single neuron of the system for
a subnet of neurons without cloning the synapses from or to neighboring neurons. This
cannot be done in ESN P systems. Therefore, a type of rule with similar functionality
is suggested in Chapter 7 as a possible future extension to ESN P systems.

6.3. Comparison to ESN P Systems
ESN P systems and both similar extensions (introduced in the two previous sections)
are characterized by different biologically motivated rules to create neurons, synapses
or both during computations. Application of these rules is either based on the number
of spikes contained in a neuron or on the environment of a neuron. Obviously, systems
using the former type of rules can be influenced in their growth by input. Therefore,
this type of rule is called dynamic, and in the other case it is called static. Table 6.1
shows a classification of all introduced systems based on their types of rules.
Since ESN P systems use dynamic rules exclusively, they are very versatile. But, in

the shown application of ESN P systems to reduce an otherwise exponentially large
workspace, all systems were carefully designed such that the input does not influence
the growth of the system. To measure the quality of ESN P systems for this application,
other properties (as already shown in Section 5.6) should be compared. No applications
of SN P systems with neuron division and budding or SN P systems with budding rules
to solve a PSPACE-complete problem deterministically and in a polynomial number of
time steps from a polynomial initial workspace were shown yet. However, applications
solving the NP-complete problem SAT were shown for both systems. For this reason
these applications are compared to the application of ESN P systems to solve QBF, as
shown in Chapter 5. Table 6.2 shows the results. Note that the ESN P system shows
better or at least equal properties while solving a harder problem.

57

About ESN P Systems

computationally creates additional creates additional
Model complete neurons synapses

SN P systems yes no no
SN P systems +B yes static static
SN P systems +ND +B yes dynamic static
ESN P systems yes dynamic dynamic

Table 6.1.: Properties of the four introduced models: SN P systems, SN P systems with budding
rules (+B), SN P systems with neuron division and budding (+ND +B) and ESN P systems.

Applied Problem Steps Initial Desc New
Model Size Size Neurons

SN P systems QBF p exp exp 0
SN P systems +B SAT p p exp p
SN P systems +ND +B SAT p p p 2
ESN P systems QBF p p p 1

Legend: Problem the problem which is to be solved by an application of the model.
Steps time steps necessary to solve an instance of the problem
Initial Size number of neurons and synapses in the initial workspace of the

applied model
Desc Size number of neurons, rules and spikes in the definition of the applied model
New Neurons maximum number of neurons created per time step per existing neuron.

p polynomial with respect to the problem size
exp exponential with respect to the problem size

Table 6.2.: Properties of the application of the four introduced models to solve QBF or SAT
deterministically and in a polynomial number of time steps.

58

7. Conclusions and Remarks

In this diploma thesis, SN P systems were extended to so called ESN P systems by two
new biologically motivated types of rules: extension rules and connecting rules. The
meaningfulness of the additional types of rules was demonstrated by an application: A
family of ESN P systems was given, solving the PSPACE-complete QBF problem with
better properties than possible with SN P systems. With respect to the problem size,
SN P systems need an exponential pre-compiled workspace to solve QBF deterministically
and in a polynomial number of time steps. ESN P systems only need a polynomial initial
workspace. To be more specific, the introduced family of ESN P systems showed the
following properties with respect to the input size:

• A computation finishes in a polynomial number of time steps.

• There is a polynomial number of neurons, synapses and spikes in the initial
workspace.

• There is a polynomial number of prototypes and rules defined within the system.

• Every existing neuron creates no more than one neuron per time step, and

• the maximum number of synapses created in a single time step is polynomially
bounded by the number of existing neurons.

There are two notable other extensions to SN P systems aimed to reduce the initial
workspace: SN P systems with budding rules and SN P systems with neuron division
and budding. However, for these, no application to solve a PSPACE-complete problem
deterministically and in a polynomial number of time steps from a polynomial initial
workspace was shown so far. Therefore, it is an open problem if these extensions can be
used to solve any PSPACE-complete problem with similar properties to the application
of ESN P systems shown in this diploma thesis. In case of SN P systems with neuron
division and budding, this seems very likely.
Of all three compared extensions, only in ESN P systems the creation of both, new

neurons with synapses and new synapses between existing neurons, is directly influenced
by the spikes in the system and therefore by the input of the system. This versatility
of ESN P systems allows applications beyond reducing workspaces of SN P systems.
What follows are some suggestions for possible applications and open problems to be
investigated in future works:

• It seems to be possible to implement a single ESN P system solving all instances
of QBF instead of implementing a parametrized family of systems as done in this
diploma thesis. For example, the assignment layer can be implemented by only

59

About ESN P Systems

two prototypes which execute an infinite cycle over the three time steps of a
period. This cycle is stopped only by incoming spikes from the input module,
after the number of variables is read from the input. Naturally, other parts of the
system must be modified as well.

• Which exponential workspaces can be generated efficiently using the introduced
connecting rules and expanding rules?

• The possible creation of new neurons during the computation based on the input
could allow a simple simulation of a Turing machine by an ESN P system. Each
used cell of the tape of the simulated Turing machine can be represented by a
neuron. The number of spikes contained in that neuron encodes the symbol in
that cell of the tape. If a previously unused cell of the tape is written to, a new
neuron is created to represent that cell.

• Are SN P systems, only using connecting rules and expanding rules, computation-
ally complete? Obviously, spiketrains can not be used as output and something
else based on the structure of the net must be found.

Some of these applications might only be feasible by further extending ESN P systems.
To further adapt properties of biological neurons, some of the following features may
be introduced:

• A second type of rule implementing cell division. While the expanding rules of
ESN P systems create one new neuron which clones synapses and remaining
spikes of its parent, the new type of rule replaces the applying neuron by two new
neurons, splitting up spikes and synapses between these two. That is, one child
neuron inherits the incoming synapses of its parent while the other neuron inherits
the outgoing synapses of its parent. Such a “replacing” rule would allow to replace
a neuron in a system by a subnet of neurons without cloning all synapses to and
from the neighboring neurons.

• Neurons of ESN P systems live forever. It might be reasonable to define a lifetime
for neurons. This lifetime might be based on either time steps of the system or
on a maximum number of divisions (aging neurons).

• Similarly, existing synapses in ESN P systems cannot be removed again. A type
of rule to accomplish might work similarly to connecting rules.

60

A. Formal Implementation of the ESN P
Systems solving QBF

The family of ESN P systems with parameters n and m solving corresponding instances
of QBFS(y = 2n,m), as constructed in Chapter 5, is formally defined as follows:

Πn,m = (O = {a}, Pn, Nn, run,m, spnn,m, proton, synn, in, out)

where

y B 2n ,

H B {(aa)∗/a → a}
∪ {a2k−1 → a0 | k ∈ {1, . . . , y}}

• prototypes:

Pn = {in, start, stop, sel, fsel,
x1, . . . , xy, 1x1, . . . , 1xy, 0x1, . . . , 0xy,
p0, . . . , py, sat, q1, . . . , qn, out} ,

• neuron labels:

Nn = {in, start, stop, sel1, . . . , sely,
x1, . . . , xy, 1x1, . . . , 1xy, 0x1, . . . , 0xy,
as, sat, quan1, . . . , quann, out} ,

• prototype definitions:

run,m(in) = {a2 → a2, a → a, a3 → a0; 3y} ,

run,m(start) = {a2 → a2; 3y} ,

run,m(stop) = {a → a;my + 3y} ,

run,m(sel) = {a2 → a2} ,

run,m(fsel) = {a2 → a2, a3 → a0} ,

61

About ESN P Systems

∀i ∈ {1, . . . , y} :
run,m(xi)

run,m(1xi)
run,m(0xi)

= {a → a0, a2 → a0,

a3 → a3; y − i, a4 → a4; y − i},
= {a3 → a2, a4 → a0, a → out; 3i− 2} ,
= {a3 → a0, a4 → a2, a → out; 3i− 1} ,

run,m(p0) = H

∪ {a8y+5−6k/a2 → [pk], a8y+5−6k−2/a2 → in,
a8y+5−6k−4/a2 → a0 | k ∈ {1, . . . , y}} ,

∀i ∈ {1, . . . , y} :
run,m(pi) = H

∪ {a8y+5−6i−2/a2 → a0, a8y+5−6i−4/a2 → in}
∪ {a8y+5−6k/a2 → [pk], a8y+5−6k−2/a2 → in,

a8y+5−6k−4/a2 → a0 | k ∈ {i+ 1, . . . , y}} ,

run,m(sat) = {am → a, am+1 → a0}
∪ {am+y+1/a → [sat]}
∪ {am+y+1−k/a → [sat]; 2 | k ∈ {1, . . . , y − 1}} ,

∀i ∈ {1, . . . , n} :
run,m(qi) = {a2 → a, a3 → a0}

∪ {a3+stepsi/a → [qi]; 3i}
∪ {a3+stepsi−k/a → [qi]; 2 | k ∈ {1, . . . , stepsi − 1}}

where stepsi = y − i ,

run,m(out) = {(aa)∗/a → a} ,

• neuron attributes (initial spikes and prototype):

(spnn,m(in), proton(in)) = (3, in) ,

(spnn,m(start), proton(start)) = (2, start) ,

(spnn,m(stop), proton(stop)) = (1, stop) ,[
∀i ∈ {1, . . . , y − 1} :
(spnn,m(seli), proton(seli)) = (0, sel) ,

(spnn,m(sely), proton(sely)) = (0, fsel) ,

62

A. Formal Implementation of the ESN P Systems solving QBF

∀i ∈ {1, . . . , y} :
(spnn,m(xi), proton(xi))
(spnn,m(0xi), proton(0xi))
(spnn,m(1xi), proton(1xi))

= (0, xi) ,
= (1, 0xi) ,
= (1, 1xi) ,

(spnn,m(as), proton(as)) = (8y − 1, p0) ,

(spnn,m(sat), proton(sat)) = (m+ y + 1, sat) ,[
∀i ∈ {1, . . . , n} :
(spnn,m(quani), proton(quani)) = (3 + steps, qi)

where stepsi = y − i ,

(spnn,m(out), proton(out)) = (0, out) ,

• synapses:

synn = {(in, xk) | k ∈ {1, . . . , y}}
∪ {(selk−1, selk) | k ∈ {2, . . . , y}}
∪ {(sely, sel1), (start, sel1), (stop, sely)}
∪ {(selk, xk) | k ∈ {1, . . . , y}}
∪ {(xk, ixk) | i ∈ {0, 1}, k ∈ {1, . . . , y}}
∪ {(as, sat), (sat, quan1), (quann, out)}
∪ {(quank−1, quank) | k ∈ {2, . . . , n}}.

63

B. Expansion Phase of an ESN P System
Solving an Instance of QBF

In the following Figures B.1–B.8, the expansion phase of an ESN P system solving
instances of QBFS(2, 2) is demonstrated. Note that in the shown configurations, rules
are already scheduled for the current time step. That means, a rule was already chosen
for application where possible (and therefore marked in the graphical representation)
but not yet executed. Newly generated neurons of the previous step are bold. Changes
in the active schedule or amount of stored spikes are marked by a grey background.

65

About ESN P Systems

in [in]

a3 → a0; 6

a → a
a2 → a2

a3

x1 [x1]

a4 → a4; 1

a3 → a3; 1
a2 → a0

a → a0
x2 [x2]

a4 → a4

a3 → a3

a2 → a0

a → a0

sel1 [sel]

a2 → a2

sel2 [fsel]

a2 → a2

a3 → a0

start [start]

a2 → a2; 6

a2
stop [stop]

a → a; 10
a

1x1 [1x1]

a → out; 1
a4 → a0

a3 → a2

a
0x1 [0x1]

a → out; 2
a4 → a2

a3 → a0

a
1x2 [1x2]

a → out; 4
a4 → a0

a3 → a2

a
0x2 [0x2]

a → out; 5
a4 → a2

a3 → a0

a

a4a4a4a4a4a4aa2aa0

Input module

Figure B.1.: Initial configuration of the input module for QBFS(2n,m) for n = 1 and m = 2.
As input example the spiketrain a4a4a4a4a4a4aa2aa0 is chosen which encodes the QBFS(2, 2)
formula ∀x1∃x2((x1 ∨ ¬x2) ∧ (x1)). Rules are already selected (highlighted in gray).

66

B. Expansion Phase of an ESN P System Solving an Instance of QBF

Input module

1x1 [1x1]

a → out; 1
a4 → a0

a3 → a2

a
0x1 [0x1]

a → out; 2
a4 → a2

a3 → a0

a
1x2 [1x2]

a → out; 4
a4 → a0

a3 → a2

a
0x2 [0x2]

a → out; 5
a4 → a2

a3 → a0

a

as [p0]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → a0

a13/a2 → in

a15/a2 → [p1]

a → a0

a3 → a0

(aa)∗/a → a

a15

sat [sat]

a4/a → [sat]; 2

a5/a → [sat]

a3 → a0

a2 → a

a5

quan1 [q1]

a4/a → [q1]; 3

a3 → a0

a2 → a2

a4

out [out]
(aa)∗/a → a

Figure B.2.: Initial configuration for QBFS(2n,m) with n = 1 and m = 2 after selecting rules
for the next time step (rescheduled). Changes and additions in bold or highlighted in gray.

67

About ESN P Systems

Input module

1x1 [1x1]

a → out; 1 〈0〉

a4 → a0

a3 → a2

a
0x1 [0x1]

a → out; 2 〈1〉

a4 → a2

a3 → a0

a
1x2 [1x2]

a → out; 4 〈3〉

a4 → a0

a3 → a2

a
0x2 [0x2]

a → out; 5 〈4〉

a4 → a2

a3 → a0

a

as [p0]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → a0

a13/a2 → in

a15/a2 → [p1]
a → a0

a3 → a0

(aa)∗/a → a

a13 as:1 [p1]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → in

a13/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a13

sat [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

a4 sat:1 [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

a4

quan1 [q1]

a4/a → [q1]; 3 〈2〉

a3 → a0

a2 → a2

a4

out [out]
(aa)∗/a → a

Figure B.3.: Configuration for QBFS(2n,m) with n = 1 and m = 2 after one step and
selecting rules for the next time step. Changes and additions in bold or highlighted in gray.

68

B. Expansion Phase of an ESN P System Solving an Instance of QBF

Input module

1x1 [1x1]

a → out; 1
a4 → a0

a3 → a2

0x1 [0x1]

a → out; 2 〈0〉

a4 → a2

a3 → a0

a
1x2 [1x2]

a → out; 4 〈2〉

a4 → a0

a3 → a2

a
0x2 [0x2]

a → out; 5 〈3〉

a4 → a2

a3 → a0

a

as [p0]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → a0

a13/a2 → in

a15/a2 → [p1]
a → a0

a3 → a0

(aa)∗/a → a

a11 as:1 [p1]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → in

a13/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a11

sat [sat]

a4/a → [sat]; 2 〈1〉

a5/a → [sat]
a3 → a0

a2 → a

a4 sat:1 [sat]

a4/a → [sat]; 2 〈1〉

a5/a → [sat]
a3 → a0

a2 → a

a4

quan1 [q1]

a4/a → [q1]; 3 〈1〉

a3 → a0

a2 → a2

a4

out [out]
(aa)∗/a → a

Figure B.4.: Configuration for QBFS(2n,m) with n = 1 and m = 2 after two steps and
selecting rules for the next time step. Changes and additions in bold or highlighted in gray.

69

About ESN P Systems

Input module

1x1 [1x1]

a → out; 1
a4 → a0

a3 → a2

0x1 [0x1]

a → out; 2
a4 → a2

a3 → a0

1x2 [1x2]

a → out; 4 〈1〉

a4 → a0

a3 → a2

a
0x2 [0x2]

a → out; 5 〈2〉

a4 → a2

a3 → a0

a

as [p0]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → a0

a13/a2 → in

a15/a2 → [p1]
a → a0

a3 → a0

(aa)∗/a → a

a9 as:1 [p1]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → in

a13/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a9

sat [sat]

a4/a → [sat]; 2 〈0〉

a5/a → [sat]
a3 → a0

a2 → a

a4 sat:1 [sat]

a4/a → [sat]; 2 〈0〉

a5/a → [sat]
a3 → a0

a2 → a

a4

quan1 [q1]

a4/a → [q1]; 3 〈0〉

a3 → a0

a2 → a2

a4

out [out]
(aa)∗/a → a

Figure B.5.: Configuration for QBFS(2n,m) with n = 1 and m = 2 after three steps and
selecting rules for the next time step. Changes and additions in bold or highlighted in gray.

70

B. Expansion Phase of an ESN P System Solving an Instance of QBF

Input module

1x1 [1x1]

a → out; 1
a4 → a0

a3 → a2

0x1 [0x1]

a → out; 2
a4 → a2

a3 → a0

1x2 [1x2]

a → out; 4 〈0〉

a4 → a0

a3 → a2

a
0x2 [0x2]

a → out; 5 〈1〉

a4 → a2

a3 → a0

a

as [p0]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → a0

a13/a2 → in

a15/a2 → [p1]
a → a0

a3 → a0

(aa)∗/a → a

a7 as:1 [p1]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → in

a13/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a7

as:4 [p2]

a5/a2 → in

a7/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a7

as:1:4 [p2]

a5/a2 → in

a7/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a7

sat [sat]

a4/a → [sat]; 2

a5/a → [sat]

a3 → a0

a2 → a

a3 sat:1 [sat]

a4/a → [sat]; 2

a5/a → [sat]

a3 → a0

a2 → a

a3sat:4 [sat]

a4/a → [sat]; 2

a5/a → [sat]

a3 → a0

a2 → a

a3 sat:1:4 [sat]

a4/a → [sat]; 2

a5/a → [sat]

a3 → a0

a2 → a

a3

quan1 [q1]

a4/a → [q1]; 3

a3 → a0

a2 → a2

a3 quan1:4 [q1]

a4/a → [q1]; 3

a3 → a0

a2 → a2

a3

out [out]
(aa)∗/a → a

Figure B.6.: Configuration for QBFS(2n,m) with n = 1 and m = 2 after four steps and
selecting rules for the next time step. Changes and additions in bold or highlighted in gray.

71

About ESN P Systems

Input module

1x1 [1x1]

a → out; 1
a4 → a0

a3 → a2

0x1 [0x1]

a → out; 2
a4 → a2

a3 → a0

1x2 [1x2]

a → out; 4
a4 → a0

a3 → a2

0x2 [0x2]

a → out; 5 〈0〉

a4 → a2

a3 → a0

a

as [p0]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → a0

a13/a2 → in

a15/a2 → [p1]
a → a0

a3 → a0

(aa)∗/a → a

a5 as:1 [p1]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → in

a13/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a5

as:4 [p2]

a5/a2 → in

a7/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a5

as:1:4 [p2]

a5/a2 → in

a7/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a5

sat [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

sat:1 [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

sat:4 [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

sat:1:4 [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

quan1 [q1]

a4/a → [q1]; 3
a3 → a0

a2 → a2

quan1:4 [q1]

a4/a → [q1]; 3
a3 → a0

a2 → a2

out [out]
(aa)∗/a → a

Figure B.7.: Configuration for QBFS(2n,m) with n = 1 and m = 2 after five steps and
selecting rules for the next time step. Changes and additions in bold or highlighted in gray.

72

B. Expansion Phase of an ESN P System Solving an Instance of QBF

Input module

1x1 [1x1]

a → out; 1
a4 → a0

a3 → a2

0x1 [0x1]

a → out; 2
a4 → a2

a3 → a0

1x2 [1x2]

a → out; 4
a4 → a0

a3 → a2

0x2 [0x2]

a → out; 5
a4 → a2

a3 → a0

as [p0]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → a0

a13/a2 → in

a15/a2 → [p1]
a → a0

a3 → a0

(aa)∗/a → a

a3 as:1 [p1]

a5/a2 → a0

a7/a2 → in

a9/a2 → [p2]

a11/a2 → in

a13/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a3

as:4 [p2]

a5/a2 → in

a7/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a3

as:1:4 [p2]

a5/a2 → in

a7/a2 → a0

a → a0

a3 → a0

(aa)∗/a → a

a3

sat [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

sat:1 [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

sat:4 [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

sat:1:4 [sat]

a4/a → [sat]; 2

a5/a → [sat]
a3 → a0

a2 → a

quan1 [q1]

a4/a → [q1]; 3
a3 → a0

a2 → a2

quan1:4 [q1]

a4/a → [q1]; 3
a3 → a0

a2 → a2

out [out]
(aa)∗/a → a

Figure B.8.: Configuration for QBFS(2n,m) with n = 1 and m = 2 after six steps and
selecting rules for the next time step. Changes and additions in bold or highlighted in gray.

73

List of Figures

3.1. Graphical representation of an SN P system. 10
3.2. An example SN P system. 13
3.3. The input module used by the traditional SN P system family in Fig-

ure 3.4 to solve instances of QBFS(y = 2n,m). 17
3.4. A traditional SN P system family solving instances of QBFS(y = 2n,m)

using a pre-compiled workspace similar to the system given in [ILP+10]
including the input module given in Figure 3.3. 18

4.1. ESN P systems before neuron division on the left side and after, on the
right side. 24

4.2. ESN P system before applying connecting rules (shown on the left side)
and after applying (shown on the right side). 25

4.3. Construction of extended neuron labels. 27
4.4. Graphical representation of a neuron and its prototype. 29
4.5. Graphical representation of a prototype. 29
4.6. A simple unary multiplication ESN P system. 29
4.7. Graphical representation of a neuron configuration. 32

5.1. Family of ESN P systems solving instances of QBFS(y = 2n,m) 39
5.2. Modifications on the input module. 41
5.3. Modifications on the input bridge neurons for 1 ≤ i ≤ y. 42
5.4. The strategy employed to create all assignment neurons. 44
5.5. Modifications on assignment-layer prototypes p0 and pi for 1 ≤ i ≤ y. . 46
5.6. Modifications on the sat prototype. 48
5.7. The neuron n2 links the neurons n1 and n3 49
5.8. The strategy employed to generate the quantification module. 51
5.9. Modifications on the prototypes qi for 1 ≤ i ≤ n and stepsi = y − i. . . 52

B.1. Initial configuration of the input module for QBFS(2n,m) for n = 1
and m = 2. 66

B.2. Initial configuration for QBFS(2n,m) with n = 1 and m = 2 after
selecting rules for the next time step (rescheduled). 67

B.3. Configuration for QBFS(2n,m) with n = 1 and m = 2 after one step
and selecting rules for the next time step. 68

B.4. Configuration for QBFS(2n,m) with n = 1 and m = 2 after two steps
and selecting rules for the next time step. 69

B.5. Configuration for QBFS(2n,m) with n = 1 and m = 2 after three steps
and selecting rules for the next time step. 70

75

About ESN P Systems

B.6. Configuration for QBFS(2n,m) with n = 1 and m = 2 after four steps
and selecting rules for the next time step. 71

B.7. Configuration for QBFS(2n,m) with n = 1 and m = 2 after five steps
and selecting rules for the next time step. 72

B.8. Configuration for QBFS(2n,m) with n = 1 and m = 2 after six steps
and selecting rules for the next time step. 73

76

List of Tables

3.1. The elements of rules of SN P systems. 11

5.1. The behavior of different prototypes of the assignment module. 45

6.1. Properties of the four introduced models: SN P systems, SN P systems
with budding rules (+B), SN P systems with neuron division and budding
(+ND +B) and ESN P systems. 58

6.2. Properties of the application of the four introduced models to solve QBF
or SAT deterministically and in a polynomial number of time steps. . . . 58

77

Bibliography

[CEI+08] Matteo Cavaliere, Omer Egecioglu, Oscar Ibarra, Mihai Ionescu, Gheo-
rghe Păun, and Sara Woodworth. Asynchronous spiking neural p systems:
Decidability and undecidability. In Max Garzon and Hao Yan, editors,
DNA Computing, volume 4848 of Lecture Notes in Computer Science,
pages 246–255. Springer Berlin / Heidelberg, 2008.

[CII+08] Haiming Chen, Mihai Ionescu, Tseren-Onolt Ishdorj, Andrei Păun, Ghe-
orghe Păun, and Mario Pérez-Jiménez. Spiking neural p systems with
extended rules: universality and languages. Natural Computing, 7:147–
166, 2008. 10.1007/s11047-006-9024-6.

[GAPRPS08] Marc García-Arnau, David Pérez, Alfonso Rodríguez-Patón, and Petr
Sosík. On the power of elementary features in spiking neural p systems.
Natural Computing, 7:471–483, 2008. 10.1007/s11047-008-9082-z.

[Ihr98] Thomas Ihringer. Diskrete Mathematik. Eine Einführung in Theorie und
Anwendungen. Teubner B.G. GmbH, 12 1998.

[IL08] Tseren-Onolt Ishdorj and Alberto Leporati. Uniform solutions to sat and
3-sat by spiking neural p systems with pre-computed resources. Natural
Computing, 7:519–534, 2008. 10.1007/s11047-008-9081-0.

[ILP+10] Tseren-Onolt Ishdorj, Alberto Leporati, Linqiang Pan, Xiangxiang Zeng,
and Xingyi Zhang. Deterministic solutions to qsat and q3sat by spiking
neural p systems with pre-computed resources. Theor. Comput. Sci.,
411:2345–2358, May 2010.

[IPY06] Mihai Ionescu, Gheorghe Păun, and Takashi Yokomori. Spiking neural p
systems. Fundam. Inf., 71:279–308, February 2006.

[IW07] Oscar Ibarra and Sara Woodworth. Spiking neural p systems: Some char-
acterizations. In Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors, Fun-
damentals of Computation Theory, volume 4639 of Lecture Notes in
Computer Science, pages 23–37. Springer Berlin / Heidelberg, 2007.

[LMZ+09] Alberto Leporati, Giancarlo Mauri, Claudio Zandron, Gheorghe Păun, and
Mario Pérez-Jiménez. Uniform solutions to sat and subset sum by spiking
neural p systems. Natural Computing, 8:681–702, 2009. 10.1007/s11047-
008-9091-y.

79

About ESN P Systems

[Nea08] Turlough Neary. On the computational complexity of spiking neural p
systems. In Proceedings of the 7th international conference on Uncon-
ventional Computing, UC ’08, pages 189–205, Berlin, Heidelberg, 2008.
Springer-Verlag.

[Pau02] Gheorghe Paun. Membrane Computing: An Introduction (Natural Com-
puting Series Natural Computing). Springer, Berlin, 1 edition, 12 2002.

[PP07] Andrei Paun and Gheorghe Paun. Small universal spiking neural p systems.
Biosystems, 90(1):48 – 60, 2007.

[PPPJ09] Linqiang Pan, Gheorghe Paun, and Mario J. Pérez-Jiménez. Spiking
neural p systems with neuron division and budding. 7th Brainstorming
Week on Membrane Computing, II:151–168, 02/02/2009 2009.

[PRS98] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. DNA Comput-
ing: New Computing Paradigms (Texts in Theoretical Computer Science.
An EATCS Series). Springer, 9 1998.

[Sch10] Uwe Schöning. Logic for Computer Scientists (Modern Birkhauser Clas-
sics). Birkhäuser Boston, reprint of the 1989 ed. edition, 6 2010.

[WIP09] Jun Wang, Tseren-Onolt Ishdorj, and Linqiang Pan. About the efficiency
of spiking neural p systems. 7th Brainstorming Week on Membrane Com-
puting, II:235–252, 02/02/2009 2009.

[WP10] Ingo Wegener and R. Pruim. Complexity Theory. Springer Berlin Heidel-
berg, 1 2010.

80

	Introduction
	Preliminaries
	Mathematical Prerequisites
	Formal Languages and Regular Expressions
	The Quantified Boolean Formula Problem

	Spiking Neural P Systems
	Formal Definition and Representation
	Operation
	An Example SN P System
	Utilization and Computational Completeness
	Variants of SN P Systems
	A Solution to QBF Utilizing SN P Systems

	Expanding Spiking Neural P Systems
	Overview
	Formal Definition

	Polynomial ESN P Systems Solving QBF
	Input Encoding and Input Module
	Input Bridge Neurons
	Assignment Module: Assignment-Layer
	Assignment Module: Sat-Layer
	Quantification Module
	Properties

	Similar Extensions
	SN P Systems with Budding Rules
	SN P Systems with Neuron Division and Budding
	Comparison to ESN P Systems

	Conclusions and Remarks
	Appendix
	Formal Implementation of the ESN P Systems solving QBF
	Expansion Phase of an ESN P System Solving an Instance of QBF

