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Abstract. Feature logics are the logical basis for so-called uni�cation grammars studied in

computational linguistics. We investigate the expressivity of feature terms with negation and

the functional uncertainty construct needed for the description of long-distance dependencies and
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internalized, consistency of sort equations is decidable if there is at least one atom, and consistency

of sort equations is undecidable if there is no atom.
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1 Introduction

Feature constraint grammars, also known as uni�cation grammars, have become

the predominant family of declarative grammar formalisms in Computational Lin-

guistics (Kay, 1979; Kaplan and Bresnan, 1982; Shieber et al., 1983; Shieber, 1986;

Pollard and Sag, 1987). The common assumption of these formalisms is that lin-

guistic objects can be described by means of their features, which are functional

attributes. Figure 1, for instance, shows the description of a linguistic object that

may represent the sentence \John sings a song". The features appear as edges of

the graph. The terminal nodes are atoms representing primitive linguistic objects.

Kasper and Rounds (Kasper and Rounds, 1986; Rounds and Kasper, 1986) were

the �rst to capture the relation between feature descriptions and linguistics objects

in terms of a logic. Subsequently, Johnson (1988) and Smolka (1988; 1992) realized

that feature logics can be modeled straightforwardly in Predicate Logic.

1

In this

approach, which underlies the present paper, a domain of linguistic objects is

called a feature algebra and is simply a structure that interprets atoms as pairwise

distinct individuals and features as unary partial functions that are unde�ned on

atoms. In addition, one can have sorts, which are interpreted as sets of individuals.

One popular syntax for feature descriptions are so-called feature terms (Kasper

and Rounds, 1986; Rounds and Kasper, 1986; Smolka, 1992), which are expressions

denoting sets in feature algebras. The basic feature term forms are given by

S �! a j A j p:S j p#q j S u S

0

j S t S

0

j :S;

where a stands for atoms, A stands for sorts, and p and q stand for words over

features. Given a feature algebra, a denotes the singleton consisting of the atom

1

An alternative view on these formalisms is provided by the \modal perspective" (Blackburn

and Spaan, 1992).
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Fig. 1. A feature graph.

a, p:S denotes the inverse image of S under p (where p is interpreted as unary

partial function obtained as the composition of its features), p # q denotes the

set of all individuals for which p and q are de�ned and agree, S u S

0

denotes the

intersection of S and S

0

, S tS

0

denotes the union of S and S

0

, and :S denotes the

complement of S. For applications it is important to decide whether a feature term

is satis�able, that is, whether it denotes a nonempty set in some feature algebra.

The satis�ability problem for feature terms as given above is NP-complete (Smolka,

1992).

In this paper we investigate the expressivity of an additional feature term form

that is known as functional uncertainty (Kaplan and Maxwell, 1989a; Kaplan

and Maxwell, 1989b) and was invented for the convenient description of so-called

long-distance dependencies in the grammar formalism LFG (Kaplan and Bresnan,

1982). It takes the form

9L(S);

where L is a �nite description of a regular set of words over features and S is a

feature term. A feature term 9L(S) denotes the set of all individuals d such that

there exists a word p 2 L such that d is in the inverse image of S under p. One

can think of 9L(S) as the possibly in�nite union

p

1

:S t p

2

:S t p

3

:S t � � � ;

where p

1

; p

2

; p

3

; : : : are the words in L. Note that the form p:S can be expressed

with 9L(S) if one takes for L the singleton consisting of the word p.

So far, the computational properties of functional uncertainty are known only

for one restricted special case. Kaplan and Maxwell (1989a) have shown that
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S

:

= (subj:NP) u VP

NP

:

= (D u N) t Name

VP

:

= V u (obj:NP)

D

:

= (num: sg)u (spec: a)

N

:

= (num: sg)u (pred: song)

Name

:

= (num: sg)u (person: 3rd) u (pred: john)

V

:

= (subj num: sg) u (subj person: 3rd) u (pred verb: sing) u

(tense: present) u (pred agent#subj) u (pred patient#object)

Fig. 2. A simple grammar.

satis�ability of feature terms built with the forms a, p # q, S u S

0

, and 9L(S) is

decidable, provided a certain acyclicity condition is met. The decidability for more

general cases has been an open problem, however.

We show below that satis�ability is undecidable in the general case, even if there

are no atoms. However, our result depends crucially on the presence of the negation

:S. Hence, our result presents only an upper bound for the more restricted class of

feature terms actually used in practice. In particular, the problem is still open for

feature terms that are built using only the forms a, p#q, SuS

0

, and 9L(S) without

any additional conditions such as the acyclicity condition mentioned above.

In order to characterize the expressivity of functional uncertainty, we relate

it to another construct often used in feature constraint grammars, namely, sort

equations. A sort equation is a pair S

:

= S

0

consisting of two feature terms. A

feature algebra is a model of a set of sort equations if for every equation both sides

denote the same set.

Grammar rules in Functional Uni�cation Grammar (Kay, 1979) and the more

recent HPSG (Pollard and Sag, 1987) are stated by means of sort equations. Fi-

gure 2 shows a simple grammar in this style (sorts start with capital letters), which

generates the single sentence \John sings a song", provided the right assumptions

on word order are made. The basic idea is that in a model of the grammar the

elements of a sort are the linguistic objects of the syntactic category expressed by

the sort. Note that the graph in Figure 1 describes an element of the sort S in

some model of the grammar in Figure 2.

There is a surprising connection between functional uncertainty and sort equa-

tions. We will exhibit an algorithm that, given a �nite set E of sort equations

and a feature term S, produces �nitely many feature terms S

1

; : : : ; S

n

such that

S is satis�able in a model of E if and only if S

1

; : : : ; S

n

are satis�able in some

(arbitrary) feature algebra. This result says that, in the presence of functional

uncertainty and negation, sort equations can be internalized and thus do not yield
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additional expressivity with respect to satis�ability. Since it is known that satis-

�ability with respect to sort equations is undecidable (Smolka, 1992), this result

immediately implies that satis�ability of feature terms with functional uncertainty

and negation is undecidable.

As an interesting byproduct of the internalization result for sort equations, we

will show that, somewhat surprisingly, it is decidable whether a �nite set of sort

equations has a model, provided there is at least one atom. However, if we do not

assume atoms, the consistency of sort equations becomes undecidable, even if we

disallow feature terms with functional uncertainty.

The paper is organized as follows. Section 2 de�nes feature algebras, feature

terms and sort equations and states basic properties. Section 3 shows that to decide

satis�ability of feature terms it su�ces to consider only the roots of rooted feature

algebras, an auxiliary result on which the rest of the paper depends. Section

4 shows that consistency of sort equations is decidable if there is at least one

atom while it is undecidable if there is no atom (our �rst main result). Section

5 shows how sort equations can be expressed with functional uncertainty (our

second main result). Section 6 shows that satis�ability of feature terms with

functional uncertainty and negation is undecidable (our third main result). Section

7 concludes.

2 Feature Algebras and Feature Terms

We assume three pairwise disjoint, possibly empty sets of symbols: atoms (deno-

ted by a, b, c), sorts (denoted by A, B, C), and features (denoted by f , g, h). In

the following, let A denote the set of all atoms, S the set of all sorts, and F the set

of all features. We assume that there is at least one symbol, that is, A[S[F 6= ;.

A feature algebra is a pair (D

I

; �

I

) consisting of a nonempty set D

I

(the

domain of I) and an interpretation function �

I

assigning to every atom a an

element a

I

2 D

I

, to every sort A a subset A

I

� D

I

, and to every feature f a set

of ordered pairs f

I

� D

I

�D

I

such that the following conditions are satis�ed:

1. if (d; e) and (d; e

0

) are in f

I

, then e = e

0

(features are functional)

2. if a 6= b, then a

I

6= b

I

(unique name assumption)

3. if f is a feature and a is an atom, then there exists no d 2 D

I

such that

(a

I

; d) 2 f

I

(atoms are primitive).

Note that we can see features equivalently either as functional binary relations

or as unary partial functions. In place of (d; e) 2 f

I

we shall equivalently use

the notation e = df

I

, which means that the partial function f

I

, if applied to d,

yields the value e. If there exists no e such that (d; e) 2 f

I

we say that df

I

is

unde�ned. We use su�x notation for application of partial functions because we

want to write composition of binary relations and partial functions from left to

right, that is, f

I

g

I

will mean apply �rst f

I

and then g

I

.
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A path is a word in F

�

, that is, a �nite, possibly empty sequence of features.

We shall use the letters p, q, and r for paths. Let I be a feature algebra and

p = f

1

� � �f

n

(n � 0) be a path. The empty path " is interpreted as the identity

on D

I

. For n � 1, p is interpreted as the functional binary relation p

I

which is

obtained by composition of the functional binary relations f

I

1

; : : : ; f

I

n

, that is,

(d; e) 2 (f

1

� � �f

n

)

I

() 9d

0

; : : : ; d

n

: d = d

0

^ d

n

= e

^ (d

0

; d

1

) 2 f

I

1

^ : : :^ (d

n�1

; d

n

) 2 f

I

n

:

As for single features, we shall often write e = d(f

1

� � �f

n

)

I

instead of (d; e) 2

(f

1

� � �f

n

)

I

, and shall say d(f

1

� � �f

n

)

I

is unde�ned if there exists no such e.

Regular sets of paths can be speci�ed by �nite means, for instance, by regular

expressions over the alphabet of all features. The letter L will always denote a

�nite description of a regular set of paths, and we write p 2 L if the path p is

in the regular set speci�ed by L. As usual, we shall take ; as description of the

empty set of paths, and for a path, p as description of the singleton fpg.

Feature terms are descriptions that denote sets in feature algebras. Here is the

abstract syntax of feature terms:

S; T �! a atom

A sort

p:S selection

p#q agreement

? bottom

> top

S u T intersection

S t T union

:S negation

S � T di�erence

9L(S) existential path quanti�cation

8L(S) universal path quanti�cation:

Because of the symmetry with universal path quanti�cation we prefer to call the

functional uncertainty construct existential path quanti�cation. We will see that

universal path quanti�cation can be expressed with existential path quanti�cation

and negation.

It is important to note that our feature term language is parameterized with

respect to the three alphabets of atoms, sorts and features, and that each of these

alphabets may be empty.

Given a feature algebra I, the denotation S

I

of a feature term S in I is a

subset of D

I

de�ned inductively as follows:

(a)

I

= fa

I

g

(p:S)

I

= fd 2 D

I

j 9e 2 S

I

: (d; e) 2 p

I

g
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(p#q)

I

= fd 2 D

I

j 9e 2 D

I

: (d; e) 2 p

I

\ q

I

g

?

I

= ;

>

I

= D

I

(S u T )

I

= S

I

\ T

I

(S t T )

I

= S

I

[ T

I

(:S)

I

= D

I

� S

I

(S � T )

I

= S

I

� T

I

(9L(S))

I

= fd 2 D

I

j 9p 2 L 9(d; e) 2 p

I

: e 2 S

I

g

(8L(S))

I

= fd 2 D

I

j 8p 2 L 8(d; e) 2 p

I

: e 2 S

I

g:

Note that if a feature term S is a sort, S

I

is given directly by the feature algebra

I.

Two feature terms S and T are equivalent (written S � T ) if S

I

= T

I

for

every feature algebra I.

Many of the introduced feature term forms are redundant. By rewriting with

the equivalences

p:S � 9p(S)

8L(S) � :9L(:S)

? � 9;(S) (where S is an arbitrary feature term)

> � 8;(S) (where S is an arbitrary feature term)

S t T � :(:S u :T )

S � T � S u :T

the forms appearing as the left hand sides can be eliminated. Obviously, the

equivalences for > and ? can only be used to eliminate these forms if there exists

a feature term S containing neither > nor ?. This is in fact the case since we

assumed A [ S [ F to be nonempty.

Proposition 2.1 For every feature term one can compute in linear time an equi-

valent feature term containing only the forms a, A, p # q, 9L(S), S u T , and

:S.

A feature term S is called satis�able if there exists a feature algebra I such

that S

I

6= ;. Due to the presence of negation, unsatis�ability and equivalence of

feature terms are linear-time reducible to each other:

S unsatis�able () S � ?

S � T () (S � T ) t (T � S) unsatis�able:

Until now we have de�ned satis�ability, equivalence and inclusion of feature

terms with respect to all feature algebras. One can also use axioms to specify
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classes of feature algebras with respect to which satis�ability, equivalence and

inclusion should be considered. As axioms we use so-called sort equations which

take the form S

:

= T , where S and T are feature terms. A feature algebra I

satis�es a sort equation S

:

= T i� S

I

= T

I

. A feature algebra I is a model of a

set E of sort equations i� it satis�es every sort equation in E . A set of sort equations

is called consistent i� it has at least one model. We say that a feature term S

is satis�able w.r.t. a set E of sort equations i� there exists a model I of E such

that S

I

6= ;. As for the case without sort equations, unsatis�ability, inclusion, and

equivalence of feature terms w.r.t. a set of sort equations are linear-time reducible

to each other.

Finitely many sort equations can always be equivalently expressed by a single

sort equation of the form S

:

= ?. In fact, a feature algebra I satis�es a sort

equation S

:

= T i� it satis�es (S � T ) t (T � S)

:

= ?; and I satis�es the sort

equations S

1

:

= ?, ..., S

n

:

= ? i� it satis�es S

1

t :::t S

n

:

= ?.

3 Rooted Feature Algebras

The purpose of this section is to de�ne the notion of a \rooted feature algebra,"

and to derive some results for rooted feature algebras which will be useful in the

following two sections. This notion is very similar to the notion of a \generated

submodel" as introduced for modal and multimodal logic (see e.g. (Goldblatt,

1987)). However, because of the presence of atoms in our formalism, the de�nition

of rooted feature algebras is more complex.

Let S be a satis�able feature term, and let the feature algebra I together with

the element d 2 D

I

be a witness for the satis�ability of S, that is, let d 2 S

I

.

ThenD

I

may contain \unreachable" elements that are not needed to verify d 2 S

I

.

As a consequence of the main theorem of this section we will see that, to decide

satis�ability of feature terms, it su�ces to consider only the roots of rooted feature

algebras. This fact will be used in Section 5 to show that sort equations can be

internalized, i.e., simulated by feature terms with path quanti�cation. As a second

consequence of the main theorem, one obtains a result on the behavior of atoms

with respect to sorts and feature terms, which is used in Section 4 to show that

consistency of sort equations is decidable, provided that one has at least one atom.

Let I be a feature algebra and let d be an element of D

I

. We de�ne

gen(d) := fe 2 D

I

j there exists a path p with dp

I

= eg

and say that an element of gen(d) is generated by d. Obviously, d 2 gen(d), and

e 2 gen(d) implies that gen(e) � gen(d).

Our intention is now to restrict the domains of feature algebras to such sets

gen(d). However, we must keep in mind that atoms must always be interpreted

somehow. Thus, if some elements of A

I

= fa

I

j a 2 Ag are not contained in

gen(d) we cannot really restrict the domain to gen(d), but only to gen(d) [A

I

.
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We say that a feature algebra I is rooted i� there exists d 2 D

I

such that

D

I

= gen(d) [A

I

. In this case, d is called a root of I.

In order to show that it is su�cient to consider such rooted feature algebras

when interested in satis�ability of feature terms, we need the following weak notion

of restriction of a feature algebra. Let I be a feature algebra and let M be a subset

of D

I

. Then a feature algebra J is called a quasi-restriction of I to the subset

M i� it satis�es the following properties:

1. D

J

= M [A

I

,

2. a

J

= a

I

for all atoms a,

3. A

J

\M = A

I

\M for all sorts A, and

4. f

J

= f

I

\M�M for all features f .

For a given feature algebra I and a subset M of D

I

there may exist more than

one quasi-restriction of I toM . These quasi-restrictions may di�er in the behavior

of elements of A

I

�M with respect to sorts. Nevertheless, we shall often use the

name Ij

M

for such a quasi-restriction. We call J quasi-restriction of I and not

restriction because usually one has that restrictions are unique. However, de�ning

the notion \quasi-restriction to a setM" in this non-unique way is necessary for the

proof of Corollary 3.4, which in turn is important for the proofs of Proposition 4.1

and Lemma 5.1.

Lemma 3.1 Let Ij

M

be a quasi-restriction of I to the subset M of D

I

. For all

feature terms S and all elements d of D

I

satisfying gen(d) �M we have

d 2 S

I

() d 2 S

Ij

M

:

Proof. The lemma is proved by induction on the structure of S. Without loss

of generality we may assume that S contains only the forms a, A, p#q, 9L(T ),

T

1

u T

2

, :T .

1. S = a for an atom a. Since Ij

M

is a quasi-restriction of I to M we have

a

Ij

M

= a

I

, and thus d 2 S

I

i� d 2 S

Ij

M

is trivially satis�ed.

2. S = A for a sort A. We have A

Ij

M

\ M = A

I

\M since Ij

M

is a quasi-

restriction of I toM , and d 2M since gen(d) �M . This yields d 2 S

I

i� d 2

S

Ij

M

.

3. S = p#q for paths p, q. Let p = f

1

:::f

k

and q = g

1

:::g

l

.

Assume that d 2 (p#q)

I

, that is, dp

I

and dq

I

are both de�ned and equal. To

be more precise, that means there exist d

1

, ..., d

k

, e

1

, ..., e

l

in D

I

such that

(d; d

1

) 2 f

I

1

, (d

1

; d

2

) 2 f

I

2

, ..., (d

k�1

; d

k

) 2 f

I

k

, (d; e

1

) 2 g

I

1

, (e

1

; e

2

) 2 g

I

2

, ...,

(e

l�1

; e

l

) 2 g

I

l

, and d

k

= e

l

. Obviously, d

1

, ..., d

k

, e

1

, ..., e

l

are all elements
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of gen(d), and thus of M . But then dp

Ij

M

= d

k

= e

l

= dq

Ij

M

, which shows

d 2 (p#q)

Ij

M

.

Conversely, assume that d 2 (p # q)

Ij

M

, that is, dp

Ij

M

= e = dq

Ij

M

for

an element e 2 D

Ij

M

. Obviously, this implies dp

I

= e = dq

I

, and thus

d 2 (p#q)

I

.

4. S = 9L(T ) for a feature term T and a description L of a regular set of paths.

Assume that d 2 (9L(T ))

I

, that is, there exists a path p 2 L and an element

e 2 T

I

such that dp

I

= e. As above, dp

I

= e implies dp

Ij

M

= e. In addition,

e 2 gen(d) yields gen(e) � gen(d) � M . Thus we can apply the induction

hypothesis to T and e, and get e 2 T

Ij

M

. This shows d 2 (9L(T ))

Ij

M

.

The other direction can be proved in a similar way.

5. S = T

1

u T

2

. By induction, we have for i = 1; 2 that d 2 T

I

i

i� d 2 T

Ij

M

i

.

This yields d 2 (T

1

u T

2

)

I

i� d 2 (T

1

u T

2

)

Ij

M

.

6. S = :T . By induction, we have d 2 T

I

i� d 2 T

Ij

M

. This yields d 2

(:T )

I

i� d 2 (:T )

Ij

M

.

This completes the proof of the lemma.

If we take M = gen(d) in this lemma we get

Theorem 3.2 Let I be a feature algebra, d be an element of D

I

, and S be a

feature term. Then

d 2 S

I

() d 2 S

Ij

gen(d)

provided that Ij

gen(d)

is a quasi-restriction of I to gen(d).

The theorem shows that one can restrict the attention to rooted feature algebras

if one is interested in the satis�ability of a feature term.

Corollary 3.3 A feature term S is satis�able if and only if there exists a rooted

feature algebra I with root d 2 D

I

such that d 2 S

I

.

As another consequence of Theorem 3.2 one gets that the behavior of an atom

with respect to feature terms only depends on its behavior with respect to sorts.

Corollary 3.4 Let b be an atom, and let I and J be feature algebras such that

b

I

2 A

I

if and only if b

J

2 A

J

holds for all sorts A. Then we have b

I

2 S

I

if

and only if b

J

2 S

J

for all feature terms S.

Proof. Without loss of generality we may assume that A

I

= A

J

(otherwise we

could rename the domains of the interpretations appropriately). For an atom b

the set gen(b

I

) is always a singleton set consisting of the element b

I

alone. Thus
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any quasi-restriction I

b

of the feature algebra I to gen(b

I

) has the set A

I

as its

domain. By the de�nition of quasi-restrictions, all the features are interpreted

as empty relations in I

b

. For all sorts A we have b

I

2 A

I

i� b

I

b

2 A

I

b

, but

the behavior of elements a

I

b

for a 6= b with respect to sorts is arbitrary. Since

I

b

has A

I

= A

J

as its domain, the assumption of the corollary implies that I

b

can be seen as a quasi-restriction of J as well. Together with Theorem 3.2 this

observation completes the proof of the corollary.

As already pointed out earlier, this corollary will be important for the proofs

of Proposition 4.1 and Lemma 5.1.

4 Consistency of Sort Equations

When working with a �nite set of sort equations, it is important to know whether

this set is consistent, i.e., whether it has a model. With respect to an inconsistent

set of sort equations, all feature terms are unsatis�able and thus equivalent to ?.

Surprisingly, decidability of the consistency problem for sort equations depends on

the existence of atoms in the feature term language. In the �rst part of this section

we will show that consistency is decidable if the language contains at least one

atom. In principle, the reason for this is that, in the presence of atoms, whenever

there is a model, there is a rather trivial model, consisting of the denotation of

atoms only. In the second part of the section, it will be shown that consistency is

in general undecidable if there are no atoms.

As pointed out before, it is su�cient to consider a single sort equation of the

form S

:

= ?. First, assume that there exists at least one atom. In this case,

consistency of the sort equation S

:

= ? can be characterized as follows.

Proposition 4.1 Assume that A 6= ;. Then the sort equation S

:

= ? is consistent

if and only if for all atoms a the feature term :S u a is satis�able.

Proof. Let I be a model of the sort equation S

:

= ?. This means that S

I

= ;, and

thus (:S)

I

= D

I

. Consequently, we have for any atom a that a

I

2 D

I

= (:S)

I

.

But then a

I

2 (:S u a)

I

, which shows that this feature term is satis�able.

On the other hand, assume that for any atom a there is a feature algebra I

a

such that (:S u a)

I

a

6= ;. This means that for any atom a we have a

I

a

2 (:S)

I

a

.

We de�ne a new feature algebra I as follows: D

I

:= fa

I

j a is an atomg where the

a

I

are assumed to be di�erent individuals; for all features f we de�ne f

I

:= ;; and

for all sorts A we de�ne A

I

:= fa

I

j a

I

a

2 A

I

a

g. Obviously, I is a feature algebra.

By Corollary 3.4 we get for all atoms a that a

I

2 (:S)

I

because a

I

a

2 (:S)

I

a

.

This shows that (:S)

I

= D

I

, and thus S

I

= ;.

This proposition reduces the question of consistency of sort equations to the

problem of satis�ability of feature terms of the form T u a. The following lemma
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shows that we can further restrict ourselves to the case where T does not contain

path quanti�cations.

Lemma 4.2 Let T be a feature term and a be an atom. Then there exists a feature

term T

0

without path quanti�cations such that T u a � T

0

u a.

Proof. It is easy to see that a term of the form 8L(T

1

) u a or 9L(T

1

) u a is

equivalent to the term T

1

ua if the empty word " is in L. If " 62 L, then 8L(T

1

)ua

is equivalent to > u a and 9L(T

1

) u a is equivalent to ? u a. Using this fact,

the lemma can easily be proved by induction. Please note that, if T starts with

a negation, then this negation can be pushed into the term with the help of de

Morgan's rules and the fact that :8L(S) � 9L(:S) and :9L(S) � 8L(:S).

Since satis�ability of feature terms not containing path quanti�cations is deci-

dable (Smolka, 1992), the proposition and the lemma yield

Theorem 4.3 Assume that A 6= ;, and let E be a �nite set of sort equations.

Then it is decidable whether E is consistent or not.

Proof. The only remaining problem is that, if the set of atoms is in�nite, we

should have to consider in�nitely many terms of the form :S ua in order to check

the condition of Proposition 4.1. However, the sort equations contain only �nitely

many atoms. It is easy to see that it is enough to consider these �nitely many

atoms, and only one of the other atoms as specimen.

Now let us consider the case where A = ;, that is, there is no atom. We shall

show that consistency of sort equations may become undecidable, even if the terms

occurring in the sort equations do not contain path quanti�cations. This result

will be proved by a reduction of the word problem for groups. To this purpose we

rephrase the word problem in such a way that it �ts into our framework.

Let � be a nonempty set of symbols, �

�

be the set of words over �, and " be

the empty word. Under concatenation of words, �

�

is a monoid whose neutral

element is ". A congruence is an equivalence relation � on �

�

such that p � q

implies rpr

0

� rqr

0

for all p, q, r, r

0

2 �

�

. If � is clear from the context, we use p

to denote the equivalence class of a word p 2 �

�

with respect to �. The quotient

�

�

=� is again a monoid under the operation p q := pq.

A Thue equation over � is a set fp; qg consisting of two words p; q 2 �

�

. A

Thue system over � is a �nite set T of Thue equations over �. Every Thue

system T over � de�nes a binary relation $

T

on �

�

by

u$

T

v :() 9 w

1

; w

2

2 �

�

9 fp; qg 2 T : u = w

1

pw

2

^ v = w

1

qw

2

:

We use �

T

to denote the reexive and transitive closure of$

T

on �

�

. It is easy to

see that �

T

is a congruence on �

�

. To be more precise, �

T

is the least congruence

� such that p � q for every Thue equation fp; qg in T .
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It is known that there exists a Thue system T consisting of seven equations

over a two-element alphabet such that it is undecidable for two words p, q whether

p �

T

q holds or not (see, for instance, (Boone, 1959)). In the following we shall

need a stronger version of this undecidability result, which is due to Novikov and

Boone (see (Novikov, 1955; Boone, 1959; Stillwell, 1982)): there is a �nite set of

symbols � and a Thue system G = ffp

1

; "g; : : : ; fp

n

; "gg such that

1. for every f 2 � there is some q 2 �

�

such that G contains the Thue equation

ffq; "g

2. the set of words p with p 6�

G

" is not recursively enumerable.

In particular, it is undecidable whether p �

G

" or not. Note that property (1)

implies that �

�

=�

G

is a group.

Theorem 4.4 Assume that A = ;, that is, there is no atom. Then there exists a

feature term S of the form

p

1

#" u : : :u p

n

#"

such that the set of paths p for which the sort equation

S u :(p#")

:

= >

is consistent is not recursively enumerable. In particular, it is undecidable whether

the sort equation S u :(p#")

:

= > is consistent or not.

Proof. Suppose that � is a set of symbols and G = ffp

1

; "g; : : : ; fp

n

; "gg a Thue

system over � with the properties stated in the theorem by Novikov and Boone.

We regard elements of � as features and words over � as paths. Let S be the

feature term

p

1

#" u : : :u p

n

#":

To prove our claim it su�ces to show that for every p 2 �

�

the sort equation

S u :(p#")

:

= > is consistent if and only if p 6�

G

".

\)" Suppose p 6�

G

". We construct a feature algebra I satisfying Su:(p#")

:

=

> as follows:

D

I

:= �

�

=�

G

q f

I

:= qf for every f 2 � and q 2 �

�

.

Since �

G

is the congruence generated by G, we have p

i

= " for every Thue equation

fp

i

; "g in G. This implies q p

I

i

= qp

i

= q" = q for every q 2 D

I

. Hence, I satis�es

S

:

= >.

Assume that I does not satisfy :(p#")

:

= >. Then there is some q 2 D

I

such

that q p

I

= q, which implies that q = qp = q p. Since �

�

= �

G

is a group, the

element q has an inverse q

0

. Then p = q

0

q p = q

0

q = ", that is p �

G

". We thus
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have obtained a contradiction to the fact that p 6�

G

". Hence, q p

I

6= q for all

q 2 D

I

, which implies that I satis�es :(p # ")

:

= >. Since I satis�es S

:

= > and

:(p#")

:

= >, it follows that I satis�es S u :(p#")

:

= >.

\(" Suppose p �

G

". Assume there is a feature algebra I that satis�es

S u :(p#")

:

= >. We de�ne an equivalence relation � on �

�

by

q � q

0

:() I satis�es q #q

0

:

= >.

Since I satis�es S u :(p#")

:

= >, it follows that I satis�es p

i

# "

:

= > for every

Thue equation fp

i

; "g in G. By property (1) of G, for every f 2 � there is some

q 2 �

�

such that I satis�es fq # "

:

= >. This means that for every d 2 D

I

we

have df

I

q

I

= d. Hence, every f

I

is a total function on D

I

. We conclude that

for all q, q

0

, r, r

0

2 �

�

the feature algebra I satis�es rqr

0

# rq

0

r

0

:

= > if I satis�es

q #q

0

:

= >. Thus, � is a congruence.

For every Thue equation fp

i

; "g in G, the feature algebra I satis�es p

i

#"

:

= >,

which implies p

i

� ". By de�nition, �

G

is the least congruence with this property.

Therefore, p �

G

" implies p � ", that is, I satis�es p # "

:

= >. This contradicts

our assumption that I satis�es :(p#")

:

= >. We conclude that S u :(p#")

:

= > is

unsatis�able.

Since consistency of an equation S

:

= > is equivalent to consistency of the

equation :S

:

= ? we get the following immediate consequence of the theorem.

Corollary 4.5 Assume that A = ;. Then consistency of a sort equation S

:

= ?

is undecidable.

5 Internalizing Sort Equations

The purpose of this section is to show that sort equations do not enhance the

expressive power of a feature term language that allows for path quanti�cation. In

fact, it will turn out that satis�ability of a feature term with respect to a �nite set

of sort equations is equivalent to pure satis�ability of a set of feature terms. We call

this process of encoding sort equations into feature terms with path quanti�cation

\internalization." Similar result have been obtained for propositional dynamic

logic (see e.g. (Kozen and Tiuryn, 1990), p.805, Proposition 16), but again, the

presence of atoms makes the formulation and the proof of our result more complex.

As mentioned before, it is su�cient to consider only one sort equation of the

form S

:

= ?. Recall that we denote by F

�

the set of all paths, that is, the set

of all words over F. Obviously, a feature term T can be satis�able with respect

to S

:

= ? only if this equation is consistent. For this reason, the condition for

consistency of sort equations in the presence of atoms occurs in the formulation of

the following internalization lemma.
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Lemma 5.1 The feature term T is satis�able w.r.t. the sort equation S

:

= ? if

and only if the feature term T u 8F

�

(:S), and the feature terms :S u a for all

atoms a are satis�able.

Proof. Assume that I is a feature algebra such that S

I

= ?

I

= ; and T

I

6= ;.

Obviously, S

I

= ; means that all the elements of D

I

are in (:S)

I

. In particular,

we have a

I

2 (:S)

I

for all atoms a. This shows that (:S u a)

I

6= ;.

Let d 2 D

I

be such that d 2 T

I

. In order to prove that d 2 (T u 8F

�

(:S))

I

it is enough to show that d 2 (8F

�

(:S))

I

. Let p 2 F

�

and e 2 D

I

be such that

dp

I

= e. Since all the elements of D

I

are in (:S)

I

we have e 2 (:S)

I

, which

completes the proof of the \only-if" part of the lemma.

Conversely, assume that the feature term T u 8F

�

(:S) and the feature terms

:S u a for all atoms a are satis�able. Let I be a feature algebra such that (T u

8F

�

(:S))

I

6= ;, and for all atoms a let I

a

be a feature algebra such that (:Sua)

I

6=

;. Let d 2 D

I

be such that d 2 (T u 8F

�

(:S))

I

. We want to de�ne a quasi-

restriction Ij

gen(d)

of I to gen(d) which satis�es the sort equation S

:

= ? and

interprets the feature term T as nonempty set. For that purpose we have to �x

the interpretation of the sorts on RA := A

I

� gen(d) in an appropriate way. This

can be done as follows: For all sorts A we de�ne A

Ij

gen(d)

:= (A

I

\ gen(d))[ fa

I

j

a

I

2 RA and a

I

a

2 A

I

a

g.

By Theorem 3.2 we have d 2 (T u 8F

�

(:S))

Ij

gen(d)

since d 2 (T u 8F

�

(:S))

I

.

In particular, this yields d 2 T

Ij

gen(d)

. It remains to be shown that S

Ij

gen(d)

= ;.

Assume that there exists e 2 D

Ij

gen(d)

= gen(d) [ RA such that e 2 S

Ij

gen(d)

.

If e 2 gen(d) then there exist a path p 2 F

�

such that e = dp

I

. But then

e 2 S

Ij

gen(d)

contradicts d 2 (8F

�

(:S))

Ij

gen(d)

.

Assume that e 2 RA, that is, e = a

I

for an atom a such that a

I

62 gen(d).

We have de�ned Ij

gen(d)

such that e = a

Ij

gen(d)

2 A

Ij

gen(d)

i� a

I

a

2 A

I

a

holds

for all sorts A. By Corollary 3.4 we get e = a

Ij

gen(d)

2 (:S u a)

Ij

gen(d)

since

a

I

a

2 (:S u a)

I

a

. This is a contradiction to our assumption that e 2 S

Ij

gen(d)

.

If there are no atoms, that is, if A = ;, then the condition \the feature terms

:S u a for all atoms a are satis�able" is void. This yields

Theorem 5.2 Assume that A = ;. Then the feature term T is satis�able w.r.t.

the sort equation S

:

= ? if and only if the feature term T u 8F

�

(:S) is satis�able.

On the other hand, if there exists at least on atom, the condition is equivalent

to the consistency of the sort equation S

:

= ?.

Theorem 5.3 Assume that A 6= ;. Then the feature term T is satis�able w.r.t.

the sort equation S

:

= ? if and only if the sort equation S

:

= ? is consistent and

the feature term T u 8F

�

(:S) is satis�able.
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6 Satis�ability is Undecidable

As an easy consequence of the undecidability result of Section 4 we get that satis-

�ability of feature terms w.r.t. sort equations is undecidable, if we have no atoms.

In fact, the feature term > is satis�able w.r.t. a �nite set of sort equations E if and

only if E is consistent. Please note that in the proof of the undecidability result

we did not use path quanti�cation.

On the other hand, we have seen that consistency of sort equations is decidable,

if we have at least one atom. But satis�ability of feature terms w.r.t. sort equations

is nevertheless undecidable in this case. This is shown in (Smolka, 1992) in the

presence of three features, two atoms and one sort. Again, the sort equations and

the feature term constructed in (Smolka, 1992) do not contain path quanti�cations.

Taking the two results together we thus have

Theorem 6.1 Satis�ability of feature terms w.r.t. sort equations is undecidable.

This holds even if path quanti�cations are disallowed, and it does not depend on

whether A = ; or A 6= ;.

In the light of Section 5, this theorem shows that satis�ability of feature terms

with path quanti�cations is undecidable, independently on whether we have atoms

or not.

Theorem 6.2 Satis�ability of feature terms with path quanti�cation is undecida-

ble. This result does not depend on whether A = ; or A 6= ;.

Proof. Assume that satis�ability of feature terms with path quanti�cations is

decidable. Then the characterizations of satis�ability of feature terms w.r.t. sort

equations given in Theorem 5.2 (forA = ;) or Theorem 5.3 (forA 6= ;) would yield

a decision criterion for satis�ability w.r.t. sort equations. This is a contradiction

to Theorem 6.1.

7 Conclusion

We have studied the expressivity of functional uncertainty in a feature term lan-

guage with negation and obtained two main results: satis�ability is undecidable

and sort equations can be internalized.

For practical applications in grammar formalisms the language studied in this

paper is probably too expressive since general negation is not needed. Thus it

would be interesting to �nd out whether satis�ability of feature terms built from

the forms a, A, p#q, 9L(S), and S u S

0

is decidable.

Feature logics are closely related to terminological logics (Brachman and

Schmolze, 1985; Levesque and Brachman, 1987; Nebel and Smolka, 1990; Schmidt-

Schau� and Smolka, 1991), which are employed in knowledge representation and



THE EXPRESSIVITY OF FUNCTIONAL UNCERTAINTY AND SORT EQUATIONS 16

grew out of research in semantic networks and frame systems. The essential di�e-

rence between these two formalisms is that in terminological logics attributes can

be nonfunctional while they must be functional in feature logics.

Baader (1991) studies a terminological logic that can be obtained from the

feature logic in this paper by three changes: disallow atoms and agreements, and

admit also interpretations that interpret features as nonfunctional binary relations.

He shows that in this logic satis�ability of \feature terms" (which are called concept

terms in this context) is decidable. Since concept equations (i.e., the equivalent of

the sort equations of the present paper) can also be internalized with the help of

path quanti�cations, the algorithm given in (1991) also yields a decision procedure

for satis�ability w.r.t. concept equations. Baader's algorithm can easily be adapted

to the case where one allows only functional binary relations. This means that the

feature logic of the present paper becomes decidable if agreements and atoms are

disallowed.

Similar results for terminological logics have independently been obtained by

Schild (1991) as byproducts of the correspondence he exhibits between termino-

logical logics and dynamic logics. In addition, he shows that this correspondence

also yields complexity results for the terminological logic considered by Baader,

and for our feature logic if agreements and atoms are disallowed. In both cases,

one has an exptime-complete satis�ability problem.
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