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Abstract

Description Logics are a family of knowledge representation formalisms for
representing and reasoning about conceptual knowledge. Every DL system
has reasoning services as an important component that infer implicit knowl-
edge from the one explicitly given. Standard reasoning problems include
concept satisfiability, concept subsumption, ABox consistency and the in-
stance problem. This work considers the concept subsumption service, which
is considered to be the most “traditional” service.

Four years ago, a polynomial time algorithm for subsumption problem in
the Description Logic EL was developed. After that, algorithms for different
problems in tractable extensions of EL have been developing. These De-
scription Logics are sufficient to represent many knowledge bases; however,
there are ontologies requiring more expressive extensions of EL. Specifically,
GALEN, an important medical ontology, requires ELHIfR+ , an intractable
extension of EL that includes role hierarchies, inverse , functional and tran-
sitive roles. This motivates the extension of the polynomial time algorithm
to ELHIfR+ .

This thesis proposes two solutions for the subsumption problem in ELHIfR+ .
The first solution is to reduce ELHIfR+ to the less expressive DL ELI, for
which an algorithm is readily available. The second solution is to create
an algorithm for the concept subsumption problem in ELHIfR+ . This al-
gorithm still runs in polynomial time in the simple case of ELHIfR+ that
does not include inverse and functional roles.
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Chapter 1

Introduction

Knowledge Representation (KR) is one of the most important fields being
researched in artificial intelligence and cognitive science. Research in this
field focuses on representing the world in a way that implicit knowledge
can efficiently be found. There are some formalisms that are effective to
represent knowledge, such as semantic networks and frames. Semantic net-
works, developed by M. R. Quillian [23], are graphs with labeled nodes and
labeled edges. The nodes represent objects, concepts, and situations; while,
the edges represent relationships between nodes. Frames were introduced
by Minsky [21] to represent concepts and their properties. Each frame has
a name, a list of direct super-frames and several slots, which are filled with
values. Even though there are significant differences between semantic net-
works and frames, both are considered as network structures.

Since both semantic networks and frames lacked precision, formal se-
mantics for them were essential. The semantics in these methods were rep-
resented by fragments of first-order logic, thus its reasoning service could
be based on first-order logic provers. However, different fragments of first-
order logic have different complexity and first-order logic provers are not
always necessary. Thus, simpler and more specialized algorithms needed to
be developed for these fragments. Based on these findings, a new method to
define concepts through fragments of first-order logic was developed with the
name “concept languages”, which then changed to Description Logics (DLs).

Description Logics and Reasoning

DLs are a class of knowledge representation formalisms that represents the
terminological knowledge of an application domain. The DL languages in-
clude sets of atomic concepts, roles, and constructors, which are formal and
have logic-based semantics. The constructors are used to build complex con-
cepts out of the atomic concepts and roles. In DL systems, DL languages
play important roles both in DL knowledge bases and their associated rea-
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soning services. A DL knowledge base consists of two components: a TBox,
which defines the terminology of the application domain, and an ABox,
which states facts about a specific “world”.

In addition to the description language and the knowledge base, any
DL system has its reasoning component, which derives implicit knowledge.
Reasoning is not only a main task of DL systems but also the one that
makes DLs distinguished from other KR formalisms. Reasoning services
include: Concept satisfiability, concept subsumption, ABox consistency and
the instance problem. The concept subsumption is the most “traditional”
reasoning service and it is often supported by almost all DL systems. Given
an ontology, the more general case of subsumption problem between concepts
is the classification problem, where all the subsumption relations between
concept names appearing in the ontology are listed. The complexity of
algorithms for this problem is important in application. Almost all DL
systems use intractable DLs, however, several years ago, applications using
tractable DLs were also investigated.

The first intractability results for DLs were shown in the 1980s [11, 22].
Even with the simple DL FL0, which allows conjunction (u) and value re-
strictions (∀r.C), when terminologies (TBoxes) are considered, the reason-
ing tasks become intractable. Specifically, with the simplest case of TBoxes
(acyclic TBoxes), subsumption in FL0 and its extensions is coNP-hard [22].
The complexity of subsumption in FL0 w.r.t. cyclic TBoxes is PSpace-
complete [1, 20]. [2] shows that it becomes ExpTime-complete in the pres-
ence of general concept inclusion axioms (GCIs), which are supported by all
modern DL systems.

Since most DLs are intractable, as well as the need for expressive DLs
supporting GCIs in applications, since the mid 1990s, DL researchers started
investigating more and more expressive DLs, even though these DLs are
worst-case intractable. Their goal is to find DLs which can be implemented
using practical reasoning procedures. Their algorithms can be worst-case
exponential or worse, but they behave well for practical applications [18].
This direction of research results in optimized DL systems using expressive
DLs based on tableau algorithms [14, 16]. The most notable application of
these DLs is the Web Ontology Language (OWL), which is recommended
by World Wide Web Consortium (W3C) as an ontology language for the
Semantic Web. Some problems in OWL can be solved by using reasoning
in DLs. For example, the entailment problem in OWL can be reduced to
concept satisfiability in SHOIN (OWL DL) and SHIF (OWL Lite) [17].

Even though there are a significant number of application using in-
tractable DLs, tractable DLs are also valuable due to their efficiency in
reasoning. Four years ago, a very interesting DL, named EL, which allows
conjunctions and existential restrictions, was found. The DL EL has better
algorithmic properties than other DLs, notably having subsumption problem
in EL w.r.t. general TBoxes solvable in polynomial time [3]. Furthermore,
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the classification of both cyclic and acyclic EL-TBoxes is tractable [6]. This
DL was then extended to other more expressive EL-extensions, which are
still tractable even w.r.t. GCIs, such as EL++. The DL EL++ allows role
hierarchies, transitive roles and right-identity rules. It also includes bottom
concept, which can be used to express disjointness of concept descriptions.
The expressiveness of these tractable EL-extensions is useful for ontology
applications.

[9] has proposed a refined version of this polynomial time algorithm for
implementation purposes, which gives better performance compared to opti-
mized tableau-based DL systems. The algorithm is implemented for the DL
EL+, which is simplified from EL++ by disallowing nominals and concrete
domain. The reason for this simplification is that none of the considered
ontologies uses nominals or concrete domain. Regarding experience with
three bio-medical ontologies in this work, EL-extensions are very useful in
representing bio-medical ontologies.

Bio-medical ontologies

An ontology has a common definition as a “formal specification of how to
represent the objects, concepts and other entities that are assumed to exist
in some area of interest and the relationships that hold among them.” The
definition from the W3C is more concise: “An ontology defines the terms
used to describe and represent an area of knowledge.” The terms of a spe-
cific ontology are often restricted to the vocabularies used in that particular
field or domain. Medical field is considered as one of the most important
and beneficial fields that ontology can be applied to.

Gene Ontology (GO) [13], provides a controlled vocabulary to describe
gene and gene product attributes in any organism. Terms in GO are bi-
ological vocabularies, which are structured so that you can query them at
different levels. Currently, this ontology consists of thousands concept names
and one transitive role “part-of”.

SNOMED (Systematized Nomenclature of Medicine) [28] is a reference
terminology for clinical terms. In 2002, the first version of SNOMED CT
(SNOMED Clinical Terms), a terminological resource for clinical software
applications, is released. SNOMED has contributed to many helpful clinical
applications, such as individuals’ health recording and retrieving systems.

GALEN (Generalised Architecture for Languages, Encyclopedias, and
Nomenclatures in medicine) is a project supported by European Union to
provide re-usable terminology resources for clinical systems [19]. GALEN
technology has been developed and applied in theory and software tools
for more than ten years. It provides not only re-used but also language-
independent shared medical data. GALEN was first represented in its spe-
cial DL language GALEN Representation and Integration Language, then
it is translated to a normal Description Logic [15].
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Motivation and Solutions

Tractable EL extensions are useful not only because of their polynomial
property as mentioned above but also because their expressiveness is suf-
ficient for several applications. For example, SNOMED uses EL with an
acyclic TBox; Gene Ontology can be seen as an acyclic EL TBox with one
transitive role. Even though large part of GALEN can be expressed in EL+,
it requires additional expressivity that is no longer tractable.

In order to represent the full GALEN, we need to extend EL to include in-
verse, transitive, functional roles and role hierarchy, named ELHIfR+ . This
DL is intractable because its sub-language ELI has been proved intractable[7].
At this point, it is natural to think about an algorithm for the DL ELHIfR+ .
This algorithm can be developed from the polynomial one for the DL EL.

In spite of successes of this polynomial time algorithm in the DL EL
and its tractable extensions, to the best of the author’s knowledge, no one
has investigated the link to other intractable extensions of EL. In the work
undertaken on the project before this thesis [29], the algorithm in [3] has
been improved to be able to work with ELI w.r.t. general TBoxes. The
algorithm in [29] requires exponential time in the worst case and it is optimal
since it is shown in [7] that the subsumption problem is ExpTime-complete.
The thesis proposes two directions to solve the subsumption problem in
ELHIfR+ and its fragments.

The first direction is to reduce the input general TBox to an ELI general
TBox. This way is very convenient for ELIf general TBox because it can
be reduced to an ELI general TBox, which has the size linear in the size of
the input ELIf general TBox. For ELHIfR+ general TBoxes we need to
reduce out transitive roles, functional roles and then role hierarchies step by
step to get ELI general TBoxes. The size of the input TBox polynomially
increases after each step of the reduction. When having the new general
ELI general TBoxes, the algorithm in [29] is applied.

The second direction is to devise a direct algorithm for subsumption
problem in ELHIfR+ , which is extended from the polynomial algorithm in
[3], for these intractable EL-extensions. Similar to the polynomial one, we
build a mapping to represent the subsumption relations between concept
descriptions. The mapping is a labeling function of a completion graph. The
most notable difference of this algorithm from the algorithm in [3] is that
its set of nodes grows during rule applications, whereas the nodes in [3] are
fixed. Although the proposed algorithm is an exponential time algorithm,
it runs in polynomial time in the special case of ELHR+ with GCIs. This
subsumption algorithm not only computes subsumption between two given
concept names in the input TBox T ; but also classifies T , i.e., it simultane-
ously computes the subsumption relationships between all pairs of concept
names occurring in T .
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After this introduction, the remainder of the thesis is organized as follows.
Chapter 2 first introduces DL EL and then it describes the basic concept
about an important tractable extension of EL, named EL++. After that,
this chapter presents the intractable DL ELHIfR+ and its sub-languages,
which will be considered during the remainder of the paper. Chapter 2 ends
by giving a normal form for the DL ELHIfR+ .

Chapter 3 presents GALEN projects and GALEN ontology, which can
be formulated using DL ELHIfR+ . The basic concept of GALEN and
GRAIL, the developing language for GALEN, is presented in the first sec-
tion of this chapter. The second section shows the method of representing
GRAIL concept using DL ELHIfR+ . After that, Chapters 4 and 5 present
two directions to solve the subsumption problem in ELHIfR+ and its sub-
languages.

In Chapter 4, the first solution is presented: reducing the input general
TBoxes to ELI general TBoxes. The chapter begins by a special case of
ELHIfR+ , named ELIf . In this case, after the reduction from ELIf -
TBoxes to ELI general TBoxes, the new TBoxes are linear in the sizes of
the input ones. After that, other reductions are presented to reduce an
ELHIfR+ general TBox to an ELI general TBox.

Chapter 5 proposes direct algorithms for subsumption problems in in-
tractable extensions of EL and the proof of their termination, soundness and
completeness. The last section of this chapter proves an interesting property
that the algorithm works polynomially in the case of DL ELHR+ with GCIs.

The last chapter, the conclusion, summarizes the contributions of the
present thesis and sheds light on some of the next essential steps, such as
optimization and implementation of the algorithms.



Chapter 2

Description Logics

In this chapter, the DL EL and its extensions are explored. After the DL
EL is introduced, a notable tractable EL extension, named EL++, is given
together with its reasoning service. Then this chapter presents the DL
ELHIfR+ , an intractable EL extension that includes role hierarchies, in-
verse, transitive and functional roles. Finally, a normal form of the ELHIfR+

general TBoxes is introduced.

2.1 The Description Logic EL
The syntax and semantics of the basic DL EL are defined bellow.

Name Syntax Semantics

top > ∆I

conjunction C uD CI ∩DI

existential
restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

Table 2.1: Syntax and Semantics of EL

Definition 2.1.1. The syntax of EL-concept descriptions is inductively de-
fined as follows:

• All concept names are EL-concept descriptions;

• if C, D are two EL-concept descriptions, and r is a role, then >, CuD,
and ∃r.C are EL-concept descriptions.

Definition 2.1.2. The semantics of EL-concept descriptions is defined in
terms of an interpretation I = (∆I , ·I). The domain ∆I is a non-empty set

6



2.2. A tractable extension of EL: EL++ 7

of individuals and the interpretation function ·I maps each concept name
A ∈ Ncon to a subset AI of ∆I and each role name r ∈ Nrole to a binary
relation rI ⊆ ∆I×∆I . The function ·I can be extended to arbitrary concept
descriptions as shown in the third column of Table 2.1.

Though lightweight, the DL EL is sufficient to express notions in the
clinical domain. Some examples from GALEN ontology are given below:

Person u∃ playsSocialRole.DoctorRole
represents the concept of a Doctor, and

∃ hasClinicalSpeciality.(ClinicalSpeciality u (∃ hasState.Surgery))
is a Surgeon.

2.2 A tractable extension of EL: EL++

Syntax and semantics of DL EL++ are defined in Table 2.2 in combination
with Table 2.1

Name Syntax Semantics

bottom ⊥ ∅
nominal {a} {aI}
concrete
domain

p(f1, . . . , fk)
for p ∈ PDj

{x ∈ ∆I | ∃y1, . . . , yk ∈ ∆Dj : fIi (x) = yi
for 1 ≤ i ≤ k ∧ (y1, . . . , yk) ∈ PDj}

GCI C v D CI ⊆ DI

RI r1◦· · ·◦rk v r rI1 ◦ · · · ◦ rIk ⊆ rI

concept
assertion C(a) aI ∈ CI

role asser-
tion r(a, b) (aI , bI) ∈ rI

Table 2.2: Extended Syntax and Semantics of EL++

Definition 2.2.1. The syntax of EL++-concept descriptions are formed
using the constructors shown in Table 2.1 and the upper part of Table 2.2.

The DL EL++ can include a set of concrete domains {D1, . . . ,Dn}, in
which an arbitrary element Dj is defined as follows.

Definition 2.2.2. (concrete domain.)
A concrete domain Dj is a pair (∆Dj ,PDj ) such that ∆Dj is a set and PDj is
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a set of predicate names. Each p ∈ PDj is associated with an extension pDj ∈
(∆Dj )n and is linked to the DL through a set of feature names {f1, . . . , fk}.

Definition 2.2.3. The semantics of an EL++-concept description is defined
in terms of an interpretation I = (∆I , ·I). The domain ∆I is a non-empty
set of individuals and the interpretation function ·I maps each concept name
A ∈ Ncon to a subset AI of ∆I and each role name r ∈ Nrole to a binary
relation rI ⊆ ∆I×∆I . The function ·I can be extended to arbitrary concept
descriptions as shown in the third column of Table 2.1 and Table 2.2.

Definition 2.2.4. EL++ Constraint Box (CBox)
An EL++-CBox T is defined as a finite set of general concept inclusions and
role inclusions, which are defined below:

• Let C, D be EL++-concept descriptions. Then C v D is called a
general concept inclusion (GCI).

• Let r1 ◦ · · · ◦ rk and r be EL++-role names. Then r1 ◦ · · · ◦ rk ⊆ r is
called a role inclusion (RI).

Definition 2.2.5. An interpretation I satisfies a GCI C v D or a RI
r1 ◦ · · · ◦ rk ⊆ r , if its semantics in the third column of Table 2.2 is satisfied.
We notice that in the definition of RI’s semantics, ◦ denotes composition of
binary relations. An interpretation I is a model of the CBox T if I satisfies
all general concept inclusions and role inclusions in T .

To represent medical ontologies we often use a subclass of EL++, called
EL+ [9]. In DL EL+, some features in EL++ are dropped out, they are
nominal and concrete domain. This DL has been implemented and seen the
performing advantage in CEL [4].

However, there are medical ontologies that need other features. In partic-
ular, GALEN ontology requires an extension of EL having role hierarchies,
and inverse roles, functional and transitive roles.

2.3 An intractable extension of EL: ELHIfR+

In the previous section, EL++ has been shown as one of the most useful
extensions of EL that is still tractable. Even though this DL is sufficient for
many medical ontologies, there are demands from some ontologies, such as
GALEN, for a more expressive DL. This section considers the DL ELHIfR+ ,
which is logical representation formalism for GALEN.

The DL ELHIfR+ is extended from EL with role hierarchies, inverse,
functional and transitive roles. The syntax and semantics of additional
expressivity is shown in Table 2.3.

Definition 2.3.1. The syntax of ELHIfR+-concept descriptions are induc-
tively defined as follows:
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Name Syntax Semantics

inverse role r− {(d, c)|(c, d) ∈ rI}

transitive axiom r ◦ r v r rI ◦ rI ⊆ sI

functional role > v (≤ 1r) |{e | (d, e) ∈ rI}| ≤ 1 for all d ∈ ∆I

GCI C v D CI ⊆ DI

role hierarchy r v s rI ⊆ sI

Table 2.3: Extended Syntax and Semantics of ELHIfR+

• All elements in the set of concept names Ncon are concept descriptions;

• if C, D are two concept descriptions, and r is a role in the set of roles
Nrole, then >, C uD, ∃r.C, and ∃r−.C are concept descriptions.

Definition 2.3.2. The semantics of an ELHIfR+-concept description is
defined in terms of an interpretation I = (∆I , ·I). The interpretation do-
main ∆I is a non-empty set of individuals and the interpretation function
·I maps each concept name A ∈ Ncon to a subset AI of ∆I and each role
name r ∈ Nrole to a binary relation rI ⊆ ∆I ×∆I . For arbitrary concept
descriptions, the semantics of ·I is defined as it is in the third columns of
Table 2.1 and Table 2.3.

From the definition of inverse roles, we notice that (r−)− = r for all role
r ∈ Nrole. Therefore from now, when we write r, it can be either a role or
an inverse role.

Here we consider a complex concept description appeared in the GALEN
ontology

SmoothMuscleContractionProcess u ∃hasProcessActivity.(ProcessActivity
u (∃hasState. inactive)) u ∃hasFunction−. MuscleOfUrinaryBladder

This is the definition of UrinaryBladderAtonia.

Now we define general TBoxes in the DL ELHIfR+ .

Definition 2.3.3. (ELHIfR+ general TBox). An ELHIfR+ general TBox
T is defined as a finite set of GCIs, which is defined before, and functional
axioms, role hierarchies, transitive axioms defined below.

• Let r be an ELHIfR+-role. Then > v (≤ 1r) is called a functional
axiom.
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• Let r, s be ELHIfR+-roles. Then r v s is called a role hierarchy.

• Let r be an ELHIfR+-role. Then r ◦ r v r is called a transitive axiom
and > v (≤ 1r) is called a functional axiom.

Definition 2.3.4. An interpretation I satisfies a GCI, a functional axiom,
a role hierarchy axiom or a transitive axiom iff its semantics in the third
column of Table 2.3 is satisfied. An interpretation I is a model of the
ELHIfR+ general TBox T if I satisfies all axioms appeared in T .

Motivated by GALEN and an example in [4], we introduce an ELHIfR+

general TBox, named T , as in Figure 2.1. There are GCIs, role hierarchies,

Endocardium v Tissue u ∃have−.HeartWall u ∃have−.HeartValve

HeartWall v BodyWall u ∃part-of.Heart

HeartValve v BodyValve u ∃part-of.Heart

Endocarditis v Inflammation u ∃has-loc.Endocardium

Inflammation v Disease u ∃has-loc.Tissue

HeartDisease ≡ Disease u ∃has-loc.Heart

have− v has-loc

part-of− v have

has-loc ◦ has-loc v has-loc

Person v ∃hasUnique.Heart

> v (≤ 1hasUnique)

Figure 2.1: An ELHIfR+ general TBox

inverse, functional and transitive roles in this TBox.

Given an ELHIfR+-TBox T , the most relevant inference problems are de-
fined as follows.

• Concept satisfiability. A concept description C is satisfiable w.r.t. T
if there exists a model I of T such that CI 6= ∅.

• Concept subsumption. Given two concept descriptions C and D, C is
subsumed by D w.r.t. T , denoted by T |= C v D or C vT D if and
only if CI ⊆ DI for all models I of T .

• ABox consistency. An ABox A is consistent w.r.t. T if A and T have
a common model.

• The instance problem. An individual name a is an instance of a concept
C in an ABox A w.r.t. T if aI ∈ CI for every common model I of A
and T .
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In this thesis, the subsumption algorithms for different DLs are considered.
There are some reasons to concentrate on this reasoning task. The first one
is that subsumption is the most “traditional” reasoning service in DLs, as
written in [5]. The second reason is that, as mentioned in the introduction,
our subsumption algorithm has the ability to simultaneously compute the
subsumption relationships between all pairs of concept names in the input
general TBoxes.

With respect to the ELHIfR+ general TBox in Figure 2.1, Endocarditis
vT HeartDisease is an example of concept subsumption. This subsumption
relation can be reasoned as follows: Since Endocarditis vT Inflammation and
Inflammation vT Disease we have Endocarditis vT Disease.

More over, Endocarditis vT ∃has-loc.Endocardium and Endocardium vT
have−.HeartWall , thus, Endocarditis vT ∃has-loc.have−.HeartWall. Besides,
have− vT has-loc, we have Endocarditis vT ∃has-loc.has-loc.HeartWall. Since
has-loc ◦ has-loc vT has-loc, part-of vT has-loc and HeartWall vT ∃part-
of.Heart, we get Endocarditis vT ∃has-loc.Heart.

Therefore, Endocarditis vT Disease u ∃has-loc.Heart, which means that
Endocarditis vT HeartDisease.

Theorem 3 in [7] states the complexity of subsumption problem in ELI
w.r.t. general TBoxes, which is repeated in the following theorem.

Theorem 2.3.5. The subsumption problem in ELI w.r.t. general TBoxes
is ExpTime-complete.

The next chapter will give us a polynomial reduction from ELHIfR+

general TBoxes to ELI general TBoxes, thus the subsumption problem in
the DL ELHIfR+ w.r.t. general TBoxes is ExpTime-complete. We con-
clude this section by giving a theorem about the complexity of subsumption
problem in ELHIfR+ general TBoxes.

Theorem 2.3.6. The subsumption problem in ELHIfR+ general TBoxes
is ExpTime-complete.

In the next section, a normal form for an ELHIfR+ general TBox is
defined to give convenience to the subsumption algorithms.

2.4 A normal form for ELHIfR+ general TBoxes

Given an ELHIfR+ general TBox T having the set of concept names Ncon,
we use NT to denote the set of basic concept descriptions for T :

NT := Ncon ∪ {>}

Now, a normal form for ELHIfR+ general TBoxes can be defined as follows.



2.4. A normal form for ELHIfR+ general TBoxes 12

Definition 2.4.1. (Normal Form for ELHIfR+ general TBoxes)
An ELHIfR+ general TBox T is in normal form if all concept inclusions in
T have one of the following forms

A v B
A1 uA2 v B

A v ∃r.B
∃r.A v B

where A,A1, A2, B ∈ NT , and r is a role or inverse role.

Using the method presented in [2], new concept names are introduced to
turn TBox T into a normalized TBox T ′. The new TBox T ′ is a conservative
extension of T , i.e., every model of T ′ is a model of T and every model of
T can be extended to a model of T ′.

It can be proved that this transformation can be done in linear time,
yielding a normalized TBox T ′ whose size is linear in the size of T . The
size |T | of a TBox T is defined as the number of symbols necessary to write
down T .

Lemma 2.4.2. Subsumption w.r.t. ELHIfR+ general TBoxes can be re-
duced in linear time to subsumption w.r.t. normalized ELHIfR+ general
TBoxes.

Proof. Let T be an ELHIfR+ general TBox. For every ELHIfR+ con-
cept description, the normalization rules are defined modulo commutativity
of conjunction as in Table 2.4. The ELHIfR+ general TBox is converted

NF1 C u D̂ v E −→ {D̂ v A,C uA v E}
NF2 ∃r.Ĉ v D −→ {Ĉ v A,∃r.A v D}

NF3 Ĉ v D̂ −→ {Ĉ v A,A v D̂}
NF4 B v ∃r.Ĉ −→ {B v ∃r.A,A v Ĉ}
NF5 B v C uD −→ {B v C,B v D}

where C,D,E, Ĉ, D̂ are concept descriptions over NT , Nrole

such that Ĉ, D̂ /∈ NT ; and A is a new concept name.

Table 2.4: Normalization Rules

into normal form using that set of rules in two phases:

1. exhaustively apply rules NF1 and NF2;
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2. exhaustively apply rules NF3 to NF5.

The number of rule applications in Phase 1 is linear in the size of T . Each
time one of the Rules NF1, NF2 is applied, the size of T increases only by
a constant. Hence, the size of the resulting TBox after Phase 1 is linear in
the size of the original one.

After finishing Phase 1, all concept inclusions have the normal forms and
two forms A v D, ∃r.A v D, where A ∈ NT , D is a concept description
and r is a role. Therefore, Rule NF5 in Phase 2 cannot make a quadratic
blowup due to the duplication of the concept B. The application of Rule
NF3 or Rule NF4 only increases the size of T by a constant. Thus the size
of the resulting general TBox is still linear in the size of the original one. It
is easy to see that all concept inclusions that are not in normal form after
Phase 1 are normalized in Phase 2.

Therefore, applying the rules exhaustively produces a normalized TBox
which is linear in the size of the input ELHIfR+ general TBox. Since each
rule application linearly increases the size of the ELHIfR+ general TBox,
the process of applying those rules runs in linear steps.

Besides, it is readily checked that each rule application takes linear time.
Therefore the normalization is linear.



Chapter 3

The GALEN Ontology

3.1 The GALEN Project and GRAIL Language

GALEN, a European Union funded project, has been developed to repre-
sent clinical information in a new way. The project builds an ontology, the
Common Reference Model, to represent medical concepts independently of
any application [25]. Many clinical systems, such as electronic health care
records (EHCRs), decision support systems and computer-based multilin-
gual coding systems for medicine, benefit from this ontology.

The GALEN Programme represents the overall development of the tech-
nology, which has included several research projects, including Framework
III (GALEN project) and Framework IV (GALEN-IN-USE project). In
the early stage, the GALEN Programme mainly constructed a concept
model language, named GALEN Representation and Integration Language
(GRAIL). At the same time, different structures of GALEN Common Ref-
erence Model were experimented.

In later stages, during the late 1990s, researchers concentrated on imple-
mentation of GRAIL and the terminology server, as well as the development
of the GALEN Common Reference Model. In addition, they developed tools
and techniques working with GALEN Common Reference Model. The de-
velopment of tools and techniques helped to develop and maintain the model
better.

In the second phase, the purpose of GALEN-IN-USE project is to develop
terminologies for medical procedures and to demonstrate the GALEN tech-
nology in data entry and natural language modules for commercial clinical
systems. The ontology has been used for building the architecture and in-
frastructure of clinical information systems in the EU-funded SynEx Project.
The GALEN ontology is also used in the UK’s Prodigy Drug Prescribing
Project.

The GALEN Programme is not totally funded by European Union now.
The members of the GALEN Programme founded a non-profit organization

14
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named OpenGALEN to expand its results and to find other related tech-
nologies for the GALEN ontology.

GRAIL is a concept modeling language developed in the GALEN Pro-
gramme to afford the demand of representation for GALEN [26, 27]. Due
to the main purpose of GRAIL, it includes transitive roles and role hier-
archies [24]. However, in comparison with other DLs, it lacks a number of
common properties, such as cardinality, negation, disjunction, value restric-
tions. GRAIL’s special features and unusual syntax make it more accessible
to domain experts. The main forms of GRAIL statements are summarized
below:

• C which 〈r1C1 . . . rnCn〉
The GRAIL which statement is used to form concept terms based on
concepts and existential restrictions.

For example,

Person which isOwnerOf RoadVehicle
represents the concept of a person who owns a road vehicle (not a train
or a boat).

• C newSub CN

The GRAIL newSub statement is used to state subsumption between
concepts.

For instance, a car is a kind of RoadVehicle can be represented as

RoadVehicle newSub Car

• C name CN

There are complicated concepts created by which and other features,
so it is necessary for GRAIL to use name as an aliasing mechanism,
which is equivalent to concept definition. For example,

Car which hasOwner ((Person which hasAge old) which hasSex male).

then the concept ((Person which hasAge old)which hasSex male) should
be named as OldMan to be simple as follows:

((Person which hasSex male) which hasAge old) name OldMan.

• C topicNecessarily 〈r1C1 . . . rnCn〉
The GRAIL topicNecessary statement is used for situations where
a criterion is mandatory but not part of the definition.

For example,

(Person which isOwnerOf RoadVehicle) topicNecessarily hasAge old
gives the necessary condition for the owner of a road vehicle that he
or she must be old.
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• r newAttribute r1 r2 k

GRAIL statement newAttribute is used to create attributes. In the
above form, r is an existing role, r1 and r2 are a pair of new roles, k is
a keyword which determines if these new roles are roles or attributes.
There are four possible values for k: oneOne (both r1 and r2 are at-
tributes), oneMany (r1 is an attribute), manyOne (r2 is an attribute),
manyMany (both r1 and r2 are not attributes).

For example,

DomainAttribute newAttribute hasOwner isOwnerOf allAll manyOne
This introduces a new attribute hasOwner, which has an inverse isOwnerOf.
The keyword manyOne means that one can own many objects but an
object belongs to only one owner.

• RN transitiveDown

Transitive relations are necessary for a medical ontology, for example,

hasPart transitiveDown
states that, if we have

Vehicle hasPart Wheel

Wheel hasPart Tyre
then we have, Vehicle hasPart Tyre

• r1 addSub r2

addSub is used to add an additional role inclusion into the whole role
hierarchy.

For example,

leftSided addSub bothSided
gives us that if a car has blue color on both sides, then it has blue
color on its left side.

There is another GRAIL statement, which is similar to addSub, named
addSuper.

For example,

bothSided addSuper leftSided
gives us the same semantic as the above example with addSub.

3.2 Translating GRAIL into ELHIfR+

The syntax and semantics of ELHIfR+ is appropriate for GRAIL. In his
PhD thesis [15], Horrocks has presented the translation from GRAIL into
ALCHfR+ . The DL ELHIfR+ not only supports all GRAIL’s statements
that DL ALCHfR+ supports but also supports inverse roles that are not
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explicitly included in ALCHfR+ . Moreover, ELHIfR+ does not include
those extra Boolean constructors that ALCHfR+ offers but GRAIL lacks.

Following the approach in [15], we here present the translation from
GRAIL into ELHIfR+ as follows.

Regarding the forms of GRAIL statements shown in the previous sec-
tion, GRAIL concept statements have the equivalent ELHIfR+ concept
descriptions and axioms as in the right column of Table 3.1.

The which statement is the combination of existential restrictions and
conjunctions.

The newSub and name are axioms used to define concept.
The last concept statement, topicNecessarily statement’s purpose is

to add GCI axioms to the knowledge base.

GRAIL ELIHFR+

C which 〈r1C1 . . . rnCn〉 C u ∃r1.C1 u . . . u ∃rn.Cn
C newSub CN CN v C
C name CN CN

.= C

C topicNecessarily 〈r1C1 . . . rnCn〉 C v ∃r1.C1 u . . . u ∃rn.Cn

Table 3.1: GRAIL concept statements and equivalent ELHIfR+

The translation of GRAIL concept statements to equivalent ELHIfR+-
concept descriptions has been described, GRAIL role statements are con-
sidered below. The newAttribute statement is used to introduce pairs of

GRAIL ELHIfR+

r newAttribute r1 r2 k r1 v r, r2
.= r−1

r transitiveDown r ◦ r v r
r1 addSub r2 r2 v r1

Table 3.2: GRAIL role axioms and equivalent ELHIfR+

primitive roles. The general form of newAttribute statements, as men-
tioned above, is

r newAttribute r1 r2 k

We have r1 is a new role that satisfies r1 v r. In addition, the new role r2 is
the inverse role of r1, i.e., r2

.= r−1 . Thus the translation for newAttribute
is stated as in the first line of Table 3.2.
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Since newAttribute statement allows roles to be declared functional
through the keyword k, the functional axioms in ELHIfR+ general TBoxes
are also necessary.

The transitiveDown statement is directly equivalent to a transitive ax-
iom in DL ELHIfR+ .

The addSub statement, which is used to build role hierarchy, is translated
to a role hierarchy in ELHIfR+ general TBoxes as in Table 3.2.



Chapter 4

Reductions of ELHIfR+

General TBoxes

4.1 Reduction from ELHIfR+ to ELHIf
Since roles that are both transitive and functional are not clearly useful in
practice, we assume that functionality can be asserted on simple roles, which
are defined below.

Definition 4.1.1. A role that is neither a transitive role nor a super role
of a transitive one is a simple role.

In order to eliminate all the transitive axioms r ◦ r v r in the input
ELHIfR+ general TBox T , a set of reduction rules in Table 4.1 is applied
as follows. Firstly, GCIs in the right column of Table 4.1 are added if the
conditions in the left column are satisfied. In these new GCIs, X is a new
concept name. This process terminates when all possible set of three rules
have been considered. Finally, all transitive axioms are eliminated and a
new TBox T ′ without transitive axioms is obtained.

Rule Original GCI and RI New GCIs

RR

r ◦ r v r ∃r.A v X
∃s.A v B X v B
r v s ∃r.X v X

Table 4.1: Reduction rule from ELHIfR+ to ELHIf

Lemma 4.1.2. Let T be an ELHIfR+ general TBox in normal form, and
T ′ the general TBox obtained after the application of the rule from Ta-
ble 4.1 has terminated, and A0, B0 two concept names occurring in T . Then,
A0 vT B0 if and only if A0 vT ′ B0.

19
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Proof.

⇐=) We prove by showing the contraposition. Assuming that A0 6vT B0,
then we need to prove that A0 6vT ′ B0.

Firstly, we prove that every model I of the TBox T can be extended to
a model I ′ for the TBox T ′. Given a model I for the TBox T , we need to
check if I satisfies all new GCIs received by applying the reduction rule in
Table 4.1.

RR. Suppose that there are a transitive role r, a GCI ∃s.A v B ∈ T
and r v s ∈ T as in the left column of Table 4.1. After RR application,
we have three new GCIs as in the right column: ∃r.A v X, X v B,
∃r.X v X. We need to prove that the interpretation I ′ satisfies all
these three GCIs.

Since X is a new concept name that only appears in T ′, we define
the interpretation of X as follows: XI

′
= (∃r.A)I

′
. Then we have

I ′ |= ∃r.A v X. Now we need to prove that I ′ |= X v B and
I ′ |= ∃r.X v X.

Since ∃s.A v B ∈ T with r v s ∈ T , we have (∃r.A)I
′ ⊆ BI

′
.

XI
′ ⊆ BI′ because XI

′
= (∃r.A)I

′
. Thus I ′ |= X v B.

To prove that I ′ |= ∃r.X v X, we suppose that x ∈ (∃r.X)I
′

and
then prove that x ∈ XI′ . Since x ∈ (∃r.X)I

′
, there is y ∈ XI′ such

that (x, y) ∈ rI′ . We have y ∈ (∃r.A)I
′

because XI
′

= (∃r.A)I
′
. This

means that there is z ∈ AI′ such that (y, z) ∈ rI′ . As r ◦ r v r, we
have (x, z) ∈ rI′ . Together with z ∈ AI′ , we have x ∈ (∃r.A)I

′
. Thus

x ∈ XI′ because XI
′

= (∃r.A)I
′
.

We conclude that all the replaced GCIs in T ′ are satisfied by I.
Therefore, if AI0 6⊆ BI0 with I is a model of T , then AI0 6⊆ BI0 with I is

a model of T ′.
This means that if A0 6vT B0 then A0 6vT ′ B0, i.e., if A0 vT ′ B0 then

A0 vT B0.

=⇒) We show the contraposition. Assuming that A0 6vT ′ B0, we need to
prove that A0 6vT B0. A0 6vT ′ B0 if and only if there is a model I ′ of T ′ such
that there exists x ∈ AI′0 but x 6∈ BI′0 . In order to prove that A0 6vT B0 we
build a model I of T based on I ′ such that there exists x ∈ AI′0 but x 6∈ BI′0 .
We inductively define the interpretation I as a sequence I0, . . . , In0 ,:
Initially, I0 := I ′.
After that, for all n ∈ {0, . . . , n0 − 1}, In+1 is defined based on In

∆In+1 := ∆In ,

AIn+1 := AIn
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for all A ∈ Ncon

The interpretation In+1 of a role s is defined differently for two cases:

• Case 1: There is no transitive role r such that r vT s: sIn+1 := sIn .

• Case 2: There is a transitive role r such that r vT s, then sIn+1 is
repeatedly extended from sIn :

sIn+1 := sIn ∪ {(u,w) | (u, v), (v, w) ∈ rIn , r vT s}

This process of defining I can be infinite because this DL does not have
the finite tree model property. Since AI0 = AI

′
0 and BI0 = BI

′
0 , it is readily

checked that x ∈ AI0 and x 6∈ BI0 . Before proving that interpretation I is a
model of the general TBox T we prove a claim:

Claim 4.1.3. If there exist r ◦ r v r ∈ T , ∃s.A v B ∈ T and r vT s, then
new model I satisfies axioms: ∃r.A v X, X v B amd ∃r.X v X in T ′.

Proof.
Since we do not change the interpretations of A,B and X, X v B holds in
I. For ∃r.A v X and ∃r.X v X, we prove by induction.

- Base case. We suppose that (x, y), (y, z) ∈ rI′ , i.e., (x, y), (y, z) ∈ rI0
then (x, z) ∈ sI1 .

Since r vT s, ∃s.A v B ∈ T and r ◦ r v r ∈ T , by RR, there are
∃r.A v X, X v B, ∃r.X v X in T ′.
∃r.A v X: Suppose that z ∈ AI1 , we need to prove that x ∈ XI1 .
Since AI1 = AI

′
, we have z ∈ AI′ . Besides, (y, z) ∈ rI′ and ∃r.A v

X ∈ T ′, thus y ∈ XI′ . Therefore x ∈ (∃r.X)I
′
. Thus by ∃r.X v X ∈

I ′, we have x ∈ XI′ , i.e. x ∈ XI1 .

∃r.X v X: Suppose that z ∈ XI1 , we need to prove that x ∈ XI1 .
Since XI1 = XI

′
, we have z ∈ XI′ . Besides, (y, z) ∈ rI′ and ∃r.X v

X ∈ T ′, thus y ∈ XI′ . Therefore x ∈ (∃r.X)I
′
. Thus by ∃r.X v X ∈

T ′, we have x ∈ XI′ , i.e. x ∈ XI1 .

- Induction case. We suppose that (x, y), (y, z) ∈ rIn then (x, z) ∈ rI1 .
Since ∃r.A v B ∈ T , by the induction hypothesis, In |= ∃r.A v
X,X v B, ∃r.X v X.

∃r.A v X: Suppose that z ∈ AIn+1 , we need to prove that x ∈ XIn+1 .
Since AIn+1 = AIn , we have z ∈ AIn . Besides, (y, z) ∈ rIn and
In |= ∃r.A v X, thus y ∈ XIn . Therefore x ∈ (∃r.X)In . Thus by
In |= ∃r.X v X, we have x ∈ XI′ , i.e. x ∈ XI1 .

∃r.X v X: Suppose that z ∈ XIn+1 , we need to prove that x ∈ XIn+1 .
Since XIn+1 = XIn , we have z ∈ XIn . Besides, (y, z) ∈ rIn and
In |= ∃r.X v X, thus y ∈ XIn . Therefore x ∈ (∃r.X)In . Thus by
In |= ∃r.X v X, we have x ∈ XI′ , i.e. x ∈ XI1 .
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Now we prove that the interpretation I is a model of the general TBox
T . We check all the cases of normalized GCIs that appear in T :

• A v B. Given AI
′ ⊆ BI

′
, since AI = AI

′
and BI = BI

′
, we have

AI ⊆ BI .

• A1 u A2 v B. Given AI
′

1 ∩ AI
′

2 ⊆ BI
′
, since AI1 = AI

′
2 , AI2 = AI

′
2 and

BI = BI
′
, we have AI1 ∩AI2 ⊆ BI .

• ∃s.A v B. According to the definition of sI , the interpretation of s is
extended step by step. We prove that(∃s.A)In ⊆ BIn for all In. Given
r vT s, ∃s.A v B, ∃s.C v D ∈ T and r ◦ r v r ∈ T . Suppose that
at step n, a new element (u,w) is added to sIn such that w ∈ AIn .
We need to prove that u ∈ BIn . Since r vT r, (u,w) is also added
to rIn . In addition, the conditions of Claim 4.1.3 are satisfied, thus,
In satisfies ∃r.A v X, X v B, ∃r.X v X. It means that In satisfies
∃r.A v B. Therefore u ∈ BIn . Overall, this axiom holds.

• A v ∃s.B. We need to prove that AI ⊆ (∃s.B)I . As we only extend
the interpretations of roles,i.e., sI ⊇ sI

′
. Besides, AI = AI

′
, BI =

BI
′
. Since A v ∃s.B ∈ T ′, we have AI

′ ⊆ (∃s.B)I
′
. Therefore

AI ⊆ (∃s.B)I . This means that this axiom holds.

• r v s. By the definition of the interpretation I, the axiom holds.

• r ◦ r v r. This axiom is satisfied by the way we construct rI .

Lemma 4.1.4. Let T be an ELHIfR+ general TBox in normal form, and
T ′ the general TBox obtained after the application of the rule from Table 4.1
has terminated. Then the size of T ′ is cubic in the size of T .

4.2 Reduction from ELHIf to ELHI
In order to eliminate all the axioms > v (≤ 1r) in the input general TBox
T we do as follows. If there is an axiom in T satisfying the left column, then
for each concept name B ∈ Ncon, a new GCI as the one in the right column
of Table 4.2 is added to T . When this process terminates, all GCIs of the

Rule Original axioms New axioms

RF > v (≤ 1r) ∃r−.(∃r.B) v B

Table 4.2: Reduction rule from ELHIf to ELHI

form > v (≤ 1r) are eliminated and a new TBox T ′ without functional
axioms is obtained.
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Lemma 4.2.1. Let T be an ELHIf general TBox in normal form, and T ′
the general TBox obtained after the application of the rule from Table 4.2 has
terminated, and A0, B0 two concept names occurring in T . Then, A0 vT B0

if and only if A0 vT ′ B0.

Proof.

⇐=) We prove by showing the contraposition: if A0 6vT B0 then A0 6vT ′ B0.
Firstly, we prove that every model I of the TBox T is also a model

for the TBox T ′. Given a model I for the TBox T , we need to check if I
satisfies all new GCIs received by applying the reduction rule in Table 4.2.

RF. Suppose that there is a new GCI ∃r−.(∃r.B) v B in T ′ and
we prove that I satisfies this new GCI. Assume that we have z ∈
(∃r−.(∃r.B))I , then we need to prove that z ∈ BI . Since z ∈ (∃r−.(∃r.B))I ,
there is x ∈ (∃r.B)I such that (x, z) ∈ rI . As x ∈ (∃r.B)I , there is
y ∈ BI such that (x, y) ∈ rI .
Since both (x, y) and (x, z) are in rI but > v (≤ 1r), we have z = y.
Thus z ∈ BI , i.e., I satisfies the new GCI.

We conclude that all the new GCIs in T ′ are satisfied by I.
Therefore, if AI0 6⊆ BI0 with I is a model of T , then AI0 6⊆ BI0 with I is

a model of T ′.
This means that if A0 6vT B0 then A0 6vT ′ B0, i.e., if A0 vT ′ B0 then

A0 vT B0 for all concept names A0 and B0 in the TBox T .

=⇒) We prove by showing the contraposition: if A0 6vT ′ B0 then A0 6vT B0.
A0 6vT ′ B0 if and only if there is a model I ′ of T ′ such that there exists
x ∈ AI′0 but x 6∈ BI′0 . In order to prove that A0 6vT B0 we build a model I
of T based on I ′ such that x ∈ AI0 but x 6∈ BI0 . Based on Theorem 5.6 in
[8], it can be assumed that I ′ is a tree model with multi role names on edges.
We first define an interpretation I of T such that the condition x ∈ AI0 but
x 6∈ BI0 holds, then prove that I is a model of T . We inductively define the
interpretation I as a sequence I0, . . . , In0 ,:
Initially, I0 := I ′.
After that, for all n ∈ {0, . . . , n0 − 1}, In+1 is defined based on In

∆In+1 := ∆In ,

AIn+1 := AIn

for all A ∈ Ncon

The interpretation In+1 of a role s is defined as follows.

If there are u, v, w ∈ ∆In such that (u, v), (u,w) ∈ rIn , v 6= w and
> v (≤ 1r) ∈ T , then
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for all s ∈ Nrole such that (u,w) ∈ sIn set:

sIn+1 := sIn\{(u,w)} ∪ {(u, v)}

Else, sIn+1 := sIn for all s ∈ Nrole.

Before defining the interpretation I we prove a claim.

Claim 4.2.2. Given (u, v), (u,w) ∈ rI′ such that v 6= w and > v (≤ 1r) ∈
T , then v ∈ BI′ iff w ∈ BI′ for all B ∈ NT .

Proof. We prove only one direction, the other one is totally similar.
Suppose that w ∈ BI′ , we need to prove v ∈ BI′ . By RF application, there
is a GCI ∃r−.(∃r.B) v B in T ′. Since (v, u) ∈ (r−)I

′
, (u,w) ∈ rI

′
with

w ∈ BI′ , we have v ∈ BI′ .

Now we check all the cases of normalized GCIs that appear in T :

• A v B. We have A v B ∈ T ′, i.e., AI
′ ⊆ BI

′
. Since AI = AI

′
and

BI = BI
′
, AI ⊆ BI .

• A1 uA2 v B. We have A1 uA2 v B ∈ T ′, i.e., AI
′

1 ∩AI
′

2 ⊆ BI
′
. Since

AI1 = AI
′

2 , AI2 = AI
′

2 and BI = BI
′
, AI1 ∩AI2 ⊆ BI .

• ∃r.A v B. By the construction of I, a new pair (u, v) can be added to
rIn+1 . We need to show that this addition does not falsify the axiom
∃r.A v B.

Suppose that v ∈ AIn+1 , we need to prove that u ∈ BIn+1 .

By Claim 4.2.2, we have w ∈ AIn . By the induction hypothesis,
In |= ∃r.A v B, we have u ∈ BIn . Thus u ∈ BIn+1 .

• A v ∃s.B. Suppose that u ∈ AIn+1 , we need to prove that u ∈
(∃s.B)In+1 .

We have In |= A v ∃s.B, thus there is w ∈ BIn such that (u,w) ∈ sIn .

There are two possibilities according to the definition of In+1.

– If (u,w) ∈ rIn+1 , then w ∈ BIn+1 . Thus u ∈ (∃s.B)In+1 , i.e., the
axiom holds.

– Otherwise, (u,w) 6∈ sIn+1 . Since u ∈ AIn+1 , by the definition of
In+1, there is v ∈ ∆In+1 such that (u, v) ∈ sIn+1\sIn . We will
prove that v ∈ BIn+1 .
From the condition of the process extending In to In+1, there is
> v (≤ 1r) ∈ T such that (u, v), (u,w) ∈ rIn .
From the definition of rI we see that if > v (≤ 1r) ∈ T then
rIn ⊆ rI′ for all n. Thus (u, v), (u,w) ∈ rI′ .
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Since w ∈ BIn , w ∈ BI
′
. By Claim 4.2.2 we have v ∈ BI

′
.

Together with v ∈ ∆In+1 , we conclude that v ∈ BIn+1 .

• > v (≤ 1r). Due to the construction of I, all functional roles are
satisfied.

• s1 v s2. From the definition of rI and sI we need to prove for two
cases:

Case 1: A new pair (u,w) with is added to sIn+1

1 , then we need to prove
that (u,w) ∈ sIn+1

2 . From the definition of rIn+1 , there is v such that
(u, v) ∈ sIn

1 and (u, v), (u,w) ∈ rIn such that u, v, w ∈ ∆In , v 6= w
and > v (≤ 1r) ∈ T . Since In |= s1 v s2, (u, v) ∈ sIn

2 . Therefore by
the definition of sI2 we have (u,w) ∈ sI .
Case 2: An old pair (u, v) ∈ sIn2 is removed from sIn

2 . Then by defini-
tion of sIn+1

2 , (u, v) 6∈ sIn+1
1 .

Lemma 4.2.3. Let T be an ELHIf general TBox in normal form, and T ′
the general TBox obtained after the application of the rule from Table 4.2
has terminated. Then the size of T ′ is quadratic in the size of T .

There is a special case of an ELHIf general TBox without role hierarchies,
named ELIf -TBox, that can be reduced to an ELI-TBox whose size is
linear in the size of the original one. This DL is considered in the next
section.

4.3 Reduction from ELIf to ELI
In order to eliminate all the axioms > v (≤ 1r) in the input TBox T we
do as follows. If there are axioms in T satisfying the left column, then we
add new GCIs shown in the right column of Table 4.3. When this process

Rule Original axioms New axioms

RF*
A v ∃r.B A v ∃r.>
> v (≤ 1r) ∃r−.A v B

Table 4.3: Reduction rule from ELIf to ELI

terminates, we eliminate all axioms of the form > v (≤ 1r) and get a new
TBox T ′ without functionality axioms.

Lemma 4.3.1. Let T be an ELIf general TBox in normal form, and T ′ the
general TBox obtained after the application of the rule from Table 4.3 has
terminated, and A0, B0 two concept names occurring in T . Then, A0 vT B0

if and only if A0 vT ′ B0.
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Proof.

⇐=) We show the contraposition, i.e., if A0 6vT B0 then A0 6vT ′ B0.
Firstly, we prove that every model I of the TBox T is also a model

for the TBox T ′. Given a model I for the TBox T , we need to check if I
satisfies all new GCIs obtained by applying the reduction rule in Table 4.2.

RF*. Suppose that there is a new GCI A v ∃r.> in T ′, we have
A v ∃r.B, > v (≤ 1r) ∈ T . If there exists x ∈ AI , then there are
y ∈ BI such that (x, y) ∈ rI . This means that I satisfies A v ∃r.>.
We now need to prove that ∃r−.A v B.

We prove by showing the contradiction. Assume that there is (u, v) ∈
rI such that u ∈ AI but v 6∈ BI . As A v ∃r.B ∈ T , there is v′ ∈ BI
such that (u, v′) ∈ rI . Since v 6∈ BI but v′ ∈ BI , we have v 6= v′.

Since both (u, v) and (u, v′) with v 6= v′ are in rI but > v (≤ 1r), we
have the contradiction.

Thus the assumption fails, i.e., the condition holds.

We conclude that all the new GCIs in T ′ are satisfied by I.
Therefore, if AI0 6⊆ BI0 with I is a model of T , then AI0 6⊆ BI0 with I is

a model of T ′.
This means that if A0 6vT B0 then A0 6vT ′ B0, i.e., if A0 vT ′ B0 then

A0 vT B0 for all concept names A0 and B0 in the TBox T .

=⇒) We prove by showing the contraposition: if A0 6vT ′ B0 then A0 6vT B0.
A0 6vT ′ B0 if and only if there is a model I ′ of T ′ such that there exists
x ∈ AI′0 but x 6∈ BI′0 . In order to prove that A0 6vT B0 we build a model I
of T based on I ′ such that x ∈ AI0 but x 6∈ BI0 . By Theorem 5.6 in [8], we
can assume that I ′ is a tree model. First we define an interpretation I of T
such that the condition x ∈ AI0 but x 6∈ BI0 holds, and then we prove that
I is a model of T .
We inductively define the interpretation I as a sequence I0, . . . , In0 :
Initially, I0 := I ′.
After that, for all n ∈ {0, . . . , n0 − 1}, In+1 is defined based on In

∆In+1 := ∆In ,

AIn+1 := AIn

for all A ∈ Ncon

The interpretation In+1 of a role r is defined as follows.

If there are (u, v), (u,w) ∈ rIn such that v 6= w and > v (≤ 1r) ∈ T
then: rIn+1 := rIn\{(u,w)}
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Else, rIn+1 := rIn .

Now we check if I is a model of T by checking all the axioms that appear
in T .

• A v B. We have A v B ∈ T ′, i.e.,n AI
′ ⊆ BI

′
. Since AI = AI

′
and

BI = BI
′
, AI ⊆ BI .

• A1 uA2 v B. We have A1 uA2 v B ∈ T ′, i.e., AI
′

1 ∩AI
′

2 ⊆ BI
′
. Since

AI1 = AI
′

2 , AI2 = AI
′

2 and BI = BI
′
, AI1 ∩AI2 ⊆ BI .

• ∃r.A v B. Since ∃r.A v B ∈ T ′, we have (∃r.A)I
′ ⊆ BI′ . As rI ⊆ rI′

and AI = AI
′
, BI = BI

′
, we have (∃r.A)I ⊆ BI . Thus this axiom

holds.

• A v ∃r.B. We prove that this axiom by induction in the definition of
I.

Base case: The axiom holds because I0 = I ′ and A v ∃r.B also
appears in T ′.
Induction case: There are two possibilities:

– If rIn+1 = rIn then u ∈ (∃r.B)In+1 , i.e., the axiom holds.

– Otherwise, there are (u, v), (u,w) ∈ rIn and rIn+1 := rIn\{(u,w)}.
Because of the tree model property, we only consider the case that
u is the root of a role. Now assuming that u ∈ AIn+1 , we prove
that the elimination of (u,w) does not falsify the axiom.
If w 6∈ BIn then the axiom holds.
If w ∈ BIn , we prove that v ∈ (∃r.B)In+1 as follows.
Since AIn+1 = AIn , u ∈ AIn . Due to A v ∃r.B ∈ T , by RF* we
have ∃r−.A v B ∈ T ′. Since (v, u) ∈ (r−)I

′
, we have v ∈ BI′ ,

i.e., v ∈ BIn . Since rIn+1 := rIn\{(u,w)} and w 6= v, (u, v) ∈
rIn+1 . Thus u ∈ (∃r.B)In+1 .

Therefore the axiom holds after the inductively defining I.

• > v (≤ 1r). We have eliminated all the duplications during we con-
struct I, therefore, all functional roles are satisfied.

Regarding the completion rule in Table 4.3, the maximum number of new
GCIs is two times of the number of GCIs of the form A v ∃r.B appearing
in T . Therefore, we give a lemma about the size of the new TBox after the
application of this rule has terminated.

Lemma 4.3.2. Let T be an ELIf general TBox in normal form, and T ′
the general TBox obtained after the application of the rule from Table 4.3
has terminated. Then the size of T ′ is linear in the size of T .
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4.4 Reduction from ELHI to ELI
In order to eliminate all the role hierarchies r v s in the input ELHI -TBox
T , we apply the reduction rule in Table 4.4 as follows. We apply Rule RH
by adding a new GCI as in the right column of Table 4.4 if the GCI and the
role hierarchy in its left column are satisfied. When this process terminates,

Rule Original GCI and RI New GCIs

RH
r v s

∃r.A v B
∃s.A v B

Table 4.4: Reduction rule from ELHI to ELI

we eliminate all role inclusions and transitive axioms and get a new TBox
T ′ without role hierarchies.

Lemma 4.4.1. Let T be an ELHI general TBox in normal form, and T ′
the general TBox obtained after the application of the rule from Table 4.4 has
terminated, and A0, B0 two concept names occurring in T . Then, A0 vT B0

if and only if A0 vT ′ B0.

Proof.

⇐=) We show the contraposition. Assuming that A0 6vT B0, then we need
to prove that A0 6vT ′ B0.

Firstly, we prove that every model I of the TBox T is also a model
for the TBox T ′. Given a model I for the TBox T , we need to check if I
satisfies all new GCIs received by applying the reduction rule in Table 4.4.

RH. If there is a new GCI ∃r.A v B, then there exist r v s and
∃s.A v B in T . Since I |= r v s, I |= ∃r.A v ∃s.A. Therefore,
I |= ∃r.A v B.

We conclude that all the new GCIs in T ′ are satisfied by I.
Therefore, if AI0 6⊆ BI0 with I is a model of T , then AI0 6⊆ BI0 with I is

a model of T ′.
This means that if A0 6vT B0 then A0 6vT ′ B0, i.e., if A0 vT ′ B0 then

A0 vT B0.

=⇒) We prove by showing the contraposition. Assuming that A0 6vT ′ B0,
we need to prove that A0 6vT B0.

Since A0 6vT ′ B0, there is a model I ′ of T ′ such that there exists x ∈ AI′0
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but x 6∈ BI′0 . Based on I ′, we define an interpretation I as follows:

∆I := ∆I
′
,

AI := AI
′
,

sI :=
⋃
rvT s r

I′ .

for all A ∈ Ncon and s ∈ Nrole.
Since AI0 = AI

′
0 and BI0 = BI

′
0 , we have x ∈ AI0 and x 6∈ BI0 . Therefore

I 6|= A0 v B0.
Now we prove that interpretation I is a model of the general TBox T .

We check all the cases of normalized GCIs that appear in T :

• A v B. Given AI
′ ⊆ BI

′
, we have AI ⊆ BI because AI = AI

′
and

BI = BI
′
.

• A1 uA2 v B. Given AI
′

1 ∩AI
′

2 ⊆ BI
′
, we have AI1 ∩AI2 ⊆ BI because

AI1 = AI
′

2 , AI2 = AI
′

2 and BI = BI
′
.

• ∃s.A v B. Suppose that x ∈ (∃s.A)I , we need to prove that x ∈ BI .
We recall the definition of sI , sI :=

⋃
rvT s r

I′ . Since T |= r v s
and ∃s.A v B ∈ T , by RH application, there exists ∃r.A v B ∈ T ′.
Therefore, (∃r.A)I

′ ⊆ BI
′

for all r vT s. Together with the fact
that AI = AI

′
, we have x ∈ (∃s.A)I

′
. Thus x ∈ BI′ . Therefore, if

x ∈
⋃
rvT s r

I′ , then x ∈ BI′ , i.e., x ∈ BI .

• A v ∃s.B. Since A v ∃s.B ∈ T ′, AI′ ⊆ (∃s.B)I
′
. As AI = AI

′
,

BI = BI
′

and sI ⊇ sI′ , we have AI ⊆ (∃s.B)I , i.e., the axiom holds.

• r v s. We recall the definitions rI :=
⋃
r′vT r (r′)I

′
and sI :=

⋃
s′vT s (s′)I

′
.

Since r v s ∈ T , we have r′ vT s for all r′ such that r′ vT r. Thus
rI ⊆ sI , i.e., the role inclusion axiom holds.

Lemma 4.4.2. Let T be an ELHI general TBox in normal form, and T ′
the general TBox obtained after the application of the rule from Table 4.4
has terminated. Then the size of T ′ is quadratic in the size of T ′.

From above reductions, we conclude this chapter by a lemma about the
reduction from an ELHIfR+ general TBox to an ELI general TBox.

Lemma 4.4.3. Let T be an ELHIfR+ general TBox in normal form, and
T ′ the ELI general TBox obtained after applying reductions presented in
this chapter, and A0, B0 two concept names occurring in T . Then, the size
of T ′ is polynomial in the size of T and A0 vT B0 if and only if A0 vT ′ B0.



Chapter 5

Classification Algorithms for
Intractable Extensions of EL

Algorithms to decide subsumption for extensions of the DL EL which include
role hierarchies, inverse, functional and transitive roles are now developed.
From here, we restrict our attention to subsumption between concept names.
If we want to check the subsumption between two concept descriptions C
and D w.r.t. an input TBox T , we check the subsumption between two new
concept names A and B w.r.t. the extended TBox T ′ = T ∪{A v C,D v B}.
Then C vT D iff A vT ′ B.

Now, let T be a general TBox in normal form, which is defined by an
extension of EL, that needs to be classified. Regarding the input TBox
T , Nrole is the set of role names appearing in T , NT is the union of the
set of concept names appearing in T and {>}. To be able to compute the
subsumption relations between concept names appearing in T , we define a
completion graph for T .

Definition 5.0.4. (The completion graph)
A T -completion graph is a tuple (V,E, S), where:

• The set of nodes V is a subset of NT × 2ξ with ξ = {∃r.A | r ∈
Nrole, A ∈ NT }.

• The set of edges E is a subset of V ×Nrole × V .

• The labeling function S is a mapping from V to 2NT .

Our algorithm builds a completion graph (V,E, S) from T based on a set
of completion rules. The description graph (V,E, S) is initialized as follows.

• V := {(A, ∅) | A ∈ NT },

• S(A, ∅) := {>, A} for each A ∈ NT

• E := ∅.

30
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Then the sets V , E, S(v) for all v ∈ V are extended by repeatedly applying
a set of completion rules until no more rule applies.

The intuition is that the algorithm satisfies two invariants:

• C ∈ S(A,Φ) iff (A u
d
∃r.X∈Φ ∃r.X) vT C

• ((A,Φ), r, (B,Ψ)) ∈ E iff (Au
d
∃s.X∈Φ ∃s.X) vT ∃r.(Bu

d
∃s.X∈Ψ ∃s.X)

Let (V,E, S) be the completion graph obtained after the application of the
set of completion rules for the normalized general TBox T has terminated.
Subsumption between concept names occurring in T is based on the follow-
ing relation between subsumption and the completion graph:

A vT B iff B ∈ S(u) with u = (A, ∅) ∈ V

where A, B are two concept names occurring in T .

In the following sections we present sets of completion rules that are used
by the algorithms to build the completion graph for different intractable
EL-extensions. Each section also proves the correctness of the equivalence
between subsumption and the completion graph.

We start with the completion rules for ELI proposed in [29].

5.1 An algorithm for ELI general TBoxes

In Table 5.1, A, B, A1, A2, B1 are concept names or top; u, v are nodes
in the graph; Ψ is a set of concept descriptions of the form ∃r.A, and r is
either a role or inverse role. In our algorithm, a rule in this table is applied
if and only if that application changes the completion graph. The first four
rules can be seen as the modification of rules in [12] for the DL EL. The
last rule is the one supporting inverse roles and also the one that makes the
algorithm not polynomial any more. Intuitively, CI5 “branches” an edge
(u, r, v) to include a new edge (u, r, v′) if this new edge effects on the graph.
For example, the set of GCIs is

T0 = {A v ∃r.B, ∃r−.A v C,∃r.C v X}

In the description graph shown in Figure 5.1, after initialization and an
application of CI3, there is one edge ((A, ∅), r, (B, ∅)). However, since there
is ∃r−.A v C in our set of GCIs, the edge ((A, ∅), r, (B, ∅)) is “branched”.
The label set of the new node (B, {∃r−.A}) has a new element C which
has not appeared in the old node (B, ∅). Since C is in the label set of
(B, {∃r−.A}) and the GCI ∃r.C v X, by CI4 application, X is added to
the label set of (A, ∅). Therefore, A vT X.
The proof that the algorithm terminates and is sound and complete is pre-
sented in [29].
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CI1 If A ∈ S(v), A v B ∈ T then S(v) := S(v) ∪ {B}

CI2 If A1, A2 ∈ S(v), A1 uA2 v B ∈ T then S(v) := S(v) ∪ {B}

CI3 If A ∈ S(u), v = (B, ∅), A v ∃r.B ∈ T then E := E ∪ {(u, r, v)}

CI4 If (u, r, v) ∈ E, B ∈ S(v), ∃r.B v A ∈ T then S(u) := S(u) ∪ {A}

CI5 If (u, r, v) ∈ E, A1 ∈ S(u), v = (B,Ψ) and
∃r−.A1 v B1 ∈ T , B1 /∈ S(v) then v′ := (B,Ψ ∪ {∃r−.A1});
if v′ 6∈ V then V := V ∪ {v′} and S(v′) := S(v) ∪ {B1},
else S(v′) := S(v′) ∪ {B1};
E := E ∪ {(u, r, v′)}

Table 5.1: Completion Rules for ELI general TBoxes

(B, {∃r−.A})(B, ∅)

(A, ∅)

{>, A,X}

{>, B} {>, B,C}

r r

Figure 5.1: An example of reasoning in ELI

We have seen the importance of CI5, now we want to extend this algo-
rithm for other intractable extensions of the DL EL.

We have seen in the previous chapter one of the simplest extensions
of ELI is by adding functional roles. There is a linear reduction from an
ELIf -TBox to an ELI-TBox presented in the previous chapter. Based on
this reduction, the next section presents the algorithm’s completion rules
for the DL ELIf as well as a proof of its soundness and completeness.
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5.2 An algorithm for ELIf general TBoxes

Restricted in this section, we define a Boolean function f : Nrole → {True, False}
such that f(r) = True iff > v (≤ 1r) ∈ T .

The reduction rule from ELIf to ELI in Table 4.3 gives us the way to
modify the set of completion rules in ELI for ELIf . In Table 5.2, A, B,
A1, A2, B1 are concept names or top; u, v are nodes in the graph; Ψ is a
set of concept descriptions having the form ∃r.A, and r is either a role or
inverse role.

The five rules for ELI appear in Table 5.2 as CF1, CF2, the first part of

CF1 If A ∈ S(v), A v B ∈ T then S(v) := S(v) ∪ {B}

CF2 If A1, A2 ∈ S(v), A1 uA2 v B ∈ T then S(v) := S(v) ∪ {B}

CF3 If A ∈ S(u), v = (B, ∅), w = (>, ∅), A v ∃r.B ∈ T then
if f(r) then E := E ∪ {(u, r, w)} else E := E ∪ {(u, r, v)}

CF4 If (u, r, v) ∈ E, B ∈ S(v), ∃r.B v A ∈ T then S(u) := S(u) ∪ {A}

CF5 If (u, r, v) ∈ E, B ∈ S(v), B v ∃r−.A, f(r−) then
S(u) := S(u) ∪ {A}

CF6 If (u, r, v) ∈ E, A1 ∈ S(u), v = (B,Ψ) and
∃r−.A1 v B1 ∈ T , B1 /∈ S(v) then v′ := (B,Ψ ∪ {∃r−.A1});
if v′ 6∈ V then V := V ∪ {v′}; S(v′) := S(v) ∪ {B1};
else S(v′) := S(v′) ∪ {B1};
E := E ∪ {(u, r, v′)}

CF7 If (u, r, v) ∈ E, A1 ∈ S(u), v = (B,Ψ) and
A1 v ∃r.B1 ∈ T , f(r), B1 /∈ S(v) then v′ := (B,Ψ ∪ {∃r−.A1});
if v′ 6∈ V then V := V ∪ {v′}; S(v′) := S(v) ∪ {B1}
else S(v′) := S(v′) ∪ {B1};
E := E ∪ {(u, r, v′)}

Table 5.2: Completion Rules for ELIf general TBoxes

CF3, CF4 and CF6.
The other rules cater for the consequence of the new axioms from the

reduction rule. New GCIs ∃r−.A v B and A v ∃r.> are added if there are
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A v ∃r.B and > v (≤ 1r) in T .

• In CF3, if > v (≤ 1r) ∈ T , we extend the graph by an edge from u
to w = (>, ∅) instead of v = (B, ∅).

• The condition ∃r.B v A ∈ T in CI4 is replaced by B v ∃r−.A ∈ T ,
f(r−) in the new rule CF5.

• The condition ∃r−.A1 v B1 ∈ T in CI5 is replaced by A1 v ∃r.B1 ∈
T ,f(r) in the new rule CF7.

In the algorithm, a rule in this table is applied if and only if that application
changes the completion graph.

For example, the general TBox is

T1 = {A v ∃r.B, ∃r−.A v X,X v ∃r−.Y, A v ∃s.C,> v (≤ 1r−),> v (≤ 1s)}

The T1-completion graph is shown in Figure 5.2

(>, {∃s−.A})

(>, ∅)

(B, {∃r−.A})

(>, ∅) (>, {∃r−.X})

(B, ∅)

(A, ∅)

{>, A,Y}

{>, B} {>, B,X}

{>}

{>, C}

{>} {>, Y }

r r

s

s

r− r−

Figure 5.2: An example of reasoning in ELIf

The correctness of the algorithm can be checked by considering the ex-
tended TBox as in the reduction rules, then applying the completion rules
of ELI.

In the next part we directly prove that the algorithm terminates, is sound
and complete. We start with proving termination after exponential time.

Lemma 5.2.1. For a normalized ELIf general TBox T , the algorithm runs
in exponential time.
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Proof. We need to check the complexity of each rule application and
the total number of rule applications.

It is readily checked that rule CF1 or rule CF2 application can be
performed in polynomial time. The cardinality of V has the upper bound
of |NT |.2|T | because V ⊆ NT × 2ξ. Since the cardinality of NT and ξ are
polynomial in the size of T , each application of a rule from CF3 to CF7
takes exponential time. Therefore each rule application can be performed
in at most exponential time. We now need to count the number of times a
rule in Table 5.2 is applied.

Each rule application performed by the algorithm adds at least a new
element of NT to S(u) with u ∈ V , a new edge to E or a new node to V .
Since no rule removes any element of the graph, the rules of Table 5.2 can
only be applied at most |NT |.|V |+ |V |+ |E| times.

The cardinality of E is at most |Nrole|.|V |2, thus |E| has the upper bound
of |Nrole|.(|NT |.2|T |)2. Since the cardinality of NT and Nrole is linear in the
size of T , the total number of rule applications is exponential.

Therefore the algorithm in Section 5.2 runs in exponential time.

Lemma 5.2.2. (Soundness) Let (V,E, S) be the completion graph obtained
after the exhaustive application of the rules from Table 5.2 on the normalized
ELIf general TBox T , and let A0, B0 be two concept names occurring in
T . Then A0 vT B0 if the following condition holds:

B0 ∈ S(u) with u = (A0, ∅) ∈ V

Proof. Let (V0, E0, S0), . . . , (Vn0 , En0 , Sn0) be the sequence of descrip-
tion graphs produced by the algorithm. Assume that B0 ∈ S(u) with
u = (A0, ∅) ∈ V , before proving that A0 vT B0, we prove the following
claim.

Claim 5.2.3. Given an ELIf general TBox T , assume that there are two
nodes u = (A,Φ), v = (B,Ψ), an edge r in the completion graph (V,E, S)
and a concept name C.

(a) If C ∈ S(A,Φ), then (A u
d
∃r.X∈Φ ∃r.X) vT C; and

(b) if ((A,Φ), r, (B,Ψ)) ∈ E,

then (A u
d
∃s.X∈Φ ∃s.X) vT ∃r.(B u

d
∃s.X∈Ψ ∃s.X)

The claim is proved by induction on n ∈ {0, . . . , n0 − 1}.
For the induction start, n = 0 implies Vn := {(A, ∅)|A ∈ NT }, En := ∅

and Sn(v) := {>, A} for all v = (A, ∅). For (a), C ∈ S0(A,Φ) implies
C = > or C = A, thus (A u

d
∃r.X∈Φ ∃r.X) vT C. Since E0 = ∅, we have

((A,Φ), r, (B,Ψ)) ∈ E is always false. Therefore, (b) holds.
For the induction step, we make a case distinction according to the rule

used to add a new concept to Sn(v) for v ∈ Vn or new edge to En. Within
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those seven rules, there are CF1, CF2, CF4 and CF5 that can add new
concept names to Sn(v). Thus, it is necessary to prove that condition (a)
still holds when applying those four rules:

CF1 Suppose that after applying this rule, Sn+1(v) = Sn(v) ∪ B with v =
(A∗,Φ). This means that there exist A ∈ Sn(v) and A v B ∈ T .
By induction hypothesis, we have (A∗ u

d
∃t.X∈Φ ∃t.X) vT A, thus

(A∗ u
d
∃t.X∈Φ ∃t.X) vT B.

CF2 Suppose that after applying this rule, Sn+1(v) = Sn(v) ∪ B with v =
(A∗,Φ). This means that there exist A1, A2 ∈ Sn(v) and A1uA2 v B ∈
T . We have (A∗ u

d
∃t.X∈Φ ∃t.X) vT A1 and (A∗ u

d
∃t.X∈Φ ∃t.X) vT

A2, thus (A∗ u
d
∃t.X∈Φ ∃t.X) vT B.

CF4 Suppose that after applying this rule, Sn+1(u) = Sn(u) ∪ A with u =
(A∗,Ω). This means that there exist (u, r, v) ∈ En with v = (B∗,Φ),
B ∈ Sn(v) and ∃r.B v A ∈ T . From invariant (b) and induction
hypothesis, we have (A∗ u

d
∃t.X∈Ω ∃t.X) vT ∃r.(B∗ u

d
∃t.X∈Φ ∃t.X),

and from (a) at step n, we get (B∗ u
d
∃t.X∈Φ ∃t.X) vT B. Thus

(A∗ u
d
∃t.X∈Ω ∃t.X) vT ∃r.B. Together with ∃r.B v A ∈ T , we get

the conclusion (A∗ u
d
∃t.X∈Ω ∃t.X) vT A, preserving invariant (a) as

required.

CF5 Suppose that after applying this rule, Sn+1(u) = Sn(u) ∪ A with u =
(A∗,Ω). This means that there exist (u, r, v) ∈ En with v = (B∗,Φ),
B ∈ Sn(v) and B v ∃r−.A ∈ T , f(r−). Given an interpretation I of
T , suppose that there is an x ∈ (A∗ u

d
∃t.X∈Ω ∃t.X)I , from condition

(b), there is a y ∈ (B∗u
d
∃t.X∈Φ ∃t.X)I such that (x, y) ∈ rI . We have

x ∈ AI , because (y, x) ∈ (r−)I and f(r−). Thus we get the conclusion
(A∗ u

d
∃t.X∈Ω ∃t.X) vT A

In the set of rules in Table 5.2, CF3 may add a new edge to the completion
graph. Thus we need to prove that (b) still holds after applying this rule.

CF3 Suppose that after applying this rule, En+1 = En ∪ (u, r, v). This
means that there exists u = (A∗,Φ), and A ∈ Sn(u), v = (B, ∅)
and A v ∃r.B ∈ T . From (a), (A∗ u

d
∃t.X∈Φ ∃t.X) vT A, thus

(A∗u
d
∃t.X∈Φ ∃t.X) vT ∃r.B. Since v = (B, ∅), we see that (b) holds.

Suppose that after applying this rule, En+1 = En ∪ (u, r, w). This
means that there exists u = (A∗,Φ), and A ∈ Sn(u), w = (>, ∅)
and A v ∃r.B ∈ T . Since A v ∃r.B ∈ T , A vT ∃r.>. From (a),
(A∗ u

d
∃t.X∈Φ ∃t.X) vT A, thus (A∗ u

d
∃t.X∈Φ ∃t.X) vT ∃r.>. Since

w = (>, ∅), we see that (b) holds.

In the set of rules in Table 5.2, CF6 and CF7 add new elements to both
En and Sn. Thus we need to prove that both (a) and (b) still hold after
applying this rule.
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CF6 We prove that both the conditions hold.

(a) holds.
If v′ ∈ Vn, suppose that after applying this rule, Sn+1(v′) :=
Sn(v′)∪{B1}. Since v′ := (B,Ψ∪{∃r−.A1}) and ∃r−.A1 v B1 ∈
T , (a) holds.
If v′ /∈ Vn, then Sn+1(v′) := Sn(v) ∪ {B1}. Since v′ := (B,Ψ′) =
(B,Ψ∪{∃r−.A1}), we have (Bu

d
∃t.X∈Ψ′ ∃t.X) vT ∃r−.A1. Thus

(B u
d
∃t.X∈Ψ′ ∃t.X) vT B1, i.e., (a) holds.

(b) holds.
In both cases (v′ ∈ Vn) and (v′ /∈ Vn), Rule CR5 computes
En+1 = En ∪ {(u, r, v′)}. Therefore we prove that (b) holds for
two cases at the same time.
By induction hypothesis and (u, r, v) ∈ En, we have (Au

d
∃t.X∈Φ ∃t.X) vT

∃r.(B u
d
∃t.X∈Ψ′ ∃t.X). Given an x ∈ (A u

d
∃t.X∈Φ ∃t.X)I with

I as a model of T , there is a y ∈ (B u
d
∃t.X∈Ψ ∃t.X)I , such

that (x, y) ∈ rI , i.e., (y, x) ∈ r−I . By (a), we have x ∈ AI1 .
Hence y ∈ (∃r−.A1)I . Thus y ∈ (Bu∃r−.A1u

d
∃t.X∈Ψ ∃t.X)I =

(Bu
d
∃t.X∈Ψ′ ∃t.X)I . Therefore, (Au

d
∃t.X∈Φ ∃t.X) vT ∃r.(Bud

∃t.X∈Ψ′ ∃t.X), i.e., (b) holds.

CF7 First we prove that if A1 v ∃r.B1 ∈ T , f(r) then ∃r−.A1 vT B1.
Suppose that y ∈ (∃r−.A1)I , then we need to prove that y ∈ BI1 .
There is an x ∈ AI1 such that (x, y) ∈ rI because y ∈ (∃r−.A1)I .
Since A1 v ∃r.B1 ∈ T , there is y′ ∈ BI1 such that (x, y′) ∈ rI . However
> v (≤ 1r) ∈ T , we have y = y′, i.e., y ∈ BI1 .

Then we use the proof of CF6 to prove that both the conditions hold
after CF7 application.

We have finished the proof of Claim 5.2.3.

Using the Claim 5.2.3, it is now easy to prove that A0 vT B0. Let B0 ∈
S(A0, ∅), by point (a) of Claim 5.2.3, we have (A0 u

d
∃t.X∈∅ ∃t.X) vT B0,

i.e., A0 vT B0.

Lemma 5.2.4. (Completeness) Let (V,E, S) be the completion graph ob-
tained after the exhaustive application of the rules from Table 5.2 for the
normalized ELIf general TBox T , and let A0, B0 be concept names occur-
ring in T . Then A0 vT B0 implies that there exists a node u = (A0, ∅) ∈ V
such that:

B0 ∈ S(u)

Proof. The lemma is proved by showing the contraposition. Sup-
pose that B0 /∈ S(u) with u = (A0, ∅), we need to prove that this implies
A0 6vT B0. We prove A0 6vT B0 by giving a counter model I for the general
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TBox T , in which there is a witness x ∈ ∆I such that x ∈ AI0 but x /∈ BI0 .
Before actually defining this model, we define a set Ebad of bad edges and
prove a claim.

Given a completion graph (V,E, S), an edge (u, r, v) ∈ E belongs to the
bad edge set Ebad if we can find ∃r−.A v B ∈ T or both A v ∃r.B,> v (≤
1r) ∈ T , such that A ∈ S(u) and B /∈ S(v).

In our example in Figure 5.2, we have

Ebad = {((A, ∅), r, (B, ∅)), ((A, ∅), s, (>, ∅)), ((B, ∃r−.A), r−, (>, ∅))}

Claim 5.2.5. Given the completion graph (V,E, S) and the bad edge set
Ebad, we have:

If (u, r, v) ∈ Ebad with v = (A,Φ), then there is
(u, r, v′) ∈ E\Ebad with v′ = (A,Ψ) and Φ ( Ψ

The claim is proved as follows. Let (u, r, v) with v = (A,Φ) be a bad
edge. This means that there is ∃r−.A1 v B1 ∈ T with A1 ∈ S(u) and
B1 /∈ S(v),

Firstly, we prove that ∃r−.A1 6∈ Φ by contradiction. Node v is “branched”
from a node v0 = (A, ∅), then it is extended by CF6 and CF7 applications.
If ∃r−.A1 ∈ Φ, during the process of rule applications that v0 is branched
to v, there is a step that a node (A,Φ′) with Φ′ ⊆ Φ\{∃r−.A1}. After CF6
or CF7 application on (A,Φ′), we have B1 ∈ S(v), which is contrary to the
hypothesis.

Then we prove that when the algorithm terminates, there is a node (A,Ψ)
and an edge (u, r, (A,Ψ)) such that there is not any ∃r−.A1 v B1 ∈ T or
both A v ∃r.B,> v (≤ 1r) ∈ T such that A1 ∈ S(u) and B1 /∈ S(A,Ψ) and
∃r−.A1 6∈ Ψ. By the definition of Ebad, we have (u, r, (A,Ψ)) 6∈ Ebad.

That conclusion is proved by checking CF6 and CF7 applications.
If v′ = (A,Φ ∪ {∃r−.A1}) ∈ V , then after CF6 or CF7 application, we

have B1 ∈ S(v′) and (u, r, v′) ∈ E. Otherwise, if v′ 6∈ V , then after CF6 or
CF7 application, this new node v′ with B1 ∈ S(v′) and a new edge (u, r, v′)
are added to the graph.

That process is repeated until there is (A,Ψ) ∈ V with Φ∪{∃r−.A1} ⊆ Ψ
and (u, r, (A,Ψ)) ∈ E such that there is not any ∃r−.A1 v B1 ∈ T or both
A v ∃r.B,> v (≤ 1r) ∈ T such that A1 ∈ S(u) and B1 6∈ S(v′).

Therefore when the algorithm terminates there is a node v′ = (A,Ψ)
with Φ ( Ψ such that (u, r, v′) is not a bad edge.

Regarding the functional property, from a node u and a role name r, we
pick only one edge in our graph by defining a function.

τ : V ×Nrole → V
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Given u ∈ V and r ∈ Nrole, then τ(u, r) is an element in the set {v |
(u, r, v) ∈ E\Ebad.

We inductively define a sub-graph (V ∗, E∗, S) of V,E, S as follows.

V ∗0 = {(A0, ∅)};

If there is (u, r, v) ∈ E\Ebad such that u ∈ V ∗i then

if ¬f(r) then V ∗i+1 := V ∗i ∪ {v}; E∗i+1 := E∗i ∪ {(u, r, v)}

else if f(r) and there is (v′, r−, u) ∈ E∗i then V ∗i+1 := V ∗i ; E∗i+1 :=
E∗i ∪ {(u, r, v′)}

else V ∗i+1 := V ∗i ∪ {τ(u, r)}; E∗i+1 := E∗i ∪ {(u, r, τ(u, r))}

until the defining graph cannot change.

In Figure 5.2, we have

E∗ = {((A, ∅), r, (B, ∃r−.A)), ((A, ∅), s, (>,∃s−.A)), ((B, ∃r−.A), r−, (>, ∃r−.X))}

We now define a model I based on (V ∗, E∗, S) as follows:

∆I := V ∗;

AI := {u | A ∈ S(u), u ∈ V ∗};

rI := {(u, v) | (u, r, v) ∈ E∗} ∪ {(v, u) | (u, r−, v) ∈ E∗}.

for all A ∈ Ncon and r ∈ Nrole.

Then we unravel this model with the root at (A0, ∅) and get a possibly
infinite tree model I.

In the example, we call u = (A, ∅), v = (B, ∃r−.A), w = (>, ∃r−.A). The
interpretation I is:

∆I = {u, v, w};

AI = {u}; BI = {v}; CI = {w}; XI = {v}; Y I = {u};

rI = {(u, v)}; sI = {(v, w)}.

First we show that there is an x ∈ ∆I such that x ∈ AI0\BI0 , then we prove
that the interpretation I is a model of our general TBox T . Considering
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the node u = (A0, ∅) ∈ ∆I we have u /∈ BI0 since B0 /∈ S(u) by the sup-
posed hypothesis. Furthermore, the algorithm starts with S(A, ∅) := {>, A}
for each A ∈ NT . So, A0 ∈ S(u), implying that u ∈ AI0 . Therefore,
u = (A0, ∅) ∈ (AI0\BI0 ).

Now we need to prove that I is a model of T . We make a case distinc-
tion according to the form of concept inclusions.

• A v B.
Let u ∈ AI , by the definition of AI , we have A ∈ S(u). Due to Rule
CF1, this implies B ∈ S(u), thus u ∈ BI .

• A1 uA2 v B.
Let u ∈ AI1 uAI2 , by the definition of AI1 , AI2 , we have A1, A2 ∈ S(u).
Due to Rule CF2, this implies B ∈ S(u), thus u ∈ BI .

• A v ∃r.B.
Let u ∈ AI , by the definition of AI , we have A ∈ S(u).

Due to CF3 and the definition of I, there exists (u, r, v) ∈ E with
v = (B, ∅).
If r is not a functional role, then there are two cases:

– First case: (u, r, v) ∈ E\Ebad: From the definition of rI , we have
(u, v) ∈ rI . Because B ∈ S(B, ∅), we have v ∈ BI . Together,
this yields u ∈ (∃r.B)I .

– Second case: (u, r, v) ∈ Ebad: From Claim 5.2.5, there is v′ =
(B,Φ) 6= v such that (u, r, v′) ∈ E\Ebad. Therefore (u, v′) ∈ rI .
Because B ∈ S(B,Φ) for all Φ, we have v′ ∈ BI . Together, this
yields u ∈ (∃r.B)I .

If r is a functional role, we need to check two cases

– If there is u′ ∈ ∆I such that (u′, u) ∈ (r−)I , i.e., (u′, r−, u) ∈ E:
by CF5 application, we have B ∈ S(u′), i.e., u′ ∈ BI . Since
(u, u′) ∈ rI , this axiom holds.

– If there is not any u′ ∈ ∆I such that (u′, u) ∈ (r−)I : then
(u, τ(u, r)) ∈ rI . Therefore, this axiom holds.

• ∃r.A v B.
Let u ∈ (∃r.A)I , which means that there is a v ∈ AI such that (u, v) ∈
rI . According to the definition of rI above, there are two possibilities:

– First case: (u, r, v) ∈ E\Ebad: Due to Rule CF4, we have B ∈
S(u), which means that u ∈ BI .

– Second case: (v, r−, u) ∈ E\Ebad: As we know the relation be-
tween r and r−:
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(u, v) ∈ rI iff (v, u) ∈ (r−)I

We rename s = r−, i.e., r = s− to make its look more appropri-
ate:

(v, s, u) ∈ E\Ebad, ∃s−.A v B ∈ T , A ∈ S(v),
Together with the fact that (v, s, u) /∈ Ebad, we have B ∈ S(u),
which means that u ∈ BI .

• > v (≤ 1r).
This axiom holds by the way we construct the interpretation.

Thus the completeness of the algorithm is proved.

5.3 An algorithm for ELHIR+ general TBoxes

The set of completion rules in Table 5.3 is used to construct the description
graph. The first five rules in Table 5.3 are derived from the completion rules
for EL+ in Fig. 2. in [9]. The difference is that here some information about
roles is implicitly represented in hierarchy axioms.

The last two rules are “branching” rules.

• CR6 is similar to CI5, whose condition includes ∃s−.A1 v B1 ∈ T
and B1 6∈ S(v).

• CR7 is provided to support transitive roles.

In Table 5.3, A, B, A1, A2 and B1 are concept names or top; u, v are nodes
in the graph; Φ and Ψ are sets of concept descriptions of the form ∃r.A, and
r, r1, r

−
1 , r2, s, s

− are either roles or inverse roles.

In our algorithm, a rule in the table is applied if and only if that appli-
cation changes the completion graph. In the next part we prove that the
algorithm terminates, is sound and complete.

We consider an example TBox in Figure 5.3 to demonstrate the algorithm.

A v ∃r1.B r1 v r r ◦ r v r
B v ∃r2.C r2 v r
∃s−.A v D r v s
∃s.D v X

Figure 5.3: An ELHIR+ general TBox

Using the completion rules in Table 5.3, a completion graph is built as
in Figure 5.4. After initialization and CR3, CR5 applications we have the
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CR1 If A ∈ S(v), A v B ∈ T then S(v) := S(v) ∪ {B}

CR2 If A1, A2 ∈ S(v), A1 uA2 v B ∈ T then S(v) := S(v) ∪ {B}

CR3 If A ∈ S(u), v = (B, ∅), A v ∃r.B ∈ T then E := E ∪ {(u, r, v)}

CR4 If (u, r, v) ∈ E, B ∈ S(v), ∃s.B v A ∈ T , r vT s then
S(u) := S(u) ∪ {A}

CR5 If (u, r1, v), (v, r2, w) ∈ E, r1 vT s, r2 vT s, s ◦ s v s ∈ T then
E := E ∪ {(u, s, w)}

CR6 If (u, r, v) ∈ E, v = (B,Ψ), ∃s−.A1 v B1 ∈ T , r vT s, and
A1 ∈ S(u) then v′ := (B,Ψ ∪ {∃r−.A1});
if v′ 6∈ V then V := V ∪ {v′} and S(v′) := S(v) ∪ {B1},
else S(v′) := S(v′) ∪ {B1};
E := E ∪ {(u, r, v′)}

CR7 If (u, r2, v) ∈ E, u = (A,Φ), v = (B,Ψ), r ◦ r v r ∈ T and
r1 vT r, r2 vT r, ∃r−1 .A1 ∈ Φ, ∃s−.A1 v B1 ∈ T , r vT s then
v′ := (B,Ψ ∪ {∃r−.A1});
if v′ 6∈ V then V := V ∪ {v′} and S(v′) := S(v) ∪ {B1},
else S(v′) := S(v′) ∪ {B1};
E := E ∪ {(u, r2, v

′)}

Table 5.3: Completion Rules for ELHIR+ general TBoxes

sub-graph of Figure 5.4 with only three nodes u, v, w. Then two applications
of CR6 create two new nodes v′, w′ and two edges (u, v′), (u,w′). CR7
application creates the edge (v′, r2, w

′). Lastly, CR4 adds X to the label
set of u. Thus, we have A v X w.r.t. the general TBox in Figure 5.3 as
required.
We start with proving termination after exponential time.

Lemma 5.3.1. For a normalized ELHIR+ general TBox T , the algorithm
runs in exponential time.

Proof. We need to check the complexity of each rule application and
the total number of rule applications.

It is readily checked that rule CR1 or rule CR2 application can be
performed in polynomial time. Since V ⊆ NT × 2ξ, the cardinality of V
has the upper bound of |NT |.2|ξ|. Since the cardinality of NT is linear in
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w′ = (C, {∃r−.A})w = (C, ∅)

v = (B, ∅) v′ = (B, {∃r−1 .A})

u = (A, ∅)

{>, A,X}

{>, B} {>, B,D}

{>, C} {>, C,D}

r1 r1

r r

r2 r2 r2

Figure 5.4: An example of reasoning in ELHIR+

the size of T , of ξ is quadratic in the size of T , each application of a rule
from CR3 to CR7 takes exponential time. Therefore each rule application
can be performed in at most exponential time. We now need to count the
number of times a rule in Table 5.3 is applied.

Each rule application performed by the algorithm adds at least a new
element of NT to S(u) with u ∈ V , a new edge to E or a new node to V of
the completion graph. Since no rule removes any element of the graph, the
rules of Table 5.3 can only be applied at most |NT |.|V |+ |V |+ |E| times.

The cardinality of E is at most |Nrole|.|V |2, thus |E| has the upper bound
of |Nrole|.(|NT |.2|T |)2. Due to the fact that the cardinality of NT and Nrole

is linear in the size of T , the total number of rule applications is exponential.
Therefore the algorithm in Section 5.3 runs in exponential time.

Lemma 5.3.2. (Soundness) Let (V,E, S) be the completion graph obtained
after the application of the rules from Table 5.3 on the normalized general
TBox T has terminated, and let A0, B0 be two concept names occurring in
T . Then A0 vT B0 if the following condition holds:

B0 ∈ S(u) with u = (A0, ∅) ∈ V

Proof. Let (V0, E0, S0), . . . , (Vn0 , En0 , Sn0) be the sequence of descrip-
tion graphs produced by the algorithm. Suppose that B0 ∈ S(u) with
u = (A, ∅) ∈ V . Before proving that A vT B, we prove the following claim.
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Claim 5.3.3. Given the general TBox T , assume that there are two nodes
u = (A,Φ), v = (B,Ψ), an edge r in the completion graph (V,E, S) and a
concept name C.

(a) If C ∈ S(A,Φ), then (A u
d
∃r.X∈Φ ∃r.X) vT C; and

(b) if ((A,Φ), r, (B,Ψ)) ∈ E,

then (A u
d
∃s.X∈Φ ∃s.X) vT ∃r.(B u

d
∃s.X∈Ψ ∃s.X)

The claim is proved by induction on n ∈ {0, . . . , n0 − 1}.
For the induction start, n = 0 implies Sn(v) := {>, A} for all v = (A, ∅),

Vn := {(A, ∅)|A ∈ NT }, En := ∅. For (a), C ∈ S0(A,Φ) implies C = > or
C = A, thus (Au

d
∃r.X∈Φ ∃r.X) vT C. Since E0 = ∅, ((A,Φ), r, (B,Ψ)) ∈ E

is always false. Thus (b) holds.
For the induction step, we make a case distinction according to the rule

used to add a new concept to Sn(v) for v ∈ Vn or new edge to En. Within
those seven rules, there are CR1, CR2 and CR4 that can add new concept
names to Sn(v). Thus, it is needed to prove that condition (a) still holds
when applying those three rules:

CR1 and CR2 We prove in the same way as the proofs of CF1, CF2 in
Claim 5.2.3.

CR4 Suppose that after applying this rule, Sn+1(u) = Sn(u) ∪ A with
u = (A∗,Φ). This means that there exist (u, r, v) ∈ En with v =
(B∗,Φ), B ∈ Sn(v) and ∃s.B v A ∈ T , r vT s. Since ∃s.B v
A ∈ T , r vT s, we have ∃r.B vT A. From condition (b), we have
(A∗u

d
∃t.X∈Ω ∃t.X) vT ∃r.(B∗u

d
∃t.X∈Φ ∃t.X), and from (a) at step n,

we get (B∗u
d
∃t.X∈Φ ∃t.X) vT B. Thus (A∗u

d
∃t.X∈Ω ∃t.X) vT ∃r.B.

Together with ∃r.B vT A, we get the conclusion (A∗u
d
∃t.X∈Ω ∃t.X) vT

A

In the set of rules in Table 5.3, CR3 and CR5 add elements to the edge
set En . So we need to prove that (b) still holds after applying one of those
three rules.

CR3 Suppose that after applying this rule, En+1 = En ∪ (u, r, v). This
means that there exists u = (A∗,Φ), and A ∈ Sn(u), v = (B, ∅)
and A v ∃r.B ∈ T . From (a), (A∗ u

d
∃t.X∈Φ ∃t.X) vT A, thus

(A∗u
d
∃t.X∈Φ ∃t.X) vT ∃r.B. Since v = (B, ∅), we see that (b) holds.

CR5 Suppose that after applying this rule, En+1 = En ∪ (u, s, w). This
means that there exist (u, r1, v), (v, r2, w) ∈ En and s ◦ s v s ∈ T .
Assume that u = (A,Φ), v = (B,Ψ) and w = (C,Ω), we have (A ud
∃t.X∈Φ ∃t.X) vT ∃r1.(Bu

d
∃t.X∈Ψ ∃t.X) and (Bu

d
∃t.X∈Ψ ∃t.X) vT

∃r2.(C u
d
∃t.X∈Ω ∃t.X). If there is x ∈ (A u

d
∃t.X∈Φ ∃t.X)I , then
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there is (x, y) ∈ rI1 such that y ∈ (Bu
d
∃t.X∈Ψ ∃t.X)I . Since y ∈ (Bud

∃t.X∈Ψ ∃t.X)I , there is (y, z) ∈ rI2 such that z ∈ (Cu
d
∃t.X∈Ω ∃t.X)I .

We have (x, y), (y, z) ∈ sI because r1 vT s and r2 vT s. Since
s ◦ s v s ∈ T , (x, z) ∈ sI . Therefore, (A u

d
∃t.X∈Φ ∃t.X) vT ∃s.(C ud

∃t.X∈Ω ∃t.X), i.e., (b) holds.

In the set of rules in Table 5.3, CR6 and CR7 add new elements to both
En and Sn. Thus we need to prove that both (a) and (b) still hold after
applying this rule.

CR6 The conditions ∃s−.A1 v B1 ∈ T and r vT s lead to ∃r−.A1 vT B1.
Then we can use the proof of soundness for CF6 in the previous section
to prove the soundness property of this rule.

CR7 (a) holds.
If v′ ∈ Vn, suppose that after applying this rule, Sn+1(v′) := Sn(v′) ∪
{B1}. We need to prove that B u

d
∃t.X∈Ψ∪{∃r−.A1} vT B1. Since

v′ := (B,Ψ ∪ {∃r−.A1}) and ∃s−.A1 v B1 ∈ T , r vT s, we have
∃s−.A1 vT B1. Therefore, (a) holds.

If v′ /∈ Vn, then Sn+1(v′) := Sn(v) ∪ {B1}. Since v′ := (B,Ψ′) =
(B,Ψ ∪ {∃r−.A1}), we have (B u

d
∃r.X∈Ψ′ ∃r.X) vT ∃r−.A1. Thus

(B u
d
∃t.X∈Ψ′ ∃t.X) vT B1. For all B′ ∈ Sn(v), we have (B ud

∃t.X∈Ψ′ ∃t.X) vT (B u
d
∃t.X∈Ψ ∃t.X) and (B u

d
∃t.X∈Ψ ∃t.X) v B′.

Thus (B u
d
∃t.X∈Ψ′ ∃t.X) vT B′ for all B′ ∈ Sn(v). Therefore, (a)

holds.

(b) holds.
Rule CR7 computes En+1 = En ∪ {(u, r2, v

′)}.
By induction hypothesis and (u, r2, v) ∈ En, we have (Au

d
∃r.X∈Φ ∃r.X) vT

∃r2.(B u
d
∃r.X∈Ψ ∃r.X). Given an x ∈ (A u

d
∃r.X∈Φ ∃r.X)I with

I as a model of T , there is a y ∈ (B u
d
∃r.X∈Ψ ∃r.X)I , such that

(x, y) ∈ rI2 . Together with r2 vT r, (y, x) ∈ (r−)I . There is x′ ∈ AI1
such that (x, x′) ∈ (r−1 )I because ∃r−1 .A1 ∈ Φ. Together with r1 vT r,
(x, x′) ∈ (r−)I .

Since r ◦ r v r ∈ T , we have (x′, y) ∈ rI . Thus y ∈ (B u ∃r−.A1 ud
∃r.X∈Ψ ∃r.X)I = (Bu

d
∃r.X∈Ψ′ ∃r.X)I . Therefore, (Au

d
∃r.X∈Φ ∃r.X) vT

∃r2.(B u
d
∃r.X∈Ψ′ ∃r.X), i.e., (b) holds.

We have finished the proof of Claim 5.3.3.

Using the Claim 5.3.3, it is now easy to prove that A0 vT B0. Let B0 ∈
S(A0, ∅). By point (a) of Claim 5.3.3, we have (A0 u

d
∃r.X∈∅ ∃r.X) vT B0,

i.e., A0 vT B0.
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Lemma 5.3.4. (Completeness) Let (V,E, S) be the completion graph ob-
tained after the application of the rules of Table 5.3 for the normalized gen-
eral TBox T has terminated, and let A0, B0 be concept names occurring in
T . Then A0 vT B0 implies that there exists a node u = (A0, ∅) ∈ V such
that:

B0 ∈ S(u)

Proof. The lemma is proved by showing the contraposition. Sup-
pose that B0 /∈ S(u) with u = (A0, ∅), we need to prove that this implies
A0 6vT B0. We prove A0 6vT B0 by giving a model I for the general TBox
T , in which there is an x ∈ ∆I such that x ∈ AI0 but x /∈ BI0 . Before actu-
ally defining this model, we define a set Ebad of bad edges and prove a claim.

Given a completion graph (V,E, S), the bad edge set Ebad is defined as
the smallest set satisfying the following conditions.

• Case 1: if (u, r, v) ∈ E and there are ∃s−.A v B ∈ T , r vT s with
A ∈ S(u) and B /∈ S(v) then (u, r, v) ∈ Ebad .

• Case 2: if (u, r1, v), (v, r2, w) ∈ E, v = (B,Φ), r1 vT r, r2 vT r,
r ◦ r v r ∈ T , A1 ∈ S(u) and ∃r−.A1 6∈ Φ then (u, r1, v) ∈ Ebad.

• Case 3: if (u, r1, v), (v, r2, w) ∈ E, r1 vT r, r2 vT r, r ◦ r v r ∈ T ,
(u, r1, v) ∈ E\Ebad and (u, r, w) ∈ Ebad then (v, r2, w) ∈ Ebad

This bad edge set is extended from the one for ELI in [29] by Case 2 and Case
3 in order to preserve the transitive property. We consider the completion
graph in Figure 5.4. We have (u, r, w) ∈ Ebad by Case 1, (u, r1, v) ∈ Ebad
by Case 2, and finally (v′, r2, w) ∈ Ebad by Case 3. Therefore, Ebad of this
graph is {(u, r1, v), (u, r, w), (v′, r2, w)}.

Claim 5.3.5. Given the completion graph (V,E, S) and the bad edge set
Ebad, we have:

If (u, r, v) ∈ Ebad with v = (A,Φ), then there is
(u, r, v′) ∈ E\Ebad with v′ = (A,Ψ) and Φ ( Ψ

The claim is proved for each case:
Case 1: The proof for this case is similar to the one for Claim 5.2.5.
Case 2: If there are (u, r1, v), (v, r2, w) ∈ E, v = (B,Φ), r1 vT r,

r2 vT r, r ◦ r v r ∈ T , and (u, r1, v) ∈ Ebad then by CR6, a new edge
(u, r1, v

′), where v′ = (B,Ψ) and Φ ( Ψ, is added to E.
Case 3: Suppose that A1 ∈ S(u) and v = (B,Φ). Due to the fact

that (u, r1, v) ∈ E\Ebad w.r.t. the condition in Case 1 and Case 2, we have
∃r−.A1 ∈ Φ. Besides, (v, r2, w) ∈ E, r1 vT r, r2 vT r and r ◦ r v r ∈ T , a
new edge (v, r2, w

′) that satisfies the claim is added to E by CR7.
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Therefore, when the algorithm terminates there is a node v′ = (A,Ψ)
with Φ ( Ψ such that (u, r, v′) is not a bad edge.

We now define an interpretation I as follows:

∆I := V ;

AI := {u | A ∈ S(u), u ∈ V };

sI := {(u, v) | (u, r, v) ∈ E\Ebad, r vT s}
∪{(v, u) | (u, r−, v) ∈ E\Ebad, r vT s}.

For all A ∈ Ncon and r, s ∈ Nrole.

First we show that there is an x ∈ ∆I such that x ∈ AI0\BI0 , then we need
to prove that the interpretation I is a model of our general TBox T . With
the node u = (A0, ∅), u ∈ ∆I we have B0 /∈ S(u) as the supposed hypothe-
sis, i.e., u /∈ BI0 . Furthermore, the algorithm starts with S(A, ∅) := {>, A}
for each A ∈ NT . So, A0 ∈ S(u), i.e., u ∈ AI0 . Therefore, (A0, ∅) ∈ (AI0\BI0 ).

Now we need to prove that I is a model of T . We make a case distinc-
tion according to the form of inclusions axioms.

• A v B.
Let u ∈ AI , by the definition of AI , we have A ∈ S(u). Due to CR1,
this implies B ∈ S(u), thus u ∈ BI .

• A1 uA2 v B.
Let u ∈ AI1 uAI2 , by the definition of AI1 , AI2 , we have A1, A2 ∈ S(u).
Due to CR2, this implies B ∈ S(u), thus u ∈ BI .

• A v ∃r.B.
Let u ∈ AI , by the definition of AI , we have A ∈ S(u). Due to CR3,
there exists (u, r, v) ∈ E with v = (B, ∅). There are two cases:

– First case: (u, r, v) ∈ E\Ebad: From the definition of rI , we have
(u, v) ∈ rI . Because B ∈ S(B, ∅), we have v ∈ BI . Together,
this yields u ∈ (∃r.B)I .

– Second case: (u, r, v) ∈ Ebad: From Claim 5.3.5, there is v′ =
(B,Φ) 6= v such that (u, r, v′) ∈ E\Ebad. Therefore (u, v′) ∈ rI .
Since B ∈ S(B,Φ) for all Φ, we have v′ ∈ BI . Together, this
yields u ∈ (∃r.B)I .

• ∃s.A v B.
Let u ∈ (∃s.A)I , which means that there is v ∈ AI such that (u, v) ∈
rI . According to the definition of rI above, there is r ∈ Nrole such
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that r vT s and (u, r, v) ∈ E or (v, r−, u) ∈ E. We consider these two
possibilities:

– First case: (u, r, v) ∈ E\Ebad: Due to Rule CR4, we have B ∈
S(u), which means that u ∈ BI .

– Second case: (v, r−, u) ∈ E\Ebad: As we know the relation be-
tween r and r−:

(u, v) ∈ rI iff (v, u) ∈ (r−)I

We rename r′ = r−, i.e., r = (r′)− and s′ = s−, i.e., s = (s′)− to
make its look more appropriate:

(v, r′, u) ∈ E\Ebad, ∃(s′)−.A v B ∈ T , A ∈ S(v), r′ vT s′.
Since (v, r′, u) /∈ Ebad, we have B ∈ S(u), which means that
u ∈ BI .

• r v s
This axiom holds because of the definition of roles’ interpretation.

• r ◦ r v r.
Due to CR5, the transitive property holds in the completion graph
(V,E, S). This property is not affected by removing bad edges from
the graph due to the definition of Ebad. Together with the definition
of the interpretation, this axiom holds.

Therefore the completeness of the algorithm is proved.

5.4 An algorithm for ELHIfR+ general TBoxes

In this section function f is redefined as follows: Nrole → {True, False}
such that f(r) iff > v (≤ 1s) ∈ T and r vT s.

The set of completion rules in the algorithm for ELHIfR+ general TBoxes
includes all the rules in Table 5.3 except CR3 and additional rules in Ta-
ble 5.4. CFR1 and CFR2 are similar to the ones for ELIf . Due to CFR1,
if there is A v ∃r.B ∈ T with f(r), the node (>, {∃r−.A}) is initialized with
S(>, {∃r−.A}) = B.

The purpose of CFR3 is to deal with the interaction between role hier-
archy and functional roles.

In Table 5.4, A, B, A1, B1 are concept names or top; u, v are nodes in
the graph; Ψ and Ωare sets of concept descriptions of the form ∃r.A, and r
is either a role or inverse role. In our algorithm, rules in Table 5.3 except
CR3 and in Table 5.4 are applied if and only if their application changes
the completion graph.
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CFR1 If A ∈ S(u), v = (B, ∅),w = (>, {∃r−.A}), A v ∃r.B ∈ T then
if f(r) then E := E ∪ {(u, r, w)}; S(w) := S(w) ∪ {B1} else
E := E ∪ {(u, r, v)}

CFR2 If (u, r1, v) ∈ E, B ∈ S(v), r1 vT s, r2 vT s and
B v ∃r−2 .A ∈ T , f(s−) then S(u) := S(u) ∪ {A}

CFR3 If (u, r1, v), (u, r2, w) ∈ E, r1 vT s, r2 vT s, f(s) and
v = (>,Ψ), w = (>,Ω), A1 ∈ S(u) then v′ := (>,Ψ ∪ Ω);
if v′ 6∈ V then V := V ∪ {v′} and S(v′) := S(v) ∪ S(w),
else S(v′) := S(v′) ∪ S(v) ∪ S(w);
E := E ∪ {(u, r1, v

′)}

Table 5.4: Additional Completion Rules for ELHIfR+ general TBoxes

A v ∃s1.B s1 v s > v (≤ 1s−)
B v ∃s−2 .X s2 v s > v (≤ 1r)
X v ∃r1.B1 r1 v r t ◦ t v t
X v ∃r2.B2 r2 v r
B1 uB2 v C s1 v t
∃r.C v Y s−2 v t

Figure 5.5: An ELHIfR+ general TBox

We consider an example ELHIfR+ general TBox as in Figure 5.5.
Applying the set of completion rules in Table 5.4 we get a completion

graph in Figure 5.6. We consider a notable CFR3 application. After CFR1
applications we have (u, r1, x) and (u, r2, y), which is then applied to CFR3
and get (u, r1, x

′).

In the next part we prove that the algorithm terminates, is sound and com-
plete.

We start with a lemma about the algorithm’s termination, which is proved
similarly to the one with ELHIR+ in the previous section.

Lemma 5.4.1. For a normalized ELHIfR+ general TBox T , the algorithm
runs in exponential time.

Lemma 5.4.2. (Soundness) Let (V,E, S) be the completion graph obtained
after the application of the rules from Table 5.3 except CR3 and in Table 5.4
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w = (>, {∃s2.B})

v = (B, ∅) x = (>, {∃r−1 .X}) y = (>, {∃r−2 .X})

(x′ = (>, {∃r−1 .X,∃r
−
2 .X})

u = (A, ∅)

{>, A,X,Y}

{>, B} {>, B1} {>, B2}

{>, B1, B2,C}

{>, X}

s1

s−2

r1 r2

r1, r2

t

Figure 5.6: An example of reasoning in ELHIfR+

on the normalized ELHIfR+ general TBox T has terminated, and let A0,
B0 be two concept names occurring in T . Then A0 vT B0 if the following
condition holds:

B0 ∈ S(u) with u = (A0, ∅) ∈ V

Proof. Let (V0, E0, S0), . . . , (Vn0 , En0 , Sn0) be the sequence of descrip-
tion graphs produced by the algorithm. Assume that B0 ∈ S(u) with
u = (A0, ∅) ∈ V . Before proving that A0 vT B0, we prove the following
claim.

Claim 5.4.3. Given the general TBox T , assume that there are two nodes
u = (A,Φ), v = (B,Ψ), an edge r in the completion graph (V,E, S) and a
concept name C.

(a) If C ∈ S(A,Φ), then (A u
d
∃r.X∈Φ ∃r.X) vT C; and

(b) if ((A,Φ), r, (B,Ψ)) ∈ E,

then (A u
d
∃s.X∈Φ ∃s.X) vT ∃r.(B u

d
∃s.X∈Ψ ∃s.X)

The claim is proved by induction on n ∈ {0, . . . , n0 − 1}.
For the induction start, n = 0 implies Sn(v) := {>, A} for all v = (A, ∅),

Vn := {(A, ∅)|A ∈ NT }, En := ∅. For (a), C ∈ S0(A,Φ) implies C = > or
C = A, thus (Au

d
∃r.X∈Φ ∃r.X) vT C. Since E0 = ∅, ((A,Φ), r, (B,Ψ)) ∈ E

is always false, thus (b) holds.
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For the induction step, we make a case distinction according to the rule
used to add a new concept to Sn(v) for v ∈ Vn or a new edge to En. The
proofs for rules in Table 5.3 are given in the previous section. The proofs
for CFR1 and CFR2 are similar to CF3 and CF5 in Table 5.2

The last completion rule CFR3 is given to support the combination of
role hierarchies and functional roles.

We only need to prove that both the conditions hold for CFR3.

(a) holds.
Given B1 ∈ Sn(v)∪Sn(w), we need to prove that (>u

d
∃r.X∈Ψ ∃r.X)u

(> u
d
∃r.X∈Ω ∃r.X) vT B1.

If B1 ∈ Sn(u), by (a), we have > u
d
∃r.X∈Ψ ∃r.X v B1.

If B1 ∈ Sn(w), by (a), we have > u
d
∃r.X∈Ω ∃r.X v B1.

Therefore, (a) holds.

(b) holds.
Suppose that x ∈ (A u

d
∃r.X∈Φ ∃r.X)I with u = (A,Φ), then there

exist y ∈ (> u
d
∃r.X∈Ψ ∃r.X)I and z ∈ (> u

d
∃r.X∈Ω ∃r.X)I such

that (x, y) ∈ rI1 , (x, z) ∈ rI2 . Since r1 vT s and r2 vT s we have
(x, y), (x, z) ∈ sI . Together with f(s), we have y = z. There-
fore, y ∈ (> u

d
∃r.X∈Ψ ∃r.X)I ∩ (> u

d
∃r.X∈Ω ∃r.X)I , i.e., y ∈ (> ud

∃r.X∈Ψ ∃r.X u
d
∃r.X∈Ω ∃r.X)I .

Thus, (b) holds.

We have finished the proof of Claim 5.4.3.

Using the Claim 5.4.3, it is now easy to prove that A0 vT B0. Let B0 ∈
S(A0, ∅). By point (a) of Claim 5.4.3, we have (A0 u

d
∃r.X∈∅ ∃r.X) vT B0,

i.e., A0 vT B0.

Lemma 5.4.4. (Completeness) Let (V,E, S) be the completion graph ob-
tained after the application of the rules from Table 5.4 on the normalized
general TBox T has terminated, and let A0, B0 be concept names occurring
in T . Then A0 vT B0 implies that there exists a node u = (A0, ∅) ∈ V such
that:

B0 ∈ S(u)

Proof. The lemma is proved by showing the contraposition. Suppose
that B0 /∈ S(u) with u = (A0, ∅), we need to prove that this implies A0 6vT
B0. We prove A0 6vT B0 by giving a counter model I for the general TBox
T , in which there is x ∈ ∆I such that x ∈ AI0 but x /∈ BI0 .

This counter model is based on a sub-graph of our graph (V,E, S), which
is constructed below.

Firstly, we define a set Ebad of bad edges as in the completeness proof of
ELHIR+ and prove a claim.
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Given a completion graph (V,E, S), the bad edge set Ebad is defined as
the smallest set satisfying the following.

• Case 1: If (u, r, v) ∈ E and there are ∃s−.A v B, r vT s such that
A ∈ S(u) and B /∈ S(v) then (u, r, v) ∈ Ebad .

• Case 2: If (u, r1, v), (v, r2, w) ∈ E, v = (B,Ψ), r1 vT r, r2 vT r,
r ◦ r v r ∈ T , A1 ∈ S(u) and ∃r−.A1 6∈ Ψ then (u, r1, v) ∈ Ebad.

• Case 3: If (u, r1, v), (v, r2, w) ∈ E, r1 vT r, r2 vT r, r ◦ r v r ∈ T ,
(u, r1, v) ∈ E\Ebad and (u, r, w) ∈ Ebad then (v, r2, w) ∈ Ebad

Claim 5.4.5. Given the completion graph (V,E, S) and the bad edge set
Ebad, we have:

If (u, r, v) ∈ Ebad with v = (A,Φ), then there is
(u, r, v′) ∈ E\Ebad with v′ = (A,Ψ) and Φ ( Ψ

The claim is proved similar to the same one in the section of ELHIR+ .

For a node u in the graph, we define an equivalence relation ∼u,T .

r1 ∼u,T r2 iff there is an r ∈ Nrole such that r1 vT r, r2 vT r and f(r) and
there exist two edge (u, r1, v1) and (u, r2, v2) in the graph.

The set r̃u is inductively defined as follows.

r̃u0 := {r} if there exists (u, r, v) ∈ E for some v ∈ V ;

r̃ui+1 := r̃ui ∪ {s′ | s ∈ r̃ui, s′ ∼u,T s}

until r̃un−1 = r̃un = r̃u.

Assuming that u ∈ V , > v (≤ 1r) ∈ T , then for all (u, s, v) ∈ E such
that s ∈ r̃u, we define the same node τ(u, r), having the following property:

Claim 5.4.6. (u, s, τ(u, r)) ∈ E\Ebad and if A ∈ S(u), A v ∃s.B ∈ T then
B ∈ S(τ(u, r)).

The Claim is proved by considering the applications of CFR1, CFR2,
CFR3.

We inductively define the sub-graph (V ∗, E∗, S) of (V,E, S) as follows:

V ∗0 = {(A0, ∅)};

If there is (u, r, v) ∈ E\Ebad such that u ∈ V ∗i then
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if ¬f(r) then V ∗i+1 := V ∗i ∪ {v}; E∗i+1 := E∗i ∪ {(u, r, v)}

else if f(r) and there is (v′, r−, u) ∈ E∗i then V ∗i+1 := V ∗i ; E∗i+1 :=
E∗i ∪ {(u, r, v′)}

else V ∗i+1 := V ∗i ∪ {τ(u, r)}; E∗i+1 := E∗i ∪ {(u, r, τ(u, r))}

until the defining graph cannot change.

For instance, given a completion graph (V,E, S) as in Figure 5.6, we have:

V ∗ = {u, v, w, x′};

E∗ = {(u, s1, v), (v, s2, u), (u, t, w), (u, r1, x
′), (u, r2, x

′)}

We now define a model I based on (V ∗, E∗, S) as follows:

∆I := V ∗;

AI := {u | A ∈ S(u), u ∈ V ∗};

sI := {(u, v) | (u, r, v) ∈ E∗, r vT s} ∪ {(v, u) | (u, r−, v) ∈ E∗, r vT s}.

For all A ∈ Ncon and r, s ∈ Nrole.

Then we unravel this model with the root at (A0, ∅) and get a possibly
infinite tree model I.

Firstly, we show that there is x ∈ ∆I such that x ∈ AI0\BI0 , then we need
to prove that the interpretation I is a model of our general TBox T . With
the node u = (A0, ∅), u ∈ ∆I we have B0 /∈ S(u) as the supposed hypothe-
sis, i.e., u /∈ BI0 . Furthermore, the algorithm starts with S(A, ∅) := {>, A}
for each A ∈ NT . So, A0 ∈ S(u), i.e., u ∈ AI0 . Therefore, (A0, ∅) ∈ (AI0\BI0 ).

Now we need to prove that I is a model of T . We make a case distinc-
tion according to the form of concept inclusions.

• A v B.
Let u ∈ AI , by the definition of AI , we have A ∈ S(u). Due to Rule
CR1, this implies B ∈ S(u), thus u ∈ BI .

• A1 uA2 v B.
Let u ∈ AI1 uAI2 , by the definition of AI1 , AI2 , we have A1, A2 ∈ S(u).
Due to Rule CR2, this implies B ∈ S(u), thus u ∈ BI .

• A v ∃r.B.
Let u ∈ AI , by the definition of AI , we have A ∈ S(u).
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Due to the definition of I and CFR1, there exists (u, r, v) ∈ E.

If r is not a functional role, then there are two cases:

– First case: (u, r, v) ∈ E\Ebad: From the definition of rI , we have
(u, v) ∈ rI . Since B ∈ S(B, ∅), we have v ∈ BI . Together, this
yields u ∈ (∃r.B)I .

– Second case: (u, r, v) ∈ Ebad: From Claim 5.4.5, there is v′ =
(B,Φ) 6= v such that (u, r, v′) ∈ E\Ebad. Therefore (u, v′) ∈ rI .
Since B ∈ S(B,Φ) for all Φ, we have v′ ∈ BI . Together, this
yields u ∈ (∃r.B)I .

If r is a functional role, we need to check two cases:

– If there is u′ ∈ ∆I such that (u′, u) ∈ (r−)I : By CR6 application,
we have B ∈ S(u′), i.e., u′ ∈ BI . Since (u, u′) ∈ rI , this axiom
holds.

– If there is not any u′ ∈ ∆I such that (u′, u) ∈ (r−)I : by Claim 5.4.6,
this axiom holds.

• ∃s.A v B.
Let u ∈ (∃s.A)I , which means that there is v ∈ AI such that (u, v) ∈
rI . According to the definition of rI above, there is r ∈ Nrole such
that r vT s and (u, r, v) ∈ E∗ or (v, r−, u) ∈ E∗. We consider these
two possibilities:

– First case: (u, r, v) ∈ E∗: Due to Rule CR4, we have B ∈ S(u),
which means that u ∈ BI .

– Second case: (v, r−, u) ∈ E∗: As we know the relation between r
and r−:

(u, v) ∈ rI iff (v, u) ∈ (r−)I

We rename r′ = r−, i.e., r = (r′)− and s′ = s−, i.e., s = (s′)− to
make its look more appropriate:

(v, r′, u) ∈ E∗, ∃(s′)−.A v B ∈ T , A ∈ S(v), r′ vT s′.
Since (v, r′, u) /∈ Ebad, we have B ∈ S(u), which means that
u ∈ BI .

• > v (≤ 1r).
This axiom holds by the way we construct the model.

• r v s
This axiom holds because of the definition of roles’ interpretation.
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• r ◦ r v r.
Due to CR5, the transitive property holds in the completion graph
(V,E, S). This property is not affected by removing bad edges from
the graph due to the definition of Ebad. Together with the definition
of the interpretation, this axiom holds. Since transitive roles are not
functional ones, transitive property is not affected when we modify the
graph in order to satisfy functional axioms.

Therefore, this axiom holds.

Thus the completeness of the algorithm is proved.

5.5 A special case with ELHR+

CR1’ If A ∈ S(v), A v B ∈ T
then S(v) := S(v) ∪ {B}

CR2’ If A1, A2 ∈ S(v), A1 uA2 v B ∈ T
then S(v) := S(v) ∪ {B}

CR3’ If A ∈ S(u), v = (B, ∅), A v ∃r.B ∈ T
then E := E ∪ {(u, r, v)}

CR4’ If (u, r, v) ∈ E, B ∈ S(v), ∃s.B v A ∈ T , r vT s
then S(u) := S(u) ∪ {A}

CR5’ If (u, r1, v), (v, r2, w) ∈ E, r1 vT s, r2 vT s, s ◦ s v s ∈ T
then E := E ∪ {(u, s, w)}

Table 5.5: Completion Rules for ELHR+-TBoxes

In the case the input ELHIR+ general TBoxes do not have inverse roles,
they become ELHR+ general TBoxes and the algorithm of ELHIR+ becomes
polynomial.

There is no inverse role in the description logic ELHR+ , therefore con-
ditions related to inverse roles in “branching” rules CR6 and CR7 can not
be satisfied. Thus the algorithm does not use these two rules when it works
in the DL ELHR+ .

All the nodes start with the form (A, ∅), where A is a concept name.
When the rules CR6 and CR7 are not applied, these nodes keep that form
until the algorithm terminates. We rename nodes having the form u = (A, ∅)
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to A, then the set of rules is shown in Table 5.5, which is similar to the set
of rules for the DL EL+ in [9] . Therefore the algorithm works polynomially
for the DL ELHR+ . We end the chapter by the last theorem, which is an
interesting point of the proposed algorithm.

Theorem 5.5.1. The algorithm works in polynomial time for the case of
the DL ELHR+ w.r.t. general TBoxes.



Chapter 6

Conclusion

In this thesis, we have proposed methods for deciding the subsumption in the
DL ELHIfR+ , which is sufficient to formulate the GALEN ontology. Some
tractable extensions of DL EL have been used for this ontology. However,
these tractable EL-extensions can only represent parts of GALEN ontology.
The thesis has proposed non-tableau-based solutions for the subsumption
problem in ELHIfR+ general TBoxes.

The solutions for this problem lie in two directions. The first direction
is attempting to reduce the input TBoxes to ones formulated in a less ex-
pressive DL. The reduction stops when ELI general TBoxes, which can be
classified using the previous algorithm in [29], are obtained. The other direc-
tion to solve subsumption in these DLs is building sets of completion rules
for the algorithms. Even though these two directions share some basic ideas,
the latter direction offers direct advantages both in theory and in practice.

This algorithm runs in polynomial time if the input TBox is formulated
in the sub-language of the DL ELHR+ . Since the inverse roles are the main
reason to make the algorithm complicated, when the number of inverse roles
in the ontology is small, the algorithm’s complexity can be significantly
reduced. Thus it is expected that the algorithm will perform better than
tableaux-based algorithms in practice.

Another advantage of the algorithm is that it classifies the ontology. In
other tableau-based DL systems, the subsumption hierarchy is computed
through multiple subsumption tests between pairs of concept names. How-
ever, in this algorithm, subsumption between all pairs of concepts in the
input TBox is checked simultaneously.

One of the future directions that should be considered is optimizing and
implementing these algorithms to see their performance in practice. The
sets of completion rules at present do not appear simple but they are useful
for implementation.

Another direction is to make it work well with other intractable exten-
sions of EL, though the value of them in practice should also be considered.
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There are some extensions that are easily reduced to EL-extensions with
inverse roles, such as the EL-extension having symmetric roles. However,
there are extensions that need more effort to make the current algorithms
work with them.

It is believed that the proposed algorithm can be extended to solve other
problems in EL-extensions, such as Pinpointing in the Description Logic. A
pinpointing algorithm that is similar to the one shown in [10] for EL, except
that our algorithm works with dynamic completion graphs.
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