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In most of the implemented terminological knowledge representation systems it
is not possible to state recursive concept definitions, so-called terminological
cycles. One reason is that it is not clear what kind of semantics to use for such
cyles. In addition, the inference algorithms used in such systems may go astray
in the presence of terminological cycles. In this paper we consider terminological
cycles in a very small terminological representation language. For this language,
the effect of the three types of semantics introduced by B. Nebel can completely
be described with the help of finite automata. These descriptions provide for a
rather intuitive understanding of terminologies with recursive definitions, and
they give an insight into the essential features of the respective semantics. In
addition, one obtains algorithms and complexity results for the subsumption
problem and for related inference tasks. The results of this paper may help to
decide what kind of semantics is most appropriate for cyclic definitions,
depending on the representation task
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1 — Introduction

Terminological representation systems can be used to represent the taxonomic
and conceptual knowledge of a problem domain in a structured way. To describe
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this kind of knowledge, one starts with atomic concepts (unary predicates) and
roles (binary predicates), and constructs more complex concept descriptions
(called concept terms in the following) using the operations provided by the
concept language of the particular formalism. For examptieman andMale are
atomic concepts anchild is a role, then the concept terfhgman n Male and

Cchild: Male describe, respectively, the set of all individuals that are both human
and male, and the set of all individuals that have male children only. The concept
forming construct used in the first term is called concepjunctionand the one

in the second term is calledlue restriction The semantics of such expressions
can be described in a model-theoretic way (see Section 3 below), or by a
translation into first-order predicate logic. The concept terms of our example
correspond to formulas with one free variatleman(x) [J Male(x) andy:
(child(x,y) — Male(y)). For a given interpretation, the concept represented by a
concept term consists of the individuals (elements of the domain of the
interpretation) that satisfy the corresponding formula when substituted for its
free variable.

Theterminology(T-box) of a terminological representation system consists
of concept definitions that assign names to complex terms. For example, one can
introduce the name “man” for the concept of all male humans via the definition
Man = Human rn Male, which has the obvious semanti¢s: (Man(x) < Human(x)

[1 Male(x)). This semantics will be called descriptive semantics in the following.
As long as there are no cyclic dependencies in the concept definitions of a
terminology, descriptive semantics is clearly appropriate. In this case, definitions
merely introduce abbreviations (macros) for complex terms, and the defined
names occurring in a concept term can simply be replaced via successive macro-
expansions (see, e.g., [30], Section 3.2.5). If there are cyclic dependencies in
the definitions of a T-box then such an expansion process need not terminate,
which is the reason why the inference methods of most of the existing
terminological systems (e.g., KRYPTON [7], NIKL [21], LOOM [26],
CLASSIC [33], or KRIS [5]) cannot handle terminological cycles. Another
problem with terminological cycles is that descriptive semantics, as introduced
above, need no longer be appropriate, and it is not obvious what type of
semantics should be employed instead.

Cyclic concept definitions may be very useful and intuitive, though. For
example, they can be used to express value restrictions with respect to the
transitive closure of roles. Assume that we have thechdte and that we want
to describe the concept of all men having only male offspring, for Kloord.
Obviously, we cannot just introduce a new atomic offepring because then
there would be no connection between the two rdigsandoffspring. But the
intended meaning afffspring is that it is the transitive closure of the rohdd.
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Here a cyclic definition oMomo seems to be quite natural: a man having only
male offspring is himself a man, and all his children are men having only male
offspring. This can be expressed by the concept definition

Momo = Manm Ochild: Momo,

provided that an appropriate fixed-point semantics is used. The results of this
paper will show that greatest fixed-point semantics is the semantics that captures
our intuition here. For similar reasons, recursive axioms with fixed-point
semantics are considered in data base research (see e.g., [1,20,41,28,43,42]).
In [1], Aho and Uliman have shown that the transitive closure of relations cannot
be expressed in the relational calculus, which is a standard relational query
language. They propose to add cyclic definitions that are interpreted by least
fixed-point semantics. This was also the starting point for an extensive study of
fixed-point extensions of first-order logic (see e.g., [16,17]).

As another example that illustrates the possible use of cyclic definitions in
terminologies, assume that we want to define the corxzpt which should
consist of all nodes belonging to a finite directed acyclic graph whose
connections are given by a relation “arc.” This concept can be described using
the following cyclic definition:

Dag = Node r [arc: Dag.

As for the definition oMomo, a fixed-point semantics is more appropriate than
descriptive semantics here. The results presented in this paper will show that,
unlike the definition oMomo, which should be interpreted with greatest fixed-
point semantics, the definition Dag requires least fixed-point semantics.

It is, of course, not enough to have a system that just stores concept
definitions. The system must also be able to reason about this knowledge. An
important inference service of a terminological system is “classification.” The
classifier computes aubsumption relationshiplsetween concepts, i.e., all
subconcept-superconcept relationships induced by the concept definitions. The
choice of the semantics strongly influences which subsumption relationships
hold in a terminology. In addition, different semantics may require different
algorithmic method for determining subsumption relationships, and they might
be responsible for different behaviour with respect to decidability and complexity
of the subsumption problem. As mentioned above, the subsumption algorithms
implemented in most of the existing terminological systems cannot handle cyclic
definitions.

The first thorough investigation of cycles in terminological knowledge

1This example is taken from [15].
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representation languages can be found in [29,30,32], where B. Nebel considers
three different types of semantics for cyclic definitions in his lang@eg¢,
namely, least fixed-point semantics, greatest fixed-point semantics, and
descriptive semantics. Due to the fact that this language is relatively expressive
this investigation does not provide us with a deep insight into the meaning of
cycles with respect to these three types of semantics. For the two fixed-point
semantics, Nebel explains his point just with a few examples. The meaning of
descriptive semantics—which, in Nebel's opinion, comes “closest to the
intuitive understanding of terminological cycles” ([30], p. 120)—is treated more
thoroughly. But even in this case the results are not quite satisfactory. For
example, decidability of the subsumption problem is proved by an argument that
cannot be used to derive a practical algorithm, and which does not give insight
into the reason why one concept defined by some cyclic definition subsumes
another one. Roughly speaking, the argument says that it is sufficient to consider
only finite interpretations to determine subsumption relationships. An interesting
observation concerning descriptive semantics in Nebel’'s paper is that structurally
identical definitions need not lead to semantically equivalent concepts (i.e.,
concepts that mutually subsume each other). For example, assume that in
addition to the definition dflomo from above, we also define a concidplo (for

man without female offspring):

Mnfo = Man m Cchild: Mnfo.

Beside the acronym chosen for the concept to be defined, the definitiorscof

and Mnfo are identical. For (greatest or least) fixed-point semantics, this is
reflected by the fact that the two concepts are equivalent. For descriptive
semantics, no such equivalence holds since names of defined concepts are
important as well. The characterization of subsumption with respect to
descriptive semantics given in the present paper will clarify this dependency on
names.

Before we can determine what kind of semantics is most appropriate for
terminological cycles, we need a better understanding of their intended meaning.
The same argument applies to the decision whether to allow or disallow cycles.
Even if cycles are prohibited, this should not be done just because one does not
know what they mean and how they can be handled.

In this paper, we shall consider terminological cycles in a very small
terminological representation language. It provides only concept conjunction and
value-restrictions as constructs for building concept terms. For this language, the
effect of the three types of semantics mentioned above can completely be
described with the help of finite automata. These descriptions provide a rather
intuitive understanding of terminologies with cyclic definitions, and they give
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insight into the essential features of the respective semantics. In addition, the
subsumption problem for each type of semantics can be reduced to a (more or
less) well-known decision problem for finite automata. Hence, existing
algorithms can be used to decide subsumption, and known complexity results
yield the complexity of the subsumption problem.

In the next section we shall recall some definitions and results concerning
ordinals, fixed-points and finite automata that will be used in subsequent
sections. Syntax and (descriptive) semantics of our small terminological
language¥ Lo is introduced in Section 3. In Section 4, alternative types of
semantics—namely least and greatest fixed-point semantics—are considered,
which may be more appropriate in the presence of terminological cycles. We
shall see that, from a constructive point of view, greatest fixed-point semantics
shows a better behaviour than least fixed-point semantics since greatest fixed-
point models can be obtained by a single limit process. In Section 5, the three
types of semantics are characterized with the help of finite automata. The
characterization of the greatest fixed-point semantics is easy and intuitively clear.
Subsumption with respect to greatest fixed-point semantics, and—after some
modifications of the automaton—also with respect to least fixed-point semantics
can be reduced to inclusion of regular languages. For descriptive semantics, we
have to consider inclusion of certain languages of infinite words that are defined
by the automaton. Fortunately, these languages have already been investigated in
the context of monadic second-order logic (see [8]). In Section 6, we shall see
how the inclusion problem for these languages can be solved. This yields a
subsumption algorithm for descriptive semantics. Extensions of the results for
gfp-semantics are considered in Section 7. In the first subsection we shall
consider cycles in the larger langua@é& introduced in [23]. The second
subsection contains results about hybrid inferences. Finally, we shall point out
related work on cyclic definitions in terminologies.

2 — Formal Preliminaries

For the readers convenience, we shall recall some definitions and results
concerning ordinals, fixed-points and finite automata. Those familiar with these
topics may skip this section and come back to it if necessary.

In the introduction we have mentioned the “transitive closure” of a binary
relation as a motivation for cyclic definitions. This notion can be formally
defined as follows: Let R be a binary relation on a set D, i.el,0R« D. We
define P := {(d,d); dO D} and, for n> 0, R"*1:= R-RN where *" denotes
composition of binary relations. Theansitive closureof R is the relation
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Un=1R" and thereflexive-transitive closuris L >oR".

2.1 — Ordinals

A more detailed account of the order-theoretic approach to ordinals used below
can be found in [35]. A set-theoretic definition of ordinals is, for example, given
in [18]. Some elementary properties of ordinals are also stated in [24], p.28-29.
A partial orderings on a set D is well-orderingiff it is linear (i.e., for all a,
b in D we have & b or b< a) andwell-founded(i.e., there are no infinite
strictly decreasing chaing & a1 > g > ...).Ordinalscan be defined as the order
types of well-ordered sets. There dnmeite ordinalssuch as 2, 6, 17. For
example, 6 is the order type of the set {0, 1, 2, 3, 4, 5} with the usual ordering
on non-negative integers. The first infinite ordinadvis~vhich is the order type
of the non-negative integers {0, 1, 2, ...}. Ordinals can be ordered as faflows:
< B iff a is isomorphic to an initial segment @f For example, 2 < 6 and the
finite ordinals are exactly the ordinals that are smaller éharhis ordering on
ordinals is well-founded and linear. Hence any set of ordinals has a least element
and a least upper bound.
If a is an ordinal then theuccessoo+1 ofa is the least ordinal greater than
a. An ordinal that is a successor of another ordinal is caliedessor ordinal
The other ordinals are calléchit ordinals. For examplew is a limit ordinal, and
6 is a successor ordinal because 6 = 5+1 is the successor of 5. The suecessor
+ 1 of w is the order typ of {0, 1, 2, ..l {} where {0, 1, 2, ...} is ordered
as usual and all elements of {0, 1, 2, ...} are smaller ¢ha limit ordinal a
can be obtained as the least upper bound of all smaller ordinals,=.&1b({3;
B <a}).
Properties for ordinals can be provedtnsfinite inductionLet P be a
property of ordinals. Assume th@t) P(0) holdsf2) if P(a) holds then R{(+1)
holds; and(3) if A is a limit ordinal and RX) holds for alla <A then Pk)
holds. Then HY) holds for all ordinal$.

2.2 — Fixed-Points

The definitions and results mentioned in this subsection can be found in [24],
Chapter 1, 85 and [38], Chapter 6. An account of the history of various fixed-
point theorems is given in [22].

Let D be a partially ordered sgtoset) The poset D is eomplete latticef all
subsets C of D have a least upper bound lub(C) in D. In this case, any subset C
has also a greatest lower bound gIb(C) = lul{{D; d is a lower bound of C}),
and D has a least element bottom = lub(&) and a greatest element top = lub(D).
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The following example will be reconsidered in Section 4.

Example 1

Consider the n-fold cartesian product D $x2... x 2S, where 2 denotes the

set of all subsets of a set S. The set D is ordered componentwise by inclusion:
(A1,...,An) O (By,...,Bp) iff A1 0 By, ..., and A, O Bh. Greatest lower bounds

and least upper bounds with respect to this ordering are obtained by component-
wise set intersection and set union, top = (S,...,S), and bottom = (&,...,9).

Let D be a poset and let T: D D be a mapping. Then T msonotonidff for

all a, b in D, & b implies T(ax T(b). Afixed-pointof T is an element® D
such that T(f) = f holds. If D is a complete lattice, then any monotonic mapping
T: D - D has a fixed-point. More precisely, T hdgast fixed-pointfp(T) and
agreatest fixed-poingfp(T), and possibly other fixed-points, which lie between
the least and the greatest fixed point. The least and the greatest fixed-point can be
characterized in terms of ordinal powers of T. dhainal powersTt+% and Ti &
are inductively defined as follows:

(1) T19:=bottom and T9 := top;

(2) Tro+l:=T(Tt9) and TLa+1:= T(T19);

(3) If ais alimit ordinal then T2 := lub({T1B; B < a}) and

Ti0:=glb{TiB; B <a}).

Theorem 2(least and greatest fixed-points)

Let D be a complete lattice, and let T:-DD be a monotonic mapping. Then, for
any ordinala, T+@ < Ifp(T) and T1 @ > gfp(T). Furthermore, there exist
ordinals B, ysuch that 2 = Ifp(T) and T: ¥ = gfp(T).

The ordinalg3, y may be greater thaw, but there are sufficient conditions
under which they are less or equalLet D be a complete lattice, and let T:-D
D be a mapping. Then T gpward w-continuous(resp.downward w-
continuou$ iff for any increasing chaingdk di < dp < ... (resp. decreasing
chaing=di>d>>...) we have T(lub({d i = 0})) = lub({T(d;); i = 0}) (resp.
T(glb({dj; i = 0})) = glb({T(dj); i = 0})). It is easy to see that any upward or
downwardw-continuous mapping is also monotonic.

Theorem 3(fixed-points of continuous mappings)
Let D be a complete lattice, and let T:-DD be an upwardo-continuous (resp.
downwardcw-continuous) mapping. Then Ifp(T) = ® = lub({T"(bottom); n>

0}) (resp. gfp(T) = T« = glb({T"(top); n = 0})).

The notation “re 0” is used as an abbreviation for£h <w’. Here and in
the following, we use the convention that n, i, k range only over finite ordinals.
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In Section 5.3 we shall need a slightly generalized version of Theorem 3 for
downwardw-continuous mappings.

Corollary 4

Let D be a complete lattice, and let T: D D be a downwardv-continuous
mapping. Let d be an element of D such that @(d). Then d-gfp(T) :=
glb({T"(d); n=0}) is a fixed-point of T. More precisely, d-gfp(T) is the greatest
fixed-point of T that is less or equal d

Proof

Since T is downwardv-continuous and thus monotonic2dT(d) yields d=
T(d) = T2(d) = T3(d) = ... . Hence T(glb({T(d); n=> 0})) = glb({T"+Y(d); n>
0})) = glb({T"(d); n= 0}) since d = P(d) = T(d) by assumption. This shows
that d-gfp(T) is a fixed-point, and obviouslyzdl-gfp(T). If f is a fixed-point
with d = f then T(d)= T(f) = f, since T is monotonic, and f is a fixed-point.
Iterating this argument we obtaif(@l) > f for all n= 0, and hence glb({{{d); n
>0p)=f 0O

2.3 — Automata and Words

The notions introduced below can, for example, be found in [27,19,12],
possibly with a slightly different terminology.

LetZ be a finite alphabet. The set of all (finite) words avevill be denoted
by =* and the empty word bg. A word W =0g...0n-1 overX of length n can
be seen as a mapping W of the finite ordinal n = {0, ..., n—1}Intoamely,

W(i) := gj fori =0, ..., n=1. This motivates the following definition of infinite
words. Aninfinite wordW is a mapping of the ordinal into . The set of all
infinite words overz will be denoted by®. A given infinite word Wiw - %
will sometimes be written as an infinite sequence W(O)W(1)W(2)... .

A semi-automaton with word transitions a triple4 = (Z,Q,E), which
consists of a finite alphabet, a finite set of states Q, and a finite set of
transitions (or edges) E Qx £ x Q. Thus, a transition connects two states of
Q, and it is labeled by a finite word o\ver

If all transitions are labeled by words of length one, tHas calledsemi-
automaton with letter transitionsn situations where the distinction between
word transitions and letter transitions is irrelevant, we shall simply use the term
semi-automaton. Unlike the usual finite automata, semi-automata have no fixed
set of initial and final states. This will be convenient later on since we must
consider the same semi-automaton with varying initial and terminal states.
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Example 5 (a semi-automaton with word transitions)

s ={0,T} Y T
£
Q={AB,C} @

E={(A 0A), (AE B), ©

(AT .C), (BT ,B),

T
(Cot C), (& A)} @‘“

Let 4 be a semi-automaton with word transitions, and let p, q be states of
A finite pathfrom p to g inA4 is a sequencegpU1, p1, U2, p2, ..., Un, pn,
where p = p, q = fh, and for each i, ¥i < n, (p-1,Uj,p;) is a transition of4.
This path has the finite wordiU»...Un as label. As a special case, the empty
path p from p to p has the empty wa@rds label. In the example, 4, A, €, B,
€ A, T,C, 0T, Cis a finite path from A to C with lab@TOT. Obviously, a
non-empty path (i.e., a path wherexrl) may also have the empty word as
label. Aninfinite pathstarting with p is an infinite sequencg p1, p1, Uz, p2,
..., where p = pand for each 2 1, (p-1,Uj,p;) is a transition of4. The label
U1U2U3. . of this infinite path may be a finite or an infinite word. In the
example, the infinite path AQ, A, €, B, €, A, €, B,E, A E B,E A, ... has
the finite word0 as label, and the infinite path &, C, 0T, C, 0T, C, ... has
the infinite wordTOTOT... as label. We shall sometimes omit some of the
insignificant intermediate states in the description of a path. For example,
assume that we are interested in those infinite paths starting with p where the
state q is reached infinitely often. Such a path may be written asg, fj, Wi,
g, Wo, ... where W is the label of a path from p to g and thefdf i > 1 are
labels of non-empty paths from q to g.

For two states p, q of the semi-automaton with word transitidnket
L 2(p,q) denote the set of all finite words that are labels of paths fom p to g. If it
is clear from the context, we shall omit the ind@&xin Example 5, L(A,B) =
(oOT)" =" and L(A,C) = oOT)"1(OT)" ={WT(OT)™, W O =*, m= 0}.
Obviously, the languages L(p,q) are regular, and on the other hand, any regular
language can be obtained this way. If the regular language EH4 accepted
by a finite automatori with initial state g and set of terminal state;if i.e., L
= Utogg,L(dost), then we can add a new stag go A, and transitions
(t,€,0fin) for all t O Qfin. Then L = L(®,4in). The case of more than one initial
state can be treated analogously.

With respect to the accepted regular languages, semi-automata with word
transitions are not more expressive than semi-automata with letter transitions. In
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fact, any semi-automaton with word transitioAscan be transformed (in
polynomial time) into a semi-automaton with letter transitiBrsich that for all
states p, p in 4 there exist states qg in B with L z(p1,p2) = Ls(q1,02) (see

[27] or [19]). Words of length greater than one can easily be eliminated by
introducing intermediate states. In the example, we could introduce a new state
C’ and replace the transition @@t,C) by the two transitions (G,C’) and (C’,

T,C). The elimination o&-transitions is more difficult (see [19], p. 26). In the
example, we could simply join the states A and B to a new state AB with the
transitions (ABQ,AB), (AB,T,AB), (AB,T,C).

For a state p of the semi-automaton with word transitidnget Us(p)
denote the set of all words that are labels of infinite paths starting with p. As for
L, we shall often omit the indefl. Note that U(p) may also contain finite words
that are labels of infinite paths starting with p. In the example, U(A) = U(B) =
" [ 2@ and U(C) is the singletoro{tOTOT...}.

3 - A Small Terminological Representation Language

The language considered in this paper will be called). It has only two
constructs for building complex concept descriptions: concept conjunction and
value-restriction.

Definition 6 (concept terms and terminologies)
LetC be a set of concept names &ble a set of role names. The setaifcept
terms of #£g is inductively defined. As a starting point of the induction,

(1) any element df is a concept term. (atomic terms)
Now let C and D be concept terms already defined, and let R be a role name.

(2) Then C71D is a concept term. (concept conjunction)

(3) Then[JR:C is a concept term. (value-restriction)

Let A be a concept name and let D be a concept term. Then A =D is a
terminological axiom. Aerminology(T-box) is a finite set of terminological
axioms with the additional restriction that no concept name may appear more
than once as a left hand side of a definition.

A T-box contains two different kinds of concept nani2sfined concepts
occur on the left hand side of a terminological axiom. The other concepts are
called primitive concept® The following is an example of a T-box in this
formalism: LetMan, Human, Male, Mos (for “man that hasnly sons”), andvlomo
(for “man that hasnly male offspring”) be concept names and ¢eild be a role
name. The T-box consists of the following axioms:

2For our language, roles are always primitive since we do not have role definitions.
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Man = Humann Male
Mos = Mannm Ochild: Man
Momo = Man rn Ochild: Momo.

This means that a man is human and male. A man that has only sons is a man
such that all his children are male huma#ete andHuman are primitive concepts
while Man andMos are defined concepts. As mentioned in the introduction, one
cannot just introduce a new role naoffepring to define the conceptomo. This
is so because there would be no connection between the two primitivehildles
andoffspring, whereas the intended meaningftdpring is that it is the transitive
closure ofchild. Thus we have used a cyclic definition, which intuitively means:
A man that has only male offspring is himself a man, and all his children are men
having only male offspring. This is a very simple cyclic definition. In general,
cycles in terminologies are defined as follows.

Definition 7 (terminological cycles)

Let A, B be concept names and let T be a T-box. We say that A directly uses B
in T iff B appears on the right hand side of the definition of A. Let “uses” denote
the transitive closure of the relation “directly uses.” Then T contains a
terminological cycleff there exists a concept name A in T such that A uses A.

The next definition gives a model-theoretic semantics for the language
introduced in Definition 6.

Definition 8 (interpretations and models)

Aninterpretation consists of a set dom(l), the domain of the interpretation, and
an interpretation function, which associates with each concept name A a subset
Al of dom(l) and with each role name R a binary relatidroRdom(l), i.e., a
subset of dom(lxy dom(l). The sets!AR are called extensions of A, R with
respect to I.

The interpretation function—which gives an interpretation for atomic terms—can
be extended to arbitrary terms as follows: Let C, D be concept terms and R be a
role name. Assume that @d D are already defined. Then

(C n D)! C' n D!,
(CR:C) {x O dom(l); for all y: (x,y)J R implies y[J C'}.

An interpretation | is anodelof the T-box T iff it satisfies

o

Al = Dl for all terminological axioms A=Din T.

As mentioned in the introduction, an important inference service
terminological systems provide their users with is computing the subsumption
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hierarchy, i.e., computing all subconcept-superconcept relationships induced by
the definitions in the T-box.

Definition 9
Let T be a terminology and let A, B be concept names. We define

Acr B iff A JB! for all models | of T
In this case we say thatdibsumed\ in T.

The semantics we have just defined will in the following be cakstgriptive
semantics It is not restricted to non-cyclic terminologies. For cyclic
terminologies this kind of semantics may, however, seem unsatisfactory. One
might think that the extension of a defined concept should completely be
determined by the extensions of the primitive concepts and roles. Otherwise, the
use of the term “concept definition” is not really justified. Non-cyclic
terminologies satisfy this requirement.

More precisely, let T be a T-box containing the defined concepts.CG,,
the primitive concepts R ..., Bn, and the roles B ..., Rc. A primitive
interpretation J consists of a set dom(J), the domain of the primitive
interpretation, and extensions;P..., Rnd, RyY, ..., R of the primitive
concepts and roles. An interpretation | o&Xtendghe primitive interpretation J
iff dom(l) = dom(J), R' =Py, .., Byl =PpJand R! = RyJ, ..., Rd = R
Such an extension | of J can be described by the n-tuplg.(GCpn!)

O (2dom)" where 2om(J)denotes the set of all subsets of dom(J).

On the other hand, any primitive interpretation J together with an nAuple
(2dom@)" yields an interpretation | for T. Any defined concept in T corresponds
to a component of the tupke. If the defined concept B corresponds to the i-
component ofA, i.e., B = (A);, we shall say that index(B) = i. Of course, we
are mostly interested in extensions of J that are models of T. If T does not
contain cycles, then any primitive interpretation can uniquely be extended to a
model of T (see, e.g., [30], Theorem 3.2). If T contains cycles, a given
primitive interpretation may have different extensions to models of T.

Example 10

Let Momo andMan be concept names, acldld be a role name. The terminology
T consists of the single axiolfomo =Man r [Ichild: Momo.

We consider the following primitive interpretation:

dom(J) := {Charlesl, Charles2, Charles3, L1.JJamesl1, ..., JamesLast}
ManJ := dom(J), and
childd := {(Charlesi,Charlesi+1);% 1} O {(Jamesi,Jamesi+1;4i < Last}.

This means that the Charles dynasty does not die out, whereas there is a last
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member of the James dynasty. It is easy to see that this primitive interpretation
has two different extensions to models of T. The defined coftapd may

either be interpreted as {Jamesl, ..., JamesLast} or as dom(J). Note that
individuals without children (i.e., withowhildJ-successors) are in the extension

of the termIchild: Momo, no matter howlomo is interpreted.

The example also demonstrates that, with respect to descriptive semantics as
defined above, the definitialomo = Man 1 [child: Momo does not express the
value-restrictiorMomo = Man r [offspring: Man for the transitive closurafspring
of child. This implies that descriptive semantics does not capture the intuition
underlying our definition of the concegdomo. In fact, according to this intuition
only the second model (whekomo is interpreted as the whole domain) is
appropriate: any male member of the Charles dynasty satisfies the requirement
that he is himself a man, and all his children have only male offspring.

To overcome this problem we shall now consider alternative types of
semantics for terminological cycles.

4 — Fixed-point Semantics for Terminological Cycles

A terminology may be considered as a parallel assignment where the defined
concepts are the variables, and the primitive concepts and roles are parameters.

Example 11

Let R, S be role names and A, B, P be concept ndmes, let T be the
terminology A = Qm 0S:B, B = Pn OR:B. We consider the following
primitive interpretation J, which fixes the values of the parameters P, Q, R, S:
dom(J) = {a, &, &, ..}, P = {1, &, &, ...}, Q) := {ag}, RY = {(&+1,a);
i>1}, and 9 :={(ag,&); i = 1}.

For given values of the variables A, B, the parallel assignment An=£1Q:B,

B := Pn R:B yields new values for A, B. If A and B are interpreted as the
empty set, an application of the assignment T yields the values @ for A@nd {a
for B. If we reapply the assignment to these values we obtain @ for A and {a
ap} for B.

In the general case, a terminology T together with a primitive interpretation J
defines a mappingjT(2dom@)" _, (2dom(I)" \where n is the number of defined

3We shall no longer use intuitive names for concepts and roles, since | agree with [6],
p.176, that “suggestive names can do more harm than good in semantic networks and other
representation schemes.” Suggestive names may seemingly exclude models that are admissible
with respect to the formal semantics.
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conceptsin T.

Definition 12

Let T be the terminology that consists of the concept definitipasi, ...,Cy

= Dy, and let J be a primitive interpretation. The mapping (Rdem@I)" _,
(2dom@)" js defined as follows:

LetA be an element of €2MJ)" and let | be the interpretation defined by J and
A. Then J(A) := (D41!,...,D4)).

For the above example we have seen thg@®d) = (d,{a}) and
Ty(D.{a1}) = (D.{a1, &}).

Obviously, the interpretation defined by J @d a model of T if and only if
A is a fixed-point of the mappingjTi.e., if and only if H(A) =A. In our
example, the element {a{a1, @, as, ...}) of (2domW)2 is a fixed-point of T
If we extend J to | by defining A= {ag}, B! := {a1, &, a3, ...}, we obtain a
model of T.

One may now ask whether any primitive interpretation J can be extended to a
model of T, or equivalently, whether any mappinghé@s a fixed-point. The
answer is yes, becaused¢?)", ordered componentwise by inclusion, is a
complete lattice (see Example 1) and the mappingse’ monotonié.Thus the
following definition makes sense:

Definition 13 (three types of semantics for cyclic terminologies)

Let T be a terminology, possibly containing terminological cycles.

(1) Thedescriptive semanticdlows all models of T as admissible models.

(2) Theleast fixed-point semanti¢p-semantics) allows only those models of
T that come from the least fixed-point of a mappin@fp-models).

(3) Thegreatest fixed-point semanti@gp-semantics) allows only those models
of T that come from the greatest fixed-point of a mappir(g@fp-models).

Any primitive interpretation J can uniquely be extended to a Ifp-model (gfp-
model) of T. In Example 10, the extension of J that interpet® as {Jamesl,
..., JamesLast} is a Ifp-model of T, and the extension that interdoets as
dom(J) is a gfp-model of T. It is easy to see that, for cycle-free terminologies,
Ifp-, gfp- and descriptive semantics coincide (see [30], p.134). For
terminologies with cycles, this is not the case, however, as we have just
illustrated by Example 10. Thus one also obtains different notions of
subsumption, depending on which semantics is employed.

4This can easily be proved; but it is also a consequence of Proposition 4.5, which states
that these mappings are even downwaitbntinuous.
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Definition 14 (subsumption of concepts revisited)
Let T be a terminology and let A, B be concept names.

Act B iff A OB for all models | of T
Acifp 1B iff A DBl for all Ifp-models | of T
Acgip, 7B iff A B for all gfp-models | of T

In this case we say that®ibsumed\ in T w.r.t. descriptive semantics (resp.
Ifp-semantics, gfp-semantics).

The next question we shall consider is how Ifp-models (gfp-models) can be
constructed from a given primitive interpretation. Nebel [29,30] claimed that the
mappings F are even upward continuous, and that thus I§fp&F
OisoTJ(bottom), where bottom denotes the least elementdef@)", namely
the n-tuple (4,...,9). Unfortunately, this is not true.

Proposition 15 _
In general, we may have If{jT# LJ;>oTj'(bottom).

Proof

We consider Example 11. It is easy to see th{@P1Y) = (D.{a, @, ..., §}).
ThusUi>oT#(3,9) = (@ {a; i = 1}), which is not a fixed-point sincejid,{a;;
i21}) = ({ackfai;iz1}). O

In this example, the least fixed-point is reached by applyingn€e more
after building the limit, i.e., Ifp(3) = Tyt @*1. In general, one may need even
greater ordinals to obtain the least fixed-point. On the other hand, we shall now
show that the greatest fixed-point can always be reachexitbyation of T.

Proposition 16

The mappings jJrare always downwardv-continuous. Conse-quently, the
greatest fixed-point may be obtain as gipE NisoTJi(top), where top denotes
the greatest element ofd@"()", i.e., top = (dom(l),...,dom(l)).

Proof
Let J be a primitive interpretation, and (0 0 A(L) O A() O ... be a
decreasing chain in ¥2MUJ)". We have to show that

Nk20TAANK) = Ty Nk=0AK)).
For k> 0, let k be the interpretation of T defined by J &#) and let | be the
interpretation defined by J ard:= N k=pAK). In the following, A denotes the i-
th component of the tuplé and Ak the i-th component of the tupfek).By

Definition 12, it is sufficient to demonstrate that, for any concept term D, we
have
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N k=0 le = Dl.
We proceed bynduction on the size of D
(1) D = P for a primitive concept PThen D = P) = DIk for all k> 0 and hence
Nkso D'k =P =D,
(2) D = C;j for a defined concepti@ Then D = A;, and for all k= 0, Dk =
AiK).But Ai = Nk>pAiK) by definition ofA.
(3) D = E 1 F for concept terms E, Ve have D= E n F and by induction
we get BE= Nksp Elk and F = Ngsg F'k. Hence D= (Nksp E'k) n (N k>0 Fk)
= Nk=0 (Elk N Flk) = Nk>0 Dlk.
(4) D = [R:C for a role name R and a concept ternBg Definition 8, D = {x
0O dom(l); Oy: ((x,y) O R - y O C}, and hence, by induction and the
definition of I, D = {x O dom(J);0y: ((x,y) O RI = y O Nnkso C'k)}. This
means that we have

x O D! iff Oy: ((x,y) ORI = Ok:y O Clk).

It is well-known (see e.g., [13], p. 305), that a formula of the fayn(A -
Ok: B), where k has no free occurrence in A, is equivalent to the formula
Oy:0k: (A - B). If we permute the quantifigrsve obtainOk:0y: (A — B).
This shows that

x O D! iff Ok:Oy: ((x,y) ORI - y O Clk).

Since {x O dom(J);0y: ((x,y) O RI = y O Ck)} = D'k, we have shown that
Nk>o D'k = D!. This completes the proof of the propositidn.

The two propositions show that, from a constructive point of view, gfp-
semantics is preferable. However, if dom(J) is finite, the greatest and the least
fixed-point can be reached after a finite number of applicationg,dnd as
shown in [30] subsumption relationships do not change if models are restricted
to be finite.

5 — Characterization of the Semantics using Finite Automata

The close connection between terminologie$ 6§ and finite automata was first
observed by B. Nebel [31]. He used this connection in the case of non-cyclic
terminologies to show that subsumption for non-cyclic terminologigsgfis
coNP-hard.

Before we can associate a semi-automatpmvith a terminology T we must

SWe assume that index(Ci) = i.
6This is the point where the proof for the least fixed-point goes wrong. In this case we
would have the quantifiefdly:[k:” which cannot be permuted.
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transform T into some kind of normal form. It is easy to see that the concept
termsUR:(B n C) and (JR:B) m (IR:C) are equivalent, i.e., they have the
same extension in any interpretation. Hence, any concept term can be
transformed into a finite conjunction of terms of the farR1:[0R2:...0RK:A,

where A is a concept name. We shall abbreviate the prigRq:T1Ro:...0Ry”

by “O0OW” where W = RR»...R, is a word oveRT, the set of role names
occurring in T. In the case n = 0 we also writée?A” instead of simply “A”.

For an interpretation | and a word W zA®...R,, W! denotes the composition
R1l°Ryle...Ry! of the binary relations R Ry, ..., Ryl. The termg! denotes the
identity relation, i.e.€! = {(d,d); d O dom(l)}.

Definition 17

Let T be a terminology where all terms are normalized as described above. The
(nondeterministic) semi-automaton with word transitioffs is defined as
follows: The alphabet offr is the seRt of all role names occurring in T; the
states of4r are the concept names occurring in T; a terminological axiom of the
form A = [JW1:A1 7 ... 1 [JOWy:Ak gives rise to k transitions, where the
transition from A to Ais labeled by the word W

The next example illustrates Definition 17.

Example 18(A normalized terminology and its semi-automaton)

R S
A=0R:An0S:D s e
B=0ORS:Dn O S:C —’@
RS

C=0R:C

D=0S:Dn P
T’@R

The primitive concepts are exactly those stateslinthat do not have
successor states. The semi-automadgrcan be used to characterize gfp- and
descriptive semantics and, after a modification, also Ifp-semantics.

5.1 — Characterization of the gfp-Semantics

Before we can show that subsumption w.r.t. gfp-semantics can be reduced to
inclusion of regular languages, we need the following proposition, which
describes under what conditions an individual d of a gfp-model | is in the
extension Aof a concept A.
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Proposition 19
Let T be a terminology and lgfr be the corresponding semi-automaton. Let | be
a gfp-model of T and let A be a concept name occurring in T. For dny d
dom(l) we have:
dOJA iff  for all primitive concepts P, all words WL(A,P) and all
individuals eJ dom(l): (d,e)J W implies e[J P'.

A proof of this proposition can be found in Appendix A. For the terminology
Momo = Man r [child: Momo of Example 10, Liflomo,Man) = child* = {child"; n>
0}. Hence it is an immediate consequence of the proposition that this
terminology—if interpreted with gfp-semantics—expresses value-restriction
with respect to the reflexive-transitive closuretold. In this case, the condition
of the proposition says thatidMomo! if and only if, for all n= 0, and all e such
that dg¢hild)"e, e Man! holds. This means that for all e such that
d(Lnso(child)Me, ed Man! holds. But the relatiohl,>g(child')"is the reflexive-
transitive closure afhild!.

Proposition 19 also implies that concepts are naamnsistent w.r.t. gfp-
semanticsi.e., for any terminology T and any concept A in T there exists a gfp-
model | of T such that /& @. Obviously, it is enough to take the gfp-model that
is defined by a primitive interpretation J satisfyingFRlom(J) for all primitive
concepts P.

The proposition can intuitively be understood as follows: The languages
L(A,P) stand for the possibly infinite number of constraints of the fawh P
that the terminology imposes on A. An individual d is in the extension of A if
and only if it satisfies all of these constraints. If a concept has to satisfy more
constraints, its extension will become smaller. This motivates the following
theorem, which characterizes subsumption w.r.t. gfp-semantics.

Theorem 20

Let T be a terminology and lgfr be the corresponding semi-automaton. Let | be

a gfp-model of T and let A, B be concept names occurring in T. Subsumption in
T can be reduced to inclusion of regular languages definedzyMore
precisely,

A £gip,TB iff L(B,P)LJL(A,P) for all primitive concepts P.

Again, the proof is deferred to the appendix. In Example 18, B subsumes A
w.r.t. gfp-semantics since L(B,P) = RSS a subset of L(A,P) =S

The theorem shows that the problem of determining subsumption w.r.t. gfp-
semantics can be reduced to the inclusion problem for regular languages in
polynomial time. If we want to solve the subsumption problemy#$t B for a
terminology T with k primitive concepts, we have to solve k inclusion problems
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for regular languages that are defined by a nondeterministic semi-automaton
having the same size as the terminology.

On the other hand, the inclusion problem for regular languages (given by
arbitrary nondeterministic automata) can be reduced to the subsumption problem.
Assume that4; = (Z,Q1,E1) and A4, = (£,Q2,E2) are two (nondeterministic)
semi-automata defining the regular languages=LL g,(p1,q1) and Lp =
L 2,(p2.02). Without loss of generality we may assume thata@d Q are
disjoint and that4; andA4; are trim, i.e., any state can reach the terminal state q
and can be reached from the initial statéspe [12], p. 23). We consider the
semi-automatod = (£,Q1 0 Q2 I {t},E), where t is a new state not occurring
in Q10 Qand E=g&UE>0 {(q1.€,1), (p.€,1)}. Obviously, Lg,(p1.91) =
L a(p1t) and Lg,(p2,02) = La(p2.t). It is easy to see thal = At for a
terminology T that has the states in@Q> as its defined concepts and the state
t as the only primitive concept. But thenild Ly if and only if p Egfp T P1.

Corollary 21
The problem of determining subsumption w.r.t. gfp-semantics is PSPACE-
complete.

Proof

We have seen that subsumption w.r.t. gfp-semantics can be reduced to inclusion
of regular languages (defined by nondeterministic automata) in polynomial time
and vice versa. It is well-known that the inclusion problem for regular languages
defined by a nondeterministic automata is PSPACE-complete (seel[lL4]).

This shows that, even for our very small language, subsumption
determination w.r.t. gfp-semantics is rather hard from a computational point of
view. On the other hand, [31] shows that, even without cycles, this language
has a coNP-complete subsumption problem.

5.2 — Characterization of the Ifp-Semantics

This characterization must take into account both finite and infinite paths of the
semi-automatortr.

Proposition 22

Let T be a terminology and lgfr be the corresponding semi-automaton. Let | be
the Ifp-model of T defined by the primitive interpretation J and let A be a concept
name occurring in T. For anypd7 dom(l) we havegJ Al iff the following

two properties hold:

(P1) For all primitive concepts P, all words WL(A,P) and all individuals

7 Starting with trim automata guarantees this property.
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e [Jdom(l), (&,e) W implies eJ P!
(P2) For all infinite paths A, W, C1, W5, Co, W5, Cg3, ..., and all individuals
dy, do, O3, ... there exists & 1 such that (gL1,dn) 7 Why/.

A proof of this proposition can be found in Appendix B. To illustrate the
effect that condition P2 has, let us reconsider the “finite directed acyclic graph”
example of the introduction. Thus, consider the terminology T that consists of
the single axiom

Dag = Node r [arc: Dag.

The primitive interpretation J is defined by dom(J) := {a, b, c, dyede’, and

arcd := {(a,b), (b,b), (c,d)}. The conceplode is the only primitive concept, and
sinceNodeJ = dom(J), all elements of dom(J) satisfy condition P1. Thus,
Proposition 19 yields that the greatest fixed-point model induced by J interprets
Dag as the whole domain dom(J). Condition P2, however, is only satisfied for ¢
and d, but neither for a nor for b. In fact, there is an infinite Pagharc, Dag,

arc, Dag, arc, ... and we have an infinite sequence of individuals a, b, b, b, ...
such that (a,b]] arcd and (b,b)J arcd. More generally, it is easy to see that
conditions P2 excludes a node from the extensida@ff, from this node, one

can reach a cyclic path in the graph described by the arc-relation. The same is
true for infinite instead of cyclic paths in the graph described by the arc-relation.
This shows that in this case Ifp-semantics is more appropriate than gfp-
semantics.

As a consequence of condition P2 of the propositierycles in4r—i.e.,
non-empty paths of the form E, ...,€, B—are important for the Ifp-
semantics. In particular, inconsistency of concepts can be described with the
help of €-cycles. We say that the concept A of Tinsonsistent w.r.t. Ifp-
semanticsff it has the empty extension in all Ifp-models of T.

Corollary 23
The concept A is inconsistent w.r.t. Ifp-semantics if and only if there exists a
path with label€ from A to a state B that is the initial state ofé@aaycle.

Proof

(1) Assume that there is a path &,...,€, B and a non-empty path B, ..., €,

B. Thus we have an infinite path starting with A where all transitions are labeled
by €. Since &'d for all Ifp-models | and individuals d dom(l), property (P2)

of the proposition is never satified for A and arbitrary d. Hence A is
inconsistent.

(2) Assume that A is inconsistent w.r.t. [fp-semantics. We define a primitive
interpretation J as follows: dom(J) :=g§dPJ := {dg} for all primitive concepts
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P, and R:= @ for all roles R.

Let I be the Ifp-model of T defined by J. Since A is inconsistent, we hgie d

Al. The definition of J implies that property (P1) of Proposition 22 holds for A,
do. Hence property (P2) cannot hold. This means that there exists an infinite
path A, W, C1, W2, Cp, W3, Cg, ..., and individuals ¢ dy, dz, ... such that
(dn—1,0dn) O Wy for all n> 1. The definition of J impliesd= dp and W, = € for

all n> 1. Hence there is an infinite path starting with A where all transitions are
labeled bye, and since4t has only finitely many states, there is a state B that
occurs infinitely often in this path]

An easy consequence of this corollary is that inconsistency of concepts w.r.t.
Ifp-semantics can be decided in linear time. Starting from A, one has to search
alongé-transitions for ag-cycle.

Because of the role-cycles play for inconsistency, the semi-automaign
has to be modified before we can express subsumption w.r.t. Ifp-semantics. We
add a new state|gdp to At, a transition with labet from Qgop t0 Qoop, and
for each role R in T a transition with label R fromg&a to Qoop. FoOr any state B
of At lying on ane-cycle, we add a transition with lak&from B to Quop, and
for any primitive concept P we add a transition with lab&om Qgop to P.

This modified semi-automaton will be callék.

The effect of this modification is as follows: If A is inconsistent w.r.t. Ifp-
semantics—i.e., by Corollary 23, there exists a path with &liiem A to a
state B in4r that is the initial state of egcycle inAr—then we have & (A,P)
= 3" for all primitive concept P, andl(A) = 5" 0 3@ in the semi-automaton
Br. This means that, for the smallest concepts, the languages are made as large
as possible.

Obviously, Lz.(B,P) U L3.(B,P) and U (B) U Uz, (B) for all concepts B.

More precisely, kg (B,P) = L,q (B,P) {UV Uis aflnlte word in Ug.(B)
and VO 2} and U (B) = Uz, (B) 0 {uUV; Us afinite word in Uz.(B) and Vv
03 03}, This i |s SO because obviously, U is a finite word uq L(B) iff U

is the label of a finite path AT from B to a concept C which lies on &eycle
in 4.

Theorem 24

Let T be a terminology and lefr be the corresponding modified semi-
automaton. Then &y 7B iff Uz (B) LUz (A) and Lg(B,P) [ L3(A,P)
for all primitive concepts P.

The proof of the theorem is given in the Appendix B. In Example 18, B does
not subsumes A w.r.t. Ifp-semantics since U(B) contains the infinite word
SRRR..., which is not in U(A).
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If we want to decide subsumption with the help of this theorem, we have to
show how the inclusion “g,(B) U Ug (A)" can be decided. It is possible to
split this problem into two subproblems. Leg Fcontain all finite words of
and let Iz contain all infinite words of .. Obviously, Us.(B) U Ug(A) iff

F3.(B) O Fz.(A) and iz.(B) U l3,(A).

Lemma 25
Let & be an arbitrary semi-automaton with word transitions. The#B} [J
F#A) can be decided by a PSPACE-algorithm.

Proof

The semi-automatof = (Z,Q,E) is modified to a semi-automatgre (Z,Q [
{Fin},E’) where Fin is a new state and E’ :=[E{(C,€,Fin); CO Q and C lies
on ang-cycle}. Obviously, this modification can be done in polynomial time.

Claim: For all states Al Q we have B(A) = L AA,Fin).

Proof of the Claim. (1) Assume that W Fg(A). Then there exists an
infinite path A, W, C1, W5, Cp, W3, Cg, ... in B that has W as label. Since W
is a finite word almost all labels \Mave to be empty. Letk 1 be such that W
=g foralli= k. Then W = W...Wk.1 and there exist i, j such thakk < j and

Ci = G. This means thatj@es on are-cycle and W is the label of path from A
to G. But then WO L «(A,Fin).

(2) Assume that WJ L AA,Fin). This means that there exists a patkBiwith
label W from A to a state C that lies on&nycle. Now WO Fg(A), since there
is an infinite path A, W, Cg, C, &, ... with label W. O (Claim)

The problem Ig(B,Fin) O L~(A,Fin) is an inclusion problem for regular
languages, which can be decided by a PSPACE-algorithm.

Lemma 26
Let Zbe an arbitrary semi-automaton with word transitions. ThgB) [71 #A)
can be decided by a PSPACE-algorithm.

Proof
The proof proceeds in three steps.
(1) The semi-automaton with word transitiofs= (Z,Q,E) can be modified in
polynomial time to a semi-automaton with letter transitidns (Z,Q1,E1) such
that the following properties hold:

(1.1) QUQy

(1.2) There does not exist an infinite path4rusing only states of Q Q;

(1.3) Forall A, Bin Q and all finite words W €:

W O Lg(A,B) iff W O L g4(A,B).

The additional states injQare intermediate states that are necessary for the
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elimination of transitions that are labeled by words of length greater than 1.
Obviously, these intermediate states cannot give rise to new infinite paths. For
the elimination ok-transitions, see [19], p. 26, Theorem 2.2.

Claim 1: For all states A1 Q we have (A) = 1 4(A).

Proof of the Claim. Let W be an infinite word ing(A), i.e., there exists an
infinite path A, Wy, C1, W1, Cp, Wo, Cg3, ... Iin B that has W as label. Since W
is an infinite word, there exist infinitely many indices O;<ii> < ... such that
the words W...Wj .1, Wj,...Wij,—1, ... are not empty. By property (1.3),
Wo...Wj -1 0 La(A,Ci ), Wi ...Wij,—1 O La(Ci,C,), ... . This shows that
there exists an infinite path from A with label WAhi.e., WO | g(A).

On the other hand, let W be an infinite word i(A), i.e., there exists an
infinite path A, Wy, C1, W1, Cp, Wo, Cg3, ... In 4 that has W as label. By
property (1.2), there exist infinitely many indices Q <ii < ... such that ¢,
Ci, ... arein Q. By property (1.3), $M.Wi,—1 U L3(A,Ci ), Wi,...Wj,1 U
Lg;(Cil,CiZ), ... . This shows that there exists an infinite path from A with label
W in B, i.e., WO I5(A). O (Claim 1)

(2) Without loss of generality we may now assume that all stateslief on
some infinite path. The other states can easily be eliminated in polynomial time.
For a state A off we define E(A) == [cng,L a(A,C).

Claim 2: For all states A, Bl Q; we have g(B) O 14(A) iff E4(B) O Eg(A).

Proof of the Claim. Assume that W11 4(B) \ 1.2(A). Then all finite initial
segments U of W are in4£B). We cannot have all finite initial segments U of

W in Eg(A) since, by Kdnig’'s Lemma, this would imply that MM g(A).

On the other hand, assume thafll& 4(B) \ E4(A). Since all states ofl lie on

some infinite path, the path with label U can be extended to an infinite path, i.e.,
U is the initial segment of some infinite word WI 2(B). Now W O 1 g4(A)

since otherwise we would havelUEg(A). [ (Claim 2)

(3) Obviously, the languages#A) are regular languages defined iyHence
there is a PSPACE-algorithm that decidegE [1 E4(A). O

The two lemmata together with the theorem show that subsumption w.r.t.
Ifp-semantics can be decided by a PSPACE-algorithm.

Corollary 27
The problem of determining subsumption w.r.t. Ifp-semantics is PSPACE-
complete.

Proof
It remains to be shown that this problem is PSPACE-hard. This will be shown
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by reducing the inclusion problem for regular languages to the subsumption
problem. Assume tha#; = (£,Q1,E1) and 4, = (£,Q2,E2) are two semi-
automaté defining the regular languages £ Lg,(p1.a1) and Lo = L 2,(p2.02).
Without loss of generality we may assume that@d @ are disjoint and that

A, andA; are trim (see proof of Corollary 21). We consider the semi-automaton
A=(,Q10 QU {t, f},E), where t and f are a new states not occurring in Q
0Q and E=EDE> U {(que), (&1} U{(prf), (p2,€0)} U {(f, 0.9);

0 O Z}. Obviously, Lg,(p1,q1) = La(p1t) and Lg,(p2,02) = La(p2.t). In
addition, Ug(p1) = 2% = Ug(p2).

It is easy to see that = At = By for a terminology T that has the states HQ

Q2 U {f} as its defined concepts and the state t as the only primitive concept.
Butthen Iy O L2 if and only if pEjfp, 7 p1. [

5.3 — Characterization of the Descriptive Semantics

Firstly, we need a proposition far-gfp-models (see Corollary 4) that is similar
to Proposition 19 for gfp-models.

Proposition 28
Let T be a terminology and lgfr be the corresponding semi-automaton. Let J
be a primitive interpretation and Ié& be a tuple such thatlR) [JA. Let | be the
model of T defined by J and the tuplgfp(T;) (see Corollary 4).
For any concept A and any individual /[d dom(l) we have: dJ Al iff the
following two properties hold:
(1) For all primitive concepts P, all words WL(A,P), and all individuals

e [Jdom(l), (d,e)J W implies eJ P!
(2) For all defined concepts B, all words ML(A,B), and all individuals

e [Jdom(l), (d,e)7W implies elJ (A); (where j = index(B)).

The proof is deferred to Appendix C. Using this proposition, we can
characterize subsumption w.r.t. descriptive semantics. Infinite paths are still
important but it is not enough to consider just their labels. The states that are
reached infinitely often by this path are also significant. An infinite path that has
initial state A and reaches the state C infinitely often will be represented in the
form A, Ug, C, Uy, C, Uy, C, ... where the Uare labels of non-empty paths
from A to C fori=0and from C to C fori > 0.

Theorem 29
Let T be a terminology and lgfr be the corresponding semi-automaton. Let A,
B be concepts in T. Then we haveB iff the following two properties hold:

8Wwithout loss of generality the transitions are only labeled by letters of the alphabet.



F. Baader / Semantics of Terminological Cycles 25

(P1) For all primitive concepts P, L(B,RY L(A,P) holds.
(P2) For all defined concepts C and all infinite paths of the form 8,G)
Uy, C, W, C, ..., there exists X0 such that |d...Ux [7 L(A,C).

Again, the proof can be found in the appendix. This theorem clearly shows
that structurally identical definitions need not lead to equivalent concepts. The
names chosen for defined concepts that lie on infinite paths are also relevant. For
the T-box

Man r Ochild: Momo,
Man r Cchild: Mnfo,

Momo
Mnfo

there is an infinite pathlomo, child, Momo, child, ... in the corresponding semi-
automaton, but there is no k such tatk+1 0 L(Mnfo,Momo). This shows that
Mnfo is not subsumed BHylomo w.r.t. descriptive semantics.

If we want to decide subsumption using this theorem, it remains to be shown
how (P2) can be decided for given states A, B, C of a semi-automaton. For this
problem we cannot obtain an ad hoc reduction to an inclusion problem for
regular languages. In the next section we shall see that the problem can be
reduced to an inclusion problem for certain languages of infinite words, which
have already been considered in the context of monadic second-order logic (see
[8] and [12], Chapter XIV ).

One should note, however, that it might not be the best solution to decide
(P2) for each state C separately. For a fixed state C, it is easy to show that
deciding (P2) is PSPACE-hard. It is not yet clear whether deciding the
conjunction for all C is also PSPACE-hard.

6 — Blchi Automata and Subsumption w.r.t. Descriptive Semantics

Let 4 = (£,Q,E) be a semi-automaton with letter transitions and let I, T be
subsets of Q. Since we are interested in languages of infinite words accepted by
the automaton, we call together with I, T &8lchi automatonThe language
B4(1,T) O 2% accepted by this automaton is defined aglB) = {W 0O Z%;
W is the label of an infinite path starting from some state in | and reaching some
state of T infinitely often}.

Let L O =* be an arbitrary language of finite words. Théhis the set of all
infinite words W that can be obtained as W sW$Was3... where W, W5, W3,
... are non-empty words in L. The languagésfar regular L can be used for
an alternative characterization of the languages accepted by Blichi automata.
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Theorem 30 (Buchi-McNaughton)

(1) For any language L7 >@the following two conditions are equivalent:
(1.1) L = B4A(1,T) for a Bichi automator.
(1.2) L is the finite union of languages®¥’ where H and K are regular
languages ir=* .9

(2) The class of all languages accepted by Biichi automata is closed under the
Boolean operations union, intersection and complement.

Proof
See [12], p.382, Theorem 1.4. The proof is constructive, but it takes eight
pages, which shows that we are dealing with a hard prollem.

As an easy consequence of this theorem we obtain

Corollary 31
The inclusion problem is decidable for the class of all languages accepted by
Buchi automata.

Proof

Obviously, Ly O Lo iff L1 n (Z9\ Lp) = @. Thus the inclusion problem can be
reduced to the emptiness problem since the proof of Theorem 1.4 in [12] is
effective, i.e., from given Buchi automata for &nd Ly one can effectively
construct a Bilchi automaton fon o (Z®@\ Lp). Note, however, that this
automaton may have a size that is exponential in the size of the initial automata
(see [34,39] for size bounds for the complement automaton).

Let L = Bg(l,T) for a Blchi automatotd. It is easy to see that @ iff there

exists il] I, t O T such that there is a path from i to t and a path from t to t. This
is an easy search problem in a graph, which can be done in time polynomial in
the size of4.

The argument used in the proof of Corollary 31 does not yield the complexity
of the inclusion problem. However, [39] shows that equality of languages
accepted by Buchi automata can be decided with a PSPACE-algorithm. §ince L
O Lo iff L1 n Lo = L1, and since the automaton for the intersection can be
constructed in polynomial time (see [40], proof of Lemma 1.2), we obtain a
PSPACE-algorithm for the inclusion problem. On the other hand, inclusion of
regular languages can be reduced to inclusion of languages accepted by Buchi
automata as follows. Letql L, be regular languages ovEr and let # be a
symbol not contained irk. Then Ly O Ly iff L1J#} @ O Lo{#} @. By
Theorem 30, LA#} @Wand L{#} ® are languages accepted by Bichi

9The language EK® consists of the infinite words yW1W5Ws3... where Wy O H and
W1, Wo, W3, ... are non-empty words in K.



F. Baader / Semantics of Terminological Cycles 27

automata. Thus we have shown:

Proposition 32
The inclusion problem for the class of all languages accepted by Biichi automata
is PSPACE-complete.

It remains to be shown that our problem (P2) from Section 5.3 can be
reduced to an inclusion problem for languages accepted by Blchi automata. Let
B = (2,Q,E) be a semi-automaton with word transitions, and let A, B, C be
states in Q. We want to decide whether the following property holds:

(P2) For all infinite paths of the form B, d)C, U, C, Uy, C, ..., there
exists k= 0 such that ...Uy 00 L(A,C).

Let # be a new symbol not containedzirand letp, g be states ifl. We

define the languageplg over the alphabet as

Lp,q:={W; W O X" is the label of a non-empty path from p to q}.
For a language L over, the language L# ovey;: := % [ {#} is defined as
L# := {W#, W O L}.
Obviously, the languagesplg and Ly o are regular. Leg: 24" — =" be the

homomorphism defined by(o) = o for o O Z and(#) =€. Theny(Lp g =
{W O =45 (W) O Lp,gt and Y-i(Lp o# are regular (see [19], Theorem 3.5).

Lemma 33
(P2) holds for A, B, C iff (b,c#)(Lc,c)® O (¢ (La,0#)(Lc,cH)@.

Proof

(1) Assume that (P2) holds. Let W be an element gfd#)(Lc c#)®, i.e., W

= Upg#U1#Uo#..., where g is the label of a non-empty path from B to C and
the U for i = 1 are labels of non-empty paths from C to C. By (P2) there exists
k > 0 such that g...Ux O L(A,C). Hence U...Uy is an element of A c. But
then W#...#Ug is an element ofp-1(La c) and thus W = g#U 1# ...
U#Uk+1#... O (U1(La c)#)(Le,H®.

(2) Assume that (b, c#)(Lc,c#)® O (y-4(La 0)#)(Le,oH)®. Let B, W, C, Uy,

C, Uy, C, ... be an infinite paths starting with B and reaching C infinitely often.
Then we know that the infinite word ggU1#U>#... is an element of
(Le,ct)(Lc,ct)® O (LA c)#)(Lc, c#)®. Since the last symbol of any word
inin Y-1(La c)# is #, there exists k 0 such that #...Ux# is an element of
Y1(La c)#. But then W#...U1#Ux O W (Lac), and W...Ux O Lac. O

We know by Theorem 30 that glc#)(Lc, c#)® and ("1 (La c)#)(Lc,cH)®
are languages accepted by Blchi automata. Thus, by Proposition 32, the
inclusion problem (g c#)(Lc,c)® O (-1(La,c)#)(Lc,c#)® can be decided by
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a PSPACE-algorithm. This yields

Corollary 34
Subsumption w.r.t. descriptive semantics can be decided with polynomial space
using Buchi automata.

Blchi automata are, however, not indispensable for deciding subsumption
w.r.t. gfp-semantics. Using Theorem 29 from above, B Nebel was able to
characterize equivalence of concepts w.r.t. descriptive semantics with the help of
deterministic finite automata. This characterization also yields PSPACE-
algorithms for equivalence and for subsumption w.r.t. descriptive semantics (see
[32]). It is still an open problem whether these problems are PSPACE-hard.

7 — Extensions of the Results for gfp-Semantics

We consider two extensions of the results for gfp-semantics. In the first
subsection, we shall allow an additional concept forming construct, namely so-
called exists-restrictions. In the second subsection, we shall introduce an
assertional component into our terminological system, and consider hybrid
inferences with respect to the terminological and the assertional part of the
knowledge base.

7.1 — The Languag€Z and gfp-Semantics

In order to extend our languagég to the languagerL of [23], we have to
add a fourth rule to the definition of concept terms (Definition 6): Let R be a role
name.

(4) Then[R is a concept term. (exists-restriction)
For example, using this new construct, the conEapér can be defined as
Father = Mannr [Cchild

This means that a father is a man that has a child. The semantics of the exists-
restriction is defined in the obvious way, namely

(CR)! := {d O dom(l); there exists & dom(l) such that (d,&) R!}.

Let T be a terminology of the languageL and let J be a primitive
interpretation. The mapping;Ts defined as in Definition 12. It is easy to see
that this mapping is still downwarad-continuous. Hencejhas a greatest fixed-
point, which can be obtained as gfg(E NisoT Jj(top).
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Any concept term off£L can be transformed into a finite conjunction of
terms of the formJR1:0R2:...0Rn:D, where D is a concept name or a term of
the formCR. As in Section 5, the prefiXJR1:[0R2....0Ry” will be abbreviated
by “OOW” where W = RR2 ...Ry. Let T be a terminology off £ . The
corresponding (nondeterministic) semi-automatgns defined as in Definition
17. The only difference is that we also have the téfeccurring in T as states
of 4t1. These states are similar to the states P for primitive P in that they do not
have successor states. We shall see that this similarity also extends to the
characterization of gfp-semantics and of subsumption w.r.t. gfp-semantics.

Proposition 35
Let T be a terminology of£ , and let4r be the corresponding semi-automa-
ton. Let | be a gfp-model of T, and let A be a concept name occurring in T. For
any dJdom(l) we have @/ Al iff the following two properties hold:
(1) For all primitive concepts P, all words WL(A,P), and all individuals

e [Jdom(l), (d,e)J W implies eJ P!
(2) Forallterms/R in T, all words WJ L(A,[R), and all individuals &7/

dom(l), (d,e)J W implies eJ ([R), i.e., there is 7 dom(l) such that

(e,h OR.

Proof
The proof is very similar to the proof of Proposition 19.

Theorem 36

Let T be a terminology gf£ , and letZr be the corresponding semi-automa-
ton. Let | be a gfp-model of T and let A, B be concept names occurring in T.
Then we have:

A c£gip, 7B iff  L(B,P)JL(A,P) for all primitive concepts P in T, and
L(B,[R) [JL(A,[R) for all terms/R occurring in T.

A proof of the theorem is given in Appendix D. The theorem shows that,
with respect to subsumption, terms of the fdm behave just like primitive
concepts. As a consequence, we obtain:

Corollary 37
With respect to gfp-semantics, the subsumption problerfiforcan be reduced
in linear time to the subsumption problem far.

Proof

Assume that Ts a T-box of 7L . For any role R in T letgfbe a new primitive
concept. Now substitute aryR term in T by B. This yields a T-box g of

FLo, which has the same size as T. In addition, Theorems 20 and 36 imply that
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AETBiffAETOB. O

Subsumption relationships w.r.t. gfp-semantics %L can thus be
computed by a PSPACE-algorithm. Singég is a sublanguage ¢fL , the
subsumption problem w.r.t. gfp-semanticgfis is also PSPACE-hard.

Corollary 38
The problem of determining subsumption w.r.t. gfp-semanticg4n is
PSPACE-complete.

The characterization of descriptive semantics#ap (Proposition 28 and
Theorem 29) can be generalizedf6 in an analogous way, i.e., the teffRs
are treated like primitive concepts as in condition (2) of PropositioRd3fp-
semantics, one can also prove an analogous generalization of Proposition 22.
For subsumption, one runs into new problems, though. The reason is that there
exists an additional source of inconsistency (see Example 39 below). For this
reason, an appropriate generalization of Theorem 24 probably requires a more
sophisticated modification of the semi-automaton.

Example 39

Consider the terminology T: AEBS:A, B =[0R:Bn [R. The concept B has
the empty extension in all Ifp-models of T. In fact, assume that J is a primitive
interpretation, and lek be the least ordinal such thaty(*), # @ (where
index(B) = 2). Evidently\ is a successor ordinal, i.&.,=a + 1 for some
ordinal a. Let | be the interpretation of T defined by J and o Now d [
(T3t M)2 means that @ (OR:B)! n (CR)!. From dO (OR)! we obtain some
individual e such that d, and dJ (OR:B)! yields el B!. This contradicts the
fact that B = (Tt %), = @.

Since B is inconsistent w.r.t. Ifp-semantics, we know thatifg v A. But
Ug(A) ={SSS...} 0 Up(B) = {RRR...}.

7.2 — ExtendingZ£g by an Assertional Formalism

A terminology (T-box) T restricts the number of possible worlds (from all
interpretations to the models of T); a world description (A-bob)describes a

part of a given world. Terminological systems that allow the user to state both
terminological and assertional knowledge are sometimes called hybrid systems.

Definition 40 (world descriptions, A-boxes)
Let C be a set of concept naméspe a set of role names, ahde a set of

10in this subsection, A will always stand for an A-box. To avoid overloading, A will no
longer be used as a metavariable for concept names.
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individual names. A world description (A-box) is a finite set of axioms of the
form C(a) or R(a,b) where a, b are constants, i is a concept name, and R is
a role name.

For example, lellan be a concept namehild be a role name, aWdiLLY and
BRIAN be individual names. Thevian(WILLY) andchild(WILLY,BRIAN) can be
part of a world description. This means that Willy is a man, who has the child
Brian.

Definition 41 (interpretations and models)

Let T be a T-box off Lo and A be an A-box defined over the same sets of
concept and role names. An interpretation of T (see Definition 8) can be extended
to an interpretation of T/ A as follows: the interpretation function does not only
assign subsets of dom(l) to concept names, and binary relations on dom(l) to
role names, but also individuals of dom(l) to individual names, i.e., for any
individual name a, ais an element of dom(l).

An interpretation | of TZJ A is a model of TJ A iff |is a model of T and
satisfies

al [JC! for all axioms C(a) in A, (eb) R for all axioms R(a,b) in A, and
al #b! for all individual names &b inl (uniqgue name assumptioH).

A model | of TZJ A is a gfp-model (Ifp-model) of @ A iff | is a gfp-model
(Ifp-model) of T.

Let T be a T-box offLg. If we take a primitive interpretation J with
dom(J) for all primitive concepts P, and Rdom(J)x dom(J), then gfp(J =
top by Proposition 19. This shows that the gfp-model of T defined by J is a
model of TOI A for any A-box A. Thus any combination[T A of a T-box of
FLo with an A-box is consistent w.r.t. gfp-semantics, and w.r.t. descriptive
semantics. But such a combination need not have an Ifp-model. In fact, if C is a
concept in T that is inconsistent w.r.t Ifp-semantics (see Corollary 23), and A
contains an axiom C(a), then TA does not have an Ifp-model.

An important inference service concerning both T-box and A-box is
computing instance relationships, i.e., determining which new assertions of the
form C(a) can be deduced from a given T-box and A-box.

Definition 42 (instance relationship)

Let T be a T-box off Lo and A be an A-box defined over the same sets of
concept and role names. Let a be an individual name in A, and C be a concept
name in T. Then

1INote that we do not impose a closed world assumption; e.g., if D(b) is not in A, we
may nevertheless havé B D! in a model | of TO A.
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a[Ha C iff d OC! for all models | of TTA,
a Lifp, T C iff d [0 C! for all Ifp-models | of T7A,
a Lgfp, oA C iff d [JC! for all gfp-models | of TIA.

In this case we say that a is an instance of C it/ A w.r.t. descriptive
semantics (resp. Ifp-semantics, gfp-semantics).

In the following we shall only consider instance relationships with respect to
gfp-semantics. We have seen that a T-box TFap gives rise to a semi-
automatonAt that has the concept names of T as states, and the set of role
names in T as alphabet. Without loss of generality we may assuni@rtisaa
semi-automaton with letter transitions. In fact, Proposition 19 and Theorem 20
show that, for gfp-semantics, we are only interested in regular languages of the
form La.(A,P). These languages do not change if we transform the semi-
automaton with word transitions into a semi-automaton with letter transitions.
An A-box A defines a semi-automaton (with letter transitiofig)as follows: the
states of4p are the individual names of A; the alphabe#igfare the role names
occurring in A; an axiom of the form R(a,b) gives rise to a transition fromato b
with label R.

We can now build thproduct semi-automatofirga = At x Aa of 4t and
Ap (see e.g., [12], p. 17). The statestia are pairs (C,a) where C is a state
of 41 and a is a state dla; Broa has a transition with label R from (C,a) to
(D,b) iff A1 has a transition from C to D with label R, afi§ has a transition
from a to b with label R. Obviously, W Lg.,((C,a),(D,b)) iff W I
L 2,(C,D) and WLI L g, (a,b).

Theorem 43
Let T be a T-box off£p and A be an A-box defined over the same sets of
concept and role names. Let b be an individual name in A and B be a concept
name in T. Then bigfp 1A B iff for all primitive concepts P, and all words
W UL 2,(B,P) there exist concepts E, F, a word U, and an individual name f
such that

(1) WL L#(E,P),

(2) U DL ,((F.5),(E,b)) and F(f) is an axiom in A.

Since, at first sight, the conditions in the theorem seem to be rather complex,
we try to give an intuitive explanation what these conditions mean. A formal
proof of the theorem can be found in Appendix E. First note that*'W
L 2,(B,P)” means that any element of (the extension of) B must satisfy the value
restriction JW: P. Second, we will argue that conditions (1) and (2) of the
theorem imply that (the interpretation of) b satisfies this value restriction. From
condition (1) we can deduce that any element of E satisti¢sP, and thus it is
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sufficient to convince ourself that conditions (2) implies that b is an element of
E. First, note that F(fiJ A implies that f is an element of F, and [U
L 3.5 ((F.f),(E,b)) implies that UJ L 4.(F,E), i.e., f satisfies the restriction
Uu: E. But if we consider W Lg, -, ((F.f),(E,b)) with respect to the second
component of the product semi-automaton, then we see that b can be reached
from f via U (according to the A-box), which implies that b must be in E.

It remains to be shown that the property stated on the right hand side of the
theorem can be decided for given b, B. To this purpose, we dgfb)e= {E;
there exists a state (F,f) iMBtga and a word U such that U7
L . ,((F.f),(E,b)) and F(f) is an axiom in AlComputing Q(b) for a give
individual name b is a simple search problem in a graph; this can be done in time
polynomial in the size oBra.

Lemma 44
The right hand side of the theorem holds for given b, B if and only if for all
primitive concepts P, k(B,P) [J DEDQ(b)L,qT(E,P) holds.

Proof

(1) Assume that lg.(B,P) [ DEDQ(b)L,qT(E,P) holds, and let W be an element

of L 2.(B,P). Then WU L 4.(E,P) for some El Q(b). The definition of Q(b)
yields F, f and a word U such that (1) and (2) of the theorem hold.

(2) Assume that the right hand side of the theorem holds, and let W be an
element of Lz(B,P) where P is primitive. Then we get E, F, U, f satisfying (1)
and (2) of the theorem. This means thatM/ 4.(E,P) and EJ Q(b). [

The lemma together with the theorem shows that there is a PSPACE-
algorithm for instance testing since the instance problefmyiftoa B?” can be
reduced to an inclusion problem for regular languages in polynomial time. On
the other hand, subsumption determination can be reduced to instance testing in
linear time.

Lemma 45
Let T be a T-box of£p, and let C, D be concept names occurring in T. Let A
be the A-box containing C(c) as the only axiom. Then we halg arja D if

Proof

(1) The “if” direction is trivial.

(2) Assume that @qsp, 7 D, i.e., there exists a gfp-model | of T such thhisC
not contained in D This means that there exists an individual @om(l) such
that el C!' \ DI. The interpretation | of T is extended to the interpretation | of T
0 A by defining ¢ := e. Obviously, | is a model of @ A, but ¢ O D!. This
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shows that ¢lgfp T0A D. O

Since the subsumption problem w.r.t. gfp-semantic$ 4 is PSPACE-
complete, we have thus proved:

Corollary 46
Instance testing w.r.t. gfp-semantics#itg is PSPACE-complete.

8 — Conclusion and Related Work

We have restricted our attention to the rather small terminological representation
languagef Lo, because for this language the meaning of terminological cycles
with respect to different types of semantics—and in particular, the subsumption
problem with respect to these semantics—could completely be characterized with
the help of finite automata (see Section 5). These results may help to decide
what kind of semantics for cyclic definitions is most appropriate for a particular
representation task, possibly not only for this small language, but also for
suitably extended languages.

We have seen that the results for subsumptighdgcan be generalized in
two directions. First, they have been extended to cyclic definitions in a larger
language: we have shown that our automata-theoretic approach also applies to
subsumption w.r.t. gfp-semantics in the langugde of [23]. It is, however,
not clear how this approach could be extended to languages allowing both
conjunction and disjunction of concepts. Also note that in the presence of
negation of concepts, greatest and least fixed-point need no longer exist. As a
second way of extending the results of Section 5, we have shown that, for gfp-
semantics, hybrid inferences such as “instance testing” can also be treated by our
automata-theoretic approach.

Since the first publication of a preliminary version of this work in [2,3],
several other papers on cyclic definitions in terminological representation
languages have appeared. Dionne, Mays, and Oles [10,11] give an intensional
semantics for cyclic definitions in roughly the same language we have
considered here. This is done by mapping concept descriptions to (possibly non-
well-founded) sets that embody the “abstract structure” of the descriptions. In
[11] it is shown, however, that the “structural” subsumption relation obtained
this way coincides with subsumption w.r.t. gfp-semantics (as defined above).

As pointed out in the introduction, one motivation for using cyclic definitions
in terminologies is that they can be used to express transitive closure of roles.
Alternatively, one could allow for transitive closure as role constructor. In [4],
the role constructors union, composition, and transitive closure are added to
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terminological representation languages. 4y, it is shown that this extension
has the same expressive poweffag with cyclic definitions interpreted by gfp-
semantics. For a considerably larger language, called subsumption in the
extended language, called L(Cirans IS still decidable. Interestingly,
subsumption w.r.t. descriptive semantics for cygli€C-terminologies can be
reduced to the subsumption problem f@r Cirans Similar results have
independently been obtained by K. Schild as byproducts of the correspondence
he exhibits betweeA L(Gransand propositional dynamic logics (see [36]).
Employing a similar correspondence betwebfC with cyclic definitions
and the propositional mu-calculus, Schild [37] and Giacomo and Lenzerini [15]
introduce a more flexible treatment of cyclic definitionsginC, where Ifp-, gfp-
and descriptive semantics coexist. [9] proposes to split the T-box into a
“schema” and a “view” terminology, where the schema terminology is
interpreted with descriptive semantics, and the view terminology is interpreted
with an appropriate fixed-point semantics. The idea is that the terminological
axioms in the view terminology are really seen as definitions (and thus must
yield a unique extension for the defined concepts), whereas the axioms in the
schema terminology function as integrity constraints (restricting the possible
extensions of the defined concepts).
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Appendix A: Proofs of the Results of Section 5.1

Proposition 19
Let T be a terminology and lgfr be the corresponding semi-automaton. Let | be
a gfp-model of T and let A be a concept name occurring in T. For dny d
dom(l) we have:
dJA iff for all primitive concepts P, all words WL(A,P) and all
individuals e[7 dom(l): (d,e)J W implies eJ P!.

Proof

If A is a primitive concept, then L(A,A) =g} and L(A,P) = @ for A# P. Since

€l ={(d,d); dO dom(l)}, the proposition follows immediately.

Assume that A is a defined concept. The gfp-model I is given by a primitive
interpretation J and the tuple gfp{E N k=0T X(top). The defined concept A
corresponds to a component of this tuple, i.&5 £gfp(Ty))i for i = index(A).

(1) Assume that d Al. Then there exists ¥ 0 such that d (T¥(top)). We
proceed byinduction on k.

Fork = 0, we have dJ (top) = dom(l), which is a contradiction.

Fork > 0we have dJ (TyTK1(top))). Let the defining axiom for A be of the
form A = ...n OW: Bn ... and assume thatW: B is responsible for dI
(TxT K (top))). This means that there exist&l&lom(l) such that d¢ and e

0 BJ = B (if B is a primitive concept) or & (T*1(top)) (if B is a defined
concept and index(B) = j). In the first case, B is a primitive concept and
obviously, W L(A,B). In the second case, we can apply the induction
hypothesis to €l (TJk'l(top))]. Thus there exist a primitive concept P, a word V
0 L(B,P) and an individual f1 dom(l) such that e\ and fOI P. But then WV

0 L(A,P) and d(WV). This completes the proof of the “if” direction.

(2) Assume that there exist a primitive concept P, a word Y(A,P) and an
individual e dom(l) such that dé and €1 P. Let W be the label of the (non-
empty) path A, , Cy, ..., Gy.1, Up, P. Since W = {...Up and dWe, there
are individuals g, ..., ch-1 such that dg'd;...dn.1Un'e. We proceed by
induction on n.

Forn =0, W = Up and the defining axiom for A is of the form A = n.00W:

Pr .... Thus dI (Ty(top)).

Forn > 0, we know by induction thatid] (Th(top))j for some h > 0 (where
index(Cy) = j). But then dd (Th*L(top)). This completes the proof of the
proposition since A= (gfp(Ty))i = N k=o(TK(top)). O

As an easy consequence of this proposition one obtains a characterization of
subsumption w.r.t gfp-semantics.
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Theorem 20

Let T be a terminology and lgfr be the corresponding semi-automaton. Let | be

a gfp-model of T and let A, B be concept names occurring in T. Subsumption in
T can be reduced to inclusion of regular languages definedrhyMore
precisely,

A Egip, 7B iff L(B,P)JL(A,P) for all primitive concepts P.

Proof

(1) Assume that L(B,P)] L(A,P) for some primitive concept P, i.e., there is a
word W such that W L(B,P) \ L(A,P). Let W = RR»...R; for n (not
necessarily different) role names,RRy, ..., R,. We define the primitive
interpretation J as follows: dom(J) :=¢fd.., dh}; QJ:= dom(J) for all primitive
concepts Q¢ P; P := dom(J) \ {¢}}; RY := {(dj,di+1); 0<i<n-l1and R =
Ri+1} for all roles R. The definition of the role extensions implies tiyatd, iff
V=W.

Let | be the gfp-model defined by J. Since[(WL_(B,P), tW'd, and ¢, O P,

we know by Proposition 19 thapdl B!. On the other hand, assume thafd
Al. By Proposition 19, there exists a primitive concept Q, a wortl[\(A,Q)
and an individual f1 dom(l) such thatgV!f and fO Q'. The definition of J
implies that Q = P and f =,dBut then ¢V'd, yields V = W. This contradicts
our assumption that WI L(A,P). Hence we have shown tha;d Al \ B,
which implies that Afgp T B.

(2) Now assume that Aq4fp 17 B, i.e., there exists a gfp-model | and an
individual d0 dom(l) such that @ Al \ B!. Assume that L(B,P)] L(A,P) for

all primitive concepts P. Sinceld B!, Proposition 19 says that there exists a
primitive concept P, a word \W L(B,P) and an individual Bl dom(l) such that
dWle and €1 P'. But then L(B,P)J L(A,P) yields WO L(A,P) and thus dJ

Al which is a contradiction

Appendix B: Proofs of the Results of Section 5.2

In order to obtain a characterization of Ifp-semantics that is similar to the
characterization of gfp-semantics in Proposition 19, we need two lemmata.

Let J be a primitive interpretation of the terminology T, let A, B be defined
concepts in T, and leflt be the semi-automaton corresponding to T. The least
fixed-point of Ty can be obtained as Ifp{jl= T3t @ for some ordinat. Without
loss of generality we may assume thais a limit ordinal. This means that
Ifp(T3) = Oa<a T3t 2. Let | be the Ifp-model of T defined by J. Assume that
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index(A) = i and index(B) = j, i.e., 'A= (Ifp(T3))i and B = (Ifp(TJ));. For an
individual d00 dom(l) we have d Al if and only if there exists < a such that
d O (T3t d);.

Lemma 47
Let ind(A) = i and ind(B) = j, and assume that[@(T;74);, dWe and that
(A,W,B) is a transition offr. Then there existg< A such that &/ (Tj1Y);.

Proof

The lemma is proved by transfinite induction)on

(1) ForA =0, (T3t )i = (bottom) = @. Hence there is no such individual d.
(2) ForA = 8+ 1, TytA = Ty(T319). The definition of A in T is of the form A =
..nOW:Bn ... and we have @ (TyTjt9));i and dWe. Thus e must be an

element of (1 5)j and we can take= 0.

(3) Let A be alimit ordinal. Then Tt A = g<\T319, and thus dJ (Tt A); iff

there exist® < A such that dJ (Tt 9);. If we apply the induction hypothesis to

0, we gety < <A such that & (TjtV);. O

Lemma 48
Assume that dJ (T374);, that dWe, and that W7 L(A,P). Then we have @
=1

Proof

The lemma is proved by transfinite inductionon

(1) ForA =0, there is no such individual d.

(2) ForA = 8+ 1, TytA = Ty(T 31 9). Let W be the label of the (non-empty) path
A, Ug, Cy, ..., Gy-1, Up, P. Since W = {...Up, and dWe, there are individuals
dy, ..., th-1 such that dg/d;...dn-1U'e.

Forn = 0, W = Up and the defining axiom for A is of the form A =n.00W: P

M .... Thus dJ (Ty(TJ19)); and dWe imply e[ P\

Forn > 0, the defining axiom for A is of the form A = m. 0OUqg: C1 1 ..., and
thus dO (Ty(T31 9))i and d'dy imply di O (Tt 9k (where the defined concept
C1 has index(@) = k). The induction hypothesis féryields el P.

(3) Let A be alimit ordinal. Then Tt A = Lg<\TJt 0 and thus dJ (Tt A); iff
there exist® < A such that dJ (Tt 9);. If we apply the induction hypothesis to
dwe getedl P, [

We can now characterize Ifp-semantics with the help of finite and infinite
paths in the automatofr.

Proposition 22
Let T be a terminology and lgfr be the corresponding semi-automaton. Let | be
the Ifp-model of T defined by the primitive interpretation J and let A be a concept
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name occurring in T. For anypd7 dom(l) we havegJ Al iff the following
two properties hold:
(P1) For all primitive concepts P, all words WL(A,P) and all individuals
e [Jdom(l), (ch,e) W implies e7 P!.
(P2) For all infinite paths A, W, C1, W», Cp, W5, Cg3, ..., and all individuals
dy, do, O, ... there exists & 1 such that (g.1,0n) £ Wy/.

Proof
The case where A is a primitive concept is trivial. In the following, let A be a
defined concept.
(1) Assume that gl Al = (Ifp(T3))i. Then there exists an ordifakuch that g
O (T3t A)i, and thus property (P1) is an immediate consequence of Lemma 48. If
(P2) does not hold then there exists an infinite path A, @Y, W, Co, W3,
C3, ..., and individuals g dy, dg, ... such that (¢L1,dy) O Wy! for all n> 1. By
Lemma 47, there exist ordinals> A1 > A2 >A3 > ... such that ¢l (Tt )\n)jn
(for all n= 1 and appropriate indiceg)j But there can be no such infinitely
decreasing chain of ordinals since the ordering of ordinals is well-founded.
(2) Assume that (P1) and (P2) hold. We define an ordering “>" on 3-tuples of
the form (W,d,B) where B is a defined concept, W is the label of a path from A
to B,12and d is an individual withgV!d. Let? be the set of all such tuples and
let (V,d,B) and (W,e,C) be two elements®fThen (V,d,B) > (W,e,C) iff W =
VU where U is the label of mon-emptypath from B to C and di. Obviously,
“>" |s a strict partial ordering, and property (P2) ensures that this ordering is
well-founded. The following claim will be proved by Noetherian induédfam
asn
Claim: For any (W,d,BY] Pthere exists an ordinal< a such that

d O (T31A)j (where index(B) = j}4
Proof of the claim. (2.1)Let (W,d,B) be a minimal element @f. Let the
defining axiom of B be of the form B=mnOU: Cn ...n OV: P ..., where P
is primitive and C defined. The minimality of (W,d,B) implies that there does
not exist an individual e with dg. Assume that d¥. Since WV L(A,P) and
do(WV)le, property (P1) implies & P. This shows that @ (Tj(bottom)).
Hence we can take= 1.
(2.2) Assume that (W,d,B) is not a minimal element®flLet the defining
axiom of B be of the form B £lU1: C1n ... n OUp: Cyn ... OV: P ...,
where P is primitive and thg @re all the defined concepts in the definition of B.

12For A = B this may also be the empty path.
13see e.g., [13], p. 9, 10, for the definition and justification of Noetherian induction.
14Recall thair was a limit ordinal such that Ifpgf= Tyt 9.
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As in (2.1) we can show for all individuals e that'dV¥mplies e P'. Assume
that dy'e and index(§ = k. We have (WiJe,G) O ? and (W,d,B) >
(WUj,e,G). Hence, by the induction hypothesis, there is an ordifa) <a

such that ] (Tjt A(i.8)),. We definey := sup{\(i,e); where 1< i < n and
dUi'e}. Then we havg < a and it is easy to see thafd(Tt V+1)j. But then d
O (Tyt @*1); and since Jt @ is the fixed-point of J, d O (Ty1 @);. Sincea is a
limit ordinal, this means that there exigts a such that we haveld (TJM)J-.

This completes the proof of the claiml. (Claim)

If we apply the claim togdp,A), we get @ O (T3t A); for some\ < a, and thus
do DAl O

To take the role of-cycles into account, the semi-automatdnis modified
as follows. We add a new statg§p to A, a transition with labeg from Qoop
to Qoop: and for each role R in T a transition with label R fropgoRdto Qoop.
For any state B offt lying on ane-cycle, we add a transition with lakefrom
B to Qoop: and for any primitive concept P we add a transition with l&treim
Qioop to P. This modified semi-automaton is calieg

For all concepts B we thus have(B,P) = La.(B,P)U {UV; U is afinite
word in Ug,(B) and VLI 5"} and Uz (B) = U,qT(B) O {UV; U is afinite word
in Ug.(B) and vO > O 5wy},

Theorem 24

Let T be a terminology and l&#r be the corresponding modified automaton.
Then Agifp, 7B iff Ug(B) L Uz(A) and Lz (B,P) U Lz(A,P) for all primi-
tive concepts P.

Proof

The proof is structured as follows: In part (1) we show that(B,P) O

L 3.(A,P) implies Agfp T B. In part (2) and (3), the same is shown for the case
Ug(B) U Ug(A). In part (2) we assume that an infinite word is responsible for
Ug.(B) 0 U (A), and in part (3) we assume that this is due to a finite word.
This will establish the “only if” direction of the theorem. Part (4) of the proof is
devoted to the “if” direction.

(1) Assume that (B,P) U L3(A,P), i.e., there is a word W =1R.Rp such
that WO Lg.(B,P) \ L (A, P) The primitive interpretation J is defined as
follows: dom(J) ={@, ..., dh}; QJ:=dom(J) for all primitive concepts HP;

PJ:= dom(J) \ {¢h}; R = {(d ,di+1); 0<i<n-1and R = Ry} for all roles R.

The definition of the roles implies thag\ddy, iff V = W. Let | be the Ifp-model
defined by J.

(1.1)1f W O L 4,(B,P), then gW'd, and ¢ O P imply that ¢ 0 B! because
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(P1) of Proposition 22 is not satisfied. If WL3(B,P) \ L,(B,P), then W =
UV where UD U 2.(B) n 3" is the label of a path it from B to a concept C
that lies on arg-cycle in 4t. Since @U'dk for some k< n and g€ldg€!dy...,
property (P2) of Proposition 22 is not satisfied, which yielgs @!.

(1.2) On the other hand, assume thgtdA!. By Proposition 22, (P1) or (P2)
is not satisfied. In the first case, there exist a primitive concept Q, a wiard V
L 2-(A,Q) and an individual f1 dom(l) such that gV/'f and fO Ql. The
definition of J implies that Q = P and f .dBut then dV'd, yields V = W. This
contradicts our assumption that MM 3_(A,P) since Lg(A,P) U L (A,P). In
the second case, there exists an infinite path A, @, W», C, W3, Cg, ... In

At and individuals @= d, e1, &, €3, ... such that (g_1,6n) 0 Wyy! for all m >

0. The definition of J implies that there exist& 0 such that W...Wk is a
prefix of W and W+1 = Wk+2 = ... =€. This means that|ds inconsistent, and
thus by the definition ofBr, W1...WU is in Lg(A,P) for all words U. In
particular, this yields WJ L (A,P), which is a contradiction.

Hence we have shown thagid Al \ B!, which implies that Afjfp T B.

(2) Assume that @.(B) U U (A) because there exists an infinite word W =
R1R2Rs... such that W U (B) \ Ug_(A). The primitive interpretation J is
defined as follows: dom(J) := g dy, dbp, ...}; PJ:= dom(J) for all primitive
concepts P; R={(dj,di+1); i =0 and R = R1} for all roles R. Let | be the Ifp-
model defined by J.

(2.1) If W 0 Uz,(B), then it is the label of an infinite path B,1WCq, W2, Cp,
W3, Cg3, ... in A1. Obviously, (P2) of Proposition 22 is not satisfied fgradd

B, which yields ¢ O B!. If W O Up.(B) \ Uz.(B), then W has a finite initial
segment U that is the label of a finite patl¥nfrom B to a concept C that lies
on ang-cycle inA4r. As in part (1.1) of the proof, we can dedugéidB!.

(2.2) On the other hand, assume th@fdA!. By Proposition 22, (P1) or (P2)
is not satisfied. Since we have definedPdom(J) for all primitive concepts P,
(P1) is always satisfied. Thus (P2) does not hold, i.e., there exist an infinite
path A, W, C1, Wy, Cp, W3, Cg, ... in 41 and individuals @ = dy, €1, €, €3,

... such that (g1,en) O W4l for all n > 0. If the label WWoW3... of this infinite
path is an infinite word, the definition of J implies that it is equal to W. Hence W
[ Ug.(A), which contradicts our assumption thatMWUg_(A). If the label
W1W>oWa... of the infinite path is a finite word U, the definition of J implies that
U is a finite initial segment of W. By the definition 8f, UV [ Ug_(A) for all
infinite words VO 2®. Hence WL U (A), which is a contradiction.

Thus we have shown thag @ Al \ Bl, which implies that Afjfp T B.

(3) Assume that @(B) U U (A) because there exists a finite word W such
that WO Ug.(B) \ U (A). From WO Ug.(B) we can deduce that there is a
prefix U = Ry...Rn of W and a path with label U idT from B to a concept C
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that lies on ag-cycle inA4r1. The primitive interpretation J is defined as follows:
dom(J) := {ch, b, ..., ch }; PJ:= dom(J) for all primitive concepts PJR=
{(dj,di+1); 0<i<n-1and R = R4} for all roles R. Let | be the |fp-model
defined by J.

(3.1) Obviously, the pair g B doesn’t satisfy (P2) of Proposition 22, and thus
do O Bl.

(3.2) On the other hand, assume th@tdA!. As in part (2.2) of the proof we
can deduce that (P2) does not hold, i.e., that there there exist an infinite path A,
W1, C1, W2, Co, W3, C3, ... in 471 and individuals @ = d, €1, €, €3, ... such
that (n—1,6m) 0 Wil for all m > 0. The definition of J implies that there exists
k = 0 such that W...W is a prefix of U and W1 = Wk+2 = ... =&. This
means that is inconsistent, and thus by the definitionZf, W1...WyV is in
Ug.(A) for all words VU *. In particular, WO Uz (A), which is a
contradiction.

Thus we have shown thag @ Al \ Bl, which implies that Afifp 1 B.

(4) Let Uz (B) U Ug (A), and Lg(B,P) LI L3(A,P) for all primitive concepts

P. Assume that &gip T B, i.e., there exist a [fp-model | of T and an individual
do O dom(l) such that g Al'\ B!. Now ¢y O B! implies that (P1) or (P2) of
Proposition 22 does not hold fog,dB.

(4.1) If (P1) does not hold, then there exist a primitive concept P, a wdrd W
L 2,(B,P), and an individual & dom(l) such thatgW'e and e P'. Since

L 2-(B,P) U L3 (B,P) U Lg(AP), we have WU Lg_(A,P). For WQI

L a.(A,P), Proposition 22 yieldsod] Al, which is a contradiction. Assume that
W O Lg(AP) \ La (A,P). This means that W = UV, and there is a path with
label U in4t from A to a concept C that lies on &tycle. Now @W!e implies
that there exists an individual f such thgf. Since E!felf..., property (P2) of
Proposition 22 is not satisfied. This yields[dA!, which is a contradiction.

(4.2) If (P2) does not hold, then there exist an infinite path B, &, Wo,

Co, W3, C3, ... in 41 and individuals g dy, ds, ... such that (g.1,dn) O Wy
foralln>0.

(4.2.1) First, we assume that the labehW>W ... of this path is an infinite
word W. Then we have WI Ug(B) U Ug(A). If W I Ug (A), we
immediately get g0 Al, which is a contradiction. If VI Ug(A) \ Ug.(A),
then there exists a finite initial segment U of W such that there is a path with
label U in 41 from A to a concept C that lies on arcycle. As in (4.1) this
implies ¢y O Al. This contradicts our assumption.

(4.2.2) Assume that the label W oW 3... of the infinite path B, W, Cq, Wo,

C2, W3, Cg, ... is a finite word W. We have W Up_(B) U Ug_(A). But W I

U (A) means that there exists a prefix U of W such that there is a path with
label U in 41 from A to a concept C that lies on arcycle. As in (4.1) this
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implies ¢y O Al, which is a contradiction.
This completes the proof of the theorem.

Appendix C: Proofs of the Results of Section 5.3

Proposition 28
Let T be a terminology and lgfr be the corresponding semi-automaton. Let J
be a primitive interpretation and Ié& be a tuple such thatlR) [JA. Let | be the
model of T defined by J and the tuplgfp(T;) (see Corollary 4).
For any concept A and any individual /d dom(l) we have: dJ Al iff the
following two properties hold:
(1) For all primitive concepts P, all words WL(A,P), and all individuals

e [J dom(l), (d,e)J W implies e[J P!,
(2) For all defined concepts B, all words ML(A,B), and all individuals

e [Jdom(l), (d,e)J W implies e[J (A); (where j = index(B)).

Proof

The case where A is a primitive concept is trivial (see the proof of Proposition
19). Let A be a defined concept and let i = index(A), i.&5 M-gfp(T))i. We
know thatA-gfp(T)) = Nk=0T K(A).

(1) Assume that d Al. Then there exists ¥ 0 such that dJ (T%(A))i. We
proceed byinduction on k.

Fork = 0 we have dJ (A);, de'd ande O L(A A).

Fork > 0 we have dJ (TyT1(A)))i. Let the defining axiom for A be of the
form A= ...n OW: Cn ..., and assume thatW: C is responsible for dI
(TyTF1(A)))i. This means that there existS8l@om(l) such that dV¢ and &
CJ=d (if C is a primitive concept) or @ (TFKL(A))m (if C is a defined concept
and index(C) = m). In the first case, C is a primitive concept, and obviously W
0 L(A,C). In the second case, we can apply the induction hypothesi§lito e
(TFL(A))m. Thus there exist a primitive concept P (resp. a defined concept B
with index j), a word VLI L(C,P) (resp. VLI L(C,B)) and an individual fI
dom(l) such that el and fO P (resp. fO (A)j). But then WVO L(A,P) (resp.

WV [ L(A,B)) and d(WV)f. This completes the proof of the “if” direction.

(2) Assume that (1) or (2) does not hold. Then A! follows as in the proof of
Proposition 19.[]

For subsumption with respect to descriptive semantics, the not only the
labels of infinite paths are important, but also the states that are reached infinitely
often.
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Theorem 29
Let T be a terminology and lgfr be the corresponding semi-automaton. Let A,
B be concepts in T. Then we haveB iff the following two properties hold:
(P1) For all primitive concepts P, L(B,RY L(A,P) holds.
(P2) For all defined concepts C and all infinite paths of the form 8,G)

Uy, C, W, C, ..., there exists X0 such that |d...Ux [7 L(A,C).

Proof

(1) Assume that (P1) and (P2) hold. Let | be a model of T defined by the
primitive interpretation J and a fixed-poitof T3 Obviously, T(A) O A andA

= A-gfp(Tj). Let d be an individual such thaftB!. We have to show that(d
Al. By Proposition 28, @ B! means that (1) or (2) of the proposition does not
hold.

(1.1) Let P be a primitive concept, W L(B,P) be a word and leti@ dom(l)
be a individual such that (d,&) W! and e P.. By (P1), WO L(A,P) and thus
Proposition 28 yields d Al.

(1.2) Let C; be a defined concept, W1 L(B,C1) be a word and let1€]
dom(l) be a individual such that (d)ed W;! and @ O (A)i, (where i =
index(Cy)). Since | is the model defined by J ahd(A)i, = C;! and we can
proceed with ¢in place of A.

Assume that we have already obtained a sequenc@/{; ey, ..., G, Wk, &
such that gd Gi!, g.4Wile; and W O L(Cj.1,C;) for 1< i < n (where g :=d
and G := B). By Proposition 28, e Cx! means that (1) or (2) of the
proposition does not hold.

If (1) does not hold we get a primitive concept, a wordW/(Ck,P) and an
individual edJ dom(l) such that ¢ge) 0 W! and €0 P'. But then W...W W O
L(B,P) 0 L(A,P), ed P and d(W...WW)le imply dJ Al

If (2) does not hold we gefe;, Ck+1 such that g1 O Cy+1!, &Wk+1'ex+1 and
Wie+1 O L(Ck,Ci+1)-

If this second case holds for all k we get an infinite path B, @/, W5, Cp,
W3, C3, ... and corresponding individualg,ep, €3, ... with the above
described properties. But then there is a concept C such that forFr@initely
many indices i. This means that the above path is of the forny,BZ,U), C,
Uy, C, ... . By property (P2), there exist& K such that ...Ux O L(A,C). In
addition, we know that there is an individug) guch that d(4...Ux)'em and e,

0 C = (A)j (where j = index(C)). Thus Proposition 28 yields &!.

(2) Assume that A= B. This implies A=gfp, T B and thus, by Theorem 20,
property (P1) holds. Now assume that (P2) does not hold, i.e., there exists an
infinite path of the form B, y, C, U, C, Uy, C, ... such that §J.. Uy O
L(A,C) for all k= 0.
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The primitive interpretation J is defined as follows: If U :gU4U>... is an
infinite word RiR2R3..., then dom(J) := {g, i, dp, ...}; PJ := dom(J) for all
primitive concepts P; R={(dj.1,d;); i>1 and R = |§ for all roles R. If U :=
UgU1U>... is a finite word RR2 .. Rg then dom(J) := {g, d, ..., &}; PJ :=
dom(J) for all primitive concepts PYR= {(dj.1,di); 1<i<sand R = g for all
roles R.
Let j; < j2 < ... be the indices such tha@LdionjlulejZUZJ... .The tupleA is
defined as follows: Let D be a defined concept in T and m = index(D). Then
(A)m :=dom(J) \ {e; There exist finite words W, V and an indez K such

that WV = W...Ux, WO L(B,D), V O L(D,C),

doWJe and eVd,, ,}.
Claim: T3A) OA.
Proof of the claim. Let D be a defined concept in T and m = index(D).
Assume that &l (A)m. We have to show thatle (T3(A))m.
By the definition ofA, eJ (A)m means that there exist finite words W, V and an
index k= 0 such that WV = y...Uy, WO L(B,D), V O L(D,C), cgW-e and
eVdek+1. Without loss of generality we may assume that the path from D to C is
not emptyl5 Thus V = WV, there exists an individual e’ with ¥’ and
e’Vszjk+1, and the defining axiom for D is of the form D =n.[1V1: D' 1 ...
Let m’ be the index of D’. The definition & yields e’(] (A)m' and thus é]
(Ty(A)m. O (Claim)

Let | be the model of T defined by J afeyfp(T,). Let j be the index of B, i.e.,
B! = (A-gfp(Ty));- We have geldp, doUg’dj, ande O L(B,B), Up O L(B,C).
This shows thatgld (A); and thus @0 (A-gfp(TJ); = Bl.

Assume that ¢i] Al. Because all primitive concepts have dom(l) as extension,
Proposition 28 implies that there exist a defined concepts D, a widrt(4,D)
and an individual €1 dom(l) such that gU'e and eJ (A)yy (where m =
index(C)). Thus, by definition &, there are finite words W, V and an index k
> 0 such that WV = g...Uy, WO L(B,D), V O L(D,C), doWJe and eVd;,, ,.
But dgUJe and gW-e imply U = W (by the definition of the role extensions in
J). This shows that UV = WV =dJ..Uk is an element of L(A,C). This
contradicts our assumption that (P2) does not hald.

150therwise we could takedd.Uy+1 instead of |g...Uy.
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Appendix D: Proof of Theorem 36

Theorem 36
Let T be a terminology gf£ , and let4r be the corresponding semi-automa-
ton. Let | be a gfp-model of T and let A, B be concept names occurring in T.
Then we have:
A Egfp,7B iff L(B,P)JL(A,P) for all primitive concepts P in T, and
L(B,[R) [JL(A,[R) for all terms/R occurring in T.

Proof

(1) Assume that L(B,P)J L(A,P) for some primitive concept P, i.e., there is a
word W such that WJ L(B,P) \ L(A,P). Let W = RR»...R, for n (not
necessarily different) role names,Ry, ..., R,. We define the primitive
interpretation J as follows: dom(J) :=¢d..., ch, €}; @ := dom(J) for all
primitive concepts & P; P := dom(J) \ {¢}}; RY := {(dj,di+1); 0<i<n-1 and

R = R+1} O {(dj,e); 0<i < n} O {(e,e)} for all roles R. The definition of the
role extensions implies thap\dJd, iff V = W, and that (R)Y = dom(J) for all
roles R.

Let | be the gfp-model defined by J. As in part (1) of the proof of Theorem 20
one can show thapdl Al \ Bl. This implies that Atgtp, T B.

(2) Assume that L(BR) O L(A,[R) for some termR in T, i.e., there is a
word W such that W1 L(B,[R) \ L(A,[R). Let W = RR>...R, for n (not
necessarily different) role names,RRy, ..., R,. We define the primitive
interpretation J as follows: dom(J) :=¢d..., dy, e}; P := dom(J) for all
primitive concepts P; 8= {(d;,di+1); 0<i<n-1and S = R1} O {(dj,e); 0<i

< n} O {(e,e)} for all roles S# R; RJ := {(d;,di+1); 0<i<n-1and R = Ry}

O {(dj,e); 0<i < n-1} O {(e,e)}. The definition of the role extensions implies
that ahVJd,, iff V = W, that (3S) = dom(J) for all roles 8 R, and that[(R)}Y =
dom(J) \ {d}.

Let | be the gfp-model defined by J. Since(WL(B,[R), coW'dn and ¢, O
(CR)!, we know by Proposition 35 thag d B!. On the other hand, assume that
do O Al. Since P= dom(l) for all primitive concepts P, and3)’ = dom(J) for

all roles S# R, Proposition 35 implies that there exists a word V(A,[R),
and an individual f1 dom(l) such thatgV!f and fO (CR)!. By definition of J,
we get f = ¢, and thus V = W. This contradicts our assumption thaflW
L(A,[R). Hence we have shown that[d Al \ Bl, which implies that Atgfp,T

B.

(3) The proof of the “if” direction is similar to part (2) of the proof of Theorem
20. O
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Appendix E: Proof of Theorem 43

Theorem 43
Let T be a T-box off£g and A be an A-box defined over the same sets of
concept and role names. Let b be an individual name in A and B be a concept
name in T. Then bigip 1A B iff for all primitive concepts P, and all words
W UL #(B,P) there exist concepts E, F, a word U, and an individual name f
such that

(1) WO L #(E,P),

(2) U O Lz ,((F.D).(E,b)) and F(f) is an axiom in A.

Proof

(1) Assume that there is a primitive concept P and a word W .= R O

L 2,(B,P) such that there do not exist E, F, U, f satisfying (1) and (2) of the

theorem Let M be a gfp-model ofT A, and M =: g 0 dom(M). We want to

construct a gfp-model | of T A such that b0l Bl

(1.1) Without loss of generality we may assume th¥dt=R{(cM,dM); R(c,d)O

A} for all roles R. This is true because making role extensions smaller only

makes concept extensions larger w.r.t. gfp-semantics. Hence all axioms of the

form C(e) remain satisfied if we restrict the role extensions #,{¢); R(c,d)

O A}

(1.2) The primitive interpretation J is defined as follows: dom(J) := dom{M)

{eq, ..., &} where g, ..., & are new individuals; 8= RM O {(ej.1,§); 1<i <

k and R = R for all roles R; @ := QM [ {ey, ..., &} for all primitive concepts

Q#P;P:=PM[{ey, ..., &-1}. Let | be the gfp-model of T defined by J. The

interpretation | of T is extended to an interpretation | &f & by defining ¢ :=

cM for all individual names c.

Obviously, BW!ec, W O L 2.(B,P), and g 0 P imply g = b 0 B.

(1.3) It remains to be shown that | is in fact a gfp-model af A. Obviously,

(c!,d) O R! for all axioms R(c,d) in A. Assume that F(f) is an axiom of A, but f

D FI. By Proposition 19, there exist a primitive concept Q, a word U
2-(F,Q), and an individual e such thHi'fe and €1 Q'.

If fTU'e does not use some(e= 1) as intermediate individual, then we also

have MUMe and &1 QM. Hence ¥ 0O FM, which contradicts our assumption

that M is a model of TJ A.

Otherwise, the definition of the role extensions implies that Ui&4)

flu1legUsle and e =efor some & 1. But now €1 Q! yields Q = P, e =g and

Uo = W. Because U = {W [J L,q (F,P), there exists a state EAf such that

U1 O L 4,(F,E) and WO L 7.(E, P) In addition,tJ;'eg implies MUMep = b,

and thus by (1.1), we havelLU] La,(f,b). This shows that YU

LA ((F.0).(E,D)). Butthen E, F, {)f satisfy (1) and (2) of the theorem. This
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contradicts our assumption.

(2) Assume that blgip ToA B, but the right hand side of the theorem holds. Let
| be a gfp-model of TI A such that b0 Bl. By Proposition 19, there exist a
primitive concept P, a word W L 2.(B,P), and an individual e such thav\Be

and ed] Pl. For WO L a:(B,P) there exist concepts E, F, a word U, and an
individual name f satisfying (1) and (2) of the theorem. But thefl U

L 35 ((F.),(E,b)) and WO L 4.(E,P) yield UWD L 4.(F,P) and fUlb!.16
Thus we have UWI L 7.(F,P), H{UW)'e, and €] P.. This means that {1 F,
which contradicts our assumption that | was model af A since F(f) is an
axiomin A. [

16since | is a model of T A, U O La, (f,b) implies fulpl.



