
Computing a Minimal Representation of the Subsumption

Lattice of All Conjunctions of Concepts De�ned in a

Terminology

?

Franz Baader

Lehr- und Forschungsgebiet Theoretische Informatik, RWTH Aachen,

Ahornstra�e 55, 52074 Aachen, Germany,

baader@informatik.rwth-aachen.de

Abstract. For a given TBox of a terminological KR system, the classi�cation algorithm computes

(a representation of) the subsumption hierarchy of all concepts introduced in the TBox. In general,

this hierarchy does not contain su�cient information to derive all subsumption relationships between

conjunctions of these concepts. We show how a method developed in the area of \formal concept ana-

lysis" for computing minimal implication bases can be used to determine a minimal representation of

the subsumption hierarchy between conjunctions of concepts introduced in a TBox. To this purpose,

the subsumption algorithm must be extended such that it yields (su�cient information about) a coun-

terexample in cases where there is no subsumption relationship. For the concept language ALC, this

additional requirement does not change the worst-case complexity of the subsumption algorithm. One

advantage of the extended hierarchy is that it is a lattice, and not just a partial ordering.

1 Introduction

In knowledge representation systems based on description logics (also called terminological KR systems or kl-

one-like systems in the literature), one of the main reasoning tasks is classi�cation. For a given terminological

knowledge base (TBox), the classi�er computes the subsumption hierarchy, i.e., all subconcept/superconcept

relationships between the concepts de�ned in the TBox. Much of the research in description logics was

directed at designing subsumption algorithms, i.e., algorithms that, given a pair of concepts C;D de�ned in

a TBox, decide whether D subsumes C or not. In addition, the complexity of the subsumption problem has

been studied for a great variety of concept description languages, with the result that it is now known that

the subsumption problem is intractable for all reasonably expressive description languages [18, 21, 5]. Recent

empirical investigations concerning the complexity of classi�cation in terminological KR systems [2] have

shown, however, that the complexity of a single subsumption test may not be that crucial for the overall

process. In the worst case, computing the subsumption hierarchy between n concepts requires n

2

calls of the

(expensive) subsumption test. However, by using a clever order in which to make the subsumption calls, and

by appropriately propagating the results of each call in the already computed part of the hierarchy, most of

the n

2

calls can be avoided.

2

Such techniques are employed in many of the implemented terminological KR

systems [15, 16, 19, 28], and similar methods have independently been developed in the conceptual graphs

community [12, 8, 13, 9].

The subsumption hierarchy provides only a limited amount of information about the interaction between

de�ned concepts. For example, assume that we have appropriately de�ned concepts NoDaughter (standing

for all persons having no female children), NoSon (standing for all persons having no male children), and

NoSmallChild (standing for all persons having no small children). Obviously, there is no subsumption relati-

onship between these three concepts. On the other hand, the conjunction NoDaughteruNoSon of NoDaughter

and NoSon would be subsumed by NoSmallChild, i.e., if an individual kruse belongs to NoDaughter and NoSon

(i.e., has no child), it also belongs to NoSmallChild. However, this cannot be derived from the information

?

This research was supported by the EC Working Group CCL, EP6028.

2

For the TBoxes considered in [2], between 80% and 90% of the calls could be avoided.

that kruse belongs to NoDaughter and NoSon by just looking at the subsumption hierarchy. This example

demonstrates that runtime inferences concerning individuals could be facilitated by precomputing the sub-

sumption hierarchy not only for de�ned concept but for all conjunctions C

i

1

u : : : uC

i

k

of de�ned concepts.

Another advantages of this extended hierarchy is that|unlike the subsumption hierarchy between de�ned

concepts, which can be an arbitrary partial ordering|the subsumption hierarchy between conjunctions of

de�ned concepts is a lattice. In fact, the existence of greatest lower bounds (GLBs) is trivial, and it implies

the existence of least upper bounds (LUBs). Having LUBs is, for example, important for applications in

concept learning (see Section 5).

Obviously, the problem of computing all subsumption relationships between conjunctions of concepts

de�ned in a TBox is a special case of the classi�cation problem as introduced above, provided that the

description language allows for conjunction (which is the case for almost all languages considered in the

literature or used in implemented systems). In fact, one simply extends the given TBox T by introducing

names for all conjunctions, and then classi�es the extended TBox

b

T . However, this simple approach does

not seem to be feasible in practice since the size of the extended TBox would always be exponential in the

size of the original TBox, and so would be any graphical or other representation of the resulting extended

hierarchy (since any concept of

b

T would obtain an explicit representation). In the worst case, this exponential

blowup can probably not be avoided, but one can still hope to do better for \typical" TBoxes. Thus, we

are interested in creating a minimal representation of the subsumption hierarchy between conjunctions of

concepts de�ned in a TBox, and we want to design algorithms that generate this representation with as few

as possible applications of the subsumption algorithm to pairs of conjunctions.

To achieve this goal, we employ a method developed in the area of \formal concept analysis" [23, 27]. We

shall show that an algorithm used for so-called \attribute exploration" [10, 25, 11] can be adapted to our

problem. It creates a minimal representation (sometimes called Duquenne-Guigues base [7]) of the extended

hierarchy, from which any subsumption relationship between conjunctions of concepts de�ned in T can be

deduced in time linear in the size of this representation. The exploration algorithm generates, for a certain

pair of conjunctions, a call to the subsumption algorithm. Depending on the answer, it creates a new question,

or decides that the construction of the Duquenne-Guigues base is �nished. It should be noted, however, that

the method requires an extended subsumption algorithm which not just answers \yes" or \no," depending on

whether the subsumption relationship holds or not. If the answer is \no" the attribute exploration algorithm

needs a (�nite) counterexample.

In the next section, we introduce a prototypical description language, called ALC, sketch the well-known

subsumption algorithm for this language [21, 1], and show that it can easily be extended to an algorithm

producing �nite counterexamples. In Section 3, we introduce as many of the basic notions of formal concept

analysis as are necessary for our purposes. In particular, we sketch the attribute exploration algorithm.

Section 4 applies this technique to our problem of computing a minimal representation of the subsumption

hierarchy between conjunctions of concepts de�ned in a TBox. In addition, it is shown that computing

the information about counterexamples that is relevant for the exploration algorithm does not increase the

worst-case complexity of the subsumption algorithm. In Section 5, we mention some possible advantages of

having a lattice instead of just a partial ordering.

2 The description logic ALC

Terminological knowledge representation systems can be used to represent the taxonomic and conceptual

knowledge of an application domain in a structured way. To describe this kind of knowledge, one starts with

atomic concepts (unary predicates) and roles (binary predicates), and de�nes more complex concepts using

the operations provided by the concept description language of the particular system. As a prototypical

example, we introduce the description language ALC.

De�nition 1 (Syntax of ALC). Concept descriptions are built from concept and role names using the

concept-forming operators negation (:C), disjunction (C tD), conjunction (C uD), existential restriction

(9R:C) and value restriction (8R:C). Here C and D are syntactic variables for concept descriptions, and R

stands for a role name. The set of concept names is assumed to contain the particular names > and ? for

the top and the bottom concept.

Let A be a concept name (di�erent from > and ?), and let D be a concept description. Then A = D is

a terminological axioms. A terminology (TBox) is a �nite set T of terminological axioms with the additional

restriction that T contains no cyclic de�nitions and no multiple de�nitions.

For a given TBox T , a concept name occurring on the left-hand side of a de�nition is called de�ned

concept, whereas all other concept names occurring in T are called primitive concepts. T contains multiple

de�nitions i� it contains de�nitions A = D

1

and A = D

2

for the same concept name A and distinct

descriptions D

1

; D

2

. Intuitively, a cyclic de�nition is one that refers to itself. More precisely, we say that a

concept name A directly uses a concept name B in a TBox T if B occurs in the description that de�nes A.

Let \uses" be the transitive closure of \directly uses." Then T contains a cyclic de�nition i� it contains a

de�ned concept A such that A uses A.

As an example, we consider the TBox of Figure 1, which de�nes|among others|the concepts NoDaugh-

ter, NoSon and NoSmallChild mentioned in the introduction. Here, Female and Small are primitive concepts,

and all the other concept names occurring in the TBox are de�ned.

Male = :Female

Human = Male t Female

Parent = 9child:Human

NoDaughter = 8child:Male

NoSon = 8child:Female

NoSmallChild = 8child::Small

Fig. 1. A family terminology.

De�nition 2 (Semantics of ALC). An interpretation I for ALC consists of a set dom(I) and an extension

function that associates with each concept name A a subset A

I

of dom(I), and with each role name R a

binary relation R

I

on dom(I), i.e., a subset of dom(I) � dom(I). The special names top and bottom must

be interpreted as >

I

= dom(I) and ?

I

= ;. For x 2 dom(I), we denote the set fy 2 dom(I) j xR

I

yg of

R-�llers of x by R

I

(x). The extension function can be extended to arbitrary concept descriptions as follows:

{ (:C)

I

= dom(I) n C

I

, (C tD)

I

= C

I

[D

I

, and (C uD)

I

= C

I

\D

I

,

{ (9R:C)

I

= fx 2 dom(I) j R

I

(x) \ C

I

6= ;g,

{ (8R:C)

I

= fx 2 dom(I) j R

I

(x) � C

I

g.

An interpretation I is a model of the TBox T i� it satis�es A

I

= D

I

for all terminological axioms A = D

in T .

The terminological axioms of a given TBox imply subconcept/superconcept relationships (so-called sub-

sumption relationships) between concept descriptions.

Subsumption: Let T be a TBox and let C, D be concept descriptions. Then D subsumes C with respect

to T (symbolically C v

T

D) i� C

I

� D

I

holds for all models I of T .

With respect to the TBox of Figure 1, the description NoDaughter u NoSon is subsumed by NoSmallChild.

When a terminological system reads in a terminology, it �rst computes all the subsumption relationships

between the concept names occurring in this TBox. This process, called classi�cation, results in an explicit

internal representation of the subsumption ordering, which can directly be accessed during later computati-

ons. With respect to the TBox of Figure 1, the names NoDaughter, NoSon and NoSmallChild are not in any

subsumption relationship with each other.

The subsumption algorithms described in the literature are usually concerned with subsumption with

respect to the empty TBox (which has all interpretations as models). To use these algorithm for answering

subsumption questions \C v

T

D?" with respect to a nonempty TBox T , one must expand concept de�-

nitions, i.e., iteratedly replace de�ned concepts in C and D by their de�ning descriptions until all names

occurring in the descriptions are primitive. If

b

C and

b

D denote the descriptions obtained this way, then

C v

T

D i�

b

C v

;

b

D. The expansion process terminates since TBoxes are assumed to be acyclic. In our

example, the expanded description corresponding to NoDaughter u NoSon is 8child::Female u 8child:Female,

and the expanded description corresponding to NoSmallChild is 8child::Small.

The �rst sound and complete subsumption algorithm for ALC was described in [21] (see also [1] for a

more succinct description). In the remainder of this section we explain the ideas underlying this algorithm

using descriptions from our example.

First, we show how the algorithm determines that NoDaughter u NoSon is subsumed by NoSmallChild.

As described above, subsumption with respect to the TBox of Figure 1 is reduced to subsumption with

respect to the empty TBox by expansion. Thus, the input of the algorithm is actually the pair of expanded

descriptions 8child::Female u 8child:Female and 8child::Small. The algorithm attempts to show that the

subsumption relationship does not hold by trying to construct a counterexample, i.e., an interpretation I

and an individual d

0

2 dom(I) such that d

0

2 (8child::Female u 8child:Female)

I

and d

0

2 (9child:Small)

I

.

3

Thus, the interpretation I must satisfy the following set of constraints:

C

0

:= fd

0

2 (8child::Female)

I

; d

0

2 (8child:Female)

I

; d

0

2 (9child:Small)

I

g:

Now, the third constraint is satis�ed by introducing a new individual, say d

1

, and asserting that it is a small

child of d

0

. This yields the new set of constraints

C

1

:= C

0

[f(d

0

; d

1

) 2 child

I

; d

1

2 Small

I

g:

Since d

0

has a child, the two value-restrictions in C

1

become active, which means that these restrictions are

propagated to the �ller d

1

of the child-role. This yields the new set of constraints

C

2

:= C

1

[fd

1

2 Female

I

; d

1

2 (:Female)

I

g;

which is obviously contradictory. Thus, the attempt to show that the subsumption relationship does not hold

has failed, and the algorithm concludes that the relationship holds.

Second, we show how the algorithm determines that NoDaughter is not subsumed by NoSmallChild. As

described above, the descriptions are expanded, and the algorithm tries to construct a counterexample. The

initial set of constraints is now

C

0

0

:= fd

0

2 (8child::Female)

I

; d

0

2 (9child:Small)

I

g:

To satisfy the second constraint, a new individual d

1

is introduced, and the set of constraints is extended to

C

0

1

:= C

0

0

[f(d

0

; d

1

) 2 child

I

; d

1

2 Small

I

g. Now, there is only one value-restriction that is propagated onto

d

1

, and thus the new set of constraints

C

0

2

:= C

0

1

[fd

1

2 (:Female)

I

g

is not contradictory. Since there are no more unsatis�ed constraints, the algorithm concludes that there exists

a counterexample, i.e., the subsumption relationship does not hold. In fact, a �nite counterexample can easily

be constructed from the �nal set of constraints: dom(I) = fd

0

; d

1

g (i.e., the set of all individual contained

in the �nal set of constraints), and the extensions of the primitive concepts and roles are child

I

= f(d

0

; d

1

)g

3

Note that the description 9child:Small is the negation normal form of :(8child::Small), obtained by pushing negation

into descriptions.

(all role-relationships explicitly stated), Female

I

= ;, and Small

I

= fd

1

g (all element-relationships explicitly

stated).

To sum up, the algorithm answers with \yes" if the subsumption relationship holds. Otherwise, it answers

with \no." In this case, a �nite model can easily be constructed from the �nal non-contradictory set of

constraints. As shown in [21], the size of the �nal set of constraints, and thus also of the model can be

exponential in the size of the expanded concept descriptions.

3 Minimal implication bases

We shall introduce only those notions and results from formal concept analysis that are necessary for our

application (see, e.g., [27] for more information).

De�nition 3 (Context). A context is a triple K = (O;P ;S) where O is a (possibly in�nite) set of objects,

P is a �nite set of properties,

4

and S � O � P is a relation that connects each object o with the properties

satis�ed by o.

Let K = (O;P ;S) be a context. For a set of objects A � O, the intent A

0

of A is the set of properties

that are satis�ed by all objects in A, i.e.,

A

0

:= fp 2 P j 8a 2 A: (a; p) 2 Sg:

Similarly, for a set of properties B � P , the extent B

0

of B is the set of objects that satisfy all properties in

B, i.e

B

0

:= fo 2 O j 8b 2 B: (o; b) 2 Sg:

It is easy to see that for A

1

� A

2

� O (resp. B

1

� B

2

� P), we have

{ A

0

2

� A

0

1

(resp. B

0

2

� B

0

1

),

{ A

1

� A

00

1

and A

0

1

= A

000

1

(resp. B

1

� B

00

1

and B

0

1

= B

000

1

).

We are now interested in implications between sets of properties that are satis�ed in a given context K.

Implication: Let K be a context and let B

1

, B

2

be subsets of P . The implication B

1

! B

2

holds in K

(symbolically K j= B

1

! B

2

) i� B

0

1

� B

0

2

.

Because of the properties mentioned above, B

0

1

� B

0

2

holds i� B

2

� B

00

1

. The set of all implications that hold

in K is denoted by Imp(K). This set can be very large, and thus one is interested in (small) generating sets

for Imp(K).

De�nition 4. Let L be a set of implications, i.e., the elements of L are of the form B

1

! B

2

for sets of

properties B

1

; B

2

� P . For a subset B of P , the implication hull of B with respect to L is denoted by L(B).

It is the smallest subset H of P such that

{ B � H , and

{ B

1

! B

2

2 L and B

1

� H implies B

2

� H .

The set of implications generated by L consists of all implications B

1

! B

2

such that B

2

� L(B

1

). It will

be denoted by Cons(L). We say that a set of implications L is a base of Imp(K) i� Cons(L) = Imp(K) and

no proper subset of L satis�es this property.

4

In formal concept analysis, the notion \attribute" is used instead of \property." We prefer the second notion to

avoid confusion since, in the description logics community, the name \attribute" is sometimes used for functional

roles. In our application, the set of properties will be the set of concept names occurring in a TBox.

If L is a base for Imp(K) then B

00

= L(B) for all B � P , i.e., the closure operator B 7! B

00

can be

computed without computing the extent B

0

of B.

The notions we have just de�ned can easily be reformulated in propositional logic. In fact, we can consider

the properties as propositional variables. An implication B

1

! B

2

can then be expressed by the formula

�

B

1

!B

2

:=

V

p2B

1

p !

V

p

0

2B

2

p

0

. Let � be the set of formulae corresponding to the set of implications

L. Then B

1

! B

2

2 Cons(L) i� �

B

1

!B

2

is a logical consequence of � . It is now easy to see that the

linear decision method for satis�ability of sets of propositional Horn clauses [6] can easily be adapted to the

problem of deciding whether B

1

! B

2

2 Cons(L). Thus, a base L for Imp(K) yields a representation of

Imp(K) with the property that any question \B

1

! B

2

2 Imp(K)?" can be answered in time linear in the

size of L [fB

1

! B

2

g.

5

This shows that it is important to �nd bases of small size. A base L of Imp(K) is called minimal base i�

no base of Imp(K) has a cardinality smaller than the cardinality of L. Duquenne and Guigues have given a

description of such a minimal base [7], and Ganter [10, 11] has shown how this base can be computed.

6

One way of de�ning the Duquenne-Guigues base of a context is to modify the closure operator B 7! L(B)

de�ned by a set L of implications. For a subset B of P , the implication pseudo-hull of B with respect to L

is denoted by L

�

(B). It is the smallest subset H of P such that

{ B � H , and

{ B

1

! B

2

2 L and B

1

� H (strict subset) implies B

2

� H .

Given L, the pseudo-hull of a set B � P can be computed in time linear in the size of L and B. A subset B

of P is called pseudo-closed in a context K i� Imp(K)

�

(B) = B and B

00

6= B.

De�nition 5. The Duquenne-Guigues base of a context K consist of all implications B

1

! B

2

where B

1

is

pseudo-closed in K and B

2

= B

00

1

nB

1

.

When trying to use this de�nition for computing the Duquenne-Guigues base of a context, one encounters

two problems:

1. The de�nition of pseudo-closed refers to the set of all valid implications Imp(K), and our goal is to avoid

explicitly computing all of them.

2. The closure operator B 7! B

00

is used, and computing it via B 7! B

0

7! B

00

may not be feasible for a

context with an in�nite set of objects.

Ganter solves the �rst problem by enumerating the pseudo-closed sets of K in a particular order, called

lectic order. This order makes sure that it is su�cient to use the already computed part L of the base when

computing the pseudo-hull. To de�ne the lectic order, �x an an arbitrary linear order on the set of properties,

say P = fp

1

; : : : ; p

n

g. For all j; 1 � j � n, and B

1

; B

2

� P we de�ne

B

1

<

j

B

2

i� p

j

2 B

2

nB

1

and B

1

\ fp

1

; : : : ; p

j�1

g = B

2

\ fp

1

; : : : ; p

j�1

g:

The lectic order < is the union of all relations <

j

for j = 1; : : : ; n. It is a linear order on the powerset of P .

The lectic smallest subset of P is the empty set.

The second problem is solved by constructing an increasing chain of �nite subcontexts of K. The context

K

i

= (O

i

;P

i

;S

i

) is a subcontext of K i� O

i

� O, P

i

= P , and S

i

= S \ (O

i

� P). The closure operator

B 7! B

00

is always computed with respect to the current �nite subcontext K

i

. To avoid adding a wrong

implication, an \expert"

7

is asked whether the implication B ! B

00

nB really holds in K. If it does not hold,

the expert must provide a counterexample, i.e., an object from O n O

i

that violates the implication. This

object is then added to the current context. Technically, this means that the expert must provide an object

name o, and must say which of the properties of P hold for o and which don't.

5

Another possibility to obtain this linearity result is to use algorithms developed for deriving functional dependencies

in relational databases (see [17], Section 4.6).

6

Computation of minimal bases for sets of functional dependencies is considered in [17].

7

In the applications mentioned in [27, 10], this \expert" is a human expert who knows the context K; in our

application, the expert will be a subsumption algorithm.

Algorithm6 (Computation of the Duquenne-Guigues base of K).

Initialization: One starts with the empty set of implications, i.e., L

0

:= ;, and the empty subcontext K

0

of

K, i.e., O

0

:= ;. The lectic smallest subset of P is B

0

:= ;.

Iteration: Assume that K

i

, L

i

, and B

i

(i � 0) are already de�ned. Compute B

00

i

with respect to the

current subcontext K

i

. Now the expert is asked whether the implication B

i

! B

00

i

nB

i

holds in K.

8

If the answer is \no" then let o

i

2 O be the counterexample provided by the expert. Let K

i+1

be the

subcontext of K with O

i+1

:= O

i

[fo

i

g, L

i+1

:= L

i

, and B

i+1

:= B

i

.

If the answer is \yes" then K

i+1

:= K

i

and

L

i+1

:=

�

L

i

[fB

i

! B

00

i

nB

i

g if B

00

i

6= B

i

;

L

i

if B

00

i

= B

i

:

To �nd the new set B

i+1

, we start with j = n, and test whether

(�) B

i

<

j

L

�

i+1

((B

i

\ fp

1

; : : : ; p

j�1

g) [fp

j

g)

holds. The index j is decreased until one of the following cases occurs:

(1) j = 0: In this case, L

i+1

is the Duquenne-Guigues base, and the algorithm stops.

(2) (�) holds for j > 0: In this case, B

i+1

:= L

�

i+1

((B

i

\fp

1

; : : : ; p

j�1

g)[fp

j

g), and the iteration is continued.

4 Subsumption between conjunctions of concepts

In the following, let T be a �xed TBox, and let p

1

; : : : ; p

n

be the concept names occurring in T . We

are interested in representing all subsumption relationships (w.r.t. T) between �nite conjunctions of these

names. To this purpose we de�ne a context such that the implications that hold in the context are in a

1{1-relationship with these subsumption relationships.

De�nition 7. The context K

T

= (O;P ;S) is de�ned as follows:

P := fp

1

; : : : ; p

n

g;

O := f(I; d) j I is a model of T and d 2 dom(I)g;

S := f((I; d); p) j d 2 p

I

g:

For a nonempty subset B = fp

i

1

; : : : ; p

i

r

g of P , we denote the conjunction p

i

1

u : : :u p

i

r

by uB. For the

empty set, we de�ne u; := >.

Lemma8. Let B

1

; B

2

be subsets of P. The implication B

1

! B

2

holds in K

T

i� uB

1

v

T

uB

2

.

Proof. Assume that B

1

! B

2

does not hold in K

T

. This is the case i� there exists an object (I; d) 2

B

0

1

n B

0

2

. By de�nition of S and of the operator B 7! B

0

, this means that (1) d 2 p

I

for all p 2 B

1

, and (2)

there exists p

0

2 B

2

such that d 62 p

0I

. By the semantics of the conjunction operator, (1) is equivalent to

d 2 (uB

1

)

I

, and (2) is equivalent to d 62 (uB

2

)

I

. Since I is a model of T , this shows that the subsumption

relationship uB

1

v

T

uB

2

does not hold. Obviously, all of the conclusions we have made are reversible.

Thus, the Duquenne-Guigues base L of K

T

also yields a representation of all subsumption relationships

of the form uB

1

v

T

uB

2

for subsets B

1

; B

2

of P . As mentioned in Section 3, any question \uB

1

v

T

uB

2

?"

can then be answered in time linear in the size of L [fB

1

! B

2

g. If we want to apply Algorithm 6 to

compute this base, we must show:

Lemma9. The subsumption algorithm sketched in Section 2 can function as an \expert" for the context

K

T

.

8

If B

00

i

n B

i

= ; then it is not really necessary to ask the expert because implications with empty right-hand side

hold in any context.

Proof. Algorithm 6 asks questions of the form \B

1

! B

2

?". By Lemma 8, these questions can be

translated into subsumption questions \uB

1

v

T

uB

2

?". Let

d

uB

1

;

d

uB

2

be the corresponding expanded

concept descriptions. Obviously, the subsumption algorithm sketched in Section 2 can answer the question

whether \

d

uB

1

v

;

d

uB

2

?". In addition, we have seen in Section 2 that this algorithm can be modi�ed such

that it yields a counterexample if the answer is \no." This counterexample consists of a �nite interpretation

b

I and an element d of dom(

b

I) such that d 2 (

d

uB

1

)

b

I

n (

d

uB

2

)

b

I

. Since the extended concept descriptions

contain only primitive concepts and roles of T , we may assume that

b

I interprets only these concepts and

roles, whereas the interpretation of the de�ned concepts is still open. Since T is a TBox without cyclic

de�nitions, there is a unique way of extending

b

I to a model I of T . In addition, if

b

D is the expanded version

of a description D, then we have

b

D

b

I

= D

I

. This shows that d 2 dom(I) satis�es d 2 (uB

1

)

I

n (uB

2

)

I

, and

thus we know that (I; d) 2 O is a counterexample for the implication B

1

! B

2

in K

T

.

In order to extend the current �nite subcontext of K

T

by this counterexample, Algorithm 6 must know

which of the properties p

1

; : : : ; p

n

are satis�ed for (I; d), i.e., it must know for which of the concept names p

i

one has d 2 p

I

i

. Since I is a �nite model, this is an instance of �nite model checking, which for the description

logic ALC is decidable in polynomial time.

9

The method of realizing the expert for K

T

described in the above proof contains two exponential steps

that can partially be avoided. First, as shown in [18], the expanded concept descriptions can have a size

that is exponential in the size of the TBox. Second, as already mentioned in Section 2, the size of the

�nal set of constraints, and thus also of the model, can be exponential in the size of the expanded concept

descriptions. It is, however, possible to design a subsumption algorithm that uses only polynomial space (but

not polynomial time). The �rst exponential step is avoided by not completely expanding concept descriptions

in the beginning. Instead, one makes one-step expansions during the algorithm by need (see [2], Section 6). To

avoid obtaining (and thus also storing) an exponential set of constraints, [21] uses the fact that constraints on

a given role-successor of an individual d do not inuence any of the other role successors of d. Thus, di�erent

role-successors can be check separately, which means that there is no need to keep the constraints generated

by checking one successor when checking the next one (see [1] for a succinct description of a (functional)

algorithm realizing this idea).

Since we are interested in generating a counterexample, one might think that it is not possible to avoid

storing the (exponentially large) model. However, Algorithm 6 does not really need a complete description of

the counterexample (I; d). It is su�cient to know how to extend the current context, i.e., which properties p

j

are satis�ed by the counterexample. Then one can simply generate a generic name for this counterexample,

and extend the relation S

i

appropriately.

Lemma10. It is possible to implement a \PSPACE-expert" for the context K

T

, i.e., the relevant information

about the counterexample can be computed by an algorithm that uses space that is polynomially bounded by

the size of T .

Proof. A detailed proof would require a more detailed description of the functional subsumption algorithm

introduced in [1]. Because of the space limitations, we give only a sketch of the extended algorithm. In addition

to the pair C, D of concept descriptions for which subsumption is to be checked, the extended algorithm

takes a list E

1

; : : : ; E

n

of concept descriptions.

10

If the subsumption relationship does not hold, and (I; d) is

the counterexample that would be generated by the simple algorithm, then the extended algorithm returns

a list b

1

; : : : ; b

n

of Boolean values, where b

i

= true i� d 2 E

I

i

.

9

In fact, as shown in [20], ALC is a syntactic variant of the multi-modal logic K. In addition, [3] shows that model

checking for an even larger logic can be done in time O(nm) where n is the size of the formula and m is the size

of the model.

10

Without mentioning it explicitly, we always assume that concept descriptions are expanded by need according to

the de�nitions in T .

The interesting case occurs when the current set of constraints

11

is of the form

fd 2 L

I

1

; : : : ; d 2 L

I

k

;

d 2 (9R

1

:C

1;1

)

I

; : : : ; d 2 (9R

1

:C

1;m

1

)

I

; d 2 (8R

1

:C

1

)

I

; : : : ;

d 2 (9R

r

:C

r;1

)

I

; : : : ; d 2 (9R

r

:C

r;m

r

)

I

; d 2 (8R

r

:C

r

)

I

g;

where L

1

; : : : ; L

k

are literals, i.e., primitive concepts or negations of primitive concepts, and R

1

; : : : ; R

r

are

di�erent role names. If L

1

; : : : ; L

k

is inconsistent, i.e., there is i; j such that L

i

= A and L

j

= :A, then

this constraint system is obviously contradictory. Otherwise, m

1

+ � � �+m

r

new constraint systems C

i;j

are

generated, which are checked separately for consistency:

C

i;j

:= fd

i;j

2 C

I

i;j

; d

i;j

2 C

I

i

g:

The concepts descriptions E

1

; : : : ; E

n

are (without loss of generality) Boolean combinations of literals L and

descriptions of the form 9S:E and 8S:E. We call these concept descriptions simple components of E

1

; : : : ; E

n

.

Obviously, it is su�cient to know for each simple component F whether d 2 F

I

holds in the model generated

by the algorithm. For a literal L this is easy to decide. For a primitive concept A we have d 2 A

I

i� there

is i such that L

i

= A (by construction of the model; see Section 2). For a negated primitive concept :A we

have d 2 (:A)

I

i� there is no i such that L

i

= A.

Now, consider a simple component 9S:E. If there is no i such that S = R

i

then d 62 (9S:E)

I

. If S = R

i

,

then we have d 2 (9S:E)

I

i� there is j; 1 � j � m

i

, such that d

i;j

2 E

I

. In order to determine whether this

is the case, the recursive calls of the algorithm with C

i;j

(j = 1; : : : ;m

i

) must simply be equipped with an

additional list of descriptions that includes E. The recursive call with C

i;j

returns true for an element E of

this additional list i� d

i;j

2 E

I

.

Simple components of the form 8S:E can be treated similarly: If there is no i such that S = R

i

then

d 2 (8S:E)

I

. If S = R

i

, then we have d 2 (8S:E)

I

i� for all j; 1 � j � m

i

, we have d

i;j

2 E

I

, i.e., E must

be included in the additional list for all calls C

i;j

(j = 1; : : : ;m

i

).

By induction on the structure of descriptions we can assume that the recursive calls yield the correct

lists of Boolean values. Hence the overall algorithm can easily determine the correct Boolean values for the

simple components, and thus also for the descriptions E

1

; : : : ; E

n

.

Recall that our goal was to �nd a method that generates a minimal representation of the subsumption

hierarchy between conjunctions of concepts de�ned in a TBox. In addition, the algorithm computing this

representation should create as few as possible calls of the subsumption algorithm for pairs of conjunctions.

Since the Duquenne-Guigues base is a minimal implication base, our method meets the �rst requirement. It

yields a subset of all subsumption relationships between conjunctions from which all others can be generated,

and there is no smaller subset with this property. In the worst-case, the size of the Duquenne-Guigues can

be exponential in the number of properties (i.e., in our case the number of concept names occurring in T).

Empirical results from other applications [22, 14] of the methods described in Section 3 seem to indicate,

however, that one can expect a polynomial behaviour for non-random contexts.

In general, Algorithm 6 does not create a minimal number of calls of the subsumption algorithm. In fact, it

is a well-known phenomenon that sometimes counterexamples are generated that become redundant because

of counterexamples introduced later on. Thus, too many calls with negative results of the subsumption

algorithm may be generated. In this respect, the behaviour of the algorithm strongly depends on how the

set of properties is ordered. Thus it would be interesting to develop good heuristics for choosing this order.

5 Possible applications

In addition to the fact that the extended concept hierarchy provides more information about the interaction

between concepts than the usual subsumption hierarchy does, an advantage of this hierarchy is that it is a

11

As mentioned above, the PSPACE-algorithm considers constraints for di�erent individuals separately, i.e., each set

of constraints is only concerned with one individual.

lattice and not just a partial ordering. On the one hand, this means that algorithms developed for drawing

and structuring line diagrams of lattices can be employed (see, e.g., [26, 24]) to obtain good graphical

representations of this hierarchy. On the other hand, applications that depend on the existence of least

common subsumers (i.e., least upper bounds in the subsumption hierarchy) are facilitated. For example,

as pointed out in [4], �nding a least general concept that is consistent with a set of positive examples is

an operation that is frequently used in learning. For this reason, the extended hierarchy computed by our

method could be of interest in the following setting: Assume that we have a �xed TBox T , and that both

the class of target concepts to be learned and the examples are conjunctions of concepts introduced in T .

An example conjunction is positive for a target conjunction i� the example is subsumed by the target with

respect to T . Thus, the least general concept (from the class of target concepts) that is consistent with a

set of positive examples is the least upper bound of the set of positive examples in the extended hierarchy

computed by our method.

Applicability of the method described in the present paper is, of course, not restricted to the language

ALC. In fact, it can be employed for any description formalism that (1) allows for conjunction of descriptions,

and (2) has a subsumption algorithm that can function as an \expert" for Algorithm 6 (i.e., yields su�cient

information about a counterexample if the answer to the subsumption question is \no.")

References

1. F. Baader and B. Hollunder. A terminological knowledge representation system with complete inference al-

gorithms. In M. Richter and H. Boley, editors, International Workshop on Processing Declarative Knowledge,

volume 567 of Lecture Notes in Arti�cial Intelligence. Springer-Verlag, 1991.

2. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Pro�tlich. An empirical analysis of optimization

techniques for terminological systems. J. Applied Intelligence, 4:109{132, 1994.

3. R. Cleaveland and B. Ste�en. A linear-time model-checking algorithm for the alternation-free modal mu-calculus.

In Proceedings of the 3rd International Workshop on Computer Aided Veri�cation, CAV'91, pages 48{58, volume

575 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

4. W.W. Cohen and H. Hirsch. Learning the CLASSIC description logic: Theoretical and experimental results. In

J. Doyle, E. Sandewall, and P. Torasso, editors, Principles of Knowledge Representation and Reasoning: Procee-

dings of the 4th International Conference, pages 121{133, Bonn, 1994. Morgan Kaufmann.

5. F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept languages. In J.A. Allen, R. Fikes,

and E. Sandewall, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 2nd Inter-

national Conference, pages 151{162, Cambridge, MA, 1991. Morgan Kaufmann.

6. W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satis�ability of propositional Horn formu-

lae. J. Logic Programming 3:267{284, 1984.

7. V. Duquenne. Contextual implications between attributes and some representational properties for �nite lattices.

In B. Ganter, R. Wille, K.E. Wolf, editors, Beitr�age zur Begri�sanalyse, pages 213{239, B.I. Wissenschaftsverlag,

Mannheim, 1987.

8. G. Ellis. Compiled hierarchical retrieval. In 6th Annual Conceptual Graphs Workshop, 1991.

9. G. Ellis and R.A. Levinson. The birth of PEIRCE: A conceptual graphs workbench. In Proceedings of the Seventh

Annual Conceptual Graphs Workshop, Las Cruces, New Mexico, July 1992.

10. B. Ganter. Algorithmen zur Formalen Begri�sanalyse. In B. Ganter, R. Wille, K.E. Wolf, editors, Beitr�age zur

Begri�sanalyse, pages 241{254, B.I. Wissenschaftsverlag, Mannheim, 1987.

11. B. Ganter. Finding all closed sets: A general approach. Order, 8:283{290, 1991.

12. R.A. Levinson. A self-organizing pattern retrieval system for graphs. In Proceedings of the 4th National Confe-

rence of the American Association for Arti�cial Intelligence, pages 203{206, Austin, TX, 1984.

13. R.A. Levinson. Pattern associativity and the retrieval of semantic networks. Journal of Computers & Mathema-

tics with Applications, 23(6{9):573{600, 1992.

14. C. Lindig. Inkrementelle, r�uckgekoppelte Suche in Software-Bibliotheken. Informatik-Bericht 94-07 (Technical

Report), Technical University of Braunschweig, 1994.

15. T. Lipkis. A KL-ONE classi�er. In J.G. Schmolze and R.J. Brachman, editors, Proceedings of the 1981 KL-ONE

Workshop, pages 128{145, Cambridge, MA, 1982. The proceedings have been published as BBN Report No. 4842

and Fairchild Technical Report No. 618.

16. R. MacGregor. A deductive pattern matcher. In Proceedings of the 7th National Conference of the American

Association for Arti�cial Intelligence, pages 403{408, Saint Paul, MI, Aug. 1988.

17. D. Maier. The Theory of Relational Databases, Computer Science Press, Rockville, 1983.

18. B. Nebel. Terminological reasoning is inherently intractable. Arti�cial Intelligence, 43:235{249, 1990.

19. C. Peltason, A. Schmiedel, C. Kindermann, and J. Quantz. The BACK system revisited. KIT Report 75, De-

partment of Computer Science, Technische Universit�at Berlin, Berlin, Germany, Sept. 1989.

20. K. Schild. A correspondence theory for terminological logics: Preliminary report. In Proceedings of the 12th

International Joint Conference on Arti�cial Intelligence, pages 466{471, Sydney, Australia, 1991.

21. M. Schmidt-Schau� and G. Smolka. Attributive concept descriptions with complements. Arti�cial Intelligence,

48:1{26, 1991.

22. G. Snelting. Reengineering of con�gurations based on mathematical concept analysis. Informatik-Bericht 95-02

(Technical Report), Technical University of Braunschweig, 1995.

23. R. Wille. Restructuring lattice theory. In I. Rival, editor, Ordered Sets, pages 445{470, Reidel, Dodrecht, Boston,

1982.

24. R. Wille. Tensorial decomposition of concept lattices. Order, 2:81{95, 1985.

25. R. Wille. Knowledge acquisition by methods of formal concept analysis. In E. Diday, editor, Data Analysis,

Learning Symbolic and Numeric Knowledge, pages 365{380, Nova Science Publ., New York, Budapest, 1989.

26. R. Wille. Lattices in data analysis: How to draw them with a computer. In I. Rival, editor, Algorithms and

Order, pages 33{58, Kluwer, Dodrecht, Boston, 1989.

27. R. Wille. Concept lattices and conceptual knowledge systems. In F. Lehmann, editor, Semantic Networks in

Arti�cial Intelligence, pages 493{516, Pergamon Press, Oxford, New York, 1992.

28. W.A. Woods. Understanding subsumption and taxonomy: A framework for progress. In J.F. Sowa, editor,

Principles of Semantic Networks, pages 45{94. Morgan Kaufmann, San Mateo, CA, 1991.

This article was processed using the L

a

T

E

X macro package with LLNCS style

