A Terminological Knowledge Representation System
with Complete Inference Algorithms

Franz Baader and Bernhard Hollunder
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz (DFKI)
Projektgruppe WINO
Postfach 2080, D-6750 Kaiserslautern, West Germany
E-mail: {baader, hollunde}@dfki.uni-kl.de

Abstract

The knowledge representation system KL-ONE first appeared in 1977. Since then many
systems based on the idea of KL-ONE have been built. The formal model-theoretic seman-
tics which has been introduced for KL-ONE languages [BL84] provides means for investi-
gating soundness and completeness of inference algorithms. It turned out that almost all
implemented KL-ONE systems such as BACK, KL-TWO, LOOM, NIKL, SB-ONE use sound
but incomplete algorithms.

Until recently, sound and complete algorithms for the basic reasoning facilities in
these systems such as consistency checking, subsumption checking (classification) and
realization were only known for rather trivial languages. However, in the last two years
concept languages (term subsumption languages) have been thoroughly investigated (see
for example [SS88, Neb90, HNS90, DLNNO91]). As a result of these investigations it is now
possible to provide sound and complete algorithms for relatively large concept languages.

In this paper we describe KRZS which is an implemented prototype of a KL-ONE
system where all reasoning facilities are realized by sound and complete algorithms. This
system can be used to investigate the behaviour of sound and complete algorithms in
practical applications. Hopefully, this may shed a new light on the usefulness of complete
algorithms for practical applications, even if their worst case complexity is NP or worse.

ICRZS provides a very expressive concept language, an assertional language, and sound
and complete algorithms for reasoning. We have chosen the concept language such that
it contains most of the constructs used in KL-ONE systems with the obvious restriction
that the interesting inferences such as consistency checking, subsumption checking, and
realization are decidable. The assertional language is similar to languages normally used
in such systems. The reasoning component of K’RZS depends on sound and complete
algorithms for reasoning facilities such as consistency checking, subsumption checking,
retrieval, and querying.

1 Introduction and Motivation

In the last decade many knowledge representation systems in the tradition of KL-ONE
[BS85] have been built, for example BACK [NvL88, Neb90], cLAassic [BBMR89], KANDOR
[Pat84], KL-TwO [Vil85], KRYPTON [BPGLS85], Loom [MB87], NIKL [KBR86], SB-ONE
[Kob89]. A common feature of these systems is the separation of the knowledge into
a terminological part and an assertional part. Knowledge about classes of individuals
and relationships between these classes is stored in the T'Boz, and knowledge concerning
particular individuals can be described in the A Boz.

The TBox formalism provides a concept language (or term subsumption language) for
the definition of concepts and roles, where concepts are interpreted as sets of individuals
and roles as binary relations between individuals. Starting with primitive concepts and
roles the language formalism is used to build up more complex concepts and roles.

For example, assume that person, female, and shy are primitive concepts, and child
and female_relative are primitive roles. Taking the connectives concept conjunction
(and), disjunction (or), and negation (not) one can express “persons who are female or
not shy” by

(and person (or female (not shy))).

Since concepts are interpreted as sets, concept conjunction can be interpreted as set in-
tersection, concept disjunction as set union, and negation of concepts as set complement.
In addition to these operations on sets one can also employ roles for the definition of
new concepts. Value restrictions can be used for instance to describe “individuals for
whom all children are female” by the expression (all child female). Number restric-
tions allow for instance to describe “individuals having at most three children” by the
expression (atmost 3 child). Beside the above mentioned constructs there are other
well-known concept-forming constructs which are available in KRZS (see Section 2). An
example for a role-forming construct is the conjunction of roles. We can define the role
(and child female_relative), which intuitively yields the role daughter. The concept
language presented in the next section also provides functional roles, so-called attributes.
These attributes are interpreted as partial functions and not as arbitrary binary rela-
tions. Natural examples for attributes may be father or first_name. An agreement
between two attribute chains for example allows to describe “individuals whose father
and grandfather have the same first name” by the expression

(equal (compose father first name) (compose father father first name)).

Interestingly, agreements between attribute chains do not make reasoning in the language
undecidable [HN90], whereas agreements between arbitrary role chains cause undecidabil-
ity [Sch&9].

The basic reasoning facilities concerning the TBox are the determination whether a
concept denotes nothing, i.e., whether a concept denotes the empty set in every inter-
pretation, and the computation of the subsumption hierarchy. A concept C' subsumes
(is more general than) a concept D iff in every interpretation the set denoted by C'is a
superset, of the set denoted by D.

The ABox formalism consists of an assertional language which allows the introduction
of individuals to express facts about a concrete world. One can state that individuals are
instances of concepts, and that pairs of individuals are instances of roles or attributes.

The reasoning facilities concerning both the TBox and the ABox are classified as
follows. We need algorithms for inferences such as

e checking the consistency of the represented knowledge,

e ¢given an individual of the ABox, compute the most specific concepts in the TBox
this individual is instance of,

e computing all individuals of the ABox that are instances of a given concept.

The formal model-theoretic semantics which has been introduced for KL-ONE lan-
guages [BL84| provides means for investigating soundness and completeness of inference
algorithms. It turned out that the above mentioned systems use sound but incomplete
algorithms. If a sound but incomplete subsumption algorithm detects a subsumption
relation, this relation really exists; but if it fails to recognize that a concept subsumes
another one, then we do not know anything. A subsumption relation may or may not
exist. Thus, the results of the algorithms only partially coincides with what the formal
semantics expresses.

Until recently, sound and complete algorithms for the above mentioned inferences and
for the subsumption problem were only known for rather trivial languages which explains
the use of incomplete algorithms in existing KL-ONE systems. Another argument in favour
of incomplete algorithms was that for many languages the subsumption problem is at
least NP-hard [L.LB87, Neb88]. Consequently, complete algorithms have to be intractable,
whereas incomplete algorithms may still be polynomial. However, one should keep in mind
that these complexity results are worst case results. It is not at all clear how complete
algorithms may behave for typical knowledge bases.

In [SS88, HNS90, Hol90] it is shown how to devise sound and complete algorithms for
the above mentioned inferences in various concept languages. Thus it has become possible
to implement a KL-ONE system (KRZS) which provides

e a very expressive concept language,
e powerful reasoning facilities, and

e sound and complete algorithms for these facilities.

The purpose of this paper is as follows. Firstly, we will enumerate the language con-
structs which are available in KRZS, and will give a formal semantics for their meaning.
We have chosen the concept language such that it contains most of the constructs used in
KL-ONE systems with the obvious restriction that the interesting inferences such as con-
sistency checking, subsumption checking, and realization are decidable. Of course, taking

IBut see Patel-Schneider [Pat89] who uses a four-valued semantics to formally describe the behaviour
of an algorithm which is incomplete w.r.t. two-valued semantics.

such a large language means that the complexity of the inference algorithms is relatively
high. But KRZS also provides faster algorithms for certain sublanguages.? Secondly,
we will describe the inference mechanisms provided by KRZS. Then we will explain the
principles underlying the reasoning algorithms implemented in KXRZS. Finally, we will
give an overview of the implemented KRZS system.

2 Formalisms for Representing Knowledge

In this section we will introduce the formalisms for representing knowledge in KRZS. In
Subsection 2.1 the syntax and semantics of the concept language and the terminological
axioms are presented. In Subsection 2.2 the assertional language and its semantics are
introduced.

2.1 The Concept Language Underlying X'RZS

Assume that we have three disjoint alphabets of symbols, called concept names, role
names, and attribute names. The special concept name xtopx is called top concept.

The sets of concept terms, role terms, and attribute terms are inductively defined as
follows. Every concept name is a concept term, every role name is a role term, and
every attribute name is an attribute term. Now let C', C,..., C} be concept terms, R,
Ry,...,R; berole terms, f, g, fi,..., fm be attribute terms already defined, and let n be
a nonnegative integer. Then

(and C .. C’k) (conjunction)
(or Cy...Cy), (disjunction)
(not C) (negation)
(@l R C), (all fO), (value restriction)
(some R C'), (some f C), (exists restriction)
E:tlrizsstt Z];)) (number restrictions)
(equal f g), (agreement)
(not-equal f g) (disagreement)

are concept terms,
(and Ry ... Ry), (role conjunction)

is a role term, and

2That coincides with what Ramesh Patil proposed at the Workshop on Term Subsumption Languages
in Knowledge Representation: “He therefore strongly opposed any attempt to further restrict the ex-
pressiveness of TSL (term subsumption language) systems. Instead, he proposed that such systems be
configured on a “pay as you go” basis—if the application uses only a small portion of the expressive
power of the TSL, then everything will be fast; if more expressive power is used, then the system may
slow down, but still be able to represent and reason with the knowledge given to it.” (see [PSOK™"90]).

(and fi... fm), (attribute conjunction)
(compose fi ... fm) (composition)

are attribute terms.

So-called terminological arioms are used to introduce names for concept, role, and
attribute terms. A finite set of such axioms satisfying certain restrictions is called a ter-
minology (TBox). There are three different ways of introducing new concepts (respectively
roles or attributes) into a terminology.

Let A (P, f) be a concept (role, attribute) name, and let C' (R, g) be a concept (role,
attribute) term. By the terminological axioms

(defprimconcept A), (defprimrole P), (defprimattribute f)

new concept, role, and attribute names are introduced without restricting their interpre-
tation. The terminological axioms

(defprimconcept A C'), (defprimrole P R), (defprimattribute f g)

impose necessary conditions on the interpretation of the introduced concept, role, and
attribute names. Finally, one can impose necessary and sufficient conditions by the ter-
minological axioms

(defconcept A C'), (defrole P R), (defattribute f g).

A terminology (TBox) T is a finite set of terminological axioms with the additional
restriction that (i) every concept, role, and attribute name may appear at most once as
a first argument of a terminological axiom in 7 (unique definition), and (4i) 7 must not
contain cyclic definitions® (acyclicity).

A terminology which describes knowledge about persons and relationships between
persons is shown in Figure 1. At first, the attribute sex and the concept male is intro-
duced. The axioms which define the concepts female and person can be read as follows:
“no individual is both male and female”*, and “a person has sex male or female.” These
axioms impose necessary conditions on the interpretation of the introduced concepts. The
definition of the concept parent impose necessary and sufficient conditions: “an individ-
ual is a parent if and only if it is a person and has some child who is a person.” The other
concepts are also defined according to their intuitive meaning.

We will now give a formal model-theoretic semantics for the concept language and the
terminological axioms. An interpretation Z consists of a set AT (the domain of T) and
a function -Z (the interpretation function of T). The interpretation function maps every
concept name A to a subset AT of AT, every role name P to a subset P of AT x A7,
and every attribute name f to a partial function fZ from AT to AZ. With dom f? we

3For a discussion of terminological cycles see [Neb88, Baa90a].

4Tt might seem to be more convenient to allow explicit disjointness axioms for expressing such facts.
In fact, we could easily provide such axioms at the user interface because they can be simulated by the
constructs available in our language [Neb90, Baa90b].

(defprimattribute sex)

(defprimconcept male)

(defprimconcept female (not male))

(defprimconcept person (some sex (or male female)))

(defprimrole child)

(defconcept parent (and person (some child person)))

(defconcept mother (and parent (some sex female)))

(defconcept father (and parent (not mother)))

(defconcept grandparent (and parent (some child parent)))
(defconcept parent with two_children (and parent (atleast 2 child)))
(defconcept parent with sons only (and parent (all child (some sex male))))

Figure 1: A terminology (TBox).

denote the domain of the partial function f* (i.e., the set of elements of A” for which f*
is defined).

The interpretation function—which gives an interpretation for concept, role, and at-
tribute names—can be extended to concept, role, and attribute terms as follows. Let C,
Ci,...,Cy be concept terms, R, Ry,..., R, role terms, f, g, fi,..., fm attribute terms,
and let n be a nonnegative integer. Assume that C*, C¥,... Cf, R*, RY ... R}, %, ¢%,
fE,..., f} are already defined. Then

(*top*)I = AT
(and Cy...C)* = CInN...NnCH
(or Cy...Cp)* == CTu...uCt
(not)Y = AT\ C?

@IRC)T = {acAT|Vb: (a,b) € RE = be CT)
G 2 ekt R
some = a € 1 (a,b) € ANDE
(some f C)F := {a€ domf?] f*(a) € C*}

(atleast n R)T = {a € AT||{be AT | (a,b) € RT}| > n}
(atmost n R)T := {a € AT ||{be AT | (a,b) € RT}| < n}
(equal f g)* = {a € domf*Ndomg” | f*(a)=g"(a)}
(not-equal f g)f = {ae€domffndomg®| f*(a) # g*(a)}
(and R, .. l)i = RI{ N...N }3{7
(and f1...fm)" = fin...0nf
(compose fi fm)E = fiI o...ofZL

where | X | denotes the cardinality of the set X and o denotes the composition of functions.
The composition should be read from left to right, i.e., ff o...o fZ means that f7 is
applied first, then f#, and so on. Note, that if f,..., fZ are partial functions, then
fIn...nffand ffo...o fL are also partial functions.

The semantics of terminological axioms is now defined as follows. An interpretation

7 satisfies the terminological axiom

(defprimconcept A C) iff AT C (7,

(defconcept A C') iff AT = (7,
(defprimrole P R) iff —PTCRZ
(defrole P R) if PT=R?,
(defprimattribute f g) iff I Cg?,
(defattribute f g¢) iff T =47,

where A (P, f) is a concept (role, attribute) name, and C' (R, g) is a concept (role,
attribute) term. Note that the terminological axioms (defprimconcept A), (defprimrole P),
and (defprimattribute f) are satisfied in every interpretation by the definition of inter-
pretation. An interpretation Z is a model for a TBox T iff Z satisfies all terminological
axioms in 7.

2.2 Assertions

The assertional formalism allows to introduce individuals (objects). We can describe a
concrete world by stating that individuals are instances of concepts, and that pairs of
individuals are instances of roles or attributes.

Assume that we have a further alphabet of symbols, called individual names. Names
for individuals are introduced by assertional azioms which have the form

(assert-ind a C'), (assert-ind a b R), (assert-ind a b g),

where a, b are individual names, and C' (R, g) is a concept (role, attribute) term. A world
description (ABoz) is a finite set of assertional axioms.

Figure 2 shows an example of an ABox. This ABox describes a world in which Tom is

(assert-ind Tom father)

(assert-ind Tom Peter child) (assert-ind Tom Harry child)
(assert-ind Mary parent with sons only)

(assert-ind Mary Tom child) (assert-ind Mary Chris child)

Figure 2: A world description (ABox).

father of Peter and Harry. Furthermore, Mary has only sons; two of them are Tom and
Chris.

Note that an ABox can be considered as a relational database where the arity of each
tuple is either one or two. However, in contrast to the closed world semantics which
is usually employed in databases, we assume an open world semantics, since we want to
allow for incomplete knowledge. Thus, we cannot conclude in the above example that Tom
has exactly two children, since there may exist a world in which Tom has some additional
children.

The semantics of individual names and assertional axioms is defined as follows. The
interpretation function -Z of a TBox interpretation Z can be extended to individual names

by mapping them to elements of the domain such that aZ # b” if a # b. This restriction on
the interpretation function ensures that individuals with different names denote different
individuals in the world. It is called unique name assumption, which is usually also
assumed in the database world.

Let a, b be individual names, and C' (R, g) be a concept (role, attribute) term. An
interpretation Z satisfies the assertional axiom

(assert-ind a C) iff ofeC?
(assert-ind a b R) iff (af,b) € R
(assert-ind a b f) iff ff(a?) = b .

The semantics of an ABox together with a TBox is defined as follows. We say that
an interpretation Z is a model for an ABox A w.r.t. a TBox T if Z satisfies all assertional
axioms in A4 and all terminological axioms in 7.

3 Reasoning

In this section we describe the inference mechanisms provided by KRZS. The reasoning
component of KRZS allows one to make knowledge explicit which is only implicitly
represented in an ABox and a TBox. For example, from the TBox and Abox given in the
previous section one can conclude that Mary is a grandparent, though this knowledge is
not explicitly stored in the ABox.

An obvious requirement on the represented knowledge is that it should be consistent
since everything would be deducible from inconsistent knowledge (from a logical point
of view). If, for example, an ABox contains the axioms (assert-ind Chris mother) and
(assert-ind Chris father), then the system should detect this inconsistency.” The under-
lying model-theoretic semantics allows a clear and intuitive definition of consistency. We
say that an ABox A w.r.t. a TBox 7 is consistent if it has a model. Thus, we have the

Consistency problem of an ABox A w.r.t. a Tbox 7: Does there exist a model for

Awrt. T?

In order to devise an algorithm which decides consistency of an ABox w.r.t. a TBox,
it is appropriate to reduce this problem to a consistency problem of an ABox w.r.t. the
empty TBox, i.e., a TBox that does not contain any terminological axiom. The idea
behind the reduction is to enlarge the ABox by the facts expressed in the TBox. More
precisely, we apply the following expansion procedure.

1. Elimination of partial definitions in T: Any partial definition (i.e., a terminologi-
cal axiom with keyword defprimconcept, defprimrole, or defprimattribute followed by two
arguments) occurring in 7 is replaced by a complete definition (i.e., a terminological ax-
iom with keyword defconcept, defrole, or defattribute). For example, the partial concept
definition

(defprimconcept female (not male))

SHowever, in general it is not always as easy as in this example to check whether the represented
knowledge is consistent.

is replaced by
(defconcept female (and (not male) femalex))

where the newly introduced concept name femalex stands for the absent part of the
definition of female. In a similar way partial role and attribute definitions are replaced
by complete definitions. Let 7' be the TBox which is obtained from 7T by replacing all
partial definitions by complete definitions.

2. FEzpansion of T': Every defined concept, role, and attribute name (i.e., the first
argument of a complete definition) which occurs in the defining term of a concept, role, or
attribute definition (i.e., in the second argument of a complete definition) is substituted
by its defining term. This process is iterated until there remain only undefined concept,
role, and attribute names in the second arguments of definitions. This yields a TBox T".
3. Ezpansion of A: Every concept, role, and attribute name occurring in A which is
defined in 7" is substituted by its defining term in 7.

This transformation has the nice property that it is consistency preserving. That
means that an ABox A w.r.t. a TBox T is consistent if and only if the ABox which is
obtained from A and T by applying the expansion procedure is consistent. Thus the
above defined consistency problem can be reduced to the

Consistency problem of an ABox A: Does there exist a model for A ?

Beside an algorithm for checking the consistency of an ABox KRZS provides algo-
rithms for the basic reasoning facilities such as subsumption and instantiation. Let A, B
be defined concepts in a TBox 7. We say that A subsumes B in T iff for every model Z
of T we have AT D BT. Thus, given a TBox 7 and two defined concepts A, B we have
the

Subsumption problem w.r.t. a TBox 7: Does A subsume B in T ?

The subsumption problem w.r.t. a TBox 7 can be reduced to the subsumption problem
of concept terms. For two concept terms C', D we say that C' subsumes D if and only if
CT D D?T in every interpretation Z. Let 7" be the TBox which is obtained from 7 by
applying the first two steps of the expansion procedure. Assume that C' and D are the
definitions of the defined concepts A and B in T”. Then A subsumes B in T if and only if
the concept term C' subsumes the concept term D. Thus the subsumption problem w.r.t.
a TBox T can be reduced to the

Subsumption problem: Does a concept term C' subsume a concept term D ?

The subsumption problem in concept languages has been thoroughly investigated in [SS88,
HNS90, DLNNO1]. In these papers, subsumption algorithms for various concept languages
and sublanguages are given and their computational complexity is discussed. In fact,
the papers do not directly describe subsumption algorithms but algorithms for a closely
related problem—the so-called satisfiability problem of concepts. These algorithms check
whether a given concept term C' is satisfiable, i.e., whether there exists an interpretation
T such that C7 # (). Since C' subsumes D if and only if (and D (not C')) is not satisfiable,
satisfiability algorithms can also be used to decide subsumption.

An algorithm for instantiation decides whether an assertional axiom is deducible from
the represented knowledge. More formally, let a be an assertional axiom. We say that
an ABox A w.r.t. a TBox T implies « iff all models of A w.r.t. T satisfy «, written
A, T = a. Thus we define the

Instantiation problem: Is o implied by A and 7 7

If « is of the form (assert-ind a b R) or (assert-ind a b f), then it is relatively easy to
solve the instantiation problem since the concept language contains only few constructs
for building complex role or attribute terms. If « is of the form (assert-ind a C), the
instantiation problem can be reduced to the consistency problem as follows:

A, T | (assert-ind a C) iff AU {(assert-ind a (not C'))} is not consistent w.r.t. 7.

In [Hol90], a sound and complete algorithm for the consistency and instantiation problem
for a sublanguage of the language defined in Section 2 is described.

KRZIS also provides the user with algorithms which find out certain relationships
between the defined concepts, roles, attributes, and individuals. These algorithms are

based on the algorithms for subsumption and instantiation. Assume that 7 is a TBox
and A is an ABox.

The subsumption hierarchy is the preordering of the concept names in 7 w.r.t. the
subsumption relation. The so-called classifier has to solve the

Classification problem: Compute the subsumption hierarchy.

Given an individual in A, one wants to know the set of concept names in 7 which
describe it most accurately. To be more formal, let a be an individual occurring in A.
The set of most specialized concepts for a is a set {Ay, ..., A, } of concept names occurring
in 7 such that

1. A, T = (assert-ind a A;) for every i, 1 < i <mn,

2. for every i, 1 < ¢ < n, there does not exist a concept name A in 7T such that
A, T E (assert-ind a A), A; subsumes A, and A and A; are different names, and

3. for every concept name A in 7 such that A, T |= (assert-ind a A), there exists an
A; such that A subsumes A;.

The first condition means that each A; is in fact a description of a. The second condition
guarantees that the set contains only the minimal descriptions w.r.t. the subsumption
relation, and the third condition means that we do not omit any nonredundant description.
Thus, to describe an individual most accurately we need an algorithm for the

Realization problem: Compute for an individual in A the set of most specialized con-
cepts in T.

Conversely, one may want to know the individuals of A which are instances of a given
concept term. Let C' be a concept term. The set INST(C') contains all the individuals
ai,...,a, of Asuch that A, T [(assert-ind a; C') holds. Thus we also have the

Retrieval problem: Compute for a given concept term C' the set INST(C').

4 The Basic Reasoning Algorithms

In this section we will explain the principles underlying the reasoning algorithms imple-
mented in RZS. To this purpose, we restrict our attention to the concept language
ALC of Schmidt-Schaufl and Smolka [SS88] which allows one to use concept names, role
names, and the concept forming constructs conjunction, disjunction, negation, value re-
striction and exists restriction. The language ALC is only a sublanguage of the actual
concept language available in our system, but it is large enough to demonstrate the prin-
ciple problems one has to overcome when devising sound and complete algorithms for
terminological KR-systems. Algorithms for various other concept languages can e.g. be
found in [DLNN91, HB91, HNS90].

In the previous section we have shown that it is enough to have algorithms which test
for satisfiability of concept terms and for consistency of ABoxes since all the other intro-
duced reasoning problems can be reduced to these two problems. We will first illustrate
by an example how satisfiability can be checked for concept terms of ALC. We will then
describe an algorithm which is more appropriate for an implementation than the original
one given in [SS88]. Finally, it will be explained how the ideas underlying the satisfiability
algorithm can be generalized to consistency checking for ABoxes.

4.1 An Example for the Satisfiability Test for ALC

Assume that C' is a concept term of ALC which has to be checked for satisfiability. In a
first step we can push all negations as far as possible into the term using the fact that the
terms (not (not D)) and D, (not (and D E) and (or (not D) (not E)), (not (or D E) and
(and (not D) (not E)), (not (all R D)) and (some R (not D)), as well as (not (some R D))
and (all R (not D)) are equivalent, that is, they denote the same set in every interpretation.
We end up with a term C' in negation normal form where negation is only applied to
concept names.

Example 4.1 Let A, B be concept names, and let R be a role name. Assume that we
want to know whether (and (some R A) (some R B)) is subsumed by (some R (and A B)).
That means that we have to check whether the term

C := (and (some R A) (some R B) (not (some R (and A B))))
is not satisfiable. The negation normal form of C is the term

C':= (and (some R A) (some R B) (all R (or (not A) (not B)))).

In a second step we try to construct a finite interpretation Z such that C'7 # (). That
means that there has to exist an individual in A7 which is an element of C"2. Thus the
algorithm generates such an individual b, and imposes the constraint b € C'* on it. In
the example, this means that b has to satisfy the following constraints: b € (some R A)%,
b € (some R B)Y, and b € (all R (or (not A) (not B)))~.

From b € (some R A)T we can deduce that there has to exist an individual ¢ such
that (b,c) € RT and ¢ € AZ. Analogously, b € (some R B)T implies the existence of an
individual d with (b,d) € R* and d € B*. We should not assume that ¢ = d since this
would possibly impose too many constraints on the individuals newly introduced to satisfy
the exists restrictions on b. Thus the algorithm introduces for any exists restriction a new
individual as role-successor, and this individual has to satisfy the constraints expressed
by the restriction.

Since b also has to satisfy the value restriction (all R (or (not A) (not B))), and ¢, d were
introduced as R%-successors of b, we also get the constraints ¢ € (or (not A) (not B))%,
and d € (or (not A) (not B)).. Now c has to satisfy the constraints ¢ € A? and
c € (or (not A) (not B))Z, whereas d has to satisfy the constraints d € BZ and d €
(or (not A) (not B))Z. Thus the algorithm uses value restrictions in interaction with
already defined role relationships to impose new constraints on individuals.

Now ¢ € (or (not A) (not B))* means that ¢ € (not A)* or ¢ € (not B)%, and we have
to choose one of these possibilities. If we assume ¢ € (not A)7, this clashes with the other
constraint ¢ € AZ. Thus we have to choose ¢ € (not B)*. Analogously, we have to choose
d € (not A)T in order to satisfy the constraint d € (or (not A) (not B))? without creating
a contradiction to d € BZ. Thus, for disjunctive constraints, the algorithm tries both
possibilities in successive attempts. It has to backtrack if it reaches a contradiction, i.e.,
if the same individual has to satisfy conflicting constraints.

In the example, we have now satisfied all the constraints without getting a contra-
diction. This shows that C’ is satisfiable, and thus (and (some R A) (some R B)) is not
subsumed by (some R (and A B)). We have generated an interpretation Z as witness
for this fact: AT = {b,¢,d}; R* := {(b,c),(b,d)}; AT := {c} and B* := {d}. For
this interpretation, b € C"F. That means that b € (and (some R A) (some R B))%, but
b ¢ (some R (and A B))*.

Termination of the algorithm is ensured by the fact that the newly introduced con-
straints are always smaller than the constraints which enforced their introduction.

4.2 A Rule-Based and a Functional Algorithm for Satisfiability

In this subsection, we will first give a more formal description of the algorithm sketched
in the previous section. We will then show how this rule-based algorithm can be modified
to a functional algorithm which is more appropriate for implementation purposes.

Let Cy be a concept term of ALC. Without loss of generality we assume that Cj is
in negation normal form. In principle, the algorithm starts with the set Sy := {by € CZ}
of constraints, and transform it with the help of certain rules until one of the following
two situations occurs: (i) the obtained set of constraints is “obviously contradictory”,

or (ii) the obtained set of constraints is “complete”, i.e., one can apply no more rules.
In the second case, the complete set of constraints describes an interpretation 7 with
Cf # (0. For the language ALC, a set of constraints is obviously contradictory iff it
contains conflicting constraints of the form ¢ € A%, ¢ € (not A)* for some individual ¢
and concept name A. Please note that such contadictions can only occur between two
constraints imposed on the same individual c.

Because of the presence of disjunction in our language, a given set of constraints must
sometimes be transformed into two different new sets. For that reason, we will work with
sets M of sets of constraints rather than with a single set of constraints. If we want to
test Cy for satisfiability, we start with the singleton set Mg := {{by € C7 }}.

Let M be a finite set of sets of constraints, and let S be an element of M. The
following rules will replace S by a set S’ or by two sets S’ and S”:

1. The conjunction rule. Assume that ¢ € (and C; Cy)T isin S, and ¢ € CF or c € C7
is not in S. The set of constaints S’ is obtained from S by adding ¢ € C? and
ceCftoS.

2. The disjunction rule. Assume that ¢ € (or C} C5)% is in S, and neither ¢ € CT nor
c € C¥ isin S. The set of constraints S’ is obtained from S by adding ¢ € C¥ to S,
and the set of constraints S” is obtained from S by adding ¢ € CZto S.

3. The exists restriction rule. Assume that ¢ € (some R D)? is in S, and there is no
individual e such that (¢,e) € R*,e € D are in S. Then we create a new individual
d, and add the constraints (¢,d) € R, d € D* to S.

4. The value restriction rule. Assume that ¢ € (all R D)* and (c,d) € R* are in S,
and that d € DT is not in S. Then the set of constraints S’ is obtained from S by
adding d € D~.

It can be shown that there cannot be an infinite chain of sets Mg, M, Mo, ... where
each M, is obtained from M; by application of one of the above defined rules. Thus if
we start with a set My = {{by € CZ}}, and apply rules as long as possible, we finally end
up with a complete set M,, i.e., a set to which no more rules are applicable. Now Cj is
satisfiable iff there exists a set of constraints in M, which is not obviously contradictory.

Please note that this fact is independent of the order in which the rules have been
applied. By using appropriate strategies, one may get optimized versions of the algorithm.
We shall now sketch how an algorithm can be derived which no longer depends on an
explicit representation of individuals and role relationships between individuals. Until
now, such an explicit representation is necessary for the following two reasons. First,
we need the individual names to detect which constraints are obviously contradictory.
Second, the explicit representation of role relationships is necessary to show for what other
individuals d a constraint of the form ¢ € (all R D)? yields a new constraint d € D*.

In order to explain the ideas underlying our optimized algorithm, we first analyse from
which sources constraints for a given individual ¢ may come. On the one hand, application
of a conjunction or disjunction rule to a constraint on ¢ itself may yield a new constraint

on c¢. On the other hand, a constraint on ¢ may come from an other individual b when
the exists or value restriction rule is applied to b. Please note that in this case c is a role
successor of b for some role R, and that there can be at most one such individual b for a
given c. There is one exception to this second case. The individual by we start with does
not have a role predecessor, but it has the original constraint by, € C7.

Assume that we start with the original constraint by € C. By applying the conjunc-
tion and disjunction rule to the constraints on by as long as possible, we obtain all possible
constraints on by. This means that we can now detect all possible obvious contradictions
caused by constraints on by. Since all exists restrictions for by are already present, we
know how many new individuals we have to introduce as role successors of by, and since
all the value restrictions on by are already present, we also know exactly which constraints
are propagated from by to these successors. Obviously, if we have the exists restriction
by € (some R D)T, and by € (all R E,)%,...,by € (all R E;)T are all the value restrictions
imposed on by w.r.t. the role R, then the individual ¢ which is created because of this
exists restriction has to satisfy the constraints c € D*,c € Ef,... ,c € E}.

After imposing these constraints on ¢, all the constraints coming from its unique role
predecessor by are already present in the actual constraint system. In this case, one can
forget the role relationship between by and ¢ because it no longer yields new constraints
on c. Since there is no more interaction between constraints on ¢ and constraints on other
individuals, one can test the satisfiability of the constraints on ¢ independently from all
the other constraints in our system. This means that we may now continue with ¢ in
place of by, i.e., first the apply conjunction and disjunction rules to the constraints on ¢
as long as possible, etc.

This has to be done independently for all the exists restrictions on by. Since we now
consider only one individual at a time we need no longer explicitly introduce names for
the individuals, and we have already pointed out that one can forget about the role
relationships. It is now enough to memorize the concept constraints currently imposed
on the actual individual by the corresponding set of concept terms. Obviously, if the
conjunction rule (resp. disjunction rule) has been applied for a concept term (and C; C5)
(resp. (or C7 Cy) of this set, thus adding the terms C; and Cy (resp. C; or Cy) to the
current set, we can remove the original term from the set.

A functional algorithm which is based on these ideas is presented in Figure 3. Please
note that the algorithm, which is described in a Lisp-like notation, can very easily be
implemented.

4.3 An Algorithm for Checking the Consistency of an ABox

In this subsection, an algorithm for solving the consistency problem of an ABox will be
sketched with the help of an example. As for the satisfiability algorithm, the idea be-
hind this consistency algorithm is that it tries to construct a model for a given ABox.
One can view the consistency problem of an ABox as a generalization of the satisfia-
bility problem of concept terms. In fact, suppose that the ABox A contains the ax-
ioms (assert-ind a Cy),..., (assert-ind a C,). If A is consistent, then the concept term
(and C;...C,) is obviously satisfiable. Thus, a simple-minded idea for a consistency

sat(C) =
if A € C and (not A) € C for some concept name A
then false
else if (and C; C3) € C
then sat(C \ {(and C; Cs)} U{C1, Cs})
else if (or Cy Cy) € C
then sat((C \ {(or Cy Co)}) U{C1}) or sat((C\ {(or C; C3)}) U{Cs})
else if for all (some R C) € C
sat({CYU{D | (all R D) € C})
then true
else false

Figure 3: A functional algorithm deciding satisfiability of ALC-concepts. A concept term
C' in negation normal form is satisfiable if and only if the call sat({C'}) returns true.

checking algorithm could be: Check for every individual a occurring in the ABox whether
the conjunction of all concept terms C; with (assert-ind a C;) € A is satisfiable. The
following example, however, shows that this naive algorithm may fail to detect that an
ABox is inconsistent.

Suppose the ABox
A = {(assert-ind Tim Tom child), (assert-ind Tom Human)}

is given, and we are interested in whether the fact (assert-ind Tim (some child Human))
is implied by A. As mentioned in the previous section this instantiation problem can be
reduced to the test whether

A" = AU {(assert-ind Tim (all child (not Human)))}

is inconsistent.® The naive consistency algorithm from above checks whether the concept
terms Human (coming from the individual Tom) and (all child (not Human)) (coming from
Tim) are satisfiable. Since both concept terms are satisfiable it concludes that A" is
consistent. However, it is easy to see that A’ is inconsistent.

The reason why this simple algorithm does not detect the inconsistency is that it
ignores role relationships occurring in the ABox. The interaction of role relationships
with value restrictions may enforce that individuals of the ABox are instances of additional
concepts. Thus, to overcome this problem, we modify our simple algorithm as follows. In
a preprocessing step we enlarge a given ABox by axioms implied by the interaction of role
relationships with value restrictions. If an ABox contains the axioms (assert-ind a b R)
and (assert-ind a (all R C')), then the axiom (assert-ind b C') has to be added. This is one
of the rules applied in the preprocessing step. However, this rule alone is not sufficient.
If (assert-ind a b R) and (assert-ind @ (and ...(all R C)...) are in an ABox, we also have
to enlarge the ABox by the axioms (assert-ind b C'). Thus we also have to decompose
conjunctive and, for similar reasons, disjunctive concept terms occurring in the ABox.
This yields the two other rules for the preprocessing step. The preprocessing is finished

6Note that (all child (not Human)) is the negation normal form of (not (some child Human)).

if applications of the three rules do not add new axioms to the current ABox. As a
consequence, role relationships in the ABox thus obtained can be ignored because they
no longer carry any additional information. Now, in a second step we can use the simple
consistency algorithm mentioned before. This yields a correct and complete algorithm for
deciding consistency of an ABox of ALC.

As an example, let us apply this consistency algorithm to the ABox A’ from above.
The preprocessing step returns the ABox

A" = A" U {(assert-ind Tom (not Human))}.

In the second step we collect for each individual occurring in A” its concept constraints,
and apply a satisfiability algorithm to their conjunction. Thus, to check whether A"
(and hence A') is consistent we check whether the concept terms (and Human (not Human))
(coming from the individual Tom) and (all child (not Human)) (coming from Tim) are
satisfiable. Since the first concept term is obviously not satisfiable, we now correctly
conclude that A’ is inconsistent.

5 KRIS : the Overall Structure

In this section we give a short description of KRZS. The representation component
offers the formalisms presented in Section 2: a very expressive concept language and an
assertional language which is similar to the languages used in most KL-ONE systems. The
reasoning component of KRZS provides sound and complete algorithms which solve the
problems mentioned in the previous section.

ICRZS is implemented in Common Lisp on a Symbolics Lisp machine. The main menu
of KRZS is shown in Figure 4.

MAIN MENU

TBOX-Handler
ABOX-Handler
Algorithms
Inferences
Utilities
System-Status
Help

Quit

Figure 4: KRZS main menu.

Clicking one of the menu items causes XRZS to generate submenus. They allow the
following operations.

e The TBoz-Handler organizes the treatment of terminologies. That means, it can be
used to create, load, edit, and delete TBoxes.

e Similarly, the A Box-Handler manages ABoxes.

e The item Algorithms allows to choose an appropriate algorithm. We have imple-
mented several algorithms for the inferences which are based on different data-
structures. Furthermore, for some sublanguages of the concept language presented
in Section 2 we have implemented optimized algorithms.

e We can start a chosen algorithm using Inferences. KRZS provides algorithms which
solve the consistency problem, the subsumption problem, the instantiation problem,
the classification problem, the realization problem, and the retrieval problem.

e Utilities provides possibilities to measure the run-time of algorithms.

e Help and System-Status give more informations about the system.

KKCRZS can be used as follows. First of all, the user has to edit the terminological and
assertional knowledge of the domain of interest using T'Box-Handler and A Box-Handler.
Assume that the TBox of Figure 1 and the ABox of Figure 2 have been edited, and
hence are known to XRZS. The consistency algorithm will find out that the represented
knowledge is consistent. That means, there exists a model for the ABox w.r.t. the TBox.
The classification algorithm computes the subsumption hierarchy as shown in Figure 5.

TOP
[MALE | [FEMALE PERSON
PARENT
[PARENT-WITH-SONS-ONLY | [PARENT-WITH-TWO-CHILDREN | [GRANDPARENT] [FATHER [MOTHER]

Figure 5: The subsumption hierarchy of the TBox given in Figure 1.

One can use the instantiation algorithm to get the most accurate information about
an individual. For example, the algorithm will detect the following relationships:

individual ‘ most specialized concepts
Tom father, parent_with_two_children
Mary parent_with_two_children, grandparent, parent_with_sons_only

The retrieval algorithm computes for a given concept term the individuals of the ABox
which are instances of it:

concept term ‘ individuals

grandparent Mary
parent_with_two_children Mary, Tom
(some sex male) Tom, Chris

That means, for instance, (i) the fact that Tom and Chris have sex male is implied by
the represented knowledge, and (i7) for the other individuals in A this property cannot
be concluded.

The user may cause KRZS to compute for a given TBox and ABox (7) the subsumption
hierarchy, (i) for every individual in the ABox the most specialized concepts, and (ii7) for
every concept name in the TBox the individuals which are instances of it. After KRZS
has once determined these structures, it is able to access this information efficiently.” Note
that only a small amount of memory is needed to store this information. Consequently,
the subsumption problem and the retrieval problem for concepts defined in the TBox,
and the instantiation problem can afterwards be solved very fast by looking into the
precomputed structures.

At any time the user may add terminological and assertional axioms to an already
existing TBox and ABox. Assume that KRZS has computed the structures mentioned
before. In this case KRZS gives the user the possibility to update these structures. If a
terminological axiom is added, then, for instance, the subsumption hierarchy is enlarged
by the inserting concept name defined by the axiom at the appropriate place.

6 Summary and Outlook

The KRZS system which has been presented in this paper distinguishes itself from all
the other implemented KL-ONE based systems in that it employs complete inference algo-
rithms. Nevertheless its concept language is relatively large. Of course, the price one has
to pay is that the worst case complexity of the algorithms is worse than NP. But it is not
clear whether the behaviour for “typical” knowledge bases is also that bad. An important
reason for implementing the RZS system was that it could be used to investigate this
question.

Thus an important part of our future work will be to test the system with typical
applications. In addition, we intent to further extend the system. On the one hand,
we want to integrate the possibility to refer to concrete domains (such as integers, real
numbers, strings, etc.) in the definition of concepts [BH90]. On the other hand, we will
allow further concept forming operators such as qualifying number restrictions [HB91]
and role forming operators such as transitive closure of roles [Baa90c] (at least for a
sublanguage of the presented concept language); for additional constructs see [BBHH90].

Another point is that until now the user has to specify which algorithm should be
used. In an improved KRZS version, this system will itself choose the optimal algorithm

"The idea that some of the important inferences can be computed in advance was already used in the
original KL-ONE system. Cf. [BS85] p. 178: “In KL-ONE the network (i.e. the subsumption hierarchy) is
computed first from the forms of descriptions, and subsumption questions are always read off from the
hierarchy.”

by inspecting what combination of language constructs are used.

The main objective of our research group WINO-—as a part of the larger project
AKA (Autonomous Cooperating Agents)—is the investigation of logical foundations of
knowledge representation formalisms which can be used for applications in cooperating

agent scenarios [BM91]. Thus our long term goals also comprise further extensions of
KKCRZS such as

e a constrained-based approach for integrating full first order predicate logics with con-
cept languages [BBHNS90, Biir90] which can be used to represent non-taxonomical
knowledge,

e modal-logical approaches for the integration of knowledge concerning time and
space.

Acknowledgements. We are grateful to our colleague Werner Nutt for his remarks
concerning the implementation. We would like to thank Erich Achilles, Armin Laux, Jorg
Peter Mohren, and Gebhard Przyrembel for their implementational work. This research

was supported by the German Bundesministerium fiir Forschung und Technologie under
grant ITW 8903 0.

References

[Baa90a] F. Baader. “Terminological Cycles in KL-ONE-based Knowledge Representation Lan-
guages.” In Proceedings of the 8th National Conference of the AAAI pp. 621-626, Boston,
Mas., 1990.

[Baa90b] F. Baader. “A Formal Definition for the Expressive Power of Knowledge Representa-
tion Languages.” In Proceedings of the 9th European Conference on Artificial Intelligence,
pp- 53-58, Stockholm, Sweden, 1990.

[Baa90c] F. Baader. “Augmenting Concept Languages by Transitive Closure of Roles: An Al-
ternative to Terminological Cycles.” To appear in Proceedings of IJCAI ’91

[BBHH+90] F. Baader, H.-J. Biirckert, J. Heinsohn, B. Hollunder, J. Miiller, B. Nebel, W. Nutt,
H.-J. Profitlich. Terminological Knowledge Representation: A Proposal for a Terminological
Logic. DFKI Technical Memo TM-90-04, DFKI, Postfach 2080, D-6750 Kaiserslautern, West
Germany.

[BBHNS90] F. Baader, H.-J. Biirckert, B. Hollunder, W. Nutt, J. H. Siekmann. “Concept Log-
ics” In Proceedings of the Symposium on Computational Logics, Briissel, November 1990.
[BH90] F. Baader, P. Hanschke. “A Schema for Integrating Concrete Domains into Concept

Languages.” To appear in Proceedings of IJCAI "91

[BBMRR9] A. Borgida, R. J. Brachman, D. L. McGuinness, L. A. Resnick. “CLASSIC: A Struc-
tural Data Model for Objects.” In Proceedings of the International Conference on Manage-
ment of Data, Portland, Oregon, 1989.

[BPGL85] R. J. Brachman, V. Pigman Gilbert, H. J. Levesque. “An essential hybrid reasoning
system: knowledge and symbol level accounts in KRYPTON.” In Proceedings of the 9th
LJCATI pp. 532-539, Los Angeles, Cal., 1985.

[BL84] R. J. Brachmann, H. J. Levesque. “The tractability of subsumption in frame based
description languages.” In Proceedings of the 4th National Conference of the AAAI, pp. 34—
37, Austin, Tex., 1984.

[BS85] R. J. Brachman, J. G. Schmolze. “An Overview of the KL-ONE knowledge representation
system.” Cognitive Science, 9(2):171-216, April 1985.

[Bir90] H.-J. Biirckert. “A Resolution Principle for Clauses with Constraints” In Proceedings
of the 10th International Conference on Automated Deduction, Lecture Notes in Artificial
Intelligence, LNAT 449, Springer Verlag, pp. 178-192, 1990.

[BM91] H.-J. Biirckert, J. Miiller. “RATMAN: A Rational Agent Testbed for Multi Agent Net-
works”, In Proceedings of Modeling Autonomous Agents in Multi-Agent Worlds, Elsevier
Publishers, 1991.

[DLNNO91] F. Donini, M. Lenzerini, D. Nardi, W. Nutt. “The Complexity of Concept Lan-
guages.” In J. A. Allan, R. Fikes, E. Sandewall (editors), Proceedings of the Second Inter-
national Conference on Principles of Knowledge Representation and Reasoning, Cambridge,
Mas., 1991.

[Hol90] B. Hollunder. “Hybrid Inferences in KL-ONE-based Knowledge Representation Systems.”
In Proceedings of the 14th German Workshop on Artificial Intelligence, pp. 3847, Eringerfeld,
Germany, 1990.

[HBI1] B. Hollunder, F. Baader. “Qualifying Number Restrictions in Concept Languages.” In
J. A. Allan, R. Fikes, E. Sandewall (editors), Proceedings of the Second International Con-
ference on Principles of Knowledge Representation and Reasoning, Cambridge, Mas., 1991.

[HN90] B. Hollunder, W. Nutt. Subsumption Algorithms for Concept Description Languages.
DFKI Research Report RR-90-04, DFKI, Postfach 2080, D-6750 Kaiserslautern, West Ger-
many.

[HNS90] B. Hollunder, W. Nutt, M. Schmidt-Schaufl. “Subsumption Algorithms for Concept
Description Languages.” In Proceedings of the 9th European Conference on Artificial Intelli-
gence, pp. 348-353, Stockholm, Sweden, 1990.

[KBRB6] T.S. Kaczmarek, R. Bates, G. Robins. “Recent developments in NIKL.” In Proceed-
ings of the 5th National Conference of the AAAI, pp. 578-587, Philadelphia, Pa., 1986.

[Kob89] A. Kobsa. “The sB-ONE knowledge representation workbanch” In Preprints of the
Workshop on Formal Aspects of Semantic Networks, Two Harbors, Cal., February 1989.

[LB87] H. J. Levesque, R. J. Brachman. “Expressiveness and tractability in knowledge repre-
sentation and reasoning.” Computational Intelligence, 3:78-93, 1987.

[MB87] R. MacGregor, R. Bates. The Loom Knowledge Representation Language. Technical
Report ISI/RS-87-188, University of Southern California, Information Science Institute, Ma-
rina del Rey, Cal., 1987.

[Neb90] B. Nebel. Reasoning and Revision in Hybrid Representation Systems, Lecture Notes in
Artificial Intelligence, LNAT 422, Springer Verlag, 1990.

[Neb89] B. Nebel. “Terminological Cycles: Semantics and Computational Properties.” In Pro-
ceedings of the Workshop on Formal Aspects of Semantic Networks, Two Harbors, Cal.,
February 1989.

[Neb88] B. Nebel. “Computational complexity of terminological reasoning in BACK.” Artificial
Intelligence, 34(3):371-383, 1988.

[NvL88] B. Nebel, K. von Luck. “Hybrid Reasoning in BACK.” In Z. W. Ras, L. Saitta (editors),
Methodologies for Intelligent Systems, pp. 260—269, North Holland, Amsterdam, Netherlands,
1988.

[Pat84] P. Patel-Schneider. “Small can be beautiful in knowledge representation.” In Proceed-
ings of the IEEE Workshop on Principles of Knowledge-Based Systems, pp. 11-16, Denver,
Colo., 1984.

[Pat89] P. Patel-Schneider. “A four-valued Semantics for Terminological Logics.” Artificial In-
telligence, 39(2):263-272, 1989.

[PSOK*90] P. Patel-Schneider, B. Owsnicki-Klewe, A. Kobsa, N. Guarino, R. MacGregor, W. S.
Mark, D. L. McGuinness, B. Nebel, A. Schmiedel, J. Yen. “Term Subsumption in Knowledge
Representation.” In AI Magazine, 11(2):16-23, 1990. pp. 11-16, Denver, Colo., 1984.

[Sch89] M. Schmidt-SchauB. “Subsumption in KL-ONE is undecidable.” In R. J. Brachmann, H.
J. Levesque, R. Reiter (editors), Proceedings of the 1st International Conference on Principles
of Knowledge Representation and Reasoning, pp. 421-431, Toronto, Ont., 1989.

[SS88] M. Schmidt-Schau$, G. Smolka. “Attributive Concept Descriptions with Complements”.
Artificial Intelligence, 48:1-46, 1991.

[Vil85] M. B. Vilain. “The restricted language architecture of a hybrid representation system.”
In R. J. Bachmann, H. J. Levesque, R. Reiter (editors), Proceedings of the 9th IJCAI, pp.
547-551, Los Angeles, Cal., 1985.

