
An Empirical Analysis

of Optimization Techniques

for Terminological Representation Systems

or: Making KRIS get a move on

�

Published in Applied Intelligence 4(2): 109{132, 1994.

Franz Baader, Bernhard Hollunder,

Bernhard Nebel, Hans-J�urgen Pro�tlich

German Research Center for AI (DFKI)

Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germany

e-mail: hlast namei@dfki.uni-sb.de

and

Enrico Franconi

Istituto per la Ricerca Scienti�ca e Tecnologica (IRST)

38050 Povo TN, Italy

e-mail: franconi@irst.it

Abstract

We consider di�erent methods of optimizing the classi�cation process of

terminological representation systems, and evaluate their e�ect on three

di�erent types of test data. Though these techniques can probably be

found in many existing systems, until now there has been no coherent

description of these techniques and their impact on the performance of a

system. One goal of this paper is to make such a description available for

future implementors of terminological systems. Building the optimizations

that came o� best into the kris system greatly enhanced its e�ciency.

�

This is a revised and extended version of a paper presented at the 3rd International Confe-

rence on Principles of Knowledge Representation and Reasoning, October Temporal Projection

and Related Problems 1992, Cambridge, MA.

Optimization Techniques for Terminological Representation Systems 1

1 Introduction

Terminological representation systems can be used to represent the taxonomic

and conceptual knowledge of a problem domain in a structured way. To describe

this kind of knowledge, one starts with atomic concepts (unary predicates) and

roles (binary predicates), and de�nes more complex concepts and roles using the

operations provided by the concept language of the particular formalism. In ad-

dition to this concept description formalism, most terminological representation

systems also have an assertional component, which can be used to express facts

about objects in the application domain.

Of course, it is not enough to have a system that just stores concept de�ni-

tions and assertional facts. The system must also be able to reason about this

knowledge. An important inference capability of a terminological representation

system is classi�cation. The classi�er computes all subsumption relationships

between concepts, i.e., the subconcept-superconcept relationships induced by the

concept de�nitions. In this paper we consider optimizations for the classi�cation

process only. We do not take into account problems that are speci�c to assertional

reasoning. This emphasis on the terminological component is partially justi�ed

by the fact that this is the part that participates in most reasoning activities of

almost all systems|which means that the e�ciency of this reasoning component

is crucial for the overall behavior of the system.

The �rst terminological representation system, kl-one

[

7

]

, was an implemen-

tation of Brachman's

[

5

]

work on structured inheritance networks. In the last

decade many knowledge representation systems based on these ideas have been

built, for example back

[

37

]

, classic

[

36

]

, kandor

[

34

]

, kl-two

[

42

]

, k-rep

[

30

]

, krypton

[

6

]

, kris

[

3

]

, loom

[

29

]

, meson

[

13

]

, nikl

[

41

]

, sb-one

[

23

]

, and

yak

[

10

]

. Moreover, formal aspects of terminological representation languages

have been thoroughly investigated, with the highest emphasis having been placed

on the decidability and complexity of the subsumption problem

[

24; 31; 39; 35;

33; 40; 11; 12

]

. As a result of these investigations, it is known that subsumption

determination is at least NP-hard or even undecidable for most languages that

appear to be useful in applications. The developers of terminological represen-

tation systems usually have reacted to this problem in one of the following two

ways. On the one hand, there are systems such as classic which support only

a very limited terminological language, but employ almost complete reasoning

methods. On the other hand, systems such as loom provide for a very power-

ful language, but the reasoning is incomplete, which means that not all existing

subsumption relationships are detected.

The only system that does not make this compromise, i.e., that provides

complete algorithms for a very expressive concept description language, is kris.

Obviously, this means that kris will need exponential time for worst case ex-

amples which cannot be represented in expressively limited systems or are not

treated in a complete way by incomplete systems. However, it is not a priori clear

Optimization Techniques for Terminological Representation Systems 2

whether this also implies that kris has to be less e�cient for \typical" knowledge

bases. In particular, it might at least be fast in cases where its full expressive

power is not used, or where incomplete algorithms are still complete. The empiri-

cal analysis of terminological representation systems described by Heinsohn et al.

[

17; 18

]

seems to preclude this possibility, though. kris turned out to be much

slower than, for example, classic, even for knowledge bases that use a subset of

classic's concept language, and for which classic's subsumption algorithm is

complete.

One aim of the present paper is to demonstrate that this bad performance

of kris is not mainly due to the use of complete subsumption algorithms, but

instead to the fact that the tested version was the �rst implementation of an ex-

perimental system where e�ciency considerations only played a minor role. For

this purpose we shall consider possible optimizations of the classi�cation process

on three di�erent levels. The optimizations on the �rst level are independent

of the fact that what we are comparing are concepts de�ned by a terminological

language. On this level, classi�cation is considered as the abstract order-theoretic

problem of computing a complete representation of a partial ordering (in our case

the subsumption hierarchy) by making as few as possible explicit comparisons (in

our case calls of the subsumption algorithm) between elements of the underlying

set (in our case the set of all concepts occurring in the terminology). Optimiza-

tions on the second level still leave the subsumption algorithm unchanged, but

they do employ the fact that we are not comparing abstract objects but instead

structured concepts. At this level subsumption relationships that are obvious

consequences of this structure can be derived without invoking the subsumption

algorithm. On the third level, the actual subsumption algorithm is changed so

that it can bene�t from the information provided by subsumption relationships

which have previously been computed. The e�ects these optimizations have on

the classi�cation process are evaluated on three di�erent sets of test data, which

are described below.

It should be noted that we do not claim that all the presented optimizations

are novel. Similar optimizations can probably be found in many of the existing

systems

[

27; 28; 38; 44

]

. Further, the optimizations on the �rst level described

below are very similar to methods that can be found in the conceptual graphs

literature

[

25; 14; 26

]

, and which have been used in the implementation of the

peirce system

[

15

]

.

However, until now it was not possible to �nd a coherent description of all

the methods, and there were no empirical studies on their exact e�ects. A second

motivation for this work is thus to make such a description available for imple-

mentors of terminological representation systems. For this reason, we describe

the optimization techniques on an abstract, algorithmic level and evaluate their

e�ects using implementation-independent metrics, i.e., instead of measuring run-

time (in one particular system) we evaluate the complexity of the methods by

counting speci�c operations that are supposedly very costly.

Optimization Techniques for Terminological Representation Systems 3

The paper is structured as follows. In the next section we introduce the basic

notions of terminological representation and reasoning. Section 3 describes in

some detail the test data we used to evaluate the di�erent optimization methods.

Sections 4 through 6 describe di�erent methods to speed up classi�cation on the

three levels described above. Finally, in Section 7, we summarize our �ndings

and describe the e�ects the optimizations had on the kris system.

2 Terminological Knowledge Representation

and Reasoning

For the reader's convenience, this section provides a brief introduction into the

area of terminological knowledge representation. Since we are only considering

optimizations of the classi�cation process, this introduction will be restricted to

the terminological part of the system (for an introduction that includes the as-

sertional part as well, see

[

4

]

). We de�ne syntax and semantics of a prototypical

terminological language, which includes most of the constructs occurring in our

test knowledge bases. In addition, we introduce the reasoning service whose op-

timization is the topic of the present paper (namely, computing the subsumption

hierarchy), and we sketch two types of subsumption algorithms used in termino-

logical systems.

The Terminological Language ALCN

The terminological formalism can be used to describe knowledge about classes of

individuals (concepts) and relationships between these classes.

De�nition 2.1 (Syntax of ALCN) Concept descriptions are built from con-

cept and role names using the concept-forming operators

negation (:C), disjunction (C tD), conjunction (C uD),

existential restriction (9R:C), value restriction (8R:C),

at-least restriction (�n:R), at-most restriction (�n:R).

Here C and D are syntactic variables for concept descriptions, R stands for a

role name, and n for a nonnegative integer. The set of concept names is assumed

to contain the particular names > and ? for the top and the bottom concept.

Let A be a concept name and let D be a concept description. Then A = D

and A v D are terminological axioms. A terminology (TBox) is a �nite set T of

terminological axioms with the additional restrictions that (i) each concept name

(di�erent from > and ?) appears exactly once as a left hand side of an axiom,

and (ii) T contains no cyclic de�nitions.

Optimization Techniques for Terminological Representation Systems 4

At-least and at-most restrictions are also called number restrictions. An ex-

pression of the form A = D is called a complete de�nition of A, and an expression

of the form A v D is called a primitive de�nition of A. Depending on whether

the name A is introduced by a complete or a primitive de�nition, A is called

de�ned or primitive concept.

Intuitively, a cyclic de�nition is one that refers to itself. To make this more

precise, we introduce the de�nition order of a TBox: We say that a concept name

A directly uses a concept name B in a TBox if B occurs in the description that

de�nes A. Let \uses" be the transitive closure of \directly uses." Then A comes

in the de�nition order after B if A uses B. The TBox does not contain cycles if

this relation is irre
exive, i.e., if there is no concept name A such that A uses A.

As an example, consider the terminology of Figure 1. The concepts Female

and Human are introduced without a restriction on their extension, whereas Male

is restricted to be in the complement of Female. The concepts Woman and Man

are not completely de�ned since being female (male) and human is not enough

to de�ne a woman (man). For example, a female toddler is usually not called

woman. The concept names Momo and Momm are respectively acronyms for \Mother

of males only" and \Mother of many males."

Human v >

Female v >

Male v :Female

Woman v Humanu Female

Man v Humanu Male

Mother = Womanu 9child:Human

Father = Manu 9child:Human

Parent = Fathert Mother

Grandmother = Womanu 9child:Parent

Momo = Motheru 8child:Male

Momm = Momou �5:child

Figure 1: A family terminology.

De�nition 2.2 (Semantics of ALCN) An interpretation I for ALCN con-

sists of a set dom(I) and an extension function that associates

� with each concept name A a subset A

I

of dom(I),

� with each role name R a binary relation R

I

on dom(I), i.e., a subset of

dom(I)� dom(I).

Optimization Techniques for Terminological Representation Systems 5

The special names top and bottom are interpreted as >

I

= dom(I) and ?

I

= ;.

For x 2 dom(I), we denote the set fy 2 dom(I) j xR

I

yg of R-�llers of x by

R

I

(x).

The extension function can be extended to arbitrary concept descriptions as

follows:

� (:C)

I

= dom(I) n C

I

, (C tD)

I

= C

I

[D

I

, and (C uD)

I

= C

I

\D

I

,

� (9R:C)

I

= fx 2 dom(I) j R

I

(x) \ C

I

6= ;g,

� (8R:C)

I

= fx 2 dom(I) j R

I

(x) � C

I

g,

� (�n:R)

I

= fx 2 dom(I) j jR

I

(x)j � ng,

� (�n:R)

I

= fx 2 dom(I) j jR

I

(x)j � ng.

An interpretation I is a model of the TBox T i� it satis�es A

I

= D

I

for all

terminological axioms A = D in T , and A

I

� D

I

for all terminological axioms

A v D in T .

Using this model-theoretic semantics it is easy to de�ne the inference services

of terminological systems in a formal way. The terminological axioms of a gi-

ven TBox imply subconcept-superconcept relationships (so-called subsumption

relationships) between the concepts introduced in this terminology.

Subsumption: Let T be a TBox and let A, B be concept names occurring in T .

Then B subsumes A with respect to T (symbolically A v

T

B) i� A

I

� B

I

holds for all models I of T .

When a terminological system reads in a terminology, it �rst computes all the

subsumption relationships between the concepts introduced in this TBox. This

process, called classi�cation, results is an explicit internal representation of the

subsumption ordering, which can directly be accessed during later computations,

and which in most systems is displayed to the user by a graphical interface.

Figure 2 gives a graphical representation of the subsumption ordering induced by

the TBox of Figure 1.

The subsumption algorithms described in the literature are usually not con-

cerned with subsumption between concept names with respect to a TBox. They

compute subsumption relationships between concept descriptions, where the de-

scription D is said to subsume the description C i� C

I

� D

I

holds for all

interpretations I. To use these algorithm for solving the subsumption problem

with respect to a TBox, one must �rst eliminate primitive de�nitions that are not

of the form A v >, and then expand complete de�nitions (see

[

32

]

, Section 3.2.4

and 3.2.5).

Optimization Techniques for Terminological Representation Systems 6

>

Female Human Male

�

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

X

Woman Parent Man

�

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

X

Mother Father

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

Momo Grandmother

�

�

�

�

�

�

H

H

H

H

H

H

Momm

?

X

X

X

X

X

X

X

X

X

X

X

X

�

�

�

�

�

�

Figure 2: Subsumption hierarchy induced by the TBox of Figure 1.

In our example, the primitive de�nitions

Male v :Female

Woman v Human u Female

Man v Human u Male

are replaced by

Male = :Femaleu Male*

Male* v >

Woman = Humanu Femaleu Woman*

Woman* v >

Man = Humanu Male u Man*

Man* v >:

Intuitively, the newly introduced concept name Male* (Woman*, Man*) stands

for the absent part in the de�nition of Male (Woman, Man). After applying this

replacement to each primitive de�nition with right-hand side di�erent from >, all

remaining primitive de�nitions are of the form A v >. Since such an axiom does

not restrict the extension of A in any way, primitive de�nitions need no longer

be taken into account by the subsumption algorithms.

To get rid of complete de�nitions as well, they are expanded as follows: de�ned

concepts are iteratively replaced by their de�ning descriptions until all names

Optimization Techniques for Terminological Representation Systems 7

occurring on the right-hand side of a complete de�nition are primitive. The

expansion process terminates since TBoxes are assumed to be acyclic. In our

example, the expanded de�nitions of Man and Father are

Man = Humanu :Femaleu Male*u Man*

Father = Humanu :Femaleu Male*u Man*u 9child:Human:

It is easy to see that Father is subsumed by Man with respect to the TBox of

Figure 1 i� the subsumption relationship holds for the corresponding expanded

descriptions, i.e., i� Humanu:FemaleuMale*uMan*u9child:Human is subsumed

by Humanu :Femaleu Male*u Man*.

Thus we have seen that subsumption with respect to a TBox can be reduced

to subsumption of concept descriptions. It should, however, be noted that expan-

ding concept de�nitions may cause an exponential growth of the knowledge base.

This is the reason why subsumption with respect to a TBox is already intracta-

ble for very small sub-languages of ALCN . In fact, Nebel

[

33

]

has shown that

subsumption with respect to a TBox is co-NP-complete for the language that has

conjunction and value restriction as its only concept constructors. In contrast,

subsumption of concept descriptions of this language is still polynomial, as has

been shown by Levesque and Brachman

[

24

]

. However, Levesque and Brachman

also show that a relatively small extension of the language (namely, adding exi-

stential restrictions) makes subsumption of concept descriptions intractable as

well.

The subsumption algorithms employed in terminological systems can be divi-

ded into two classes: structural algorithms and tableau-based algorithms. In the

remainder of this section, we brie
y explain the ideas underlying both types of

algorithms.

Structural Subsumption Algorithms

These algorithms usually proceed in two phases. First, the descriptions to be

tested for subsumption are normalized, and then the syntactic structure of the

normal forms is compared.

For simplicity, we restrict our attention to descriptions containing conjunction

and value restriction only. Such a description is in normal form i� it is of the

form

A

1

u : : : uA

m

u 8R

1

:C

1

u : : : u 8R

n

:C

n

;

where A

1

; : : : ; A

m

are distinct concept names, R

1

; : : : ; R

n

are distinct role na-

mes, and C

1

; : : : ; C

n

are concept descriptions in normal form. It is easy to see

that any description can be transformed into an equivalent

1

one in normal form,

using associativity, commutativity and idempotence of u, and the fact that the

descriptions 8R:(C uD) and (8R:C) u (8R:D) are equivalent.

1

The concept descriptions C and D are equivalent i� for all interpretations I, C

I

= D

I

.

Optimization Techniques for Terminological Representation Systems 8

Now let

A

1

u : : : uA

m

u 8R

1

:C

1

u : : : u 8R

n

:C

n

;

be the normal form of the description C, and let

B

1

u : : : uB

k

u 8S

1

:D

1

u : : : u 8S

l

:D

l

;

be the normal form of the description D. Then C is subsumed by D i� the

following two conditions hold:

1. For all i; 1 � i � k, there exists j; 1 � j � m such that B

i

= A

j

.

2. For all i; 1 � i � l, there exists j; 1 � j � n such that S

i

= R

j

and C

j

is

subsumed by D

i

.

It is easy to see that this subsumption algorithm is sound (i.e., the \if" di-

rection of the above statement holds) and complete (i.e., the \only-if" direction

of the above statement holds as well), and that its time complexity is polyno-

mial (see

[

24

]

for a proof). This subsumption algorithm can relatively easily be

extended to handle descriptions that contain number restrictions in addition to

conjunction and value restrictions (see

[

32

]

, Section 4.1.1). For larger languages,

however, structural subsumption algorithms usually fail to be complete.

Tableau-based Subsumption Algorithms

Using a di�erent paradigm, sound and complete subsumption algorithms have

been developed for a large class of terminological languages (see, e.g.,

[

40; 19;

12

]

). Usually, these algorithms are satis�ability checking algorithms rather than

algorithms directly computing subsumption. They are model generation proce-

dures, and are similar to �rst-order tableaux calculus, with the main di�erence

that the speci�c structure of concept descriptions allows one to impose an ap-

propriate control that ensures termination. Unlike structural algorithms, such

tableau-based algorithms are also complete for languages that allow for negation,

disjunction, and existential restrictions.

Since a concept descriptionD subsumes a description C if, and only if, Cu:D

is not satis�able, i.e., there does not exist an interpretation that interprets Cu:D

as a non-empty set, a satis�ability algorithm can indeed be used to solve the

subsumption problem. In order to check whether a given concept description C

is satis�able, the tableau-based algorithm tries to generate a �nite interpretation

in which C is interpreted as a non-empty set. This generation process is complete

in the sense that, if it fails, i.e., an obvious contradiction occurs, we can conclude

that C is not satis�able; otherwise C is satis�able.

In the following, we illustrate this type of algorithm by an example (a formal

description of a tableau-based algorithm for ALCN can be found in

[

19

]

).

Optimization Techniques for Terminological Representation Systems 9

Let A, B be concept names, and let R be a role name. Assume that we want

to know whether (9R:A)u (9R:B) is subsumed by 9R:(AuB). That means that

we have to check whether the concept description

C := (9R:A) u (9R:B) u :(9R:(A uB))

is not satis�able.

In a �rst step, we push all negation signs as far as possible into the descripti-

ons, using de Morgan's rules and the usual rules for quanti�ers. As a result, we

obtain the description

C

0

:= (9R:A) u (9R:B) u 8R:(:At :B);

where negation occurs only in front of concept names.

In a second step we try to construct a �nite interpretation I such that C

0I

6= ;.

This means that there has to exist an individual in dom(I) that is an element

of C

0I

. The algorithm just generates such an individual, say b, and imposes the

constraint b 2 C

0I

on it. Since C

0

is the conjunction of three concept descriptions,

this means that b has to satisfy the following three constraints: b 2 (9R:A)

I

,

b 2 (9R:B)

I

, and b 2 (8R:(:At :B))

I

.

From b 2 (9R:A)

I

we can deduce that there has to exist an individual c such

that (b; c) 2 R

I

and c 2 A

I

. Analogously, b 2 (9R:B)

I

implies the existence

of an individual d with (b; d) 2 R

I

and d 2 B

I

. We should not assume that

c = d since this would possibly impose too many constraints on the individuals

newly introduced to satisfy the existential restrictions on b. Thus the algorithm

introduces for any existential restriction a new individual as role-�ller, and this

individual has to satisfy the constraints expressed by the restriction.

Since b must satisfy the value restriction 8R:(:At:B) as well, and c, d were

introduced as R-�llers of b, we also obtain the constraints c 2 (:A t :B)

I

and

d 2 (:A t :B)

I

. Thus the algorithm uses value restrictions in interaction with

already de�ned role relationships to impose new constraints on individuals.

Now c 2 (:A t :B)

I

means that c 2 (:A)

I

or c 2 (:B)

I

, and we have to

choose one of these possibilities. If we assume c 2 (:A)

I

this clashes with the

other constraint c 2 A

I

, which means that this search path leads to an obvious

contradiction. Thus we have to choose c 2 (:B)

I

. Analogously, we have to choose

d 2 (:A)

I

in order to satisfy the constraint d 2 (:A t :B)

I

without creating

a contradiction to d 2 B

I

. Thus, for disjunctive constraints, the algorithm tries

both possibilities in successive attempts. It has to backtrack if it reaches an

obvious contradiction, i.e., if the same individual has to satisfy constraints that

are obviously con
icting.

In the example, we have now satis�ed all the constraints without encountering

an obvious contradiction. This shows that C

0

is satis�able, and thus (9R:A) u

(9R:B) is not subsumed by 9R:(A uB).

Optimization Techniques for Terminological Representation Systems 10

The algorithm has generated an interpretation I as witness for this fact:

dom(I) := fb; c; dg; R

I

:= f(b; c); (b; d)g; A

I

:= fcg and B

I

:= fdg. For this

interpretation, b 2 C

0I

. This means that b 2 ((9R:A) u (9R:B))

I

, but b 62

(9R:(A u B))

I

.

Termination of the algorithm is ensured by the fact that the newly intro-

duced constraints are always smaller than the constraints which enforced their

introduction.

3 The Test Data

In order to evaluate the di�erent optimization techniques empirically, we used

three sets of test data. As Heinsohn et al.

[

17; 18

]

, we consider both existing

knowledge bases used in other projects (six di�erent KBs with the number of

concepts ranging between 140 and 440), and randomly generated knowledge bases

whose structure resembles those of the six real knowledge bases. Additionally,

we also used randomly generated partial orders to evaluate di�erent methods of

computing the subsumption hierarchy.

Below we give a brief description of the six realistic knowledge bases. Table 1

characterizes the structure of the original KBs by means of the number of de�ned

and primitive concepts and roles, respectively. As mentioned by Heinsohn et al.

[

17; 18

]

, in the process of automatically translating and adapting the KBs to each

particular system, some arti�cial concepts have been introduced, the cardinality

is also shown in Table 1. The exact number of auxiliary concepts di�er from

system to system, though. The numbers given here are for the classic system.

A more structural characterization of the subsumption hierarchy induced by the

KBs is given in Table 2 in Section 4.4.

CKB (Conceptual Knowledge Base): Contains knowledge about tax regu-

lations and is used in the Natural Language project XTRA at the University

of Saarbr�ucken.

Companies: Contains knowledge about company structures and is used at

the Technical University Berlin in the framework of the ESPRIT project

ADKMS.

FSS (Functional Semantic Structures): Contains knowledge about speech

acts and is used in the Natural Language project XTRA at the University

of Saarbr�ucken.

Espresso: Contains knowledge about Espresso machines and their structure.

It is used in the WIP-Project of DFKI in the framework of multimodal

presentation of information.

Optimization Techniques for Terminological Representation Systems 11

Wisber: Contains knowledge about di�erent forms of investments and was used

in the natural language dialog project WISBER at the University of Ham-

burg.

Wines simple kosher: Contains knowledge about wines, wineries, and meal-

courses. It is used as sample KB of the classic system.

2

Name de�ned primitive arti�cial

P

de�ned primitive

concepts roles

CKB 23 57 104 184 2 46

Companies 70 45 126 241 1 39

FSS 34 98 122 254 0 47

Espresso 0 145 124 269 11 41

Wisber 50 81 199 330 6 18

Wines 50 148 282 480 0 10

Table 1: Real Knowledge Bases: Structural description

The experiments by Heinsohn et al.

[

17; 18

]

have shown that besides the size

of a knowledge base its structure can have a signi�cant in
uence on the runtime

necessary to classify the knowledge base. In order to determine how the e�ects

of the optimizations vary with the size of the knowledge base, it is necessary

to have access to a set of knowledge bases with a similar structure and varying

size. The randomly generated knowledge bases used in the empirical evaluation of

terminological representation systems

[

17; 18

]

have this property.

3

The structure

of these randomly knowledge bases resembles the structure of realistic knowledge

bases in many important aspects (see below) and, as has been shown empirically,

leads to a runtime behavior of implemented terminological representation systems

comparable to their performance on realistic knowledge bases

[

17; 18

]

.

The generated knowledge bases have the following properties:

� 80% of the concepts are primitive.

� There are exactly 10 di�erent roles.

� Each concept de�nition is a conjunction containing

{ one or two concept symbols (explicit super-concepts),

2

A lot of individuals have been transformed to general concepts because in our tests we only

considered terminological knowledge but did not want to cut all the nice information about

di�erent wineries and wines.

3

For related work on random structures in the database area see

[

2; 9; 8

]

.

Optimization Techniques for Terminological Representation Systems 12

{ zero or one at-least restrictions,

{ zero or one at-most restrictions,

{ and zero, one, or two value restrictions,

where the number of constructs from one category and the roles and con-

cepts are randomly assigned with a uniform distribution. Further, the con-

cepts are constructed in a way such that no concept is unsatis�able (i.e.,

no at-least restriction is larger than any at-most restriction).

In order to avoid de�nitional cycles, the concepts are partitioned into layers,

where the ith layer has 3

i

concepts. When assigning explicit super-concepts or

value-restriction concepts to the concept de�nition of a concept from level i, only

concepts from level 0 to i� 1 are considered.

Since the �rst level of optimizations can be done in an abstract order-theoretic

setting, these optimizations are also evaluated on randomly generated partial

orderings. These partial orderings were generated as follows

[

43

]

. In order to

generate a partial order (f1; : : : ; ng; <

P

):

1. Choose a positive integer k.

2. Generate randomly k permutations �

i

= (p

1;i

; : : : ; p

n;i

). Such a permutation

de�nes a linear ordering <

i

on f1; : : : ; ng as follows: r <

i

s i� r comes before

s in �

i

.

3. The strict partial ordering relation <

P

on f1; : : : ; ng is now de�ned as:

r <

P

s i� r <

i

s for all i; 1 � i � k.

Note that for k = 1, the resulting partial order is a total order. Further, for k ap-

proaching n, the generated partial orders tend to become
at, i.e., most elements

will be pairwise incomparable. In our experiments, we varied the parameter k

in order to evaluate the e�ect of the optimizations on the �rst level for varying

structural properties of the ordering.

4 Avoiding Subsumption Calls when Compu-

ting the Subsumption Hierarchy

In the �rst level of optimizations we are concerned with computing the concept

hierarchy induced by the subsumption relation. More abstractly, this task can be

viewed as computing the representation of a partial ordering. For a given partial

ordering

4

� on some set P , � shall denote the precedence relation of �, i.e., �

is the smallest relation such that its re
exive, transitive closure is identical with

4

A partial ordering is a transitive, re
exive, and antisymmetric relation.

Optimization Techniques for Terminological Representation Systems 13

�. Obviously, x � y i� x � y and there is no z di�erent from x and y such that

x � z � y. If x � y, we say that x is a successor of y and y is a predecessor of

x. Similarly, if x � y, we say that x is an immediate successor of y and y is an

immediate predecessor of x.

Given a set X and a partial ordering � on X, computing the representation

of this ordering on X amounts to identifying � on X. If � is a total ordering, this

task is usually called sorting. For a partial ordering it is called the identi�cation

problem

[

16

]

. The basic assumption here is that the partial ordering is given via

a comparison procedure, and that the comparison operation is rather expensive.

For this reason, the complexity of di�erent methods to compute the precedence

relation is measured by counting the number of comparisons.

In our case, X is the set of concepts de�ned in a terminological knowledge

base, and � is the subsumption relation between these concepts.

5

The assumption

that the subsumption test is the most expensive operation is justi�ed by the

known complexity results for the subsumption problem

[

11

]

. It is also supported

by the empirical fact that terminological representation systems (such as the

optimized version of kris) spend more than 95% of their runtime on subsumption

checking, even when dealing with typical knowledge bases that do not contain

worst cases.

The worst case complexity of computing the representation of a partial or-

dering on a set with n elements is obviously O(n

2

) because it takes n � (n � 1)

comparisons to verify that a set of n incomparable elements is indeed a
at partial

order. Since subsumption hierarchies typically do not have such a \pathological"

structure, considerably less than n � (n � 1) comparisons will almost always

su�ce.

Below, we describe and analyze four di�erent methods to identify the re-

presentation of a partial ordering, namely, the brute force method, the simple

traversal method, the enhanced traversal method, and the chain inserting me-

thod. Average case analyses of these methods seem to be out of reach since one

does not know enough about the structure of \typical" terminological knowledge

bases, and since it is not even known how many di�erent partial orders exist

for a given number of elements

[

1

]

. For this reason, the di�erent methods are

compared empirically.

All methods we describe are incremental, i.e., assuming that we have identi�ed

the precedence relation �

i

for X

i

� X, the methods compute for some element

c 2 X � X

i

the precedence relation �

i+1

on X

i+1

= X

i

[fcg. The two most

important parts of this task are the top search and the bottom search. The top

search identi�es the set of immediate predecessors in X

i

for a given element c, i.e.,

the set X

i

#c := fx 2 X

i

j c � xg. Symmetrically, the bottom search identi�es

5

To be more precise, the subsumption relation is only a quasi-ordering, i.e., it need not be

antisymmetric. For the following discussion, this is mostly irrelevant, however. There is only

one place in the algorithms where this fact has to be taken into account.

Optimization Techniques for Terminological Representation Systems 14

the set of immediate successors of c, denoted by X

i

"c.

To be more precise, the procedures for top search that we will describe below

compute the set fx 2 X

i

j c � x and c 6� y for all y �

i

xg, which in most cases is

the set X

i

#c. Because the subsumption relation is only a quasi-ordering, there is

one exception. The concept c can be equivalent to an element x of X

i

, i.e., c � x

and x � c. In this case, the top search procedures will yield fxg instead of X

i

#c.

To take care of this case, we test x � c whenever the top search procedure yields

a singleton set fxg. If this test is positive, c is equivalent to x, and we know that

X

i

#c = X

i

#x, and X

i

"c = X

i

"x, which means that we don't need the bottom

search phase. Otherwise, the result of the top search procedure is in fact X

i

#c.

Given the set X

i

#c, X

i

"c, and �

i

, it is possible to compute the precedence

relation �

i+1

on X

i+1

= X

i

[fcg in linear time. In fact, one just has to add

�-links between c and each element of X

i

#c, and between each element of X

i

"c

and c. In addition, all �-links between elements of X

i

"c and X

i

#c have to be

erased.

4.1 The Brute Force Method

The top search part of the brute force method can be described as follows:

1. Test c � x for all x 2 X

i

.

2. X

i

#c is the set of all x 2 X

i

such that the test succeeded and for all y �

i

x

the test failed.

The bottom search is done in the dual way.

This method obviously uses 2 � jX

i

j comparisons for the step of inserting c

in X

i

. Summing over all steps leads to n � (n � 1) comparison operations to

compute the representation of a partial ordering for n elements. Further, this is

not only the worst-case, but also the best-case complexity of this method.

4.2 The Simple Traversal Method

It is obvious that many of the comparison operations in the brute force method

can be avoided. Instead of testing the new element c blindly with all elements in

X

i

, in the top search phase the partial ordering can be traversed top-down and

in the bottom search phase bottom-up, stopping when immediate predecessors

or successors have been found. This leads us to the speci�cation of the simple

traversal method.

The top search starts at the top

6

of the already computed hierarchy. For each

concept x 2 X

i

under consideration it determines whether x has an immediate

6

We assume that our concept hierarchies always contain a top element > and a bottom

element ?.

Optimization Techniques for Terminological Representation Systems 15

successor y satisfying c � y. If there are such successors, they are considered as

well. Otherwise, x is added to the result list of the top search.

In order to avoid multiple visits of elements of X

i

and multiple comparisons of

the same element with c, the top search algorithm described in Figure 3 employs

one label to indicate whether a concept has been \visited" or not and another

label to indicate whether the subsumption test was \positive," \negative," or has

not yet been made. The procedure top-search gets two concepts as input: the

concept c, which has to be inserted, and an element x of X

i

, which is currently

under consideration. For this concept x we already know that c � x, and top-

search looks at its direct successors with respect to �

i

. Initially, the procedure is

called with x = >. For each direct successor y of x we have to check whether it

subsumes c. This is done in the procedure simple-top-subs?. Since our hierarchy

need not be a tree, y may already have been checked before, in which case we

have memorized the result of the test, and thus need not invoke the expensive

subsumption procedure subs?. The direct successors for which the test was posi-

tive are collected in a list Pos-Succ. If this list remains empty, x is added to the

result list; otherwise top-search is called for each positive successor, but only if

this concept has not been visited before along another path.

The bottom search can be done again in the dual way. The number of sub-

sumption tests of the simple traversal method relative to the brute force method

are displayed in Figure 4. In the case of realistic knowledge bases, 40{60% of all

subsumption calls are avoided and the savings are even higher for the random

knowledge bases. For instance, the top search phase of the simple traversal me-

thod needs only 1=5 of the subsumption calls that are required by the brute force

method.

It is interesting to note that this top search is in principle the same as the

one described by Lipkis

[

27

]

, who implemented the �rst classi�cation algorithm

for kl-one. The bottom search described by Lipkis, however, is more e�cient

than the one given here (but less e�cient than the method we consider next).

4.3 The Enhanced Traversal Method

Although the simple traversal method is a big advantage compared with the brute

force method (see Figure 4), it still does not exploit all possible information. First,

during the top search phase, we can take advantage of tests that have already

been performed. Second, in the bottom search phase, we can use the information

gained during the top search as well.

Of course, a dual strategy is also possible, i.e., performing the bottom search

before the top search and exploiting the information gathered during the bottom

search phase. Analyzing Figure 4, it becomes quickly obvious that this strategy

would be less e�cient, however. In fact, for the simple traversal method|where

the top and bottom phase are done in a symmetric way|the top search phase

turns out to be a lot faster. Thus it is better to start with this phase because

Optimization Techniques for Terminological Representation Systems 16

top-search(c,x) =

mark(x,\visited")

Pos-Succ ;

for all y with y �

i

x do

if simple-top-subs?(y,c)

then Pos-Succ Pos-Succ [fyg

�

od

if Pos-Succ is empty

then return fxg

else Result ;

for all y 2 Pos-Succ do

if not marked?(y,\visited")

then Result Result [top-search(c,y)

�

od

return Result

�

simple-top-subs?(y,c) =

if marked?(y,\positive")

then return true

elsif marked?(y,\negative")

then return false

elsif subs?(y,c)

then mark(y,\positive")

return true

else mark(y,\negative")

return false

�

�

�

Figure 3: Top search phase of the simple traversal method

the information gained thereby can then be used to speed up the slower bottom

search phase.

When trying to take advantage of tests that have already been performed

during top search one can either concentrate on negative information (i.e., a

subsumption test did not succeed) or on positive information (i.e., a subsumption

Optimization Techniques for Terminological Representation Systems 17

	

top search

3

bottom search

�

top & bottom

100 200 300 400 500

20%

40%

60%

80%

100%

No. of concepts

(a) Realistic KBs

	

	

	

	

	

	

3

3

3

3

3

3

�

�

hh

�

�

�

S

S

�

(

(

(

(

(

	

top search

3

bottom search

�

top & bottom

800 1600 2400 3200 4000

20%

40%

60%

80%

100%

No. of concepts

(b) Random KBs

	

	

	

	

	

	

	

	

3

3

3

3

3

3

3 3

�

�

�

a

a

�

!
!

�

h
h

�

h

h

h

�

h

h

h

h

h

�

Figure 4: Number of comparison operations of the simple traversal method rela-

tive to the brute force method (vertical axis) against number of concepts (hori-

zontal axis)

test was successful).

To use negative information during the top search phase one has to check

whether for some predecessor z of y the test c � z has failed. In this case, we can

conclude that c 6� y without performing the expensive subsumption test

[

28

]

. In

order to gain maximum advantage, all direct predecessors of y should have been

tested before the test is performed on y

[

25

]

. This can be achieved by using a

modi�ed breadth-�rst search where the already computed hierarchy is traversed

in topological order, as described by Ellis

[

14

]

and Levinson

[

26

]

. Alternatively,

one can make a recursive call whenever there is a direct predecessor that has

not yet been tested. This is what the procedure enhanced-top-subs? described

in Figure 5 does. If y is not yet marked, the procedure enhanced-top-subs? is

recursively called for all direct predecessors z of y. As soon as one of these calls

returns false, one goes to the \else" branch, and marks y \negative." Only if all

calls return true, the subsumption test subs?(y,c) is performed to decide whether

y has to be marked \positive" or \negative." If we replace the call of simple-top-

subs? in top-search by a call of enhanced-top-subs?, we get the top search part

of the enhanced traversal method.

The enhanced top search procedure just described makes maximumuse of fai-

led tests. Alternatively, it is possible to use positive information. Before checking

c � y, one can look for successors z of y that have passed the test c � z

[

28

]

.

If there exists such a successor, one can conclude that c � y without performing

an actual subsumption test. Although we are only interested in minimizing the

Optimization Techniques for Terminological Representation Systems 18

enhanced-top-subs?(y,c) =

if marked?(y,\positive")

then return true

elsif marked?(y,\negative")

then return false

elsif for all z with y �

i

z

enhanced-top-subs?(z,c)

and subs?(y,c)

then mark(y,\positive")

return true

else mark(y,\negative")

return false

�

�

�

Figure 5: Top search phase of the enhanced traversal method. The procedure

top-search is adopted from the simple traversal method, but instead of simple-

top-subs? it calls enhanced-top-subs?

number of comparison operations, it should be noted that instead of searching

for a successor that has passed the test it is more e�cient to propagate positive

information up through the subsumption hierarchy. This can be achieved by an

easy modi�cation of the procedure simple-top-subs?. When the call subs?(y,c)

yields true, not only y is marked \positive," but so are all of y's predecessors.

Obviously, this technique cannot be combined with the enhanced top search des-

cribed in Figure 5 since it reduces the number of subsumption tests only if there

are predecessors which have not yet been tested, and enhanced top search tests

all predecessors before making a subsumption test.

Both methods are obviously more e�cient than simple traversal since it is

guaranteed that they never make more subsumption tests than the simple tra-

versal method. However, although both methods have been mentioned in the

literature, they have never been compared theoretically or empirically.

First, it can easily be shown that neither of these alternatives is uniformly

better than the other one. This can be seen by considering the examples described

in Figure 6 and 7.

In the �rst example, the top-search using negative information makes n + 1

tests: it �rst tests x

1

, then goes to y, but before testing it, it tests all its direct

predecessors, i.e., x

2

; : : : ; x

n

. The top search using positive information makes

two tests: �rst x

1

and then y; the positive result of this second test is propagated

Optimization Techniques for Terminological Representation Systems 19

>

t

x

1

t

x

2

t t t t

� � �

t

x

n

t

y

"

"

"

"

"

"

"

"

b

b

b

b

b

b

b

bl

l

l

l

l

l

,

,

,

,

,

,

J

J

J

J

JE

E

E

E

E

�

�

�

�

�B

B

B

B

B

�

�

�

�

��

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

Figure 6: The new element c is a direct successor of y

to x

2

; : : : ; x

n

.

>

t

y

1

t

y

2

t

x

1

t

x

2

t t t t t

� � �
x

n

�

�

�

�

%

%

%

%

%!

!

!

!

!

!

!

!

!

!

!

!

Z

Z

Z

Z

%

%

%

%

%!

!

!

!

!

!

!

!

!

!

!

!

�

�

�

�

��

�

�

�

�

�

�

�

�

�

E

E

E

E

E�

�

�

�

�

�

�

J

J

J

J

J�

�

�

�

�

l

l

l

l

l

l�

�

�

�

�

P

P

P

P

P

P

P

P

P

P

P

P

P

PZ

Z

Z

Z

Z

Z

Figure 7: The new element c is a direct successor of y

1

, but not a successor of y

2

,

x

1

; : : : ; x

n

In the second example, the top search using negative information needs only

two tests: �rst it tests y

1

, then goes to x

1

, but before testing x

1

its direct prede-

cessor y

2

is tested. The negative result of this test prevents x

1

; : : : ; x

n

from being

tested. The top search using positive information tests n+2 nodes: �rst y

1

, then

all its successors x

1

; : : : ; x

n

, and �nally y

2

.

However, we have observed signi�cant performance di�erences for the two dif-

ferent top search strategies. For the random knowledge bases, the method using

positive information was only slightly better than the simple traversal method

(less than 5%). For this reason, we have also considered a \hybrid method" which

propagates positive information up, and negative information down the hierarchy

(but does not test all predecessors before testing a node). Propagating negative

information down is again achieved by an easy modi�cation of simple-top-subs?.

When the call of subs?(y,c) yields false, not only y is marked \negative," but

all of y's successors. The hybrid method turned out to be a lot better than just

propagating positive information, but it still needed slightly more tests (approx.

5%{10%) than the enhanced top search for all but one of the random knowledge

bases. On �ve of the six realistic knowledge bases the hybrid method was insi-

gni�cantly faster than the enhanced top search (less than 1%). On the remaining

realistic KB, the hybrid method needed 10% more comparisons. Although these

results do not seem to be conclusive in favor of the hybrid method or the en-

Optimization Techniques for Terminological Representation Systems 20

hanced top search, it is obvious that the use of negative information leads to a

signi�cantly greater reduction of comparisons than the use of positive informa-

tion. These �ndings for terminological knowledge bases coincide with what has

been observed by Levinson

[

26

]

for conceptual graphs.

Now we turn to the bottom search phase of the enhanced traversal method.

Of course, optimizations dual to the ones described for the top search can be

employed here. In addition, the set X

i

#c can be used to severely cut down the

number of comparisons in the bottom search phase. As mentioned by Lipkis

[

27

]

,

the search for immediate successors of c can be restricted to the set of successors

of X

i

#c. In fact, the set of candidates for X

i

"c is even more constrained. Only

elements that are successors of all x 2 X

i

#c can be immediate successors of

c

[

25; 14; 26

]

. This optimization is achieved by an easy modi�cation of the

procedure enhanced-bottom-search (which is dual to enhanced-top-search): the

test \marked?(y,\negative")" is augmented to \marked?(y,\negative") or y is not

a successor of all x 2 X

i

#c." The remaining problem is how to implement the

second part of this test. One possibility is to mark the successors of the elements

of X

i

#c in an appropriate way, and then test these labels

[

26

]

. Another possibility,

which we have used in our tests, is to equip each concept inX

i

with a list of all its

predecessors in X

i

, and test whether X

i

#c is contained in the list of predecessors

of y.

As a result of this optimization, the number of necessary comparison ope-

rations can be cut down to a fraction compared with the simple bottom search

strategy. Interestingly, we observed a further reduction of comparison operations

in case of the real knowledge bases when searching top-down starting at X

i

#c

instead of searching bottom-up. For the random knowledge bases, no such dif-

ference was observed, however. The bottom search described by Ellis

[

14

]

and

Levinson

[

26

]

is also done top-down.

The e�ects of the enhanced traversal method for the realistic and random

knowledge bases as test data are displayed in Figure 8. Comparing these graphs

with the graphs in Figure 4, the advantage of the enhanced traversal method over

the simple traversal method becomes obvious. An interesting further phenomenon

is that the relative savings of the enhanced traversal method increase with the

number of concepts. It should be noted, however, that the improvement for the

realistic KBs in the top search phase is not overwhelming. In fact, only 1{13% of

the subsumption calls with respect to the simple traversal method are avoided,

with a tendency of higher savings for larger knowledge bases.

Of course, the enhanced traversal method only pays o� if the assumptions

spelled out in the beginning of this section are not violated, i.e., if the subsump-

tion costs are dominating the classi�cation costs and are considerably higher

than the costs incurred by the extra operations. Since the e�ciency gains for the

realistic KBs in the top search phase of the enhanced traversal method are not

very large compared to the simple traversal method, there might be the question

whether this optimization is really worthwhile.

Optimization Techniques for Terminological Representation Systems 21

	

top search

3

bottom search

�

top & bottom

100 200 300 400 500

10%

20%

30%

40%

50%

No. of concepts

(a) Realistic KBs

	

	
	

	

	

	

3

3

3

3

3

3

�

�

�

�

�

A

A

A

�

h

h

h

h

h

	

top search

3

bottom search

�

top & bottom

800 1600 2400 3200 4000

2%

4%

6%

8%

10%

No. of concepts

(b) Random KBs

	

	

	

	

	

	

	
	

3

3

3

3

3

3
3

3

�

�

L

L

L

�

S

S

S

�

H
H

�

Z

Z

�

�

h

h

h

h

h

�

Figure 8: Number of comparison operations of the enhanced traversal method

relative to the brute force method (vertical axis) against number of concepts

(horizontal axis)

Assuming that the average runtime costs of checking subsumption between

two concepts (including the traversal of the hierarchy) is r, and the number of

concepts that are checked in the top search phase of the simple traversal method

is n

s

, then the overall costs for the top search of the simple traversal method are

t

s

= n

s

� r:

Assuming that the average overhead of checking whether the predecessor have

been tested is o for one concept and that n

e

concepts are checked for subsumption

with the new concept in the top search phase of the enhanced traversal method,

the overall costs of the top search of the enhanced traversal method are

t

e

= n

e

� r + n

s

� o:

Measuring the runtime of the subsumption test and the runtime for the test

whether the predecessors have been already checked in kris on realistic and

random knowledge bases reveals that an average subsumption test is 200 times

slower than the latter test, i.e, o = 0:005 � r, and thus

t

e

= n

e

� r + n

s

� 0:005 � r:

Hence, the top search of the enhanced traversal pays o� if n

e

=n

s

� 0:995. For

our test data, this relationship was always satis�ed.

Optimization Techniques for Terminological Representation Systems 22

Since the overhead costs o are directly proportional to the number of direct

predecessors, the overhead increases with the number of direct predecessors. The

empirically justi�ed assumption that o = 0:005�r is only applicable to knowledge

bases similar to those considered in our experiments. It may not be valid for

knowledge bases with a higher average number of direct predecessors.

4.4 The Chain Inserting Method

The methods we have considered so far are based on �nding the right spot where

to insert the new concept by traversing the subsumption hierarchy top-down and

bottom-up. Recalling that there is a tight connection between our problem of

computing the representation of a partial ordering and the sorting problem, it

may be worthwhile to have a closer look at sorting techniques.

Sorting a set of elements that is linearly ordered can be done either by in-

crementally searching the already ordered sequence linearly or by using binary

search. In the former case, we inevitably end up with quadratic complexity, while

in the latter case O(n � log n) is a possibility. Of course, it seems attractive to

transfer the latter technique to our problem, an idea that leads to the chain in-

serting method. This method is similar to Algorithm A described by Faigle and

Tur�an

[

16

]

. However, the assumptions by Faigle and Tur�an

[

16

]

are somewhat

di�erent from ours. There it is assumed that a single test yields the answer

\greater," \smaller," or \incomparable," whereas we would need two calls of the

subsumption procedure to get this information.

In order to specify the chain inserting method, we �rst de�ne the notion of a

chain covering of a partial ordering. A chain covering is a partition of a partial

ordering into chains, i.e., totally ordered subsets. Provided we have a chain

covering of the set X

i

, it is possible to identify the sets X

i

#c and X

i

"c by binary

search in all chains. For a given chain C

j

of the covering X

i

= C

1

[� � � [C

m

,

binary search is used to �nd the least predecessor and the greatest successor

of c in C

j

. Since the underlying ordering � is only a partial ordering on X,

the new element c to be inserted into the chain C

j

need not be comparable

with all elements of C

j

. For this reason one needs two binary search phases for

each chain. The �rst one asks c � x, and treats negative answers as if they

would mean c > x. This phase yields the least predecessor of c in C

j

. The

other phase is dual, and yields the greatest successor of c in C

j

. The set of

these least predecessor (resp. greatest successors) for all chains of the covering

yields a superset of X

i

#c (resp. X

i

"c). The set X

i

#c (resp. X

i

"c) is obtained by

eliminating the elements which are not minimal (resp. maximal) with respect to

�

i

. As a further optimization, propagation of positive and negative information

of successful and of failed tests in the existing subsumption hierarchy is used to

make some of the explicit subsumption tests during binary search super
uous,

after one or more chains have already been searched through.

We have also considered a \hybrid" method that employs chain inserting for

Optimization Techniques for Terminological Representation Systems 23

long chains and enhanced traversal afterwards. The idea here is that by binary

search in long chains one gets rather quickly into the \center" of the partial

ordering, from which propagation of positive and negative information should

have the greatest e�ect.

It is, of course, advisable to use chain coverings with a minimal number of

chains. Unfortunately, the computation of minimal chain-coverings is nontrivial

and takes more than quadratic time

[

22

]

. Instead of using this quite expensive

algorithm, we designed a simple heuristic method to compute almost minimal

chain-coverings incrementally.

This heuristic proceeds as follows. When a new element c is inserted, the chain

covering is updated as follows. After the sets X

i

#c and X

i

"c have been computed,

c is inserted in the longest chain satisfying one of the following conditions:

1. Binary search has yielded both a least predecessor and greatest successor

in the chain, and they are successive elements of the chain. In this case, c

is inserted between these two elements in the chain.

2. Binary search has yielded a least predecessor (or greatest successor) in the

chain, and it is the least (resp. greatest) element of the chain. In this case,

c is inserted below (resp. above) this element in the chain.

If there is no chain satisfying one of these conditions, a new chain consisting of c

is created.

In our experiments, the chain coverings obtained this way were close to mini-

mal. They always contained at most 10% more chains than the minimal chain-

coverings.

We expected that the chain-inserting method would outperform the enhanced

traversal method. However, to our surprise, the chain inserting method turned

out to be not signi�cantly better than the enhanced traversal method. To the

contrary, on the realistic KBs it is usually less e�cient, except for one case, and

the same holds for the random KBs. The \hybrid" version using chain inserting

for long chains and enhanced traversal afterwards was also not much better than

the pure chain-inserting method.

An explanation for this poor behavior of the chain-inserting method could be

that in typical knowledge bases most of the chains in a chain covering are very

short and that the e�ect of propagating positive and negative information is very

limited because the connectivity of the knowledge bases, i.e., the average number

of reachable predecessors and successors, is small.

In order to test this conjecture, it is necessary to run the algorithm on know-

ledge bases with di�erent structural properties than those present in the realistic

and random knowledge bases. For this purpose, we used random partial orders

generated according to the method described in Section 3. These additional

experiments showed that the chain-inserting method is indeed sometimes more

e�cient than the enhanced traversal method.

Optimization Techniques for Terminological Representation Systems 24

The empirical results concerning the performance of the chain inserting me-

thod relative to the enhanced traversal method are given in Table 2. We have

only displayed the results for top search, since the bottom search is almost identi-

cal if the optimizations from the enhanced traversal are included. The �rst group

of results was obtained by applying the chain-inserting method to the realistic

KBs, the second group gives the results for the random KBs, and the third group

speci�es the result for the randomly generated partial orders.

In addition to the size of the partial order (�rst column) and the relative

number of comparison operations with respect to the enhanced traversal method

(last column), also some structural parameters of the partial orders are given.

The second column gives the average number of immediate predecessors and

successors (where the top and bottom elements are not counted). The third

column gives the average number of successors and predecessors, and the fourth

and �fth column specify the breadth and depth (including top and bottom),

respectively, of the partial order, where breadth corresponds to the cardinality

of the chain covering and depth corresponds to the longest chain in the chain

covering.

As already mentioned, the chain-inserting method does more subsumption

tests on the realistic and random knowledge bases, but is sometimes more e�-

cient on random partial orders. In fact, the results of our experiments on random

partial orders are consistent with the conjecture that high connectivity and long

chains will lead to a relative performance gain over the enhanced traversal me-

thod.

The chain-inserting method may thus become more interesting for knowledge

bases de�ning relatively deep hierarchies with high connectivity. Additionally,

the chain-inserting method may prove to be worthwhile if the transitive closure

of the precedence relation � is implemented using storage compression techniques

based on chain coverings as described by Jagadish

[

21

]

. Finally, it should be noted

that the overhead of the chain-inserting method is not signi�cantly higher than

the overhead of the enhanced traversal method. In fact, in our implementation

the chain-inserting method required slightly less overhead than the enhanced

traversal method.

5 Exploiting Obvious Subsumption Relation-

ships

In this section we describe some further techniques for avoiding subsumption

tests by exploiting relations which are obvious when looking at the syntactic

structure of concept de�nitions.

7

These pre-tests require only little e�ort but

can speed up the classi�cation process signi�cantly. We consider three di�erent

7

These techniques are probably used in all systems, see, e.g.

[

38

]

.

Optimization Techniques for Terminological Representation Systems 25

No. of Average Average Breadth Depth Relative

nodes degree no. of pred. no. of com-

& succ. parisons

184 1.71 5.67 105 6 103.7%

241 1.91 6.38 124 6 100.3%

254 1.99 13.02 135 6 91.8%

269 1.72 5.16 164 7 107.9%

330 1.85 8.13 141 12 110.0%

298 2.36 8.88 142 8 115.7%

583 2.58 12.24 330 7 114.5%

992 2.73 16.77 478 10 111.7%

1263 3.18 16.61 661 11 108.9%

1659 3.19 18.86 927 10 110.3%

2389 3.50 25.49 1188 10 111.3%

3658 3.82 27.20 1703 8 105.3%

3905 4.04 33.95 1858 11 99.9%

301 7.67 42.11 88 8 73.2%

301 8.01 20.69 136 5 100.5%

301 6.40 10.43 168 6 102.7%

301 4.22 5.68 205 4 101.3%

586 9.93 72.55 144 9 67.2%

586 12.08 38.79 224 7 96.3%

586 10.39 20.42 301 7 103.3%

586 7.72 11.50 353 5 102.9%

995 5.52 250.24 85 28 16.2%

995 12.46 125.94 226 11 51.8%

995 16.40 62.88 354 9 91.4%

995 13.58 28.38 506 6 105.1%

1266 5.78 321.19 100 30 12.9%

1266 13.82 169.95 259 13 44.2%

1266 18.22 76.87 438 9 89.8%

1266 17.82 41.70 592 6 101.1%

Table 2: Number of comparison operations in top search of the chain-inserting

method relative to enhanced traversal. The �rst group gives results for the rea-

listic KBs, the second group for the random KBs, and the third group for the

randomly generated partial orders.

optimizations, which can be used at di�erent stages of the classi�cation process.

All three techniques apply only if the descriptions of the concepts are conjunctive

Optimization Techniques for Terminological Representation Systems 26

(which is the case for the majority of concepts, in particular if we consider the

existing real knowledge bases).

The �rst technique can be used prior to the top search. Assume that we

are inserting the (conjunctive) concept c into the already computed part of the

hierarchy. If the description de�ning c mentions x explicitly as a conjunct, then

it is obviously the case that c � x. We call such concepts x told subsumers of c.

Of course, if x is also a conjunctively de�ned concept, it may have told subsumers

as well, and these (and their told subsumers, etc.) can be included into the list

of told subsumers of c. It is rather easy to compile this list while reading in the

concept de�nitions. The information that c is subsumed by its told subsumers

can be propagated through the existing hierarchy (X

i

;�

i

) prior to the top search,

e.g., by pre-setting the markers used in the traversal method to \positive" for the

told subsumers and all their predecessors. A prerequisite for this optimization

technique to be e�ective is that the told subsumers of c are already contained in

X

i

. This can be achieved by inserting concepts following the de�nition-order (see

Section 2 for the de�nition of this order).

The second optimization technique is applicable if concepts are conjunctive

and are inserted in the subsumption hierarchy following the de�nition-order. In

this case, the bottom search phase can completely be avoided if a primitive con-

cept (i.e., a concept that is introduced by a primitive de�nition, which gives only

necessary conditions) has to be classi�ed. In fact, such a concept c can only sub-

sume the bottom concept and concepts for which c is a told subsumer. Since the

second type of possible subsumees consists of concepts whose de�nitions use c,

and which are thus not yet present in the actual hierarchy when inserting along

the de�nition-order, the result of the bottom search is just the bottom concept

?. Considering the fact that in realistic KBs the majority of concepts (60%-90%)

are primitive, this optimization can save most of the subsumption calls during

the bottom search phase. Combining the two optimization techniques led to a

saving of 10% to 20% with respect to the pure enhanced traversal method for the

realistic knowledge bases. In case of the random knowledge bases, the savings

where even greater, as can be seen from Figure 9.

A �nal optimization technique can be used as a pre-test before calling the

subsumption algorithm. As mentioned in Section 2, a given TBox containing

primitive de�nitions can be transformed into one where all primitive de�nitions

have > as right-hand side. For a conjunctive concept c, the primitive components

of c are the told subsumers that are introduced by such a primitive de�nition.

By extracting and caching the primitive components of all concepts, it becomes

possible to check whether a subsumption relation is possible by comparing the

sets of primitive components: c can only be subsumed by d if the set of primitive

components of d is a subset of the set of primitive components of c. Thus,

if the subset test gives a negative result, the subsumption algorithm need not

be called. Although such a test overlaps with computations the subsumption

algorithm does, it is much faster than the subsumption test. For this reason,

Optimization Techniques for Terminological Representation Systems 27

	

top search

3

bottom search

�

top+bottom

800 1600 2400 3200 4000

10%

20%

30%

40%

50%

60%

No. of concepts

	

	

	

	

	

	

	

	

3
3

3

3

3

3

3 3

�

�

h
h

�

Q

Q

�

!!

�

�

h
h
h

�

�

Figure 9: Number of necessary comparisons when exploiting obvious subsumption

relations relative to pure enhanced traversal method for random KBs

this pre-test pays o� if most of the subsumption calls can be avoided, which was

indeed the case for our test data. Our experiments indicate that the number

of calls of the subsumption algorithm can be again reduced by 50%-60%, if this

technique is applied.

6 Speeding up the Subsumption Test

In this section we consider two possible optimizations of the subsumption algo-

rithm, and describe the e�ects they have on the performance of classi�cation

for our test knowledge bases. As mentioned in Section 2 there are two di�erent

types of subsumption algorithms employed in terminological systems: structural

algorithms, which are implemented in almost all terminological representation

systems (e.g. classic, loom, back), and tableau-based algorithms as realized in

kris. For conceptual simplicity both types of subsumption algorithms are usually

described in the literature as taking concept descriptions as arguments.

8

In this

setting, the exploitation of previously computed subsumption relationships bet-

ween concepts de�ned in the terminology is precluded since these concept names

no longer occur in the descriptions.

6.1 The Optimizations

However, almost all terminological representation systems take advantage of pre-

viously computed subsumption relationships, i.e., they make use of subsumption

8

Recall that subsumption with respect to acyclic TBoxes can be reduced to subsumption of

such concept descriptions by expanding the concept de�nitions (cf. Section 2).

Optimization Techniques for Terminological Representation Systems 28

relationships that have already been computed and stored during the classi�ca-

tion process.

To illustrate how this can be done for the structural subsumption algorithm

described in Section 2, suppose that C andD are descriptions in normal form, i.e.,

C (D) is a conjunction of distinct concept names A

i

(B

j

) and value restrictions

8R

k

:C

k

(8S

l

:D

l

) with distinct role names, where each C

k

(D

l

) is again in normal

form. The test whether C is subsumed by D recursively calls a subsumption test

for the descriptions C

k

and D

l

(if the roles R

k

and S

l

are identical). In case C

k

and D

l

are concept names of possibly de�ned concepts, and we already know

whether there is a subsumption relationship between C

k

and D

l

, the recursive

call of the subsumption algorithm can be replaced by a simple table look-up.

Thus, it is rather natural and straightforward to incorporate the use of already

computed subsumption relations into a structural subsumption algorithm. It

should be noted that it is an essential requirement not to expand the concept

de�nitions before checking subsumption since otherwise the concept names for

which subsumption relationships are already known would be lost. Further, it is

necessary to classify the concepts according to the \de�nition-order" mentioned

in the previous section.

In contrast to other terminological systems, kris employs a satis�ability algo-

rithm to determine subsumption relationships between concepts. Since a satis�a-

bility algorithm does not recursively call subsumption algorithms but satis�ability

algorithms, it is not obvious how to exploit previously computed subsumption re-

lationships. A closer look, however, reveals that a satis�ability algorithm may

detect a contradiction earlier during model generation if previously computed

subsumption relationships are taken into account. To see this, suppose that we

already know that a de�ned concept A subsumes a de�ned concept B. If during

the model generation an element is constrained to be both instance of :A and

B, a contradiction can be detected without expanding the de�nitions of A and

B. Again, this approach only works if the concept de�nitions are not expanded

before starting to check satis�ability.

If expansion is done \by need" during the satis�ability test, one has to decide

in which order to expand the concept names. It is easy to see that this order may

have considerable impact on the runtime behavior. For example, assume that

we are testing A u B for satis�ability where in the TBox A is de�ned by a very

large concept description and B is de�ned to be :A u C. If B is expanded �rst,

the contradiction between A and :A is detected at once. On the other hand, if

A is expanded �rst, detecting the contradiction between the large descriptions

associated with A and its negation may be rather time-consuming, depending on

the structure of the description.

One way of avoiding this problem is to expand concept names according to

the inverse of their de�nition-order, which in the above example would mean that

we expand B before A, because the de�nition of B refers to A. Of course, this

means that for each expansion operation one has to go through the list of all

Optimization Techniques for Terminological Representation Systems 29

expandable names, and look for a maximal one with respect to the de�nition-

order. For our tests we have used another solution, which avoids searching for a

maximal name, but may use more space. Here one expands in arbitrary order,

but when a name is expanded it is not removed, but just marked as expanded.

If, in our example, A is expanded before B, we then still have the name A, and

as soon as B is expanded it yields the contradiction with :A.

In order to gain experience in how to optimize the satis�ability algorithm to

be employed in kris, we implemented the following three versions.

1. The �rst one takes expanded concept descriptions as input. Since these de-

scriptions do not contain names of de�ned concepts, obvious contradictions

can only be detected between primitive concepts.

2. The second one successively expands the concept descriptions during model

generation, but keeps the names, as described above. This allows the algo-

rithm to detect obvious contradictions not only between primitive concepts

but also between names of de�ned concepts.

3. The third version is a re�nement of the second one in that already computed

subsumption relationships are taken into account when looking for obvious

contradictions.

6.2 Empirical Results and Analysis

It turns out that the �rst version is signi�cantly slower than the second one,

a result we did expect. The main reason for this behavior is that the number

of recursive calls of the satis�ability algorithm is reduced due to obvious con-

tradictions detected between names of de�ned concepts. As a consequence, the

runtime of the second version is reduced by 40-60% relative to the �rst version

(see Figure 10, which displays the results for the random knowledge bases).

A result we did not expect is that the behavior of the third version is no

better than of the second, which means that trying to exploit already computed

subsumption relationships does not pay o�. The reason for this behavior seems

to be that|at least for the test data|only a few contradictions are detected

by using already computed subsumption relationships. This is indicated by the

fact that the number of recursive calls of the satis�ability algorithm does not

signi�cantly decrease when going from the second to the third version. However,

the test of whether a set of negated and unnegated concept names is contradic-

tory w.r.t. already computed subsumption relationships is more complex than

just searching for complementary names, which explains that the third version's

runtime behavior is even slightly worse than the second one's (see Figure 10).

This result is all the more surprising since using computed subsumption re-

lationships during classi�cation is an optimization technique employed by most

terminological systems. The reason why it may pay o� for other systems could be

Optimization Techniques for Terminological Representation Systems 30

	

Recursive calls for second and third version

3

Runtime second version

�

Runtime third version

30 60 90 120 150

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

No. of concepts

	

	

	

	

	

3

3

3

3

3

�

�

h

h

h

h

�

�

�

�

�

�

H

H

H

H

�

Z

Z

Z

Z

	

Recursive calls for second and third version

3

Runtime second version

�

Runtime third version

400 800 1200 1600

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

No. of concepts

	

	

	

	

	

	

	

	

3

3

3

3

3

3

3

3

�

�

!

!

�

`

`

�

�

�

�

�

T

T

T

�

�

�

�

�

�

L

L

L

L

�

�

�

�

�

Figure 10: Runtime and number of recursive calls of the second and third version's

satis�ability algorithm relative to the algorithm taking expanded concept terms

as input (�rst version) for random KBs

that these systems �rst normalize, and during this normalization phase some of

the systems introduce auxiliary concepts. For example, assume that C is de�ned

by the description 8R:Au 8R:B, and D by 8R:A. The normalization procedure

as described in Section 2 replaces 8R:Au8R:B by 8R:(AuB). Instead, one can

introduce a new concept name E, de�ne it as A u B, and modify the de�nition

of C to 8R:E. Now the subsumption relationship between A and the auxiliary

concept E|which is found �rst if the terminology is classi�ed according to the

de�nition-order|immediately entails that D subsumes C. Thus classi�cation

of the terminology with the auxiliary concepts allows one to exploit previously

computed subsumption relationships more often. On the other hand, it has the

disadvantage that in general a lot more concepts have to be classi�ed.

Another interesting behavior we observed is due to the interaction between

di�erent optimization techniques. The optimizations described in the previous

two sections try to avoid subsumption tests, whereas the present section is con-

cerned with speeding up the subsumption test. Ideally, one could expect that

these optimizations are independent. This means that the overall speedup factor

is the product of the speedup factors of the individual optimizations. This can

only be true if the optimizations apply uniformly to all situations, however.

If the optimizations apply to special cases only, subsumption avoidance opti-

mizations and subsumption test optimizationmay aim at similar special cases and

lead to the situation that subsumption tests are avoided which have neglectable

computational costs in any case.

If we take the second or third version's satis�ability algorithm, the exploitation

Optimization Techniques for Terminological Representation Systems 31

of obvious subsumption relationships caused by conjunctive de�nitions, i.e., the

�rst optimization technique mentioned in Section 5, does no longer speed up the

classi�cation process signi�cantly. This is due to the fact that such subsumption

relationships can now be easily detected by the satis�ability algorithms. For

example, let C be a concept that is de�ned to be the conjunction of C

1

; : : : ; C

m

,

where the C

i

are de�ned concepts as well. The obvious subsumption relationship

between C

i

and C is immediately detected by the second and third version of the

satis�ability algorithm, due to an obvious contradiction between C

i

and :C

i

.

7 Conclusion

We have described and analyzed di�erent optimization techniques for the classi�-

cation process in terminological representation systems. Interestingly, two of the

most promising techniques, namely, the chain inserting method for computing

the representation of a partial order and the exploitation of already computed

subsumption relations in the subsumption algorithm, did not lead to the expected

performance increase in case of realistic knowledge bases.

As a result of our empirical analysis, the optimization techniques that came

o� best were incorporated in the kris system. Whereas the unoptimized version

was orders of magnitude slower than the fastest system tested by Heinsohn et al.

[

17; 18

]

, the new version has now a runtime behavior similar to that of the other

systems on the test data used there.

	
BACK

3

CLASSIC

KRIS (old)(x20)

�
KRIS (new)

�
LOOM

400300200100

100

200

300

400

500

No. of concepts

(a) Realistic Knowledge Bases

R

u

n

t

i

m

e

s

e

c

	

	

	

	

	

3

3

3

3

3

3

�

�

�

�

�

�

�

�

�

�

�

�

	

BACK

3

CLASSIC

�

LOOM

�

KRIS (new)

400 800 1200 1600 2000

500

1000

1500

2000

No. of concepts

(b) Large random knowledge bases

R

u

n

t

i

m

e

s

e

c

	

	

	

	

�
(

(

�

!

!

�

�

�

�

�

Z

Z

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

3

3

3

3

3

3

3

3

3

3

�

�

�

�

�

�

�

�

�

�

Figure 11: Runtime performance for realistic and large random knowledge bases

Figure 11(a) displays the runtime of the new kris version for the realistic

knowledge bases and contrasts them with the runtime �gures given by Heinsohn

Optimization Techniques for Terminological Representation Systems 32

et al.

[

17; 18

]

. Figure 11(b) gives the results for large random knowledge bases.

9

It should be noted, however, that all the knowledge bases used in the test

are formulated using quite limited terminological languages. An interesting open

problem is the development of further optimization techniques for more powerful

terminological languages containing also disjunction and negation and of speci�c

optimization techniques for assertional reasoning.

Acknowledgements

We would like to thank Uwe Utsch for implementing the di�erent subsumption

strategies, Hans-J�urgen B�urckert, Jochen Heinsohn, Armin Laux, and Werner

Nutt for helpful discussions concerning the topics described in this paper, and

Alex Borgida, Peter Patel-Schneider, and the anonymous referees for helpful com-

ments on an earlier version of this paper.

This work has been supported by the German Ministry for Research and

Technology (BMFT) under research contracts ITW 8901 8 and ITW 8903 0 and

by the Italian National Research Council (CNR), project \Sistemi Informatici e

Calcolo Parallelo."

References

[

1

]

M. Aigner. Combinatorical Search. Teubner, Stuttgart, Germany, 1988.

[

2

]

T. L. Anderson, A. J. Berre, M. Mallison, H. H. Porter, III, and B. Schneider.

The hypermodel benchmark. In Proceedings of Extended Database Techno-

logy. Springer-Verlag, 1990.

[

3

]

F. Baader and B. Hollunder. KRIS: Knowledge representation and inference

system. SIGART Bulletin, 2(3):8{14, June 1991.

[

4

]

F. Baader and B. Hollunder. A terminological knowledge representation

system with complete inference algorithms. In M. Richter and H. Boley, edi-

tors, International Workshop on Processing Declarative Knowledge, volume

567 of Lecture Notes in Arti�cial Intelligence. Springer-Verlag, 1991.

[

5

]

R. J. Brachman. A Structural Paradigm for Representing Knowledge. PhD

thesis, Havard University, 1977.

[

6

]

R. J. Brachman, V. Pigman Gilbert, and H. J. Levesque. An essential hybrid

reasoning system: Knowledge and symbol level accounts in KRYPTON. In

IJCAI-85

[

20

]

, pages 532{539.

9

The description of the runtime behavior of the systems by Heinsohn et al.

[

17; 18

]

refers

to system versions as of 1990 and does not necessarily re
ect the performance of more recent

versions.

Optimization Techniques for Terminological Representation Systems 33

[

7

]

R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge

representation system. Cognitive Science, 9(2):171{216, Apr. 1985.

[

8

]

M. J. Carey, D. J. Dewitt, and J. F. Naughton. The OO7 benchmark. In

Proceedings of the 1993 ACM SIGMOD International Conference on Man-

gement of Data, Washington, D.C., May 1993.

[

9

]

R. G. G. Cattell and J. Skeen. Object operations benchmark. ACM Tran-

sactions on Database Systems, 17(1):1{31, Mar. 1992.

[

10

]

R. Cattoni and E. Franconi. Walking through the semantics of frame-based

description languages: A case study. In Proceedings of the Fifth International

Symposium on Methodologies for Intelligent systems, Knoxville, TN, Oct.

1990. North-Holland.

[

11

]

F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of

concept languages. In J. A. Allen, R. Fikes, and E. Sandewall, editors,

Principles of Knowledge Representation and Reasoning: Proceedings of the

2nd International Conference, pages 151{162, Cambridge, MA, Apr. 1991.

Morgan Kaufmann.

[

12

]

F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tractable concept

languages. In Proceedings of the 12th International Joint Conference on

Arti�cial Intelligence, pages 458{465, Sydney, Australia, Aug. 1991. Morgan

Kaufmann.

[

13

]

J. Edelmann and B. Owsnicki. Data models in knowledge representation

systems: A case study. In C.-R. Rollinger and W. Horn, editors, GWAI-86

und 2.

�

Osterreichische Arti�cial-Intelligence-Tagung, pages 69{74, Otten-

stein, Austria, Sept. 1986. Springer-Verlag.

[

14

]

G. Ellis. Compiled hierarchical retrieval. In 6th Annual Conceptual Graphs

Workshop, 1991.

[

15

]

G. Ellis and R. A. Levinson. The birth of PEIRCE: A conceptual graphs

workbench. In Proceedings of the Seventh Annual Conceptual Graphs Work-

shop, Las Cruces, New Mexico, July 1992.

[

16

]

U. Faigle and G. Tur�an. Sorting and recognition problems for ordered sets.

SIAM Journal of Computing, 17(1):100{113, 1988.

[

17

]

J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Pro�tlich. An empirical

analysis of terminological representation systems. In Proceedings of the 10th

National Conference of the American Association for Arti�cial Intelligence,

pages 767{773, San Jose, CA, July 1992. MIT Press.

Optimization Techniques for Terminological Representation Systems 34

[

18

]

J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Pro�tlich. An empirical ana-

lysis of terminological representation systems. Arti�cial Intelligence, 1993.

To appear. A preliminary version is available as DFKI Research Report RR-

92-16.

[

19

]

B. Hollunder, W. Nutt, and M. Schmidt-Schau�. Subsumption algorithms

for concept description languages. In Proceedings of the 9th European Con-

ference on Arti�cial Intelligence, pages 348{353, Stockholm, Sweden, Aug.

1990. Pitman.

[

20

]

Proceedings of the 9th International Joint Conference on Arti�cial Intelli-

gence, Los Angeles, CA, Aug. 1985.

[

21

]

H. V. Jagadish. A compressed transitive closure technique for e�cient �xed-

point query processing. In L. Kerschberg, editor, Expert Database Systems|

Proceedings From the 2nd International Conference, pages 423{446, Menlo

Park, CA, 1989. Benjamin/Cummings.

[

22

]

D. Jungnickel. Graphen, Netzwerke und Algorithmen. BI Wissenschaftsver-

lag, Mannheim, Germany, 2nd edition, 1990.

[

23

]

A. Kobsa. First experiences with the SB-ONE knowledge representation

workbench in natural-language applications. SIGART Bulletin, 2(3):70{76,

June 1991.

[

24

]

H. J. Levesque and R. J. Brachman. Expressiveness and tractability in

knowledge representation and reasoning. Computational Intelligence, 3:78{

93, 1987.

[

25

]

R. A. Levinson. A self-organizing pattern retrieval system for graphs. In

Proceedings of the 4th National Conference of the American Association for

Arti�cial Intelligence, pages 203{206, Austin, TX, 1984.

[

26

]

R. A. Levinson. Pattern associativity and the retrieval of semantic networks.

Journal of Computers & Mathematics with Applications, 23(6{9):573{600,

1992.

[

27

]

T. Lipkis. A KL-ONE classi�er. In J. G. Schmolze and R. J. Brachman,

editors, Proceedings of the 1981 KL-ONE Workshop, pages 128{145, Cam-

bridge, MA, 1982. The proceedings have been published as BBN Report No.

4842 and Fairchild Technical Report No. 618.

[

28

]

R. MacGregor. A deductive pattern matcher. In Proceedings of the 7th

National Conference of the American Association for Arti�cial Intelligence,

pages 403{408, Saint Paul, MI, Aug. 1988.

Optimization Techniques for Terminological Representation Systems 35

[

29

]

R. MacGregor. Inside the LOOM description classi�er. SIGART Bulletin,

2(3):88{92, June 1991.

[

30

]

E. Mays, R. Dionne, and R. Weida. K-Rep system overview. SIGART

Bulletin, 2(3):93{97, June 1991.

[

31

]

B. Nebel. Computational complexity of terminological reasoning in BACK.

Arti�cial Intelligence, 34(3):371{383, Apr. 1988.

[

32

]

B. Nebel. Reasoning and Revision in Hybrid Representation Systems, vo-

lume 422 of Lecture Notes in Arti�cial Intelligence. Springer-Verlag, Berlin,

Heidelberg, New York, 1990.

[

33

]

B. Nebel. Terminological reasoning is inherently intractable. Arti�cial In-

telligence, 43:235{249, 1990.

[

34

]

P. F. Patel-Schneider. Small can be beautiful in knowledge representation.

In Proceedings of the IEEE Workshop on Principles of Knowledge-Based

Systems, pages 11{16, Denver, Colo., 1984. An extended version including

a KANDOR system description is available as AI Technical Report No. 37,

Palo Alto, CA, Schlumberger Palo Alto Research, October 1984.

[

35

]

P. F. Patel-Schneider. Undecidability of subsumption in NIKL. Arti�cial

Intelligence, 39(2):263{272, June 1989.

[

36

]

P. F. Patel-Schneider, D. L. McGuinness, R. J. Brachman, L. Alperin Res-

nick, and A. Borgida. The CLASSIC knowledge representation system: Gui-

ding principles and implementation rational. SIGART Bulletin, 2(3):108{

113, June 1991.

[

37

]

C. Peltason. The BACK system { an overview. SIGART Bulletin, 2(3):114{

119, June 1991.

[

38

]

C. Peltason, A. Schmiedel, C. Kindermann, and J. Quantz. The BACK sy-

stem revisited. KIT Report 75, Department of Computer Science, Technische

Universit�at Berlin, Berlin, Germany, Sept. 1989.

[

39

]

M. Schmidt-Schau�. Subsumption in KL-ONE is undecidable. In R. Brach-

man, H. J. Levesque, and R. Reiter, editors, Principles of Knowledge Repre-

sentation and Reasoning: Proceedings of the 1st International Conference,

pages 421{431, Toronto, ON, May 1989. Morgan Kaufmann.

[

40

]

M. Schmidt-Schau� and G. Smolka. Attributive concept descriptions with

complements. Arti�cial Intelligence, 48:1{26, 1991.

[

41

]

J. G. Schmolze and W. S. Mark. The NIKL experience. Computational

Intelligence, 6:48{69, 1991.

Optimization Techniques for Terminological Representation Systems 36

[

42

]

M. B. Vilain. The restricted language architecture of a hybrid representation

system. In IJCAI-85

[

20

]

, pages 547{551.

[

43

]

P. Winkler. Random orders. Order, 1:317{331, 1985.

[

44

]

W. A. Woods. Understanding subsumption and taxonomy: A framework

for progress. In J. F. Sowa, editor, Principles of Semantic Networks, pages

45{94. Morgan Kaufmann, San Mateo, CA, 1991.

