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Abstract

Ontologies, as formal representations of conceptualizations of domain knowledge,
have proven to be very useful in real world applications like the Semantic Web.
Given the increasing number of ontologies which are independently developed,
but which represent overlapping domain knowledge, there is an urgent need to in-
tegrate them. Ontology matching meets this need by (semi-)automatically finding
correspondences (also called mappings) between entities in given pairs of ontolo-
gies. Most ontology matching methods are based on statistics. In contrast, this
thesis is devoted to enhancing ontology matching by logic-based reasoning, both
for mapping generation and for mapping refinement.

• Mapping generation. We first identify a number of underlying properties of
various financial reporting ontologies and then formalize them into a Basic
Accounting Ontology. Later we use this ontology to define concepts in the
ontologies to be matched, so that reasoners can be used to infer mappings
between them. This process is realized as a semantically enriched ontology
matching mechanism (SEOM).

• Mapping refinement. We adapt a number of logical principles from existing
work to identify and remove mapping suggestions that are logically unin-
tended. Different approaches to resolving observed incoherence, inconsis-
tency or violations of principles are analyzed. A number of heuristics are
also considered to enhance the mapping refinement process. Combining a
selected set of these together, we build a logic-based mapping refinement
procedure (LOMR).

We show experimentally that 1) SEOM generates a set of logically consistent
and accurate mapping suggestions; 2) LOMR is able to improve the quality of
mapping suggestions by removing logically unintended mappings while keeping
the logically sound ones.

v
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Chapter 1

Introduction

1.1 Real World Problem: Comparing Companies
Financial reports inform interested parties about the current financial position of a
company, and the results of operations for a reporting period. The volume of such
reports has become so enormous that automated processing has become a neces-
sity. To meet this need the eXtensible Business Reporting Language (XBRL)
[1] was developed, and has been widely adopted by regulatory and governmental
organizations such as the U.S. SEC1, UK revenues and customs2, the European Fi-
nancial Reporting authority3 and individual European Business Registries4. Such
authorities use XBRL to define XBRL taxonomies for the financial and business
data that they are legally authorized to collect from the organizations or compa-
nies under their jurisdiction. An XBRL taxonomy specifies the content (concepts
in XBRL terms) and structure of financial reports created according to specific
accounting regulations and conventions, which vary across country, jurisdiction,
industry, time, etc. A taxonomy functions like an XML schema in that its concepts
are used to tag data in financial reports so that it can be automatically processed
by software. Much XBRL-based financial data is already available on the Web in
multiple languages5, ready for use by interested parties, such as regulators, poten-
tial investors, creditors, competitors, and the general public.

Authorities, financial analysts, and the public would like to compare financial

1See http://www.sec.gov/
2See http://www.hmrc.gov.uk/
3See http://www.eba.europa.eu/Supervisory-Reporting/FINER.aspx
4See http://www.ebr.org/
5See http://www.xbrl.org/knowledge centre/projects/list

1



2 CHAPTER 1. INTRODUCTION

data from multiple jurisdictions, but language barriers and the diversity of XBRL
taxonomies make this very difficult. In Europe, for example, each member state
has jurisdiction specific rules for registering a company, publishing its bylaws,
its annual financial statements, and other official documents. Accordingly, each
national business register has defined its own sets of local taxonomies for the filing
and publishing of XBRL instance documents, which contain the legal, economic
and financial data of the registered companies. Although some progress has been
made in Europe [2], the diversity of taxonomies makes it operationally difficult to
compare company results across jurisdictions.

It is widely recognized that this XBRL taxonomy comparability problem has
yet to be addressed [2, 3]. Frankel [3] identifies the basic problem as a lack of
semantic clarity, a problem which, in general, accounts for the bulk of software
integration costs. In response to the problem, the XBRL organization has recently
formed the Comparability Task Force, which is currently collecting requirements
around comparability6. This task force envisions a solution to the problem through
the provision of mappings, in the form of XBRL assertions about relationships be-
tween comparable sets of elements in different taxonomies. Assertion creation is
dependent, however, on taxonomy alignment. In this thesis the taxonomy align-
ment problem is approached by transforming it into an ontology matching prob-
lem. There are mainly two reasons for this approach. First, using ontological
representation, some underlying semantics (call background knowledge) which
are implied, but not explicit in XBRL taxonomies, can be made explicit. These
semantics added to the ontologies of XBRL taxonomies can enhance the ontology
matching process [4]. Thanks to the calculation hierarchies in XBRL taxonomies,
a methodical way can be devised to formally explicate underlying semantics (see
Section 2.3.1 in Chapter 2). In short, the transformation from XBRL taxonomies
to ontologies makes it possible to exploit more information from given XBRL tax-
onomies. The second reason to transform the taxonomy alignment problem into
an ontology matching problem is that reasoning with ontologies and mappings
helps generate logically consistent mappings. The combination of background
knowledge with reasoning is expected to generate mappings that are semantically
intended and logically consistent.

A single XBRL taxonomy usually defines a number of financial reports. The
balance sheet is one of the most common. It shows measures of the assets of the
corporation, the debts owed, and the interests of the owners [5]. It consists of a

6XII Comparability Task Force: Comparability Business Requirements,
http://www.xbrl.org/comparability-task-force (2012)
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Figure 1.1: Example of real world balance sheet report



4 CHAPTER 1. INTRODUCTION

number of concepts presented in special hierarchies, with each concept usually
followed by a number representing the amount of money. It usually contains three
sections: assets, liabilities and stockholders equity, which further contain various
sub-items. A balance sheet can usually be presented in two different hierarchies,
i.e., presentation hierarchy and calculation hierarchy. Presentation hierarchy cor-
responds to the layout we usually see in a balance sheet, as shown in Figure 1.17.
There are abstract line items for presentation purpose. For example, “Assets”,
without referring to a specific amount of assets, usually is a header for all differ-
ent kinds of assets, including total assets which corresponds the total amount of
assets. Calculation hierarchy specifies the calculation relation among line items.
For example, total assets equals the sum of current assets and non-current assets.

1.2 Ontology Matching

An ontology is a formal representation of a conceptualization of domain knowl-
edge. With the development of the Semantic Web, an ontology is often encoded in
the Web Ontology Language (OWL)8, which is, in turn, based on description log-
ics (DL) [8]. DL provides a formal ground for ontology, so that logical reasoning
can be applied to infer implicit knowledge. Ontology matching (also called on-
tology alignment or ontology mapping) is the process of finding correspondences
between entities in a pair of ontologies. In the following we introduce some basic
definitions, on top of which mapping can be formally defined.

1.2.1 Description Logics

DL is a family of formal logics that are mostly used for knowledge representation
(KR). In comparison with other earlier KR formalism (such as Semantic Network
[6], or Frame systems [7]), DL provides the ability to unambiguously represent en-
tities of interest and some fragments of it are tractable in terms of computational
complexity. DL has many different variants. In order to understand how it is for-
mally presented (syntax) and how it conveys meaning (semantics), we formally
introduce the description language SHOIN (D), the DL underlying OWL-DL.
Note that dialects of DL differ in the syntactic constructors used to build up com-

7This is an extract from Microsoft Corporation (MSFT) here
http://finance.yahoo.com/q/bs?s=MSFT+Balance+Sheet&annual .

8See http://www.w3.org/TR/owl-features/ .
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Table 1.1: Syntactic construction of concept descriptions

¬B (negation)

B u C (intersection)

B t C (union)

{o1, . . . , on} (one of)

∀P.C (value restriction)

∃P.C (existential quantification)

∃≤nP (at least restriction)

∃≥nP (at most restriction)

∃R.D (data exists restriction)

∀R.D (data value restriction)

∃≤nR (data at least restriction)

∃≥nR (data at most restriction)

plex concepts and properties. An introduction to the members of the DL family is
given by Baader and Nutt [8].

We start with the introduction of vocabulary in order to construct concept
descriptions in DL.

Definition 1. (Vocabulary). A vocabulary S is defined as a quadruple S = 〈C,P,R, I〉
where C is a set of concept names, P a set of object properties, R a set of data
properties and I a set of individual names.

Having vocabulary S, concept descriptions in SHOIN (D) are constructed
using the following constructors which apply to concepts (also called classes),
both atomic and complex (Table 1.1). In Table 1.1, B and C are concepts, D
is a datatype, P is an object property and R is a data property, n ∈ R+ and
o1, . . . , on are individual names. In addition to the complex concept descriptions
presented above, there are also top concept > and the bottom concept ⊥. The
set of terminological axioms, TBox T , can be constructed as in Table 1.2, where
B,C are concept descriptions, P,Q are two object properties and R, S are two
data properties. The set of assertional axioms, ABox A, contains axioms of the
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Table 1.2: Types of terminological axioms

B v C,B ≡ C concept subsumption, equivalence

P v Q,P ≡ Q object property subsumption, equivalence

R v S,R ≡ S data property subsumption, equivalence

form in Table 1.3, where a, b two individual names and d is a concrete data value in

Table 1.3: Types of assertional axioms

C(a) concept assertion

P (a, b) object property assertion

R(a, d) data property assertion

a = b equality

a 6= b inequality

D. An ontologyO contains both a TBox and an ABox,O = T ∪A. In essence, an
ontology can be seen as a set of ontological axioms, including assertional axioms
and terminological axioms. For the use case in this thesis, ABox will be omitted
because we are concerned with schema, not instances. Ontologies in the following
discussion consist only of terminological axioms.

To assign meaning to descriptions of an ontology, we define interpretations.

Definition 2. (Interpretation). An interpretation I := 〈·I ,∆I ,∆ID〉, where ·I is
an interpretation function, ∆I non-empty domain, ∆ID a concrete domain and D
a datatype theory.

This function ·I assigns to every atomic concept A a set AI ⊆ ∆I , to every
object property P a binary relation P I ⊆ ∆I × ∆I , to every data property R
a subset of ∆I × ∆ID, to every individual name in I to an element of ∆I , to
every datatype in D a subset of ∆ID, and to every data constant a value in ∆ID.
Inductively, complex formulas can be interpreted as in Table 1.4. In the context of
mapping generation and mapping refinement, we only consider relations between
concepts, not between properties. From now on, anything other than concepts will
be left out.
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Table 1.4: Interpretation of different concept descriptions

>I = ∆I

⊥I = ∅

(¬B)I = ∆I\BI

(B u C)I = BI ∩ CI

(B t C)I = BI ∪ CI

(∀P.C)I = {a ∈ ∆I |∀b.(a, b) ∈ P I → b ∈ CI}

(∃P.C)I = {a ∈ ∆I |∃b.(a, b) ∈ P I ∧ b ∈ CI}

{o1, . . . , on}I = {oI1 , . . . , oIn}

(∃≤nP )I = {a ∈ ∆I |#{(a, b) ∈ P I} ≤ n}

(∃≥nP )I = {a ∈ ∆I |#{(a, b) ∈ P I} ≥ n}

(∃R.D)I = {a ∈ ∆I |∃b.(a, b) ∈ RI ∧ b ∈ DI}

(∀R.D)I = {a ∈ ∆I |∀b.(a, b) ∈ RI → b ∈ DI}

(∃≤nR)I = {a ∈ ∆I |#{(a, b) ∈ RI} ≤ n}

(∃≥nR)I = {a ∈ ∆I |#{(a, b) ∈ RI} ≥ n}

Definition 3. Given an interpretation I = 〈·I ,∆I ,∆ID〉, I satisfies an axiom

B v C iff BI ⊆ CI

B ≡ C iff BI ⊆ CI ∧ CI ⊆ BI

Definition 4. (Model). An interpretation I is a model for an ontology O, iff I
satisfies each axiom and assertion in O.

Definition 5. (Entailment). An ontology O entails an assertion or axiom α, iff
each model for O is also a model for α. An ontology O entails a set of assertions
or axioms A, iff each model for O is also a model for each α ∈ A. It is denoted
as O |= α if O entails α, otherwise it is denoted as O 6|= α.

Definition 6. (Concept Unsatisfiability). A concept C is unsatisfiable iff each
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model I of O maps C to the empty set, i.e., there is no instance that belong to C
by any given I.

Definition 7. (Incoherence). An ontology O is defined to be incoherent iff it con-
tains unsatisfiable concept(s).

Definition 8. (Inconsistency). An ontology O is inconsistent iff there exist no
model for O, otherwise O is consistent.

Having these definitions, we are ready to define mappings between ontologies.

1.2.2 Generating Mappings
Ontology matching is generally performed to integrate knowledge bases described
by different ontologies. It is the process of generating a set of mappings (a.k.a
correspondences or matches) between entities in the ontologies to be matched.
There are a number of ways to formally represent a mapping. In the following, a
pragmatic formal representation is adapted from the work of Euzenat [9, 10].

Definition 9. (Mapping) A mapping µ is of the form

µ := 〈ρ(C1, C2), ε〉,

where C1 and C2 are two concepts from two different ontologies O1 and O2 re-
spectively. ρ is the relation between these two entities, such as equivalence and
subsumption. ε is the confidence value representing how “semantically close”
these two entities are.

In effect, mapping µ, considered in the sequel, is of the form, either 〈C1 ≡
C2, ε〉, 〈C1 v C2, ε〉 or 〈C1 w C2, ε〉. Usually ε falls into the interval [0, 1]; and
the higher it is, the more likely µ is a (semantically) correct mapping. In some
parts of discussion that follows, when confidence values are irrelevant, a short
hand notation for a mapping between concept C1 and C2 is ρ(C1, C2), where
ρ ∈ {≡,v,w}. We useM to denote a set of mappings. The union O1 ∪M O2

of O1 and O2 connected byM is defined as O1 ∪M O2 = O1 ∪ O2 ∪ {τ(µ)|µ ∈
M} with τ being a translation function that converts a mapping into an axiom
in the following way: τ(〈ρ(C1, C2), ε〉) = ρ(C1, C2). A corresponding mapping
ontology Om forM is therefore Om = {τ(µ)|µ ∈M}.

Given two ontologies O1 and O2, we assume that there is a set of gold stan-
dard mappings, denoted as Mgs. These are created by domain experts to re-
flect their choice of correct correspondences. There are a number of requirements
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Mgs should fulfill (which however cannot be precisely formalized). For exam-
ple,O1 ∪Mgs O2 should be consistent and contain no unsatisfiable concepts.Mgs

should also be minimal in the sense that adding any mappings would not pro-
vide more information, and removing any mappings would lead to absence of
intended correspondences. Given mapping suggestionsM forO1 andO2, we de-
fine correct mappings asM∩Mgs, incorrect mappings as mappings that result
in inconsistency, unsatisfiable concepts or violation of the semantics of O1 or O2.
The remnant are redundant mappings because they cause no logical problem but
still do not belong to the gold standard.

In Euzenat’s generic representation, correspondences can be between con-
cepts, as well as properties. In this thesis, however, we only consider mappings
between concepts. The reason is that financial ontologies converted from XBRL
taxonomies contain only concepts.

There have been a number of sophisticated tools to perform ontology match-
ing9, the purpose of which is to (semi-) automatically find correct mappings. Here-
after, we call these ontology matching tools simply matchers, unless explicitly
noted otherwise.

Here are some notational convention used in the following discussion. Fore-
most, the signature Σ of an ontology or an axiom is the set of concepts occurring
in the ontology or the axiom respectively.

Definition 10. (Signature Σ). The signature Σ(O) of ontology O is defined as
follows,

Σ(O) := {C|C is a concept name occurring in O}, (1.1)

where the signature Σ(α) of axiom α can be defined analogously.

We use a number of symbols to denote different logical axioms. To be specific,
µ is used to denote mappings, which connect concepts from different ontologies,
and α or ν are used to denote logical relation between two concepts from the same
ontology. The difference between α and ν will become clear later when specific
use cases are considered.

Note that subscripts of logical symbols used in the work have special intention,
where x indicates xEBR ontology10, f indicates French ontology, s indicates Span-
ish ontology, all of which are derived from corresponding XBRL taxonomies; also
m indicates mapping ontology. This notational pattern is adopted because these
three ontologies are the main subjects of the discussion. On the other hand, this

9See http://www.ontologymatching.org/ for a comprehensive list.
10xEBR ontology is created based on xEBR taxonomy, which is described in Section 3.2.2.
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notational pattern does not hinder the generic applicability of algorithms, if one
supplies other ontologies and mapping ontology to replace Of ,Os and Om. To
distinguish Ox from other ontologies, we often call Of and Os local ontologies.

1.2.3 Mapping Refinement

Mapping refinement, also known as mapping revision [11], is a recent and debated
area of study. This verification process aims to preserve those correct mappings,
which are logically consistent with both ontologies and reflect correct correspon-
dence between concepts, while removing unintended mappings from mapping
suggestions. Here mapping suggestions can be obtained manually or automati-
cally. Manual mappings are not free from errors due to a number of reasons, for
example, different conceptualizations of the same domain, or incomplete knowl-
edge of ontology engineers, etc. In fact, Unified Medical Language System R©

Metathesaurus (UMLS-Meta)11, which stems mainly from manual effort, was re-
ported to contain a considerable number of unintended mappings [12]. Automated
mapping suggestions for now contains even more incorrect mappings because
most matchers depend mainly on analysis of text, in forms of concept names,
labels, descriptions, etc, and structural information, e.g., number of descendants.
These analyses based on statistics are incapable of exploiting semantics of ontolo-
gies. Mapping refinement is the process of exploiting logical principles to remove
unintended mapping suggestions, which is a necessary step to ensure the quality
of output mapping suggestions.

1.3 Problem Statement
Many systems and tools have been proposed to solve the problem of ontology
matching in general. As far as financial ontologies are concerned, there are only
a few matchers due to a number of reasons. First, there have not been any well-
accepted financial ontologies formalizing national or international schemas. Sec-
ond, financial reporting schemas vary across countries, jurisdictions and indus-
tries. All accounting actions, like identifying and measuring, are guided by prin-
ciples, rules or practices which have evolved over time, and which are specific
to the society or economic field in which they are embedded. This diversity of
financial reporting schemas makes it very difficult to establish correspondences

11http://www.nlm.nih.gov/research/umls/knowledge sources/metathesaurus/
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Figure 1.2: Automated mappings for financial concepts from different schemas

between them. Third, matchers have to consider the multilingual characteristics
of financial reporting schemas. It is very common for financial reporting schemas
to have labels in multiple languages, which is especially true in Europe. Then
when one wants to align schemas that do not have labels in shared languages, the
problem becomes cross-lingual ontology matching. The few matchers that try to
match some emerging financial reporting schemas rely heavily on either the qual-
ity of translation [13], or a set of terminological features for machine learning
techniques [14]. The mappings those matchers generate contain many incorrect
mappings, i.e., ones that cause inconsistency, as illustrated by the following ex-
ample.

In Figure 1.2, loans in one source schema is mapped by certain string-based
matcher as a narrower concept than two different concepts in a target schema,
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loans to third party and loans to company. When one examines the structure of the
target schema, it turns out that loans to third party belongs to long-term financial
investment, which in turn belongs to noncurrent assets, whereas loans to company
belongs to short-term financial investment, which in turns belongs to current as-
sets. As a partition of total assets, noncurrent assets and current assets are meant
to have no overlap. Therefore, loans in source schema cannot be a narrower con-
cept to both loans to third parties and loans to company. These two mappings of
course have led to unintended consequences. To resolve this problem, there are at
least two approaches. First, we could make explicit the distinction between loans,
loans to third-party and loans to company by formal constructions. By exploiting
background knowledge or underlying semantics, this approach would avoid the
generation of these two mappings from the beginning. The second approach is to
remove at least one of these two mappings. There should be principles one can
follow to resolve such inconsistencies. Principles can be of statistics, or of logic
reasoning. Statistical principles can assign confidence value to each mapping and
then select the mapping with lowest value to remove. But those statistics are often
computed based on text analysis, which would provide only an approximation of
correctness of each mapping. Logical principles, however, exploit the underlying
semantics explicitly presented in ontologies to soundly determine which mappings
are logically intended and which are not.

In this thesis, we attempt to enhance ontology matching following the ideas
of the two approaches above. We first investigate how to exploit background
knowledge or underlying semantics in order to obtain mapping suggestions that
are semantics-aware and logically consistent. Then we present a number of logic-
based principles, some of which are adapted from existing work, with also a few
proposed principles based on observation of the current use case. These principles
are discussed in detail and then implemented and integrated together in order to
remove incorrect mappings from automated mapping suggestions.

1.4 Research Questions
Most state-of-the-art matchers use only lexical and structural information to con-
struct mapping suggestions [4]. The quality of the mappings produced by match-
ers is evaluated mainly by Precision/Recall metrics with respect to gold standard,
i.e., reference mappings produced by domain experts. The goal of this thesis is to
enhance an existing matcher by logic-based reasoning. In particular, the following
questions are addressed.
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R1 What kind of background knowledge will help generate better mappings?

R2 What mechanism will enable the exploitation of background knowledge?

R3 Why is the refinement process for automatically generated mappings neces-
sary?

R4 What are the logic-based principles for mapping refinement?

R5 How do the logic-based principles perform?

R1 is concerned with determining what kind of background knowledge to use
in order to improve mapping results. It is suggested [4] that relevant background
knowledge, in addition to the ontologies to be matched, can help the ontology
matching process by increasing recall; on the other hand, considering background
knowledge may also introduce redundant or even incorrect mappings, which de-
creases precision. How best to achieve higher recall while maintaining precision
is use case specific. In the case of matching financial reporting schemas, it is
observed that existing financial ontologies fail to explicate some very important
background knowledge. This thesis addresses this problem by identifying and
then formalizing a range of fundamental concepts and properties such that logical
reasoning service can be used to achieve better matching results. Thus, a mech-
anism is proposed to exploit the background knowledge, which is in response to
R2.

R3 is concerned with the necessity and importance of the work we have done
for R4 and R5. We now give theoretical arguments and empirical evidence to
motivate the work on mapping refinement, which is in response to R3. On the
theoretical side, arguments are given by Meilicke [11] for the need to refine auto-
matically generated mapping suggestions. In short, it is argued that 1) a correct
mapping will always be a coherent mapping; 2) the presence of incoherent map-
pings in the context of reasoning with a merged ontology will always lead to
unintended consequences. As empirical evidence, Jiménez-Ruiz et al. [12] iden-
tified a number of logically unintended mappings from a comprehensive medical
thesaurus which is mostly the result of manual effort. Also for the use case con-
sidered in this thesis, it is of great interest for the end users of ontology matching
systems that manual effort can be reduced in selecting those correct mappings
out of all the mapping suggestions. The end users of any matchers would right-
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fully expect mapping suggestions of high quality (in particular when there is a
large amount of mapping suggestions), which requires, among other things, that
the mappings are logically consistent with ontologies. Based on these arguments
and evidence, the main part of this thesis work is devoted to enhance ontology
matching by logic-based mapping refinement.

R4 is concerned with logic-based principles that would help to remove incor-
rect mappings. Logic-based mapping refinement is to provide such support in an
automatic and logically sound manner. Several logical principles are adapted or
proposed to delete those mapping suggestions that cause inconsistency. To answer
R5, all the logical principles are implemented and tested.

1.5 Outline & Contribution
To approach these research questions, this thesis is structured in several parts.
In Chapter 2, in response to R1, background knowledge of financial reporting
domain is analyzed and then later harnessed by a proposed mechanism, which
leads to a semantically enriched ontology matching method. In Section 1.4, we
answered R3 by providing both theoretical arguments and empirical evidence.
In Chapter 3, a number of logic-based principles are discussed in detail. These
principles are either adapted from existing work or proposed for the first time in
this work, which serves as an answer to R4. To answer R2 and R5, Chapter 4
presents implementations of the principles after introducing datasets used in this
thesis. Also presented are experimental results of both semantic enriched on-
tology matching system and logic-based mapping refinement system. Chapter 5
summarizes all the work done for this thesis and gives pointers to possible future
work.



Chapter 2

Semantically Enriched Ontology
Matching

There are a couple of heuristics and a methodical approach proposed in this work.
This is to address the research question R2, concerning the use of background
knowledge. The structure of this chapter is organized as follows. Section 2.1
briefly surveys existing techniques in ontology matching and hightlights the chal-
lenge to address. Section 2.2 presents a new ontology for the financial reporting
domain. This ontology consists of underlying semantics of the domain and is used
to define other financial concepts. In Section 2.3, an alignment process based on
semantic enrichment is presented. Section 2.4 concludes the approach presented
and highlights the contribution of this work.

Note that the main idea presented in this chapter is also in a paper to be pub-
lished. Credits therefore go to the coauthors of that paper, namely Susan Marie
Thomas from SAP Research Karlsruhe, Dr. Yue Ma from Dresden University
of Technology and Dr. Sean O’Riain from Digital Enterprise Research Institute
(DERI), National University of Ireland. My main contributions are the implemen-
tation and evaluation of the proposed idea.

2.1 Related Work

The proposed approach addresses a problem of ontology matching by means of
formalization. In this section the approach is first compared to existing work on
ontology matching, then to work on formalization in the accounting and financial
reporting domain.

15
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2.1.1 Ontology Matching

There have been many different tools and systems for ontology matching, as re-
cently surveyed by Shvaiko and Euzenat [4, 9], Noy [15] and Godugula [16].
The survey [4], as a follow-up work of [9], identified several aspects to describe
and compare a number of existing matchers. Table 2.1 adopts their descriptions
and applies them to LogMap1 [17], COAL [14] and our logic-based approach
(SEOM). The left part of the table is a general outlook of different systems and
the right part classifies them in terms of which kind of data they exploit: strings
(terminological), structure (structural), data instances (extensional) or semantics.
SEOM takes as input OWL ontologies and generates n : m alignments [4]. As a
prototype, it does not have a GUI (graphic user interface). Though it is designed as
an ontology matcher, it can also be used as a question answering tool. Moreover,
it does not exploit ontologies’ textual descriptions, but their calculation hierar-
chies. First properties underlying the calculation hierarchies are identified and
formalized. Sets of related properties constitute concept definitions, which is then
to be reasoned using standard logical reasoning service to get mapping proposals.
A few systems have additional functionality that tests the generated correspon-
dences to decide whether to discard or retain them. These tests, which, in essence,
refine the correspondence set generated by the matchers, may be rule-based, as in
LILY [18], or logic-based as in LogMap.

In contrast to current state-of-the-art matchers, which primarily generate cor-
respondences, and sometimes refine them via logic, our approach generates the
correspondences entirely via logic, deducing them from the merge of O1, O2 and
the Basic Accounting Ontology (BAO). Assuming the concepts in O1 and O2

have been correctly defined in terms of the BAO, the confidence score of every
correspondence is one.

Among a number of challenges identified by Shvaiko and Euzenat [4], ontol-
ogy matching requires a common context or background knowledge for the on-
tologies to improve mapping results. The logic-based approach is such a research
effort in exploiting the underlying knowledge of financial domain by explicitly
formalizing commonly shared properties. At its early stage, it still needs human
intervention in creating and extending the BAO, defining financial concepts using
those from the BAO. We envision the future semi-automation of these processes
so as for the logic-based approach to be scalable.

1LogMap offers two functionality: mapping generation and mapping debugging.
We call LogMap Repair the mapping debugging part. The LogMap web interface:
http://csu6325.cs.ox.ac.uk/
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According to Noy [15], matchers can be categorized into two main kinds of
approaches: indirect and direct matching. Indirect matching uses a shared ontol-
ogy as a common ground for the ontologies to be matched. Ideally, these ontolo-
gies are extensions of the shared ontology, so that matching profits considerably
from the fact that they share common vocabulary with the shared ontology. Our
approach is closer to this first category, with the BAO serving as the shared on-
tology, which, in our case, is used to enrich XBRL taxonomies. Aleksovski et
al. [19] have shown that, in general, a shared ontology is helpful for matching
ontologies whose semantics is shallow. However, the approach there is quite dif-
ferent from ours in the way it builds connections between the shared ontology and
the ontologies to be matched; matching is based on lexical comparison rather than
precise logical definitions.

The survey of Godugula [16] agrees with the position of Noy in classifying
matching methods into indirect and direct. It is specifically devoted to the direct
approach, which it considers to be the “harder” problem because it attempts to
directly match two often very distinct ontologies, which have been independently
developed. Most commonly these algorithms are based upon textual analysis, of-
ten supplemented by structural analysis. An example of textual analysis is the
lexico-syntactic analysis of concept labels and descriptions, possibly also exploit-
ing external lexical sources like WordNet [8]. Structural analysis, on the other
hand, makes use of features like hierarchical structures, for example, the number
of direct descendants of a concept. Shvaiko and Euzenat [9] conclude that the best
solutions to the alignment problem are achieved by combining multiple, different
matching algorithms. Their conclusion is supported by experiments with a direct
alignment system COAL (Cross-lingual Ontology ALignment)2, which combines
lexico-syntactic analysis with structural analysis, and also exploits machine learn-
ing techniques which benefit from multilingual ontologies. COAL performed best
when the different algorithms were combined. It applies machine learning tech-
niques to a series of string-based and structural features of taxonomies, and, for
each concept, it ranks all its possible corresponding concepts in descending order
by confidence value. However, even though COAL was developed with the aim
to match multilingual financial ontologies, its recall, and especially, its precision
were not nearly as good as our logic-based approach (see Table 4.7 for the ex-
perimental results.). Another recently developed generic ontology mapping tool
of the direct type, LogMap, which uses textual matching algorithms, yielded very
poor results when applied to our use case. One reason is that LogMap is designed

2See COAL web interface: http://monnet01.sindice.net:8080/coal
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to match large bio-medical ontologies with much semantics explicated, while the
ontologies in our use case are both shallow in semantics and small in size. Our
initial problem falls into this harder category but, as mentioned, we solved it by
creating a shared ontology, which then makes our approach closer to the indirect
one.

Some work has been done in Multilingual Ontologies for Networked Knowl-
edge (MONNET) [20] project to match XBRL taxonomies from different coun-
tries. Spohr et al. [14] used machine learning techniques in order to account for
the fact that taxonomies are usually multilingual and that cross-lingual transfor-
mation is needed while matching two taxonomies that are in distinct languages.
To be precise, in the cross-lingual matching scenarios, native labels of source on-
tologies have to be automatically translated into labels in target language. This
target language can be one of languages used in the ontologies; it may as well be
a third language. For example, if we have French ontology with only French la-
bels and Spanish ontology with only Spanish labels, one possibility is to translate
all French labels into Spanish, another possibility is to translate both French and
Spanish labels into English. They also developed a tool to generate matches given
two ontologies, which is used in this thesis to get candidate mappings, to which
logical refinement applies. The tool is called Cross-lingual Ontology Alignment
(COAL). To use it in our use case, we need first to train it to obtain suitable match-
ing function and relevant parameters.

A recent work [13] on cross-lingual ontology matching focuses on the effect
of different label translations on matching results. It’s shown that a set of fea-
tures, like semantics, task intent, feedback etc, can be configured in the proposed
matching system in order to get better results.

2.1.2 Accounting Ontologies
There has been considerable effort in modeling or formalizing accounting con-
cepts. Recent work can be divided into two categories. First, there has been a lot
of work which converts XBRL reports into Semantic Web Representations (see
[21], [22] and [23]). While these efforts are useful for linking XBRL data to other
data on the web of linked data as discussed by O’Riain [24], there is little fur-
ther semantics addition during the conversion process. This is also true of the
XBRL-related ontologies listed in a recent survey of financial ontologies [25].

In contrast, the second category of work focuses on a direct ontological spec-
ification of basic accounting concepts and processes. Krahel [26] proposes the
formalization of accounting standards as a means to discover and resolve incon-
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sistencies and ambiguities in the standards. Gailly and Poels [27] redesigned the
Resource Event Agent (REA) model, popular in the accounting literature, and for-
malized it in OWL. Chou and Chi [28] proposed the EPA model (Event, Principle
and Account) as a way to model the correct accounting classification of business
transactions. And Gerber and Gerber [29] built a small OWL ontology as an ex-
periment in formalization.

Our research has a similar departure point as the second category. But, unlike
existing work, which attempts to model the accounting process, we aim at a de-
tailed characterization of the concepts in XBRL taxonomies in order to perform
cross-taxonomy alignment. In spite of cultural and linguistic diversity, there are
many concepts common to the XBRL taxonomies used in different countries. In
general, these common concepts are finer grained than the XBRL concepts, so that
each XBRL concept can be described by means of multiple Accounting Ontol-
ogy concepts, which it often shares with other XBRL concepts, even in the same
taxonomy. Thus, our approach extends the semantics of each XBRL taxonomy.
It makes explicit the fine-grained shared semantics which is only implicit in an
XBRL taxonomy, often visible in labels or textual descriptions, but not available
for machine processing. Moreover, our approach encodes this fine-grained seman-
tics in such a way that logical reasoners can be used to infer mappings between
taxonomies represented as ontologies. Although, the authors of [30] propose the
use of ontologies to extend the semantics of XBRL, they do not propose to do so
in a methodical way for the purpose of enabling alignment.

2.2 Basic Accounting Ontology
To align different XBRL taxonomies, we create a Basic Accounting Ontology by
identifying and formalizing a set of concepts and properties that underlie various
taxonomies.

Each concept in a balance sheet is specified by jurisdiction-specific account-
ing regulations and conventions. They are often calculation-oriented in the sense
that accountants focus on adding up several items equal to another item. The
fact that different jurisdictions, e.g., countries or governmental agencies, would
have very different views and approaches to accounting makes it very difficult to
compare/integrate accounting concepts. On the other hand, there is commonality
shared by all accounting schemas. For example, to distinguish assets of different
types, a concept “current assets” is commonly used to represent cash or assets
which will be converted into cash within one year or less; concept “non-current
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(a) Underlying financial concepts
identified and formalized

(b) Object properties used in the en-
richment step

Figure 2.1: Protégé screen shot of the BAO.

assets” would represent assets that last more than one year. So for many concepts
in balance sheet, there is a common property, “currentness”, with value of either
Current or Noncurrent. There are also many other properties like this that char-
acterize concepts. And these properties are shared by financial reporting schemas
across national borders. In the light of this observation, we defined financial con-
cepts using these commonly shared properties. By doing this, we make implicit
knowledge of each financial concept explicit, which is our principled approach to
semantic enrichment. We identify and formalize these underlying semantics as
concepts and properties. All these became part of a new financial ontologies, the
Basic Accounting Ontology.

We created a Basic Accounting Ontology that defines all these properties and
the relations among these commonly shared concepts. It consists of 189 basic ac-
counting concepts, 36 object properties and 5 data properties. Each basic concept
is designed to represent certain underlying properties shared by most taxonomies.
For example, Depreciability ≡ (Depreciable t Nondepreciable)
because one financial concept can be either depreciable or nondepreciable, as
shown in Fig. 2.1.
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1. Taxonomy Conversion

 XBRL taxonomies

2. Concept Definition

 ontologies

Basic Accounting Ontology

3. Logical Reasoning
 merge of two enriched ontologies

4. Mapping Verification

 logically inferred mappings

 mappings

Figure 2.2: Three phases of the proposed alignment process

2.3 Semantically Enriched Matching Process

We propose to align XBRL taxonomies using a four-phased process: 1) conver-
sion of XBRL taxonomies to ontologies, 2) enrichment of these ontologies, 3)
generation of matches, 4) match verification. Phase 1 automatically converts each
XBRL taxonomy into an OWL ontology. In Phase 2 these two OWL ontolo-
gies are manually enriched by describing the concepts in each ontology using
a BAO which contains fundamental accounting concepts. These enriched on-
tologies are the input to Phase 3, which automatically computes cross-taxonomy
equality and subsumption relationships by means of logical reasoning services
(see [31]). Phase 4 presents the computed relationships to an expert for confirma-
tion or correction.

Fig. 2.2 illustrates the four phases of the alignment process. Boxes with bold
lines are phases that have been automated, whereas boxes with dotted lines are
phases that need human intervention. As indicated in the figure, the linchpin of
the process is the BAO, which we created to add more fine-grained semantics to
the very coarse-grained semantics of XBRL taxonomies. This section outlines the
three-phased process responsible for ontology matching.

In this work, the balance sheets of the French Taxonomie Comptes Annuels
(TCA)3 and Spanish Taxonomı́a del Nuevo Plan General de Contabilidad 2007
(PGC07)4 taxonomies are the actual inputs of this process. Fig. 2.3, which has
been used to explain Phase 1, is representative of the OWL class hierarchies cre-
ated from the Spanish PGC07 taxonomy.

3See http://www2.xbrl.org/fr/frontend.aspx?clk=SLK&val=226 .
4See http://www.icac.meh.es/Taxonomia/pgc2007/Taxonomia.aspx .
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Figure 2.3: Protégé screen shot of calculation hierarchy of Spanish balance sheet
assets; parent calculated from children. ‘INV.’ is short for investment.

2.3.1 Taxonomy Conversion

In Phase 1 of the alignment process each taxonomy is first converted into RDF us-
ing the MONNET xblr2rdf converter, which preserves the calculation hierarchies
(cf. Section 1.1). In the conversion process each XBRL concept in a calcula-
tion hierarchy becomes an OWL class with the same uniform resource identifier
(URI) as the XBRL concept. Given this one-to-one relationship, these classes are
often referred to as XBRL concepts in the following explanations. In the next
step of Phase 1, the calculation hierarchies are converted into OWL subclass re-
lationships using SPARQL5. This conversion is done strictly as a way to facilitate
the rapid addition of semantics to concepts in Phase 2. Later these subclass re-
lationships are removed in order to model cases where some financial concepts
do not comply the property restrictions of their parents. Figure 2.3 is a Protégé
screen shot showing an extract of the output from Phase 1, namely, part of the
class hierarchy corresponding to the calculation hierarchy for assets in the Span-
ish balance sheet. One of its numeric relationships, as indicated by the screen
shot, is Assets = Current Assets+Noncurrent Assets. Phase 1 was applied
to the balance sheets of the TCA and PGC07 taxonomies to convert them into
ontologies. To differentiate concepts from different ontologies, the standard short
form for a concept URI is used, i.e., with namespace prefix6 followed by local
name. Prefix ca: indicates French concepts, prefix pgc07: Spanish; concepts
from the BAO have no prefix.

5See http://www.w3.org/TR/rdf-sparql-query/
6See http://www.w3.org/TR/REC-xml-names/
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2.3.2 Concept Definition

The purpose of the class hierarchies created in Phase 1 is purely to speed up Phase
2 which is a manual process in which each XBRL concept is described using
concepts from the BAO, in order to add more fine-grained semantics to it. As
mentioned, each class with its direct subclasses represents a computational roll-
up (sum) in the XBRL world. This roll-up works by virtue of the fact that the
concepts being rolled up share certain properties. For instance, the subclasses of
Assets (TotalActivo) in Fig. 2.3 all share the property of being classified as
assets. Rather than editing each concept individually to add this property, it is
given just once to Assets, and is then inherited by all its subclasses, thus speeding
up the process of enrichment. In rare cases where this inheritance is incorrect,
it is fixed later when the inheritance hierarchy is removed, and affected concepts
are edited as necessary. This procedure of adding shared properties is repeated
for each class (roll-up). Moreover, care is taken that each sibling in a roll-up is
differentiated from the others by means of properties. Siblings must be mutually
disjoint (non-overlapping), otherwise they could not be added up to create a total.
For example, Current Assets and Noncurrent Assets must be disjoint, otherwise
the total Assets would be incorrect, having double counted the overlap between
the two addends.

An example of the result of Phase 2 can be seen in Table 2.2, which shows the
semantics added to the Spanish concept highlighted in Fig. 2.3. The additional
semantics take the form of property restrictions. Most of the restrictions for the
Spanish concept under discussion are inherited from its superclasses. From Assets
it inherits the property restriction (∃hasClassification.Asset). It also
inherits
(∃hasGrossOrNet.Nett∃hasDepreciability.Nondepreciable),
stating that it could be either net assets or nondepreciable assets. In fact, it be-
longs to net assets. Similarly, (∃hasCurrentness.Current) is inherited
from current assets, and
(∃hasClassification.FinancialInvestmentAsset) as well as
(∃investmentIn.GroupCompanyOrAssociate) are inherited from the
superclass investment in group. On the other hand,
(∃hasFinancialInstrument.Loan)was added directly, and specifies the
type of financial investment asset. In this case, the label for the highlighted con-
cept, which can be translated as “current assets; short-term investments in group
companies and associates; loans”, exhibits the components of meaning, each of
which is formalized as property restriction as in Table 2.2.
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Table 2.2: Properties for the highlighted Spanish financial concept

pgc07:ActivoCorrienteInversionesEmpresasGrupo-

EmpresasAsociadasCortoPlazoCreditosEmpresas

v
(∃hasGrossOrNet.Net
t ∃hasDepreciability.Nondepreciable)

(∃hasClassification.Asset)
(∃hasCurrentness.Current)
(∃hasClassification.FinancialInvestmentAsset)
(∃investmentIn.GroupCompanyOrAssociate)
(∃hasFinancialInstrument.Loan)

Phase 2 was applied to the asset concepts in the French and Spanish ontologies
created in Phase 1. This resulted in the description, or enrichment, of 94 French
asset concepts, and 74 Spanish, with each concept having 7 property restrictions
on average.

2.3.3 Logical Reasoning
In Phase 3 of the alignment process the concept descriptions created in Phase 2,
which are called (primitive classes), are converted into definitions, that is, (de-
fined classes). In this conversion process, we 1) remove the subclass relationships
converted from the calculation hierarchy in order to avoid any undesired inher-
itance, and 2) systematically add disjointness among siblings in order to detect
inconsistencies. Finally, we merge the two ontologies, and then use HermiT [33]
to infer the mappings between them. The reasoner is used to classify the merge of
both enriched ontologies so that concepts from different ontologies with logically
equivalent definition would be inferred to be equivalent. With equivalence come
also subsumption mappings.

Phase 3 was applied to the French and Spanish ontologies enriched in Phase 2.
An example is that ca:ActifCirculantNet v pgc07:TotalActivo
is inferred from the concept definitions shown in Table 2.3. This inference is due
to the fact that the subclass has all the restrictions of the superclass, plus one more,
as can be seen from inspection of the table.

The effectiveness of this semantically enriched mapping generation approach
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is implemented and evaluated in Chapter 4.

2.4 Summary
In this chapter, a mapping generation mechanism (SEOM) that exploits back-
ground knowledge of financial reporting domain by semantically enriching two
financial ontologies is presented. Identified as one of future challenges of ontol-
ogy matching by Shvaiko and Euzenat [4], exploiting background knowledge is
attempted in this work by building a basic ontology, the Basic Accounting Ontol-
ogy (BAO), consisting of basic concepts and properties that formalize the under-
lying semantics across different financial reporting schemas. Having background
knowledge formalized in this fashion, all other financial concepts can be defined
by basic concepts and properties. Both defined using the same background knowl-
edge ontology, two concepts with logically equivalent definitions constitute a good
match. The presented approach also differs from most other ontology matching
systems in that it is solely logic-based. Given two financial ontologies defined on a
common ground, logical reasoners are used to reason over the merge of these two
ontologies, so that all equivalent matches are revealed. With equivalence relations
and class hierarchies of ontologies come also subclass matches.

The BAO is designed to be extensible and is expected to formalize more se-
mantics that is common to financial reporting schemas from various countries.
With a more advanced BAO, this logic-based approach can be deployed to match
a wide range of financial reporting schemas.
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Chapter 3

Logic-based Mapping Refinement

This chapter describes a logic-based mapping refinement mechanism, which is
the main part of this thesis, and an answer to the research question of what are
the logic-based principles for mapping refinement (R4). There are already a num-
ber of logic-based principles and techniques for mapping refinement [11]. This
thesis extends some of the existing principles and also proposes one novel prin-
ciple, which is based on observations of the use case considered herein. To be
specific, the conservativity principle is extended to handle the subclass relation.
The novel principle, the grouping principle, is proposed based on observations
of different granularity of financial ontologies. The consistency principle and the
locality principle are also built into our mapping refinement mechanism. The
principles are used to detect inconsistency, incoherence or violations. Then we
can find explanations for them and then identify those mapping suggestions that
cause the inconsistency, incoherence or violations. We also consider a number
of heuristics to optimize the refinement process. In addition to a conceptual dis-
cussion of these heuristics, we select some as applicable components for the final
refinement procedure.

3.1 Related Work
Mapping refinement has been studied by many researchers. On the one hand,
mapping refinement is sometimes built into matchers. Among other matchers,
LILY [18] uses a few patterns to detect unlikely mappings. Notably, it considers
two patterns as follows.

• mappings which cause subclass circles. A mappingM is inconsistent if it

29
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causes a subclass circle in the involved ontologies, because subclass circles
result in the equivalence of all concepts involved in the circle.

• mappings which introduce new equivalence axioms. Two mappings µ1 =
〈A ≡ A′, ε1〉 and µ2 = 〈B ≡ B′, ε2〉 are inconsistent if O1 |= (A ≡
B) ∧ O2 6|= (A′ ≡ B′). The same holds if we replace equivalence by
disjointness.

These patterns are of an ad hoc nature and are just specific cases in which map-
pings result in new consequences that cannot be derived without the mappings.
That is to say, they are, in essence, special cases of the conservativity principle as
presented in Section 3.2.1.

On the other hand, there is research devoted entirely to mapping refinement.
Meilicke et al. [11] introduced a novel formalization of the problem and proposed
several principles to remove unintended mappings. Their approach was evaluated
on a commonly used dataset and achieved good results. Qi et al. [34] devised a
conflict-based operator, and also proposed relevance-based reasoning techniques
for mapping refinement. The authors reported some ‘preliminary but interesting
evaluation results’ to show the usefulness of their approach. Jiménez-Ruiz et al.
[12] proposed three logic principles based on observations of large medical on-
tologies and UMLS-Meta, i.e., the conservativity, consistency and locality princi-
ple. Our work follows that in [12], so we give a brief description of the definitions
and techniques presented there.

Conservativity

The conservativity principle, first proposed by Jiménez-Ruiz et al. [12], is based
on the assumption that ontologies are self-contained, in the sense that they have a
proper coverage of a given knowledge domain, and contain no logical inconsisten-
cies within themselves. There it was informally defined as follows. In the process
of manually or automatically matching independently developed ontologies, map-
ping suggestions may introduce new semantic relations to ontologies, where these
new semantic relations cannot be entailed by the ontologies separately. In such
cases, those mapping suggestions that cause the new relations are questionable,
and at least one of them is to be removed in order to avoid those new unintended
relations. For example, on the left side of Figure 3.1 there are two mapping sug-
gestions, µ1 = 〈Cf1 ≡ Cs1, ε1〉 and µ2 = 〈Cf2 ≡ Cs1, ε2〉, proposed for Of and
Os. Given µ1 and µ2, it follows logically that Cf1 ≡ Cf2. If Of 6|= (Cf1 ≡ Cf2),
at least one of the mappings {µ1, µ2} is incorrect because the introduced relation
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Cf1 ≡ Cf2 cannot be entailed by Of alone and thus it can be seen as violation of
the semantics of Of .

This is known as conservative extension [35, 36], and it is a computation-
ally hard problem. A simplification of it is presented in [12] to only consider a
special kind of axiom, i.e., equivalent classes. It only detects conflict cases like
Cf1 ≡ Cs1 and Cf2 ≡ Cs1, where Cf1 and Cf2 are in one ontology and Cs1 in
another (illustrated on the left side of Figure 3.1). This simplification reduces the
complexity of the reasoning problem considerably and as argued by the authors is
very important because very large bio-medical ontologies and thesaurus are com-
putationally demanding. Our definition of the conservativity principle is adopted
from the work of Jiménez-Ruiz et al. [12], with an extension to its original sim-
plified implementation, as presented in Section 3.2.1.

Consistency

The consistency principle says that mapping suggestions should be consistent with
the ontologies. This is to sayOu = Of ∪Mfs

Os is consistent and every concept in
its signature is satisfiable. We will present an implementation of the conservativity
principle in Section 3.2.3, which follows the same idea as that of Jiménez-Ruiz et
al. [12].

Locality

The locality principle says that two concepts are likely to be a correct mapping if
there are mappings among their respective neighbors. On the other hand, if there
is no mapping between neighbors of two concepts, it is necessary to check the
validity of the mapping (if any) between these two concepts. So the neighborhood
relationship of concepts in a graph indicates semantic similarity. If the locality
principle does not hold, the following situations can be identified: (1) mappings
among them may be incomplete and new mappings should be discovered, (2) the
definitions of concepts in these ontologies may be different or incompatible, or (3)
the existing mappings may be erroneous. This principle can be used to compute
confidence value for a given mapping, which is discussed in Section 3.2.1.

3.2 Logic Principles
In the following sections, we present a number of logic principles for mapping
refinement. Some of principles are adapted from existing work, and there are a



32 CHAPTER 3. LOGIC-BASED MAPPING REFINEMENT
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Figure 3.1: The extension of conservativity principle presented in this thesis

few new principles based on observations of the use case ontologies. We will first
formalize these principles and then propose methods to realize them.

3.2.1 Extended Conservativity
Here an extension of Jiménez-Ruiz et al.’s implementation of the conservativity
principle is presented. The extension is two fold. First, subsumptions (subclass
and super-class) are also considered. Second, a generic pattern of violation of the
principle is presented. One example of such violation is shown on the right side
of Figure 3.1.

An important step to mapping refinement using the extended conservativity
principle is to get those violating axioms, i.e., axioms that could be entailed only
after introducing mapping suggestions. The set Svio(Ol) of violating axioms with
respect to a local ontology Ol is formally defined as follows,

Svio(Ol) := {ν|Σ(ν) ⊆ Σ(Ol),Ou |= ν,Ol 6|= ν}. (3.1)

where ν can be either subsumption or equivalence of concepts in Ol.
To find those mappings that cause these violations, logical reasoning can be

exploited. Consider the example in Figure 3.1. Given two mappings µ11 =
〈C ′f1 v C ′s1, ε11〉 and µ22 = 〈C ′f2 ≡ C ′s2, ε22〉, together with one existing axiom
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α12 = (C ′s1 v C ′s2) from Os, a violating axiom ν12 = (C ′f1 v C ′f2) ∈ Svio(Of )
can be inferred, that is,

{µ11, α12, µ22} |= ν12. (3.2)

In this example {µ11, α12, µ22} is the minimal set that entails ν12, is called the
explanation of ν12.

Definition 11. (Explanation). An explanation Ων of axiom ν is a minimal set of
axioms that entail ν, i.e.,

Ων |= ν, s.t. Ων ⊆ Ou and ∀Ω′ ⊂ Ων ,Ω
′ 6|= ν. (3.3)

An explanation indicates the causing mappings of a violating axiom. Note
that we define an explanation as a minimal set of axioms, though in other work
explanations are not necessarily minimal. As for the running example, the causing
mapping could be either µ11 or µ22. If either one of them is deleted, ν12 no longer
follows and the violation is resolved (Note that we assume {µ12, α12, µ22} is the
only explanation for ν12.). In fact, either one of them constitutes a diagnosis of
ν12, as formally defined as below.

Definition 12. (Diagnosis). A diagnosis ∆ν of ν is a minimal set of axioms from
Om, without which ν does not follow, i.e.,

∆ν ⊆ Om, s.t. Of ∪ Os ∪ Om |= ν,Of ∪ Os ∪ Om\∆ν 6|= ν, (3.4)

where ∀∆′ ⊂ ∆ν ,Of ∪ Os ∪ Om\∆′ |= ν.

Note that in the context of mapping refinement, diagnosis is defined to contain
only mappings.

The difference between explanation and diagnosis can be illustrated using the
example above. In Figure 3.1, ν12 is a violating axiom, {µ11, α12, µ22} is an ex-
planation for it, whereas {µ11} and {µ22} are two different diagnoses for it. Fol-
lowing Reiter’s theory [37], there are two ways to identify and remove mappings
which cause violating axioms: computing explanations and computing diagnosis,
which are detailed as follows.

Compute Explanation

One way to resolve violations is to compute one explanation for each violating
axiom and remove one mapping from the explanation, followed by a test to check
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Algorithm 1 Compute one explanation for an unsatisfiable concept
Require: a local ontology O, and a concept C that is unsatisfiable in O
Ensure: explanation ΩC , i.e., a minimal set of axioms in O that cause C to be

unsatisfiable
1: procedure GETEXPLANATION(O, C)
2: ΩC ← O
3: for α ∈ O do
4: ΩC ← ΩC\{α}
5: if ΩC 6|= (C v ⊥) then
6: ΩC ← ΩC ∪ {α}
7: end if
8: end for
9: return ΩC

10: end procedure

whether this violating axiom is successfully resolved. If not, repeat the process by
computing a new explanation for this violating axiom. This is possible because
there can be more than one explanation for a violating axiom. In Figure 3.2, for
example, if there is another mapping µ12 = 〈C ′f1 v C ′s2, ε12〉, the set {µ12, µ22} is
also an explanation for ν12, which can be formally denoted as

{µ12, µ22} |= ν12.

This explanation still remains if the mapping µ11 from the explanation {µ11, α12, µ22}
is removed.

Algorithm 1 presents the process of computing one explanation ΩC for an
unsatisfiable concept C in the context of an ontology O. To begin with, all the
logical axioms are taken as an initial explanation ΩC . Then one axiom α is deleted
from ΩC and the updated ΩC is checked whether it still entails C v ⊥, i.e., C is
unsatisfiable. If this ΩC can now makeC satisfiable, it means α is an indispensable
part of ΩC , thus it is added back to ΩC . Each one of the axioms is checked
following this procedure. In the end, ΩC contains the set of axioms that constitute
one explanation for C. This is a rather intuitive procedure and is used later in
resolving violations of the conservativity principle, the consistency principle, etc.

A complete procedure for the extended conservativity principle is presented in
Algorithm 2. It takes as input two involved ontologies Of ,Os and the mapping
ontology Om, applies the extended conservativity principle to remove all map-
pings which cause violating axioms, resulting in a refined mapping ontology O′m.
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Figure 3.2: Example of multiple explanations for one violating axiom

The algorithm is explained step by step.

B MERGEONTOLOGIES takesOf ,Os andOm as input and merges these three
ontologies into Ou, that is, Ou = Of ∪ Os ∪ Om. In OWL API [38], there
is OWLOntologyMerger class specifically designed for this task.

B GETALLINFERREDAXIOMS takes an ontology as an input and outputs all
inferred axioms of interest of this ontology. All inferred axioms are gener-
ated by using logic reasoner. There are different kinds of inferred axioms
that can be generated by a given reasoner, for example, subclass, equivalent
classes, equivalent object properties, class assertions, etc. Because in the
current use case it is only interesting to check whether candidate mappings
have introduced new logical relations (subclass and equivalence relation-
ships) among local concepts, only two kinds of inferred axioms, subclass
and equivalent classes, are generated. This is configured by supplying In-
ferredOntologyGenerator with a list consisting of InferredEquivalentClas-
sAxiomGenerator and InferredSubClassAxiomGenerator in OWL API.

B GETVIOLATINGAXIOMS takes the merged ontology Ou and one of two
local ontologies Ol as input and computes the set Svio of axioms that are
not in Ol, but inferred in Ou. As presented in Algorithm 3, Ol serves as a
filter because it is only interesting for us to see whether there are violating
axioms w.r.t this local ontology. While traversing all logical axioms in Ou,
if one of them, α, concerns only concepts in Ol but cannot be entailed by
Ol, α is then added to the set Svio of violating axioms.
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Algorithm 2 Extended conservativity via computing explanation
Require: two local ontologies Of and Os, corresponding mapping ontology Om
Ensure: refined mapping ontology O′m

1: procedure EXCONSERVEXP(Of ,Os,Om)
2: Ou ← MERGEONTOLOGIES(Of ,Os,Om)
3: for Ol ∈ {Of ,Os} do
4: Svio ← GETVIOLATINGAXIOMS(Ou,Ol)
5: repeat
6: for ν ∈ Svio do
7: if Ou |= ν then
8: Serr ← ∅
9: Cunsat ← SATISFIABILITYCONVERTER(ν)

10: repeat
11: ΩCunsat ← GETEXPLANATION(Ou, Cunsat)
12: Ssus ← ΩCunsat ∩ Om
13: µerr ← GETERRMAPPING(Ssus)
14: Serr ← Serr ∪ µerr
15: Om ← Om\{µerr}
16: Ou ← Ou\{µerr}
17: until Ou 6|= (Cunsat v ⊥)
18: for µ ∈ Serr do
19: Ou ← Ou ∪ µ
20: if Ou |= (Cunsat v ⊥) then
21: Ou ← Ou\{µ}
22: else
23: Om ← Om ∪ µ
24: end if
25: end for
26: end if
27: end for
28: Svio ← GETVIOLATINGAXIOMS(Ou,Ol)
29: until Svio = ∅
30: end for
31: O′m ← Om
32: return O′m
33: end procedure
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Algorithm 3 Compute violating axioms introduced by mapping suggestions
Require: merged ontology Ou and local ontologies Ol
Ensure: set of violating axioms Svio

1: procedure GETVIOLATINGAXIOMS(Ou,Ol)
2: Svio ← ∅
3: Su ← GETALLINFERREDAXIOMS(Ou)
4: for α ∈ Su do
5: if Σ(α) ⊆ Σ(Ol) and Ol 6|= α then
6: Svio ← Svio ∪ α
7: end if
8: end for
9: return Svio

10: end procedure

B SATISFIABILITYCONVERTER takes a logical axiom α as input and gener-
ates a corresponding concept Cunsat as output such that α is entailed if and
only if Cunsat is unsatisfiable. Debugging unsatisfiable concepts has been
studied extensively and has been a part of most OWL reasoners [39, 40].
This can be done by the following observation.

Given logical axiom ν ∈ Svio of the form A v B, let Cunsat = A u ¬B,
then we have

Ou |= ν ⇔ Cunsat is unsatisfiable w.r.t Ou. (3.5)

Axioms of the form A ≡ B are first converted to subsumptions {A v
B,B v A}. Their corresponding unsatisfiable concepts can be computed
following the same method. This conversion only works for DL languages
which allow for negation and is a standard practice to generate explanations
for arbitrary axioms.

B GETEXPLANATION takes the merged ontology Ou and the unsatisfiable
concept Cunsat as input and computes one explanation ΩC for Cunsat. We
have proposed a procedure to get an explanation of an unsatisfiable concept
in Algorithm 1, which is a rather primitive procedure by using reasoners
in a black-box way. For efficiency reasons, we use Pellet in our mapping
refinement system to compute one explanation at a time.

B GETERRMAPPING takes as input the set of suspect mappings Ssus and se-
lects one mapping µerr to delete. In some cases, the candidate mappings
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have their corresponding confidence values given by matchers. In such
cases, the mapping with the lowest confidence value is picked out as µerr.
In some other cases, mapping candidates are without confidence values. In
such cases, heuristics are applied to compute a temporary confidence value
for each mapping in order to pick out µerr. In the following, there are a
couple of heuristics discussed for this purpose.

Heuristics for computing confidence value. From Ssus one mapping µerr
should be identified as the one mapping that is most likely to be erroneous.
In order to distinguish this mapping, confidence value ε, a measurement of
degree of correctness, for each suspect mapping is computed. One idea to
compute ε proposed by Jiménez-Ruiz et al. in [12] is based on the locality
principle. Intuitively the locality principle suggests that if there is an estab-
lished mapping between two ontologies, the neighbors of the two concepts
are likely to be matched as well. The ontology modularization framework
[41] is used to compute the set of neighbors for concepts, and confidence
value can also be computed. For instance, given a mapping µ fromCf inOf
toCs inOs, modules Mf

Cf
and Ms

Cs
can be computed as the sets of neighbors

for Cf and Cs respectively. ε(µ) can be computed as follows.

ε(µ) =
|Mapped concepts in Σ(Mf

Cf
)|+ |Mapped concepts in Σ(Ms

Cs
)|

|Σ(Mf
Cf

)|+ |Σ(Ms
Cs

)|
.

(3.6)
Now for each µ ∈ Ssus, there is confidence value ε(µ). The mapping to
delete µerr is defined as

µerr ∈ Ssus, s.t. ∀µ ∈ Serr\{µerr}, ε(µ) ≥ ε(µerr).

Now that µerr is successfully identified, it should be removed from Om,
resulting in an updated mapping ontology. Since Om also contributes to
Ou, Ou is updated by removing µerr.

Serr is the set of mappings that are from different explanations for the vio-
lating axiom ν. It is possible that the order in which explanations are computed
would delete more mappings than necessary. For example, in Figure 3.2, there
are two different explanations for violating axiom ν12, i.e., Ω1 = {µ11, α12, µ22}
and Ω2 = {µ12, µ22}. Suppose that the confidence values of these three mappings
are in such an order, ε11 > ε22 > ε12. In the process of resolving ν12, if Ω2 is the
first explanation found, the algorithm would remove µ12 because it has a lower
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confidence value than µ22. After this removal, the violation remains. Another
explanation Ω1 will then be found, the algorithm would remove µ22 due to the
same reason. At this point, Serr = {µ12, µ22}. It is, however, not the minimal
set of mappings to delete from Om. Instead, deleting µ22 alone would success-
fully resolve the violation. Considering such cases, it is necessary to re-check
each mapping in Serr in order to delete the minimal set of mappings that cause
violations.

After all steps above (line 11 – 16), the violating axiom ν may have been
correctly resolved. The procedure is however incomplete because only one ex-
planation of ν is investigated. There can be more than one explanation for ν.
To make sure that ν is successfully resolved, it is necessary to recheck whether
Ou |= ν. If Ou |= ν holds, steps (line 11 – 16) are repeated until ν is no longer
entailed by Ou. This design ensures that each ν is successfully resolved and that
this refinement process is complete in discarding all mappings that violate the ex-
tended conservativity principle. After successfully resolving one violating axiom,
the procedure proceeds to check all other violating axioms. Note that correctly
resolving one violating axiom may cause other violating axioms to be resolved at
the same time. Therefore, we check each violating axiom before resolving it (line
7). This process ends when there are no violating axioms present. It is impor-
tant to note that the mapping ontology Om is constantly changing and any time
an entailment check is invoked, the latest Om is used. This also demands incre-
mental reasoning capability of logical reasoners, i.e., logical reasoners can take
account of new updates to an ontology without reloading the whole ontology. As
surveyed by Dentler et al. [42], there are only a limited number of existing logical
reasoners that support incremental reasoning, among which Pellet [39] supports
both incremental consistency checking and incremental classification. Therefore
Pellet is used in the implementation.

In Algorithm 2 (line 18 – 25), there is such a rechecking procedure after each
violation is successfully resolved. Simply Serr is traversed and each mapping µ
in it is first added to the latest Ou. After this addition, if Cunsat becomes again
unsatisfiable, that is to say, the violation again arises, µ is removed from Ou;
otherwise, µ does not belong to the minimal set of mappings to be deleted and is
therefore added back to Om. This process is to ensure that only a minimal set of
mappings are removed.

After the whole set Svio of violating axioms have been resolved, the updated
merged ontology Ou is used again to check whether there are still some violating
axioms present or not. If there are, the algorithm goes again through the process
of computing new Svio and resolving each one of them. If, however, there are no
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more violating axioms, the violation checking for one local ontology ends. The
process of recomputing Svio is necessary due to the timeout mechanism in the
current implementation. For some violating axioms, there are a large number of
explanations present. We look into a given number of its explanations before con-
tinuing with the next violating axiom. Thus, to ensure there are no more violating
axioms, we have to recompute Svio to make sure that it is empty. This timeout
mechanism proves to be helpful because the whole refinement process is dynamic
in the sense that resolving one violating axiom may help resolve some other vio-
lating axioms. This refinement process is applied to both local ontologies (line 2).
Finally the algorithm outputs the latest mapping ontology asO′m. O′m satisfies two
conditions: 1)O′m∪Of ∪Os is consistent and contains no unsatisfiable concepts;
2) O′m does not introduce violating axioms to either Of or Os.

Due to the interconnectivity of local ontologies and the mapping ontology,
deleting one mapping changes the merge of the three ontologies. This requires
updating ontologies constantly, which undermines the efficiency of this algorithm.
Moreover, this algorithm depends heavily on the logical reasoning service to com-
pute explanations, which is a major obstacle toward scalability.

Compute Diagnosis

The other way to removing mappings that cause violations is to compute a diag-
nosis of the violating axiom, and then remove this diagnosis from the mapping
suggestions. It is clear that one violating axiom ν could not be entailed by the
merge of two local ontologies, i.e.,

Of ∪ Os 6|= ν.

Now on the basis ofOfs = Of ∪Os, mappings fromOm are added toOfs one at a
time following a certain order. Each time a mapping µ ∈ Om is added toOfs, it is
then checked whether the latestOfs entails ν. If yes, according to the definition of
diagnosis, µ belongs to the diagnosis ∆ν and is added to ∆ν . Otherwise, another
mapping µ′ is added to Ofs, followed by another entailment check. This process
is repeated until all the mappings from Om are checked.

Algorithm 4 presents such a process. In fact, it is a much general process in the
sense that 1) any logical axiom can be converted to its corresponding unsatisfiable
concept; 2) the initial set Stmp of axioms can be set as a baseline, which can be
the empty set or any set of axioms that make C satisfiable. A baseline ontology
Ob is to initialize Stmp. In the case above, violating axiom ν can be converted to
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C such that ν is entailed if and only if C is unsatisfiable. The baseline ontology is
Ofs, since Ofs 6|= ν.

Algorithm 4 Compute diagnosis for an unsatisfiable concept
Require: ontology O, a concept C that is unsatisfiable in O and ontology Ob

serving as a baseline where C is satisfiable
Ensure: diagnosis ∆C , i.e., minimal set of axioms inO that cause C to be unsat-

isfiable
1: procedure GETDIAGNOSIS(O, C,Ob)
2: Stmp ← Ob
3: ∆C ← ∅
4: for α ∈ O do
5: Stmp ← Stmp ∪ α
6: if Stmp |= (C v ⊥) then
7: ∆C ← ∆C ∪ α
8: Stmp ← Stmp\{α}
9: end if

10: end for
11: return ∆C

12: end procedure

As pointed out by Meilicke et al. [43], the order in which mappings are added
and checked in the process is very important. Take again the example in Fig-
ure 3.1. Suppose ν12 is a violating axiom in Of . To compute its diagnosis ∆ν12 ,
mapping µ11 is added to Ofs as the first mapping. At this point, without µ22, ν12
cannot be entailed by Ofs. The process proceeds by adding µ22 to Ofs, causing
Ofs |= ν12. Then it would delete µ22 from Om. It might be the case that µ22

is actually more likely to be correct than µ11. In this case, the procedure deletes
more likely mappings while keeping ones that are less likely. Except for relying
on domain experts to find most likely mappings, one can make use of confidence
values generated by matchers or the presented heuristic. Now if each mapping
has its own confidence value, it is intended that a mapping with higher confidence
value should be preferred to ones with lower values. Following this idea, the set
of mappings Om can first be sorted in descending order with respect to their con-
fidence values. Then mappings with higher confidence values are added to Ofs
before the ones with lower values. Back to the example, if it is known that the
confidence value ε22 of mapping µ22 is higher than ε11, the confidence value of
µ11, µ22 would be added to Ofs. When later violation arises, µ11 is removed from
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Om. Thus, good mappings, i.e., mappings with higher confidence value here, are
kept while bad mappings are deleted.

A complete procedure of the extended conservativity principle following the
diagnosis approach is presented in Algorithm 5. As with Algorithm 2, the merged
ontology Ou of all three ontologies is computed. In addition, the merge Ofs of
local ontologies Of and Os is also computed and later serves as the starting point
of the diagnosis process. As discussed, the set of mappings in Om is sorted in
descending order in terms of confidence values of the mappings. This is exactly
what the function SORTDESCENDING does, though in the algorithm as a short
hand notation it outputs a ‘sorted’ ontology Om (line 4).

Algorithm 5 Extended conservativity via computing diagnosis
Require: two local ontologies Of and Os, corresponding mapping ontology Om
Ensure: refined mapping ontology O′m

1: procedure EXCONSERVDIAG(Of ,Os,Om)
2: Ou ← MERGEONTOLOGIES(Of ,Os,Om)
3: Ofs ← MERGEONTOLOGIES(Of ,Os)
4: Om ← SORTDESCENDING(Om)
5: for Ol ∈ {Of ,Os} do
6: Svio ← GETVIOLATINGAXIOMS(Ou,Ol)
7: for ν ∈ Svio do
8: Cunsat ← SATISFIABILITYCONVERTER(ν)
9: ∆ν ← GETDIAGNOSIS(Ou, Cunsat,Ofs)

10: if ∆ν 6= ∅ then
11: Om ← REMOVEAXIOMS(Om,∆ν)
12: Ou ← REMOVEAXIOMS(Ou,∆ν)
13: end if
14: end for
15: end for
16: O′m ← Om
17: return O′m
18: end procedure

The most important difference from Algorithm 2 lies in the way of handling
a given violating axiom ν. The diagnosis ∆ν of ν is initiated as an empty set.
Note that at the outset, according to the definition of violating axiom, Ofs 6|= ν
holds at the beginning. Then each mapping µ from the mapping ontology Om is
added to Ofs. Note that as the mappings are in a specific order the one mapping
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with highest confidence value will be the first one added to Ofs. The updated
ontology Ofs is then checked whether Ofs |= ν holds. In fact, after only one
mapping is added, the entailment would not change. Because a mapping only
establish a connection between two concepts from different ontologies, it would
need at least two mappings to cause violations, in which case two concepts from
the same ontology are indirectly connected with the given mappings. In the pro-
cess of adding new mappings to Ofs, if ever Ofs |= ν, the mapping added last
µ∗ is responsible for this violation. Compared to other mappings before µ∗, it has
the lowest confidence value and is therefore added to the diagnosis ∆ν . Further,
it has to be removed from the latest Ofs so that the set of axioms in Ofs contains
only mappings which do not violate the conservativity principle. After travers-
ing all mappings in Om, the diagnosis ∆ν now contains all those mappings that
could lead to the violating axiom ν. If there is more than one mapping in ∆ν ,
these mappings are independent from each other in causing the violating axiom ν.
Therefore, all those mappings should be deleted from the mapping ontology Om
(line 11). Because those mappings are also part of the merged ontology Ou, they
also need to be removed from Ou (line 12).

After one violating axiom is successfully resolved, the algorithm proceeds to
resolve other violating axioms. It is important to note that to check every violating
axiom a newOfs is needed (line 9). There are two ways to obtain a newOfs. First,
one can delete all mappings added to it in the previous round. This demands some
recording mechanism to keep track of all those mappings added toOfs previously.
One advantage of this approach is that the reasoner hosting Ofs does not need
to be re-initiated. The second approach is to compute again the merge of local
ontologies Of and Os. This approach however demands that the reasoner reload
the newly merged ontologyOfs again. Because initiating logical reasoner is more
expensive than removing axioms from ontology, the first approach is used in the
implementation. After the whole set Svio of violating axioms have been resolved,
this violation checking process proceed with another local ontology since there
are two local ontologies to be matched. Finally, the algorithm outputs a refined
mapping ontology Om as O′m.

The complexity of this algorithm is analyzed as follows. For a given local
ontology, suppose the size of violating axioms Svio ism, i.e., |Svio| = m. Suppose
there are n candidate mappings, i.e., |Om| = n, the algorithm calls entailment
check (m × n) times. For each violating axiom ν, Algorithm 2 (the explanation
approach) has to compute all its explanations and then check each one of them. In
contrast, Algorithm 5 (the diagnosis approach) computes its diagnosis only once.
Considering these observations, the diagnosis approach is expected to perform
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Figure 3.3: Grouping principle

better than the explanation approach in terms of runtime.

3.2.2 Grouping Principle
Grouping principle is an ad hoc principle based on observations of the use case
considered. In the use case, there is an xEBR taxonomy, which is built to facili-
tate interoperability among various national taxonomies, called local taxonomies.
While a given local taxonomy contains several thousands of concepts, the xEBR
taxonomy contains only a couple of hundred of concepts, and therefore can be
seen as an abstraction of financial concepts used in different countries. It is meant
to be a generic reflection of concepts and hierarchies in the financial reporting do-
main and many details (e.g., low level concepts, or country-specific concepts, etc)
are omitted. Thus it is less granular than local taxonomies. The XBRL Europe
Business Registers Working Group (xEBR WG)1, who had created this xEBR tax-

1See http://www.xbrleurope.org/working-groups/xebr-wg .
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onomy, also created manual mappings from several local taxonomies to it. Given
these xEBR WG mappings, it is observed that one xEBR concept can be mapped
to more than one local concepts with different relations in certain local taxonomy.

From a different point of view, it can be argued that all local concepts that are
mapped to the same xEBR concept share certain common property. And that each
of these concepts is mapped to xEBR concept with different relations makes it
interesting to investigate possible internal structure among these local concepts.
In Figure 3.3, the dashed lines represent mapping suggestions from Ox to Of and
Os. On the left side, concepts Cfi, where i ∈ [1, 5], are all mapped to Cx, possi-
bly with different relations and different confidence values. If all these mappings
are correct in semantic and logical sense, this set of concepts must share certain
properties and have semantic relations among themselves. Like in the above ex-
ample, concept Cf1 is a super concept all the rest concepts. Cx could be a high
level concept, semantically equivalent to Cf1 and broader than Cf2, Cf3, Cf4 and
Cf5. This assumption is also consistent with the fact that all of them are mapped
to Cx (possibly) with different relations and confidence values. The mapping sug-
gestions, therefore, are more likely to be correct. In contrast, on the right side of
the figure, in Os, concepts Csj , where j ∈ {1, 2, 4, 5}, are mapped to Cx, but Cs0
and Cs3 are not. It is suggested by the mappings that Cs1 and Cs2 are semanti-
cally related to Cs4 and Cs5. As can be seen in the figure, there are no apparent
relations among them. This observation undermines the correctness of (some of)
the mapping suggestions. In the following, we formalize this observation as the
grouping principle.

Formal Definition

A set of local concepts that are mapped to a common concept in another ontology
is called a group.

Definition 13. (Anchor concept and Group). Given a local ontology Ol and a
mapping ontology Om, group GCx is defined as

GCx = {Cl|ρ(Cx, Cl) ∈ Om, Cl ∈ Σ(Ol)}, (3.7)

where Cx ∈ Σ(Om)\Σ(Ol) and Cx is called an anchor concept.

Given this definition, the grouping principle can be defined as follows.
The Grouping Principle: For every group GC , where C ∈ Σ(Om)\Σ(Ol), if

|GC | ≥ 2, there exists semantic relation among the concepts in GC . Formally, let
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Ci, Cj ∈ GC and Ci, Cj ∈ Σ(Ol), where i 6= j; let ρ(Ci, Cj) denote the semantic
relation between them, where ρ ∈ {≡,v,w}. There must exist ρ ∈ {≡,v,w},
such that

Ol |= ρ(Ci, Cj).

In considering only {≡,v,w} as the possible relations between any pair of
local concept, there must be at least one concept in the group that is the super
concept of all the rest. In the following, an algorithm is presented based on this
idea.

Algorithm 6 Grouping principle
Require: local ontologies Ol, corresponding mapping ontology Om
Ensure: whether Om ∪ Ol follow the grouping principle

1: procedure GROUPPRINCIPLE(Ol,Om)
2: groupCounter ← 0
3: satisfyingGroupCounter ← 0
4: Sanchor ← Σ(Om)\Σ(Ol)
5: for Ca ∈ Sanchor do
6: GCa ← GETCONCEPTSGROUP(Om, Ca)
7: if |GCa| ≥ 2 then
8: isSatisfyingGroup← FALSE

9: groupCounter++
10: for Csup ∈ GCa do
11: isSuperClass← TRUE

12: for Csub ∈ GCa\{Csup} do
13: isConsis← is Ol |= (Csub v Csup)?
14: isSuperClass← isSuperClass && isConsis
15: end for
16: isSatisfyingGroup← isSatisfyingGroup | | isSuperClass
17: end for
18: if isSatisfyingGroup then
19: satisfyingGroup++
20: end if
21: end if
22: end for
23: PRINT(satisfyingGroupCounter/groupCounter)
24: return isSatisfyingGroup
25: end procedure
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The grouping principle is different from the locality principle in their assump-
tions. The locality principle is based on the assumptions that neighbors of cor-
rectly matched concept are also likely to be matched; while the grouping princi-
ple assumes that a set of concepts that are mapped to a common concept should
have some common properties and thus there is some interesting internal structure
among them.

Proposed Method

Algorithm 6 presents a primitive procedure to found out whether the merge of
local ontology Ol and its mapping ontology Om with a core ontology follows the
grouping principle. It takes as input a local ontology Ol and a relevant mapping
ontologyOm, i.e., Σ(Ol)∩Σ(Om) 6= ∅. There are also a couple of counters to give
more information about the mappings. groupCounter counts the number of sets
of local concepts that have more than one concept, while satisfyingGroupCounter
counts the number of sets of local concepts that follow the grouping principle.
Later the set Sanchor of potential anchor concepts is computed as those concepts
occurring in Om but not in Ol. For each of these potential anchor concepts Ca,
the function GETCONCEPTSGROUP computes the set GCa of local concepts that
are connected to Ca via the mapping ontologyOm. The group GCa is a set of con-
cepts from Ol, i.e., GCa ⊆ Σ(Ol). If GCa contains more than one local concept,
groupCounter increases by 1. The next step is to check whether this group GCa

follows the grouping principle. Another boolean indicator isSatisfyingGroup
is also initiated to be FALSE in order to keep track of the satisfiability property of
the group GCa .

Again there are different patterns in which the grouping principle can be checked.
In this work, one pattern is identified, i.e., whether in a group there is a concept
that is the super concept of all the rest concepts. Now given a group of concept
GCa , each one of its member concept is checked whether it is this super concept.
The idea is very intuitive: a concept Csup ∈ GCa is assumed to be this super con-
cept of all; then for each of the rest concepts Csub ∈ GCa\{Csup}, the subclass
relation Csub v Csup is checked whether it can be entailed by the local ontology
Ol, i.e.,

Ol |= (Csub v Csup),

the result of which is stored in a boolean variable isConsis. Moreover, for each
Csup there is a boolean indicator isSuperClass, initiated to be TRUE. The re-
sult of each entailment check is accumulated in isSuperClass via the boolean
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operation “AND”, denoted here in Java syntax as &&. Thus, if Csup is in fact
the super concept of all the rest, isSuperClass would remain TRUE after all the
rest concepts have been tried and checked. Later isSuperClass is also added to
isSatisfyingGroup via the boolean “OR” operation, denoted in Java syntax as | |.
Thus, if one concept is known to be the super concept of the rest, this group GCa

follows the grouping principle. The number of groups that follow the grouping
principle is also counted by satisfyingGroupCounter.

After all groups have been checked, the percentage of groups following the
principle can also be computed as

percentage =
satisfyingGroupCounter

groupCounter
.

The percentage indicates to what extent the mapping ontology Om complies with
the grouping principle. The following is some detailed descriptions of the intro-
duced functions occurring in Algorithm 6.

Algorithm 7 Get groups of concepts that are mapped to the same foreign concept
Require: mapping ontologies Om and anchor concept Ca
Ensure: set of concepts that comprise GCa

1: procedure GETCONCEPTSGROUP(Om, Ca)
2: GCa ← ∅
3: for µ ∈ Om do
4: if Ca ∈ Σ(µ) then
5: GCa ← GCa ∪ (Σ(µ)\{Ca})
6: end if
7: end for
8: return GCa

9: end procedure

The procedure GETCONCEPTSGROUP takes mapping ontology Om and a po-
tential anchor concept Ca as input. Formally a concept Ca is an anchor concept
iff 1) Ca ∈ Σ(Om)\Σ(Ol), 2) there are at least two mappings in Om that are re-
lated to Ca. Detail of this process are presented in Algorithm 7. The group GCa

is initiated as an empty set, i.e., GCa = ∅. Then for each mapping µ from the
set Om of all logical axioms in Om, it is then checked that whether the mapping
µ involves the concept Ca, i.e., whether Ca is contained in the signature Σ(µ) of
µ. If Ca ∈ Σ(µ), the rest of Σ(µ), i.e., (Σ(µ)\{Ca}), is added to GCa . After all
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the mappings in Om have been traversed, GCa contains all the concepts from Ol
that are connected to Ca via Om. GCa is also the output of the function GETCON-
CEPTSGROUP.

Algorithm 6 is a straightforward and non-optimized procedure. It is based on
the assumption that different granularity of local ontologies would lead to the sce-
narios that one concept in one ontology is mapped to a non-trivial set of concepts
in another ontology. Here non-trivial sets refer to those sets that have more than
one element. Due to the ad hoc nature of this proposed principle, it should first be
verified on xEBR WG mappings before being applied to automated mappings.

3.2.3 Consistency

The consistency principle ensures that mappings do not make any concept unsat-
isfiable. For example, in local ontology O1 it holds that B v A and in O2 it
is known that C is disjoint with D. There are two mappings, i.e., A ≡ C and
B v D. Now it can be inferred that B is a subclass of both C and D. Because
C and D are disjoint, B becomes unsatisfiable. In such cases, at least one map-
ping should be removed to resolve the incoherence. Let Of and Os be two local
ontologies, and Om be a mapping ontology between them.

Algorithm 8 Coherence check
Require: two local ontologies Of and Os, corresponding mapping ontology Om
Ensure: Of ∪ Os ∪ Om is coherent

1: procedure COHERENCECHECK(Of ,Os,Om)
2: Ou ← MERGEONTOLOGIES(Of ,Os,Om)
3: Ofs ← MERGEONTOLOGIES(Of ,Os)
4: if ISCONSISTENT(Ou) then
5: for C ∈ Σ(Ou) do
6: if Ofs 6|= (C v ⊥) &&Ou |= (C v ⊥) then
7: return FALSE

8: end if
9: end for

10: else
11: return FALSE

12: end if
13: return TRUE

14: end procedure
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Algorithm 8 is a non-optimized procedure testing whether the merged ontol-
ogy is coherent or not, i.e., whether it contains unsatisfiable concept. It takes
as input two ontologies Of and Os and a corresponding mapping ontology Om.
First, all three ontologies are merged into Ou. Then Of and Os are merged into
Ofs. Next the function ISCONSISTENT determines whether Ou is consistent, i.e.,
whether there exists a model for it. This is very basic functionality of logical rea-
soners. If Ou is consistent, then for each concept C in the signature of Ou, if it is
satisfiable with respect to Ofs but becomes unsatisfiable with respect to Ou, Ou
is shown to contain unsatisfiable concept, therefore, is incoherent. Note it is also
possible to resolve those unsatisfiable concepts found in Ou by computing their
explanations or diagnoses. The computation of explanations or diagnoses would
be the same as presented in Section 3.2.1.

As illustrated in the example above, consistency checking relies on disjoint-
ness relations. So it is desired that local ontologies contain disjointness relations.
As defined in Chapter 2, SEOM can enrich the financial ontologies partly by
adding disjointness axioms, so that the consistency principle is expected to help
the mapping refinement process in this case and will be examined in Chapter 4
experimentally.

3.3 Extension & Discussion

There are several possible optimization techniques for both extended conservativ-
ity algorithms.

3.3.1 Compute a minimal set of violating axioms

The number of violating axioms can be very large, therefore reducing it to a mini-
mal set can be useful. For example, the two financial ontologies considered in this
work contain some 300 concepts altogether. And a set of mappings generated by
COAL contains some 500 mappings. But the set of violating axioms amounts to
several thousand. Thus it is interesting to check whether some violating axioms
can be entailed by others, in which case these violating axioms would be resolved
automatically, if their causing axioms were resolved.

Definition 14. (Minimal violating axiom set). A minimal set of violating axioms,
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denoted as S∗vio, satisfies

S∗vio ⊆ Svio, s.t.
⋃

ν∈S∗vio

∆ν =
⋃

ν∈Svio

∆ν ,∀S ′vio ⊂ S∗vio,
⋃

ν∈S′vio

∆ν 6=
⋃

ν∈Svio

∆ν .

(3.8)

Intuitively, the diagnosis of all violating axioms in S∗vio should be the same as
the diagnosis of all violating axioms in Svio. Though the minimal set of violating
axioms S∗vio is defined using diagnosis of violating axioms, the idea can also be
applied when explanation is computed in Algorithm 2.

3.3.2 Resolve multiple violating axioms at a time
Instead of resolving one violating axiom at a time, a set of violating axioms can
be considered together. This set can be of any fixed size, which can be determined
heuristically. Ideally, this would speed up the process of resolving violating ax-
ioms. To be specific, a set Svio of violating axioms, where Svio ⊆ Svio, can be
transformed into one axiom ν∗ such that Svio is entailed if and only if ν∗ is en-
tailed. For example, let Svio = {νa, νb}, where νa = (A v B) and νb = (C v D).
It is known that A v B ⇔ > v (¬A t B). Following this proposition, ν∗ is the
conjunction of the new axioms, i.e.,

ν∗ = > v (¬A tB) u (¬C tD). (3.9)

For an axiom of the form G ≡ H , it can first be transformed into a set of
subsumptions like {G v H,H v G}. For ν ∈ Svio, we further have

O 6|= ν ⇒ O 6|= Svio, (3.10)

where ν ∈ Svio. Any mappings that belong to the diagnosis ∆ν of the violating
axiom ν also belong to the diagnosis ∆ν∗ . Therefore, resolving multiple violat-
ing axioms by the techniques presented here is expected to be more effective in
deleting unintended mappings. The size of Svio is determined later by running the
algorithms with different sizes. The result is reported in the evaluation section.

3.3.3 Replace entailment check with satisfiability check
As introduced in Section 3.2.1, it is possible to convert any logical axiom α to a
conceptCunsat such that α is entailed if and only ifCunsat is unsatisfiable. This can
also be applied to compound violating axiom constructed following the technique
presented in the above section.
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3.3.4 Alternative ordering metrics for mappings
So far, only confidence values of mappings are considered to sort the mappings in
a specific order so that given two mappings with different confidence values the
one with higher value is preferred. Meilicke et al. [44] proposed to calculate the
potential impact of a mapping candidate. Though they devised the method in the
context of distributed description logics (DDL), the method can also be adapted
to the current work.

Definition 15. (Potential impact of a mapping). The potential impact of a map-
ping µ = 〈id, Cf , Cs, ε, ρ〉 from Of to Os is defined as

imp(Of ,Os, µ) 7→


sub(Of , Cf ) · (super(Os, Cs) + dis(Os, Cs)) if ρ =v
super(Of , Cf ) · (sub(Os, Cs) + dis(Os, Cs)) if ρ =w
imp(Of ,Os, µv) + imp(Of ,Os, µw) if ρ =≡

(3.11)
where sub(Of , Cf ) returns the number of all subclass of concept Cf in Of ,
super(Os, Cs) returns the number of all super-class of concept Cs in Os, and
dis(Os, Cs) returns the number of all classes that are disjoint with Cs in Os; µv
refers to a mapping µ where its relation is v, analogously for µw.

3.4 Summary
In this chapter we extend existing mapping refinement techniques by using a rea-
soner as an oracle. This includes several principles that constitute a logic-based
mapping refinement (LOMR) mechanism. One principle, the grouping principle,
is proposed based on observations of the ontologies in the current use case. An
extended discussion about the conservativity principle is presented to consider
subsumption mappings. The consistency and locality principle are also adopted
from existing work and implemented in the current implementation. A number
of optimization techniques are also presented. By integrating the conservativity,
consistency and locality principles, together with a set of selected optimization
techniques, a complete mapping refinement mechanism, LOMR, is developed in
order to refine automated mapping candidates. The above optimization techniques
are applicable to both Algorithm 2 and Algorithm 5. These techniques include re-
solving multiple violating axioms at a time and replacing an entailment check with
a satisfiability check.



Chapter 4

Experiment & Evaluation

In this chapter we describe the experiments conducted and the results obtained. It
has the following parts: Section 4.1 describes the datasets prepared and used in
the experiments; Section 4.2 introduces the metrics used in the evaluation; Sec-
tion 4.3 describes the implementation and the experiments; Section 4.4 presents
the evaluation results of both SEOM and LOMR; Section 4.5 summarizes the
chapter.

4.1 Datasets
In the experiments we consider two datasets: financial dataset and conference
dataset. The financial dataset contains financial ontologies we created based on
XBRL taxonomies, a set of gold standard mappings between a pair of financial on-
tologies and mapping suggestions from a couple of matchers. Conference dataset
contains a number of ontologies from the CONFERENCE track [45] of OAEI 2010,
reference mappings between them and mapping suggestions generated by some
matchers. In the following sections, we will describe the two datasets in detail.

4.1.1 Financial dataset
We created a series of financial ontologies based on French, Spanish and xEBR
taxonomies1. Note that we only focus on concepts occurring in the balance sheet,
which are determined by different role references in different taxonomies (shown

1More details about the French and Spanish taxonomies are in Section 2.3. For xEBR taxon-
omy, confer Section 3.2.2.

53



54 CHAPTER 4. EXPERIMENT & EVALUATION

Table 4.1: Role references of taxonomies used in the experiments

Taxonomy Role reference

xEBR
Assets

EquityLiabilities

TCA
ca:BilanActifDeveloppe

ca:BilanPassifAvantRepartitionDeveloppe

PGC07 pgc07:BalanceSituacion

in Table 4.1). Financial ontologies constructed, and later used in the experiments,
are presented in Table 4.2. Ox,Of andOs are balance sheet ontologies for xEBR,
French and Spanish taxonomies respectively. Ob refers to the BAO that we con-
structed using shared properties underlying various taxonomies. Ofa and Osa are
two ontologies, which contain only asset concepts, while Ofae and Osae are the
enriched ontologies we created in the process of SEOM. As a reminder, these two
enriched ontologies only contain concepts relating to assets. Ofm and Osm are
minimal ontologies containing only concepts relating to current assets.
Gold Standard Mappings. We consulted one French accounting expert to man-
ually create mappings between Of and Os. To help the expert, we applied heuris-
tics to manual mappings from the xEBR ontology to each of the two ontologies in
order to get an initial set of mappings. Then we presented these mappings via a
tailored web application2 to the expert so that he could modify or add to this initial
set of mappings, until the gold standard mappings were properly identified. As the
domain expert pointed out, there are lots of difficulties and subtleties in matching
financial concepts from different countries. In effect, the expert gave many equa-
tions comparing concepts, some using equality (=), others using less than (<) or
greater than (>). We have to be very careful in interpreting these formulas in order
to truthfully reflect relations among different financial concepts. The set of gold
standard mappings, denoted asMgs, is presented in Table 4.3. More details about
interpretingMgs and relevant discussions can be found in Appendix A.
Mapping suggestions for the financial ontologies. We use SEOM and COAL
to generate mapping suggestions for the financial ontologies. SEOM generates
93 mappings for the enriched ontologies Ofae and Osae. COAL is able to gener-

2See a screen shot of the web application in Figure A.1 in Appendix A.



4.1. DATASETS 55

Table 4.2: Financial ontologies used in the experiments

Ontology # Concepts # Objectprop. # Dataprop. DL

Ox 66 0 0 AL

Of 179 0 0 AL

Os 138 0 0 AL

Ofa 138 0 0 AL

Osa 74 0 0 AL

Ob 189 36 5 ALCHQ(D)

Ofae 328 36 5 ALCHQ(D)

Osae 264 36 5 ALCHQ(D)

Ofm 19 0 0 AL

Osm 42 0 0 AL

Table 4.3: Statistics of gold standard mappings. The 32 simple subsumptions
consist of 13 narrowMatch mappings and 19 broadMatch mappings.

simple complex
Total

Asset Other Asset Other

Subsumption 32(13+19) 25 7 4 68

Equivalence 14 13 13 13 53

Total
46 38 20 17

84 37 121
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Table 4.4: Different sets of mappings for top-n tests

# COAL mapping suggestions top 1 top 5 top 10

(a) (Ofm,Osm) 30 123 217

(b) (Of ,Os) 537 2685 5370

ate different numbers of mapping suggestions. For example, if we consider the
top ten mapping suggestions for a single concept, the total number of mapping
suggestions is ten times more than when we only consider the top one mapping
suggestion. Different top-n COAL mappings are presented in Table 4.4.

4.1.2 Conference dataset

The CONFERENCE track consists of a collection of 15 ontologies all describing
the domain of conference organization. There are reference mappings only among
7 out of the 15 ontologies, which will be the subject of our experiments for the
following reasons: 1) they have disjointness relations, which is crucial for the
consistency principle to be effective; 2) there are reference mappings for these
ontologies; 3) we are able to compare LOMR against a recent mapping refinement
system ALCOMO, which was also evaluated on this dataset. Hereafter we refer to
these 7 ontologies as conference ontologies. Conference ontologies together with
mapping suggestions among them are called the conference dataset. More details
about these 7 ontologies are given in Table 4.5. For conference ontologies in
OAEI 2010 campaign, there are in total 14 matchers3 that submitted their mapping
suggestions, which are shown in Table B.1 in Appendix B.

4.2 Metrics

In the following sections, evaluation metrics used in this thesis are presented.
Apart from the well-known precision, recall and F measure, a new metric is intro-
duced to measure the benefit gained from the mapping refinement process.

3A detailed description of the matchers can be found in Meilicke’s PhD thesis [11].



4.2. METRICS 57

Ta
bl

e
4.

5:
A

nu
m

be
ro

fo
nt

ol
og

ie
s

fr
om

th
e

C
O

N
F

E
R

E
N

C
E

tr
ac

k
an

d
th

e
re

fe
re

nc
e

m
ap

pi
ng

s
am

on
g

th
em

#
R

ef
er

en
ce

m
ap

pi
ng

s
e
k
a
w

C
o
n
f
e
r
e
n
c
e

s
i
g
k
d
d

i
a
s
t
e
d

C
o
n
f
O
f

c
m
t

e
d
a
s

#
C

on
ce

pt
s

D
L

e
k
a
w

×
25

15
19

20
11

23
77

SH
IN

C
o
n
f
e
r
e
n
c
e

×
15

14
15

15
17

60
A
L
CH
IF

(D
)

s
i
g
k
d
d

×
15

7
12

15
49

A
L
EI

(D
)

i
a
s
t
e
d

×
9

4
19

14
0

A
L
CI
N

(D
)

C
o
n
f
O
f

×
16

19
38

SI
N

(D
)

c
m
t

×
13

36
A
L
CI
N

(D
)

e
d
a
s

×
10

4
A
L
CO
IN

(D
)



58 CHAPTER 4. EXPERIMENT & EVALUATION

4.2.1 Precision, Recall and F measure

Precision, Recall and F measure are well-known metrics, originating from Infor-
mation Retrieval (IR), which require a gold standard. In this thesis, gold standard
mappings Mgs are given by a domain expert, as explained in Section 4.1.1. A
set of mapping suggestionsM can be evaluated following the confusion matrix,
where truepositive refers to the number of mappings that are in both Mgs and
M; falsenegative refers to the number of mappings that are inMgs, but not in
M; falsepositive refers to the number of mappings that are in M, but not in
Mgs. Thus, precision (p), recall (r) and F measure (f ) are defined as follows.

Table 4.6: Confusion matrix for mapping evaluation

Mgs

M
truepositive falsepositive

falsenegative

p :=
truepositive

truepositive+ falsepositive
(4.1a)

r :=
truepositive

truepositive+ falsenegative
(4.1b)

f :=
2× p× r
p+ r

(4.1c)

4.2.2 Human Effort Saved

Another metric reflects the amount of human effort saved by mapping refinement
systems from the perspective of an end user who checks all the mapping sugges-
tions in order to find correct ones. Specifically, the metric, human effort saved,
denoted as hes, measures the percentage of incorrect mappings removed with re-
spect to the total number of incorrect mappings before the refinement process. In
Table 4.6, let M be the mapping suggestions before the refinement process and
M′ be the refined mappings. And falsepositive′ denotes the number of mappings
that are inM′, but not inMgs, which is exactly the number of incorrect mappings
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after the refinement process. The human effort saved can then be calculated as

hes :=
falsepositive− falsepositive′

falsepositive
. (4.2)

This is a rather intuitive metric to reflect the usefulness of the refinement process.
Considering the case that falsepositive is non-zero, if hes = 1, it means all
incorrect mappings are removed by the refinement process, i.e., falsepositive′ =
0; if hes = 0, it means none of the incorrect mappings has been removed by the
refinement process and no human effort is saved. The hes metric is analogous to
a metric, relative effort reduction [46], which has been found to be useful in the
domain of knowledge revision.

4.3 Implementation

We have implemented a semi-automatic mapping generation mechanism (SEOM)
and a fully automated mapping refinement mechanism (LOMR). Next, we intro-
duce the tools and libraries used, followed by descriptions of both mechanisms.

A number of logic reasoners are used in this thesis. Next, short descriptions
of these reasoners are given, focusing on those aspects that are important to this
work. HermiT reasoner is an OWL 2 DL reasoner based on hyper-tableau calcu-
lus. Given an ontology, it can perform consistency checking, classification and
entailment checking. Pellet reasoner is an OWL 2 reasoner providing many well-
advanced logical reasoning services, among which incremental reasoning con-
tributes considerably to our algorithms.

Among the logical principles presented in Chapter 3, the grouping principle,
proposed based on observations of different granularity between shared and na-
tional financial ontologies, is first to be verified before being used to refine map-
ping suggestions. A combination of the conservativity, consistency and locality
principles is implemented as a complete logic-based mapping refinement (LOMR)
procedure. Given two ontologies and a set of mapping suggestions, LOMR first
checks whether there is incoherence (unsatisfiable concept). Then it resolves in-
coherence by removing mapping suggestions until no incoherence exists. The
next step is to check if there is any violation of the conservativity principle. Again
to resolve these violations, LOMR removes mapping suggestions following the
algorithms and heuristics presented in Section 3.2 of Chapter 3. The locality prin-
ciple is used to compute confidence values, in case mapping suggestions do not
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have corresponding confidence values. After this whole mapping refinement pro-
cess, the output is a set of refined mappings that are consistent with the two local
ontologies, and cause no violations of the conservativity principle is returned. To
evaluate this refined set of mappings, they are compared against reference map-
pings.

4.4 Evaluation
To show the effectiveness of SEOM, we compare SEOM against COAL on the
basis of Ofe and Ose. As for our mapping refinement mechanism, we first con-
ducted experiments to determine a set of optimal heuristics to be included in
LOMR. After obtaining an optimal LOMR, we show its usefulness by refining
both SEOM and COAL mappings for the financial ontologies. Then we compare
LOMR against another mapping refinement system on the conference dataset.

4.4.1 SEOM
Concept definition based on the BAO can be used as a mapping generation mech-
anism. With each concept in the local taxonomies properly defined, a pair of con-
cepts from two different taxonomies can be matched by using reasoners, if they
have similar definitions. There are in total 46 mappings in Mgs (subsumption
together with equivalence) that relate exclusively to asset concepts, as shown in
Table 4.3. In order to distinguish narrowMatches from broadMatches, we require
that mappings are directed and always go from a French concept to a Spanish one.
For the purpose of reasoning, we converted the exactMatches into equivalence
relations, the narrowMatches and broadMatches into subclass and superclass re-
lations respectively.

Table 4.7 compares SEOM with COAL. For each concept in the French bal-
ance sheet, we use COAL to get the top exactMatch concept from the Spanish bal-
ance sheet. We do the same for narrowMatch and broadMatch. Then we eliminate
all the mappings that do not involve asset concepts. This results in 352 mappings,
in contrast to 93 mappings generated by SEOM. As can be seen in Table 4.7, the
logic-based approach produces much better results in terms of precision and recall
for all 3 kinds of mappings. For example, out of 14 exactMatches from the gold
standard mappings, the logic-based approach finds 12, whereas COAL only finds
3. Note that we also used LogMap to match the datasets and obtained no map-
pings relating exclusively to asset concepts. The results therefore are omitted in



4.4. EVALUATION 61

Table 4.7: Comparison of alignment from COAL and SEOM

Recall exactMatch narrowMatch broadMatch Overall Recall Precision

COAL 3/14 5/13 3/19 23.9%(11/46) 3.1%(11/352)

SEOM 12/14 9/13 13/19 73.9%(34/46) 36.6%(34/93)

Table 4.7. SEOM achieves 73.9% recall and 36.6% precision, as compared with
23.9% recall and 3.1% precision by COAL.

Out of the 93 mapping suggestions from SEOM, there are 59 redundant map-
pings. Recall is not 100% mainly due to two sources of difficulty. One is map-
pings involving ‘Other’ concepts, which are catchalls for anything that does not
fall into another sibling category. The other source of difficulty is divergent cat-
egorization, e.g., the Spanish taxonomy includes prepayments to suppliers in the
inventory category, but the French does not. It is also worth noting that the logic-
based approach detected inconsistencies which we resolved by deleting what we
considered to be incorrect mappings. The incorrectness of these mappings was
later confirmed by the domain expert. The limitation of SEOM lies in that 1) the
BAO is to be extended, 2) human intervention is needed in both extending the
BAO and defining other financial concepts using it.

4.4.2 Mapping Refinement System
In this section we present results of LOMR. Before that we first investigate differ-
ent configurations of LOMR.

Grouping Principle

First, we need to verify this principle before building it into the whole logical
refinement system. For this verification, we consider Ox, Of ,Os and the xEBR
WG mappings among them. Given Of and Ox and the manual mappingsMfx,
we first find those pivot concepts from Ox, i.e., each concept which is mapped
to more than one concept in Of . Then for each pivot concept Cp, we can find
a group of concepts from Of that are connected to Cp inMfx. Afterwards, we
check whether there is a super-concept of the rest in each group.

The experimental results can be seen in Table 4.8. ForOf , 11 out of 18 groups
follow the grouping principle. This indicates that the grouping principle reflects
the internal relations among the French concepts in a group. For Os, however,
there are 5 groups found, but there is only 1 group of concepts following the
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Table 4.8: Experimental results of the grouping principle

Taxonomy # Groups of local concepts # Groups following the grouping principle

TCAG 18 11

PGC07 5 1
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Figure 4.1: Effect of the refinement process

grouping principle. The grouping principle therefore reflects the internal relation
of concepts in groups for Of , and is able to propose new mappings. Though
there are granularity differences between xEBR taxonomy and local taxonomies,
this principle cannot tell whether a certain mapping is good or not. Therefore,
this principle is not included in the final mapping refinement mechanism. On the
other hand, the principle reveals that there are possible good mappings between
two concepts consisting of similar sets of sub-concepts (See Appendix C for an
example).

Extended Conservativity

Here we describe experiments concerning the extended conservativity principle.
In Figure 4.1, the F measure f of top-n mappings, before and after the refinement
process, are presented. The horizontal axis refers to different top-n mappings gen-
erated by COAL, as shown in Table 4.4. Both the explanation approach and the
diagnosis approach are applied to minimal ontology pair (mini) and balance sheet
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ontology pair (BS). The curves “Bmini” and “BBS” refer to baseline F measures,
i.e., F measures of the mapping suggestions before the refinement processes. Pre-
fix “E” of curves refers to the explanation approach, while prefix “D” to the diag-
nosis approach.

First, it can be observed that F measures are, in general, very low, due to the
quality of mapping candidates automatically generated by COAL. For Ofm and
Osm, the curve “Bmini” gives the baseline f before the refinement process. The
diagnosis approach achieved better f than baseline f two cases out of three, while
the explanation approach gave better results in only one case. For the balance
sheet ontologies Of and Os, both the explanation and diagnosis approaches give
better results than the baseline. Note that the explanation approach failed to give
results within a given timeout in two cases. Timeout is set as 60 minutes for
all experiments in this thesis. On the basis of these results, it can be concluded
that both approaches, especially the diagnosis approach, give better F measure
f than the baseline in the case of financial ontologies. This is to say, after the
refinement process, the refined mappings are of better quality compared to the
original mappings.

For both approaches, there is only a moderate change in f . One reason is that
in the refinement process a small portion of correct mappings are also removed.
An increase of p can be observed in general, while at the same time r decreases,
thus resulting in no big change in f .
Explanation vs. Diagnosis. Two approaches have been proposed to resolve inco-
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herence and violations introduced by mappings. A comparative analysis of these
two approaches is in Figure 4.2. In the figure, the horizontal axis indicate dif-
ferent sizes of sets of violating axioms that are to be resolved at the same time.
Curves starting with “E” refer to the explanation approach; while “D” indicates
the diagnosis approach. Suffix “P” refers to p, “R” to r, “F” to f and “T” refers to
runtime (minutes) of the refinement procedure. Thus, “EP” refers to the precision
of refined mappings through the explanation approach; others can be interpreted
analogously.

The following observations can be drawn from the experimental results. In
general the explanation approach took more time than the diagnosis approach. In-
deed, the explanation approach took much more time than the diagnosis approach
when more mapping candidates are to be refined, which is shown by difference
in the slopes of curves “ET” and “DT”. Further, the diagnosis approach achieves
better results in terms of f . Thus the diagnosis approach is built into the LOMR
system.
Resolving multiple violating axioms at a time. In Section 3.3, it is suggested
that the procedure would speed up by resolving multiple violating axioms at a
time because mappings that cause violations would be more quickly discovered.
The experimental results concerning this hypothesis is shown in Figure 4.2. It
shows that it takes more time to resolve a larger size of violating axioms. It is
also interesting to note that r has a slight increase, while f decreases moderately.
This is true for both explanation and diagnosis approaches. Given these results,
the heuristic of resolving multiple violating axioms at a time does not provide a
gain that outweighs the loss it causes. Therefore, this heuristic is not included in
LOMR, and all other results in this thesis are concerned with resolving only one
violating axiom at a time.

LOMR

With the help of the experimental results presented above, an optimal mapping
refinement system (LOMR) constituting the extended conservativity, consistency
and locality principles, together the diagnosis approach, resolving single violating
axiom at a time, is implemented and evaluated in the following sections.
Scalability. A scalability test is also conducted to reveal the capacity of the pre-
sented algorithms in dealing with different numbers of mapping suggestions. In
Figure 4.3, the naming of curves follows that of Figure 4.2, with the exception
that only f and runtime are presented here. The horizontal axis refers to different
top-n mappings to be refined, as detailed in Table 4.4.
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It can be seen from Subfigure 4.3a that the explanation approach does not scale
as well as the diagnosis approach. This is confirmed by Subfigure 4.3b, where with
even more mappings, the explanation approach failed to give any result within a
given timeout. The diagnosis approach can finish refining some 5,000 mappings
in less than 10 minutes. On the other hand, it can also be observed that with more
mappings to refine, the time the diagnosis approach takes increases rapidly.
Human Effort Saved. As introduced in Section 4.2.2, hes reflects the usefulness
of a refinement mechanism from the viewpoint of end users. Figure 4.4 presents
the experimental results on two different approaches on two different datasets with
different top-n mappings. The vertical axis is the percentage of hes. It can be seen
that given the datasets, LOMR reduces human effort between 43% and 80%.
Refinement with Enriched Ontologies. In this test, enriched ontologies, i.e.,
Ofae andOsae, are used for the mapping refinement process. The enriched ontolo-
gies contain disjointness relations, which are vital for the consistency principle to
be effective. Therefore, it can be expected that withOfae andOsae, LOMR is bet-
ter enabled to detect incoherence caused by the mapping suggestions. Table 4.9
presents the refinement results using enriched ontologies and those simple ontolo-
gies with only class hierarchies, i.e., Ofa and Osa. Since enriched ontologies are
particularly relevant for the consistency principle, the refinement procedure with
consistency check (rows with “C”, as opposed to without “C”) is compared against
one without consistency check (rows without “C”). Again we conducted the test
with different top-n mapping suggestions. The statistics presented in Table 4.9
take the following pattern. We collected the F measures of the refined mappings,
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Table 4.9: Refining different sets of mappings with enriched ontologies

(f (%), t(min)) 1 5 10

(Ofa,Osa) (3.2, 0) (5.1, 0) (4.6, 0)

(Ofa,Osa),C (3.2, 0) (5.1, 0) (4.6, 0.1)

(Ofae,Osae) (6.3, 0.3) (8.6, 2.3) (10.1, 4.0)

(Ofae,Osae),C (6.2, 0.4) (8.6, 1.6) (12.4, 3.7)

and the time t the procedure takes for each test, and then put them into a pair. Take
for example the pair (6.3,0.3) in the second column and fourth row. It means that
with Ofae and Osae LOMR takes 0.3 minute to refine 537 mapping suggestions
from COAL and the F measure of the refined mappings is 6.3%.

It can be seen that enriched ontologies help increase the f of the refined map-
pings. The consistency check also helps improve the quality of the refined map-
pings. On the other hand, LOMR takes much more time while considering en-
riched ontologies. The reason is that in the enriched ontologies there are concepts
from the BAO so that more violations of logic principles are detected, and have to
be resolved.
Refining logic-based mappings. It is also interesting to refine the mappings gen-
erated by SEOM. As mentioned in Chapter 2, all mappings generated by SEOM
are consistent with the ontologies involved. The question would then be whether
the mappings would violate the conservativity principle or not. LOMR is used to
refine the mappings from SEOM. The results support the previous hypothesis that
all the good mappings are preserved and no violation is found. This experimental
result shows that mappings proposed by SEOM, as expected, do not violate any
of LOMR’s principles.

LOMR vs. ALCOMO

LOMR is compared against other existing mapping refinement systems, in order
that a fair conclusion can be drawn for LOMR.

ALCOMO is a recent logic-based mapping refinement system designed and
implemented by Meilicke [11]. A series of experiments have been conducted to
compare LOMR against ALCOMO. We conducted experiments on seven pairs
of conference ontologies, where the results of three representative pairs are pre-
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sented in Figure 4.5. Specifically, Subfigure 4.5a concerns two ontologies cmt
and ekaw, whereas Subfigure 4.5b concerns ontologies cmt and Conference,
and Subfigure 4.5c concerns ontologies Conference and ekaw. The vertical
axes indicate f of refined mappings from different matchers. Each curve in each
figure corresponds to one matcher. For relevant descriptions of each ontology
matcher, readers are refered to the PhD thesis of Meilicke [11]. We compare f
of refined mappings from LOMR and ALCOMO against the f of unrefined map-
pings (Baseline).

The following observations can be made. In most cases, LOMR gives compa-
rable, sometimes even better results, than ALCOMO does. For example, LOMR
always gave better results when refining mapping suggestions produced by LILY

for the three representative pairs of conference ontologies. Specifically, when
refining mapping suggestions from LILY for ontologies cmt and ekaw, LOMR
achieved higher F measure than ALCOMO by 7.7%. More detailed comparison
of LOMR and ALCOMO is presented in Appendix D.

Additionally, with a few exceptions, the quality of mappings, measured by f ,
has been improved slightly after the mapping refinement process. This shows that
LOMR is also applicable to datasets other than the financial dataset only.

4.5 Summary
This chapter mainly presents experiments and evaluation results concerning the
mapping generation mechanism by semantic enrichment presented in Chapter 2
and the logic-based mapping refinement mechanism presented in Chapter 3. All
these address the research questions R2 and R5.

Section 4.1 presents all relevant information of the datasets used in this thesis:
financial dataset and conference dataset. While the conference dataset stems from
benchmarking efforts, we created the financial dataset by constructing financial
ontologies based on XBRL taxonomies, building the gold standard mappings be-
tween an ontology pair and generating mappings suggestions using SEOM and
COAL. Section 4.2 presents a number of different metrics for measuring the qual-
ity and the gain of refined mappings. Among existing metrics like Precision p,
Recall r and F measure f , a new metric, human effort saved hes, is introduced.
In Section 4.3 some general information about the implementation is presented,
including the libraries, reasoning tools and descriptions of both mechanisms.

Section 4.4.1 shows the advantage of the presented approach against another
mapping generation tool, in terms of precision and recall of generated mappings.
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Figure 4.5: Refining mappings submitted for CONFERENCE track to OAEI 2010
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SEOM gives better results than a system based on heuristics and machine learning
techniques. Section 4.4.2 starts with verification results concerning the grouping
principle. The principle is shown to be inadequate to detect incorrect mappings,
therefore is excluded from LOMR. In the same section, results are presented for
LOMR, consisting of the extended conservativity (using the diagnosis approach),
consistency and locality principles and heuristics like resolving only one violating
axiom at a time. LOMR is shown to improve the quality of mapping suggestions
by increases of f . hes is also computed in different settings, where there is up to
80% human effort saved when considering the financial dataset. Moreover, it is
shown that our system LOMR gives comparative, sometimes even better, results
than ALCOMO does. With a few exceptions, the quality of mappings, measured
by f , has been improved slightly after the mapping refinement process. Also there
have been, on average, around 20% human effort reduction.

With all the experimental results summarized above, the questions of what
mechanism will enable the exploitation of background knowledge (R2) and how
the logic-based principles perform (R5) are addressed with a mapping generation
mechanism based on semantic enrichment (SEOM) and a logic-based mapping
refinement mechanism (LOMR) respectively. Both mechanisms give comparable,
sometimes better, results than existing ones.



Chapter 5

Conclusion

In this thesis, we have investigated the potential contribution of logic-based rea-
soning to ontology matching. Specifically, we start out with five research ques-
tions, concerning two different aspects of the problem: exploiting background
knowledge and refining mappings. The first two research questions concern ex-
ploiting background knowledge. To answer the question of what kind of back-
ground knowledge will help generate better mappings (R1), we identify and for-
malize a set of underlying concepts and properties shared by financial reporting
schemas of different origins. These commonly shared concepts and properties
constitute a Basic Accounting Ontology, which serves as the foundational seman-
tics to define different financial concepts. In response to the question of what
mechanism will enable the exploitation of background knowledge (R2), we de-
fine other financial concepts on the basis of this shared ontology, and use reason-
ers to determine mappings between them. The remaining three research questions
concern mapping refinement. In response to the question of why the refinement
process is necessary for automatically generated mappings (R3), we motivate the
necessity and importance of mapping refinement by presenting theoretical argu-
ments and empirical evidence. It is argued that while correct mappings are always
coherent, incorrect mappings always lead to unintended consequences, which
could be detected by logical reasoning. Moreover, it is shown that there are many
incorrect mappings in both manual mappings and automatically generated map-
pings, which might be removed by mapping refinement. To answer the question
of what the logic-based principles for mapping refinement (R4) are, we present
a number of logic principles and several heuristics for mapping refinement. We
answer the question of how the logic-based principles perform (R5) by combining
a set of selected principles and heuristics into a logic-based mapping refinement
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system, and evaluating it.. The following sections highlight the contributions of
this work and give a number of pointers for possible future work.

5.1 Contribution
The contribution of this thesis work is two fold, i.e., a logic-based mapping gen-
eration mechanism (SEOM) and a logic-based mapping refinement mechanism
(LOMR).

In the work on the logic-based mapping generation mechanism, the following
results have been achieved.

• The Basic Accounting Ontology. The BAO is designed to lay a common
ground for various financial reporting schemas by identifying and then for-
malizing underlying semantics as basic concepts and properties in OWL
syntax. By devising this shared ontology, other financial ontologies can be
aligned on this common ground.

• Logic-based mapping generation procedure. A three-phase procedure to
assist the alignment of financial taxonomies is presented. The procedure
starts with taxonomy conversion into ontologies. The next step is to define
all the financial concepts using basic concepts and properties from the BAO.
Then reasoners are used to infer mappings from the merge of the enriched
ontologies, so that financial concepts with the same definition (definition
based on the BAO) are given as good matches. All the matches generated
in this way are logically consistent with the ontologies.

This mechanism is tested on French and Spanish financial reporting schemas and
yields better results than existing ontology matching systems based on heuristics
and machine learning techniques.

In the work on the logic-based mapping refinement mechanism, the following
has been achieved.

• Extension of the conservativity principle. The conservativity principle was
first proposed and implemented by Jiménez-Ruiz et al. [12] in a simplified
fashion. Their simplification is very restrictive in terms of mapping rela-
tions and violation patterns. In this thesis an extended procedure is devised
and implemented, where mappings in the form of both equivalence and sub-
sumption are considered, and a generic pattern covers all possible kinds of
violations of the conservativity principle.
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• Comparative analysis of explanation and diagnosis approaches. To resolve
violation of principles or incoherence caused by unsatisfiable concepts, there
are two approaches: computing explanations and computing diagnoses. Two
corresponding procedures are devised and evaluated in order to determine
which approach is superior. As shown in Chapter 4, the diagnosis approach
is better than the explanation approach in general, especially in terms of
scalability. Thus, the diagnosis approach is built into the final mapping re-
finement procedure.

• Complete mapping refinement procedure. In addition to the extended con-
servativity principle, the consistency principle and the locality principle are
also built into the mapping refinement procedure. Moreover, a number of
heuristics are proposed and tested. Notably the idea of resolving multiple
violating axioms at a time is shown to offer no real advantage. Combining
all these principles and some heuristics a complete procedure is built and is
shown to produce results comparable with the state of the art. The mapping
refinement procedure is also shown to be useful from the end user’s point
of view, in that it reduces incorrect mappings.

The mechanism is also shown to improve the quality of mapping suggestions in
terms of F-measure when compared with the gold standard mappings.

5.2 Future Work
A number of interesting questions have yet to be addressed, which are rightfully
good pointers for future work.

SEOM for now depends largely on human intervention. Especially, the BAO
covers only a limited number of underlying basic concepts and properties. It is
expected to be extended with more concepts and properties formalizing the under-
lying semantics of the knowledge domain. For this approach to be scalable and
efficient, automation of the following steps are of great importance. First, there
can be a semi-automated approach to extending the BAO. The expected tools can
make use of natural language processing (NLP) and machine learning (ML) tech-
niques in order to identify and formalize new components of underlying semantics
in the financial reporting domain. Second, the process of defining financial con-
cepts using the BAO can also be semi-automated by establishing the correspon-
dence of the BAO with other financial ontologies. Third, as mentioned above, the
logic-based approach generates redundant mappings, which can be minimized. In
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other words, it is interesting to compute a minimal set of mappings. Another in-
teresting research challenge is to let matchers generate complex mappings. As we
have seen in the gold standard mappings, a complex mapping is a logical axiom
that relates more than two concepts, e.g., 〈A ≡ (B t C), ε〉. All of the systems
compared in Shvaiko and Euzenat [4] are limited to computing simple mappings.
SEOM currently shares this limitation, but has the potential to generate complex
mappings, because of its semantics-oriented nature.

The performance of the mapping refinement mechanism LOMR is influenced
by ontology matching systems by means of mapping suggestions and correspond-
ing confidence values. Mapping generation tools, to a large extent, determine the
recall of mapping suggestions. Therefore, the mapping refinement mechanism
improves the quality of mapping suggestions mainly by removing incorrect map-
pings, while preserving the correct ones. It is interesting to investigate how best to
avoid undesired deletion, i.e., deletion of correct mappings, which is unavoidable,
if confidence values are misleading. Another possible improvement of this work
concerns the types of reasoning techniques that are used in our algorithms. We
have used reasoners as a black-box, querying consistency and entailments with-
out looking into the internal process of reasoning. As Stuckenschmidt [47] has
concluded that black-box approaches suffer from their computational complexity,
moving to a white-box approach, i.e., tracking and analyzing the internal reason-
ing process, could offer significant speed-up of the algorithms.



Appendix A

Gold standard mappingsMgs

To obtain gold standard mappings for French and Spanish ontologies, a domain
expert is consulted to conduct manual matching of concepts in these two ontolo-
gies. In order to support this manual process, an initial set of mappings are com-
puted by applying heuristics to manual mappings from xEBR ontology to each
of the two ontologies. The idea is that the domain expert could start modifying
or adding to this inital set of mappings until gold standard mappings are prop-
erly identified. This supporting process can be justified in two aspects. First, the
manual mappings from xEBR ontology to local ontologies are product of joint ef-
fort and accepted as standard, thus good in quality. Second, the heuristics applied
there is based on the rather intuitive transitivity of subclass relations. Next, one
subsection is devoted to applying the heuristics to xEBR WG mappings in order
to get a initial set of mappings. The remaining subsections explain the making
and interpretation of the gold standard mappings.

A.1 Heuristic Mappings
Because we are ultimately interested in matching concepts from local ontologies,
heuristically inferred mappings (heuristic mappings hereafter) among local on-
tologies can serve as baseline to 1) verify our proposed principles for logic-based
reasoning, 2) evaluate mappings automatically generated by various matchers. For
Italian and German ontologies, heuristic mappings have already been created us-
ing some simple techniques [14]. In our case, we need to construct the inferred
mappings between French and Spanish ontologies.

Note xEBR WG mappings are in Simple Knowledge Organization System
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(SKOS) format, which is “a common data model for sharing and linking knowl-
edge organization systems via the Web”. This set includes relations like exact-
Match, broadMatch, narrowMatch and closeMatch, which are called SKOS rela-
tions as a whole in the following discussion. SKOS relations have well-defined se-
mantics and have been used in many different fields to represent correspondences
between entities. For example, in the financial domain when xEBR WG create
mappings from a international financial reporting schema to national schemas,
their choice of mapping representation is evidently influenced by SKOS relations.
A heuristic conversion from SKOS relations to description logic representation is
presented in Table A.2 and used for data preparation later in this thesis.

Table A.1: Heuristics to infer mappings betweenOf andOs on the basis of xEBR
WG mappings.

Cf ∼ Cx Cx ∼ Cs Cf ∼ Cs

1 = = =

2 = v v

3 = w w

4 v = v

5 v v v

6 v w null

7 w = w

8 w v overlap

9 w w w

In Table A.1, Cf is a concept in French ontology, Cx XBRL Europe Busi-
ness Registers (xEBR) ontology, Cs Spanish ontology; ∼ indicates the relation
between two concepts; = stands for exactMatch, v narrowMatch, w broadMatch
and overlap the relation that is weaker than all previous relations and null means
no obvious relation between two concepts. Each row is interpreted as follows: if
both relations in column 2 and 3 hold, the relation in the last column follows. For
instance, in row 2, if Cf exactMatch Cx and Cx narrowMatch Cs hold, then it fol-
lows Cf narrowMatch Cs. A special case is in row 6 where both Cf and Cs have
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Table A.2: Logical interpretation of the gold standard mappings.

DL Syntax Description

C exactMatch D C ≡ D C is equivalent to D

C narrowMatch D C v D C is narrower than D

C broadMatch D C w D C is broader than D

narrowMatch relation with Cx, in which case we cannot determine the relation
between Cf and Cs and hence we simply denote it as null.

We consider only those concepts in the calculation hierarchy of balance sheets.
The ontologies we constructed here contain only those concepts. The reasons for
such treatment are 1) Balance sheet is one most common report that uses most
basic financial concepts, like Asset, Liability and Stockholders’ Equity, etc; 2)
Concepts of monetary type in balance sheet bear a rather independent and com-
plete hierarchy. Comparing the financial ontologies constructed above and the
conference ontologies, it is clear that most financial ontologies are bigger in size.
We have thus obtained heuristic mappings between Of and Os in Table A.3.

Table A.3: Heuristic mappings between Ox, Of and Os. The numbers in paren-
theses are the numbers of closeMatch while the reminder are the numbers of ex-
actMatch.

# Heuristic mappings Ox Of Os
Ox × 24(61) 23(18)

Of × 10(62)

Os ×

As presented in Section 4.1.1, while working with the domain expert to create
Mgs, we face some difficulty in matching financial reporting schemas from dif-
ferent countries and in interpretingMgs. In the following, we present our work
on both issues. Note that each concept in the calculation hierarchy is uniquely
located, therefore numeric ID (starting from 1) is assigned to each of them. This
simplifies discussion considerably.
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A.2 Mismatches

Ontology mismatches are commonplace while integrating ontologies of different
sources because of the distributed nature of ontology development. According to
Visser et al. [48], ontology mismatches are of two kinds: conceptualisation mis-
matches and explication mismatches. Conceptualisation mismatches arise when
there are more than one conceptualisations for a given domain. Distinct concep-
tualisations differ in the set of concepts identified or relations among these con-
cepts. Therefore, conceptualisation mismatches can be further distinguished into
two sub-categories: class mismatches and relation mismatches. Class mismatches
are concerned with classes of different levels of abstraction or having different de-
scendants. Relation mismatches are associated with the relations identified. They
can be the same set of concepts structured differently, or assigning an attribute to
different concepts, or having different ranges for the same attribute. Explication
mismatches are concerned with the way conceptualisations are specified, and can
also be further distinguished into 6 sub-categories, which are clearly illustrated
with a diagram and examples by Smart and Engelbrecht [49]. There are also other
classifications of ontology mismatches, as shown in the work of Hameed et al.
[50].

We observe a number of mismatches between French and Spanish balance
sheet ontologies. In the following, we perform an analysis of these mismatches.
A most telling case is about how “treasury shares” are classified differently in
those two ontologies. Both French and Spanish ontologies identify this concept
and present it as ca:ActionsPropresNet and
pgc07:PatrimonioNetoFondosPropiosAccionesParticipacionesPatrimonioPropias

respectively. Apart from this difference in terminology, this French concept is
classified as assets while the Spanish concept as liabilities. Treasury shares are
stock that has been bought back by the issuing corporation. In French finan-
cial reporting schemas, they bear a positive sign in assets as it is truly something
valuable owned by the corporation. In Spanish financial reporting schemas, how-
ever, they bear a negative sign in liabilities because these are the part of liabilities
corporation actually do not need to pay. Thus, this mismatch belongs first to
conceptualisation category, then secondarily to term mismatch in the explication
category. Based on semantics of these two concepts, this match is included in
the gold standard mappings as domain expert suggested. To reconcile this differ-
ence in conceptualisation, we specifically identify and define TreasuryShare
as being either a part of assets or a part deducted from equity, and a subclass of
VariablyClassified (see in Table A.4).
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Table A.4: Definition of TreasuryShare in the BAO

TreasuryShare

≡ (∃hasClassification.(Asset t DeductionFromEquity))

u (∃hasFinancialInstrument.OwnStock)

v VariablyClassified

Table A.5: Concepts involved in a mapping from the gold standard mappings

Concept ID Concept URI English Label

F114 ca:ParticipationsNet Investments, Net

S19

pgc07:ActivoNoCorrienteInversi-

onesEmpresasGrupoEmpresasAso-

ciadasLargoPlazoInstrumentos-

Patrimonio

long-term investments in
group companies and asso-
ciates, equity instruments

S26

pgc07:ActivoNoCorrienteInversi-

onesFinancierasLargoPlazo-

InstrumentosPatrimonio

equity instruments

There are still a number of cases illustrating mismatches between Of and Os.
We need to keep in mind this fact when we analyze gold standard mappings and
later when we evaluate candidate mappings.

A.3 InterpretingMgs

For example in Table A.5, F114 is less than the sum of S19 and S26. In this
case, it is not appropriate to simply add F114 v S19 and F114 v S26. Instead,
in order to truthfully represent the knowledge, this relation should be transformed
into F114 v S19tS26. For another example in Table A.6, we have one equation,
F168 = S106 + S117 − S119. It means the value of F168 in French equals the
sum of S106 and S117, with S119 left out. S119 is a part of S117. There is
no property in OWL syntax that corresponds to subtraction. While looking at
the Spanish calculation hierarchy, it is clear that we can enumerate all other sub-
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Table A.6: Another example of interpreting arithmetic equations in gold standard
mappings. Subtraction is interpreted semantically as exclusion.

Concept ID Concept URI English Label

F168 ca:Dettes debts

S106
pgc07:PasivoNoCorriente-

DeudasLargoPlazo
noncurrent liabilities; long-term
debts

S117 pgc07:PasivoCorriente current liabilities

S119
pgc07:PasivoCorrientePro-

visionesCortoPlazo
current liabilities; short-term provi-
sions

components of S117 than S119, so as to get what (S117− S119) refers to.

Figure A.1: A screen shot of ConceptMatcher as the tool to create gold standard
mappings.



Appendix B

Automated mapping suggestions for
conference dataset

Table B.1 presents the number of mapping suggestions from different matchers
for different pairs of conference ontologies.
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Appendix C

Mapping proposals from the
grouping principle

As can be seen in Table C.1, we have one concept from xEBR taxonomy,
xebr:AmountsPayableWithinOneYearTotal1, mapped to 4 different Span-
ish concepts, which are all sub-concepts of another Spanish concept
pgc07:PasivoCorriente. It seems reasonable that there should be a map-
ping from this core concept to pgc07:PasivoCorriente. But this mapping
is not among the manual mappings. There are a couple of cases like this one, it is
interesting to know whether we can make mapping suggestions like

xebr:AmountsPayableWithinOneYearTotal

narrowMatch

pgc07:PasivoCorriente.

We consulted Spanish expert on this matter. The expert points out that
pgc07:PasivoCorriente contains additionally other concepts that are not
mapped to
xebr:AmountsPayableWithinOneYearTotal and suggests that there should
be the mapping above.

1Concepts with prefix xebr: belong to xEBR taxonomy.
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Appendix D

Refining OAEI 2010 mappings

The following are comparative analyses of LOMR and ALCOMO in terms of hes
and f on a number of ontologies from conference dataset.

HES
Now there is a comparative analysis of LOMR and ALCOMO in terms of hes
on the same set of conference ontologies. In Table D.1, given different pairs
of ontologies in the left most column, LOMR and ALCOMO are used to re-
fine mapping suggestions from a list of matchers in the first row. Blank cells
indicate that at least one of the refinement systems fails to produce valid values.
Comparing refined mappings agaist the respective original mapping suggestions,
we get hesL (of LOMR) and hesA (of ALCOMO) for each ontology pair. We
compute hesL − hesA in order to see whether LOMR performs better than AL-
COMO. Take for example the number 0.105 in the second column and fourth row
of the table. It means that given the mapping suggestions generated by Agree-
mentMaker [51] (abbreviated as “agrmaker”) for the ontology pair Conference
and ekaw, LOMR achieves hes of 0.263 (hesL = 0.263) and ALCOMO of 0.158
(hesA = 0.158), where hesL − hesA = 0.105.

F measure
The differences in f of refined mappings from LOMR and ALCOMO are pre-
sented in the upper part of Table D.1. fL refers to F-measure of refined mappings
using LOMR, while fA refers to that of ALCOMO. We compute fL− fA in order
to see whether LOMR achieves better f than ALCOMO. Take for example the
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Figure D.1: Illustration of difference of hes of LOMR and ALCOMO over a
number of ontology pairs from conference dataset

column “lily”. It can be seen that for the mapping suggestions generated by LILY

LOMR achieves better f in most cases. Note that cells are left blank because there
is no f available. It happens when all mapping suggestions are removed, resulting
in r = 0 or p = 0. According to Equation 4.1, no f can be obtained.

Table D.1 can be illustrated as in Figure D.1. It can be seen that in general AL-
COMO achieves higher hes than LOMR. There are also a number of cases where
LOMR achieves better hes. One such case is the ontology pair Conference
and ekaw, as illustrated in Figure D.2.
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Appendix E

Case study: deleting a correct
mapping

Mapping refinement systems sometimes delete correct mappings, those that are
also in gold standard mappings. Even though it is not the desired behavior of
a mapping refinement system from the view point of end users, these undesired
deletions are the consequence of many other reasons than the refinement proce-
dure. It’s observed that mapping generators provide misleading information. The
following is a case study illustrating such situation.

In Figure E.1, there is a violating axiom νbd = (Cfb v Cfd), with one expla-
nation πbd = {µbc, αca, µad}, where µbc = 〈Cfb v Csc, 0.4〉, αca = (Csc v Csa)
and µad = 〈Csa ≡ Cfd, 0.6〉. Note these two mappings along with their respective
confidence values are generated using COAL. To resolve this violation, at least
one of the two mappings µbc and µad has to be removed. Now given that µad has
a higher confidence value, µbc is deleted. But µbc is in fact in the gold standard,
though the mapping generator assigns a low confidence value to it. On the other
hand, according to their semantics, Cfd is not equivalent to Csa.

This example is actually taken from the French and Spanish ontologies used
in the evaluation. Cfb refers to the French concept
ca:EnCoursDeProductionDeBienNet, whose English label is “in-progress
goods, net” and Csc refers to the Spanish concept
pgc07:ActivoCorrienteExistenciasProductosCurso, whose En-
glish label is “partly-finished goods”. Clearly, there should be a mapping between
them. On the other hand, Cfd refers to the French concept
ca:StocksDeMarchandisesNet, meaning “merchandise inventories, net”
and Csa refers to the Spanish concept
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Of

Cfs

Cfe Cfd

Cfb

Os

Csa

Csc

v, 0
.4

µbc
v v

v

v αca

v
ν b
d

≡, 0
.6

µad

Figure E.1: Case study of deletion of a correct mapping

Table E.1: The corresponding concepts in Of and Os in the case study

Cfb ca:EnCoursDeProductionDeBienNet

Csc pgc07:ActivoCorrienteExistenciasProductosCurso

Cfd ca:StocksDeMarchandisesNet

Csa pgc07:ActivoCorrienteExistencias

pgc07:ActivoCorrienteExistencias, “inventories” in English. These
two concepts are as their labels reveal not equivalent. µad has a higher confidence
value probably because the labels ofCsa andCfd are more similar via some string-
based techniques. Now it is also clear why νbd is a violating axiom because Cfd is
about merchandise inventories while Cfb is about in-process goods.

This case study here tries to shed some light in cases where correct mappings
are also deleted. The reason could be misleading information of ontology matcher,
or inadequacy of gold standard, etc.



List of Symbols

O An ontology

α A logical axiom

Σ The signature of an ontology, an axiom, a set of axioms, etc

M Mapping suggestions

Om Mapping ontology

Mgs Gold standard mappings

µ A mapping suggestion

ρ Logical relation between two concepts, being one of {≡,v,w}

ε A confidence value of a mapping suggestion

τ A translation function that converts a mapping into an axiom

Ω The explanation of an unsatisfiable concept

∆ The diagnosis of an unsatisfiable concept

ν A violating axiom, i.e., an axiom that is originally not entailed
in one ontology, but introduced by adding mapping suggestions

Svio The complete set of violating axioms w.r.t an ontology

Svio A subset of violating axioms

G A group of concepts that are mapped to a single foreign concept
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M A module of a concept in an ontology

p Precision

r Recall

f F-measure

hes Human effort saved

t Time (minute)



Glossaries

ALCOMO Applying Logical Constraints on Matching Ontologies

API application programming interface

BAO Basic Accounting Ontology

COAL Cross-lingual Ontology Alignment

DL description logics

DDL distributed description logics

HES Human Effort Saved

IFRS International Financial Reporting Standard

IR Information Retrieval

IRI internationalized resource identifier

KR knowledge representation

LOMR Logic-based Mapping Refinement

ML machine learning

MONNET Multilingual Ontologies for Networked Knowledge

NLP natural language processing

OAEI Ontology Alignment Evaluation Initiative

OWL Web Ontology Language

PGC07 Taxonomı́a del Nuevo Plan General de Contabilidad 2007

RDF Resource Description Framework
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SEC Securities and Exchange Commission

SEOM Semantically Enriched Ontology Matching

SKOS Simple Knowledge Organization System

TCA Taxonomie Comptes Annuels

XBRL eXtensible Business Reporting Language

xEBR XBRL Europe Business Registers

xEBR WG XBRL Europe Business Registers Working Group

XML Extensible Markup Language

UMLS-Meta Unified Medical Language System R© Metathesaurus

URI uniform resource identifier
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