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In most of the implemented terminological knowledge representation systems it

is not possible to state recursive concept definitions, so-called terminological

cycles. One reason is that it is not clear what kind of semantics to use for such

cyles. In addition, the inference algorithms used in such systems may go astray

in the presence of terminological cycles. In this paper we consider terminological

cycles in a very small terminological representation language. For this language,

the effect of the three types of semantics introduced by B. Nebel can completely

be described with the help of finite automata. These descriptions provide for a

rather intuitive understanding of terminologies with recursive definitions, and

they give an insight into the essential features of the respective semantics. In

addition, one obtains algorithms and complexity results for the subsumption

problem and for related inference tasks. The results of this paper may help to

decide what kind of semantics is most appropriate for cyclic definitions,

depending on the representation task
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1 – Introduction

Terminological representation systems can be used to represent the taxonomic
and conceptual knowledge of a problem domain in a structured way. To describe
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this kind of knowledge, one starts with atomic concepts (unary predicates) and
roles (binary predicates), and constructs more complex concept descriptions
(called concept terms in the following) using the operations provided by the
concept language of the particular formalism. For example, if Human and Male are
atomic concepts and child is a role, then the concept terms Human ® Male and
∀child: Male describe, respectively, the set of all individuals that are both human
and male, and the set of all individuals that have male children only. The concept
forming construct used in the first term is called concept conjunction and the one
in the second term is called value restriction. The semantics of such expressions
can be described in a model-theoretic way (see Section 3 below), or by a
translation into first-order predicate logic. The concept terms of our example
correspond to formulas with one free variable: Human(x) ∧ Male(x) and ∀y:
(child(x,y) → Male(y)). For a given interpretation, the concept represented by a
concept term consists of the individuals (elements of the domain of the
interpretation) that satisfy the corresponding formula when substituted for its
free variable.

The terminology (T-box) of a terminological representation system consists
of concept definitions that assign names to complex terms. For example, one can
introduce the name “man” for the concept of all male humans via the definition
Man = Human ® Male, which has the obvious semantics ∀x: (Man(x) ∫ Human(x)
∧ Male(x)). This semantics will be called descriptive semantics in the following.
As long as there are no cyclic dependencies in the concept definitions of a
terminology, descriptive semantics is clearly appropriate. In this case, definitions
merely introduce abbreviations (macros) for complex terms, and the defined
names occurring in a concept term can simply be replaced via successive macro-
expansions (see, e.g., [30], Section 3.2.5). If there are cyclic dependencies in
the definitions of a T-box then such an expansion process need not terminate,
which is the reason why the inference methods of most of the existing
terminological systems (e.g., KRYPTON [7], NIKL [21], LOOM [26],
CLASSIC [33], or KRIS [5]) cannot handle terminological cycles. Another
problem with terminological cycles is that descriptive semantics, as introduced
above, need no longer be appropriate, and it is not obvious what type of
semantics should be employed instead.

Cyclic concept definitions may be very useful and intuitive, though. For
example, they can be used to express value restrictions with respect to the
transitive closure of roles. Assume that we have the role child, and that we want
to describe the concept of all men having only male offspring, for short Momo.
Obviously, we cannot just introduce a new atomic role offspring because then
there would be no connection between the two roles child and offspring. But the
intended meaning of offspring is that it is the transitive closure of the role child.
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Here a cyclic definition of Momo seems to be quite natural: a man having only
male offspring is himself a man, and all his children are men having only male
offspring. This can be expressed by the concept definition

Momo = Man ® ∀child: Momo,

provided that an appropriate fixed-point semantics is used. The results of this
paper will show that greatest fixed-point semantics is the semantics that captures
our intuition here. For similar reasons, recursive axioms with fixed-point
semantics are considered in data base research (see e.g., [1,20,41,28,43,42]).
In [1], Aho and Ullman have shown that the transitive closure of relations cannot
be expressed in the relational calculus, which is a standard relational query
language. They propose to add cyclic definitions that are interpreted by least
fixed-point semantics. This was also the starting point for an extensive study of
fixed-point extensions of first-order logic (see e.g., [16,17]).

As another example that illustrates the possible use of cyclic definitions in
terminologies, assume that we want to define the concept Dag,1 which should
consist of all nodes belonging to a finite directed acyclic graph whose
connections are given by a relation “arc.” This concept can be described using
the following cyclic definition:

Dag = Node ® ∀arc: Dag.

As for the definition of Momo, a fixed-point semantics is more appropriate than
descriptive semantics here. The results presented in this paper will show that,
unlike the definition of Momo, which should be interpreted with greatest fixed-
point semantics, the definition of Dag requires least fixed-point semantics.

It is, of course, not enough to have a system that just stores concept
definitions. The system must also be able to reason about this knowledge. An
important inference service of a terminological system is “classification.” The
classifier computes all subsumption relationships between concepts, i.e., all
subconcept-superconcept relationships induced by the concept definitions. The
choice of the semantics strongly influences which subsumption relationships
hold in a terminology. In addition, different semantics may require different
algorithmic method for determining subsumption relationships, and they might
be responsible for different behaviour with respect to decidability and complexity
of the subsumption problem. As mentioned above, the subsumption algorithms
implemented in most of the existing terminological systems cannot handle cyclic
definitions.

The first thorough investigation of cycles in terminological knowledge

1This example is taken from [15].
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representation languages can be found in [29,30,32], where B. Nebel considers
three different types of semantics for cyclic definitions in his language NTF,
namely, least fixed-point semantics, greatest fixed-point semantics, and
descriptive semantics. Due to the fact that this language is relatively expressive
this investigation does not provide us with a deep insight into the meaning of
cycles with respect to these three types of semantics. For the two fixed-point
semantics, Nebel explains his point just with a few examples. The meaning of
descriptive semantics—which, in Nebel’s opinion, comes “closest to the
intuitive understanding of terminological cycles” ([30], p. 120)—is treated more
thoroughly. But even in this case the results are not quite satisfactory. For
example, decidability of the subsumption problem is proved by an argument that
cannot be used to derive a practical algorithm, and which does not give insight
into the reason why one concept defined by some cyclic definition subsumes
another one. Roughly speaking, the argument says that it is sufficient to consider
only finite interpretations to determine subsumption relationships. An interesting
observation concerning descriptive semantics in Nebel’s paper is that structurally
identical definitions need not lead to semantically equivalent concepts (i.e.,
concepts that mutually subsume each other). For example, assume that in
addition to the definition of Momo from above, we also define a concept Mnfo (for
man without female offspring):

Mnfo = Man ® ∀child: Mnfo.

Beside the acronym chosen for the concept to be defined, the definitions of Momo
and Mnfo are identical. For (greatest or least) fixed-point semantics, this is
reflected by the fact that the two concepts are equivalent. For descriptive
semantics, no such equivalence holds since names of defined concepts are
important as well. The characterization of subsumption with respect to
descriptive semantics given in the present paper will clarify this dependency on
names.

Before we can determine what kind of semantics is most appropriate for
terminological cycles, we need a better understanding of their intended meaning.
The same argument applies to the decision whether to allow or disallow cycles.
Even if cycles are prohibited, this should not be done just because one does not
know what they mean and how they can be handled.

In this paper, we shall consider terminological cycles in a very small
terminological representation language. It provides only concept conjunction and
value-restrictions as constructs for building concept terms. For this language, the
effect of the three types of semantics mentioned above can completely be
described with the help of finite automata. These descriptions provide a rather
intuitive understanding of terminologies with cyclic definitions, and they give
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insight into the essential features of the respective semantics. In addition, the
subsumption problem for each type of semantics can be reduced to a (more or
less) well-known decision problem for finite automata. Hence, existing
algorithms can be used to decide subsumption, and known complexity results
yield the complexity of the subsumption problem.

In the next section we shall recall some definitions and results concerning
ordinals, fixed-points and finite automata that will be used in subsequent
sections. Syntax and (descriptive) semantics of our small terminological
language FL0 is introduced in Section 3. In Section 4, alternative types of
semantics—namely least and greatest fixed-point semantics—are considered,
which may be more appropriate in the presence of terminological cycles. We
shall see that, from a constructive point of view, greatest fixed-point semantics
shows a better behaviour than least fixed-point semantics since greatest fixed-
point models can be obtained by a single limit process. In Section 5, the three
types of semantics are characterized with the help of finite automata. The
characterization of the greatest fixed-point semantics is easy and intuitively clear.
Subsumption with respect to greatest fixed-point semantics, and—after some
modifications of the automaton—also with respect to least fixed-point semantics
can be reduced to inclusion of regular languages. For descriptive semantics, we
have to consider inclusion of certain languages of infinite words that are defined
by the automaton. Fortunately, these languages have already been investigated in
the context of monadic second-order logic (see [8]). In Section 6, we shall see
how the inclusion problem for these languages can be solved. This yields a
subsumption algorithm for descriptive semantics. Extensions of the results for
gfp-semantics are considered in Section 7. In the first subsection we shall
consider cycles in the larger language FL¯ introduced in [23]. The second
subsection contains results about hybrid inferences. Finally, we shall point out
related work on cyclic definitions in terminologies.

2 – Formal Preliminaries

For the readers convenience, we shall recall some definitions and results
concerning ordinals, fixed-points and finite automata. Those familiar with these
topics may skip this section and come back to it if necessary.

In the introduction we have mentioned the “transitive closure” of a binary
relation as a motivation for cyclic definitions. This notion can be formally
defined as follows: Let R be a binary relation on a set D, i.e., R ⊆ D ≈ D. We
define R0 := {(d,d); d ∈ D} and, for n ≥ 0, Rn+1 := R°Rn where “°” denotes
composition of binary relations. The transitive closure of R is the relation
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∪n≥1Rn and the reflexive-transitive closure is ∪n≥0Rn.

2.1 – Ordinals

A more detailed account of the order-theoretic approach to ordinals used below
can be found in [35]. A set-theoretic definition of ordinals is, for example, given
in [18]. Some elementary properties of ordinals are also stated in [24], p.28–29.

A partial ordering ≤ on a set D is a well-ordering iff it is linear (i.e., for all a,
b in D we have a ≤ b or b ≤ a) and well-founded (i.e., there are no infinite
strictly decreasing chains a0 > a1 > a2 > ...). Ordinals can be defined as the order
types of well-ordered sets. There are finite ordinals such as 2, 6, 17. For
example, 6 is the order type of the set {0, 1, 2, 3, 4, 5} with the usual ordering
on non-negative integers. The first infinite ordinal is ω, which is the order type
of the non-negative integers {0, 1, 2, ...}. Ordinals can be ordered as follows: α
≤ β iff α is isomorphic to an initial segment of β. For example, 2 < 6 and the
finite ordinals are exactly the ordinals that are smaller than ω. This ordering on
ordinals is well-founded and linear. Hence any set of ordinals has a least element
and a least upper bound.

If  α is an ordinal then the successor α+1 of α is the least ordinal greater than
α. An ordinal that is a successor of another ordinal is called successor ordinal.
The other ordinals are called limit ordinals. For example, ω is a limit ordinal, and
6 is a successor ordinal because 6 = 5+1 is the successor of 5. The successor ω
+ 1 of ω is the order typ of {0, 1, 2, ...} ∪ {∞} where {0, 1, 2, ...} is ordered
as usual and all elements of {0, 1, 2, ...} are smaller than ∞. A limit ordinal α
can be obtained as the least upper bound of all smaller ordinals, i.e., α = lub({β;
β < α}).

Properties for ordinals can be proved by transfinite induction. Let P be a
property of ordinals. Assume that (1) P(0) holds; (2) if P(α) holds then P(α+1)
holds; and (3) if λ is a limit ordinal and P(α) holds for all α < λ then P(λ)
holds. Then P(β) holds for all ordinals β.

2.2 – Fixed-Points

The definitions and results mentioned in this subsection can be found in [24],
Chapter 1, §5 and [38], Chapter 6. An account of the history of various fixed-
point theorems is given in [22].

Let D be a partially ordered set (poset). The poset D is a complete lattice if all
subsets C of D have a least upper bound lub(C) in D. In this case, any subset C
has also a greatest lower bound glb(C) = lub({d ∈ D; d is a lower bound of C}),
and D has a least element bottom = lub(Ø) and a greatest element top = lub(D).
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The following example will be reconsidered in Section 4.

Example 1 
Consider the n-fold cartesian product D = 2S × ... × 2S, where 2S denotes the
set of all subsets of a set S. The set D is ordered componentwise by inclusion:
(A1,…,An) ⊆ (B1,…,Bn) iff A 1 ⊆ B1, …, and An ⊆ Bn. Greatest lower bounds
and least upper bounds with respect to this ordering are obtained by component-
wise set intersection and set union, top = (S,…,S), and bottom = (Ø,…,Ø).

Let D be a poset and let T: D → D be a mapping. Then T is monotonic iff for
all a, b in D, a ≤ b implies T(a) ≤ T(b). A fixed-point of T is an element f ∈ D
such that T(f) = f holds. If D is a complete lattice, then any monotonic mapping
T: D → D has a fixed-point. More precisely, T has a least fixed-point lfp(T) and
a greatest fixed-point gfp(T), and possibly other fixed-points, which lie between
the least and the greatest fixed point. The least and the greatest fixed-point can be
characterized in terms of ordinal powers of T. The ordinal powers T↑α and T↓α

are inductively defined as follows:

(1) T↑0 := bottom and T↓0 := top; 
(2) T↑α+1 := T(T↑α) and T↓α+1 := T(T↓α); 
(3) If α is a limit ordinal then T↑α := lub({T↑β; β < α}) and 

T↓α := glb({T↓β; β < α}).

Theorem 2 (least and greatest fixed-points)
Let D be a complete lattice, and let T: D → D be a monotonic mapping. Then, for
any ordinal α, T↑α ≤ lfp(T) and T↓α ≥ gfp(T). Furthermore, there exist
ordinals β, γ such that T↑β = lfp(T) and T↓γ = gfp(T).

The ordinals β, γ may be greater than ω, but there are sufficient conditions
under which they are less or equal ω. Let D be a complete lattice, and let T: D →
D be a mapping. Then T is upward ω-continuous (resp. downward ω-
continuous) iff for any increasing chain d0 ≤ d1 ≤ d2 ≤ … (resp. decreasing
chain d0 ≥ d1 ≥ d2 ≥ …) we have T(lub({di; i ≥ 0})) = lub({T(di); i ≥ 0}) (resp.
T(glb({d i; i ≥ 0})) = glb({T(di); i ≥ 0})). It is easy to see that any upward or
downward ω-continuous mapping is also monotonic.

Theorem 3 (fixed-points of continuous mappings)
Let D be a complete lattice, and let T: D → D be an upward ω-continuous (resp.
downward ω-continuous) mapping. Then lfp(T) = T↑ω = lub({Tn(bottom); n ≥
0}) (resp. gfp(T) = T↓ω = glb({Tn(top); n ≥ 0})).

The notation “n ≥ 0” is used as an abbreviation for “0 ≤ n < ω”. Here and in
the following, we use the convention that n, i, k range only over finite ordinals.
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In Section 5.3 we shall need a slightly generalized version of Theorem 3 for
downward ω-continuous mappings.

Corollary 4  
Let D be a complete lattice, and let T: D → D be a downward ω-continuous
mapping. Let d be an element of D such that d ≥ T(d). Then d-gfp(T) :=
glb({Tn(d); n ≥ 0}) is a fixed-point of T. More precisely, d-gfp(T) is the greatest
fixed-point of T that is less or equal d.

Proof  
Since T is downward ω-continuous and thus monotonic, d ≥ T(d) yields d ≥
T(d) ≥ T2(d) ≥ T3(d) ≥ … . Hence T(glb({Tn(d); n ≥ 0})) = glb({Tn+1(d); n ≥
0})) = glb({Tn(d); n ≥ 0}) since d = T0(d) ≥ T(d) by assumption. This shows
that d-gfp(T) is a fixed-point, and obviously, d ≥ d-gfp(T). If f is a fixed-point
with d ≥ f then T(d) ≥ T(f) = f, since T is monotonic, and f is a fixed-point.
Iterating this argument we obtain Tn(d) ≥ f for all n ≥ 0, and hence glb({Tn(d); n
≥ 0}) ≥ f.  ❏

2.3 – Automata and Words

The notions introduced below can, for example, be found in [27,19,12],
possibly with a slightly different terminology.

Let Σ be a finite alphabet. The set of all (finite) words over Σ will be denoted
by Σ*  and the empty word by ε. A word W = σ0…σn-1 over Σ of length n can
be seen as a mapping W of the finite ordinal n = {0, …, n–1} into Σ, namely,
W(i) := σi for i = 0, …, n–1. This motivates the following definition of infinite
words. An infinite word W is a mapping of the ordinal ω into Σ. The set of all
infinite words over Σ will be denoted by Σω. A given infinite word W: ω → Σ
will sometimes be written as an infinite sequence W(0)W(1)W(2)... .

A semi-automaton with word transitions is a triple A = (Σ,Q,E), which
consists of a finite alphabet Σ, a finite set of states Q, and a finite set of
transitions (or edges) E ⊆ Q ≈ Σ* ≈ Q. Thus, a transition connects two states of
Q, and it is labeled by a finite word over Σ.

If all transitions are labeled by words of length one, then A is called semi-
automaton with letter transitions. In situations where the distinction between
word transitions and letter transitions is irrelevant, we shall simply use the term
semi-automaton. Unlike the usual finite automata, semi-automata have no fixed
set of initial and final states. This will be convenient later on since we must
consider the same semi-automaton with varying initial and terminal states.
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Example 5  (a semi-automaton with word transitions)

A

σ

B

τ
ε

στC

ε

τ

σ, τ Σ    = {          } 

Q = { A, B, C }

E =  { (A,   ,A), (A,   ,B),

          (A,   ,C), (B,   ,B),

          (C,      ,C) , (B,   ,A)}

ε

τ τ

στ

σ

ε
Let A be a semi-automaton with word transitions, and let p, q be states of A.

A finite path from p to q in A is a sequence p0, U1, p1, U2, p2, …, Un, pn,
where p = p0, q = pn, and for each i, 1 ≤ i ≤ n, (pi-1,Ui,pi) is a transition of A.
This path has the finite word U1U2…Un as  label. As a special case, the empty
path p from p to p has the empty word ε as label. In the example, A, σ, A, ε, B,
ε, A, τ, C, στ, C is a finite path from A to C with label στστ. Obviously, a
non-empty path (i.e., a path where n ≥ 1) may also have the empty word as
label. An infinite path starting with p is an infinite sequence p0, U1, p1, U2, p2,
…, where p = p0 and for each i ≥ 1, (pi-1,Ui,pi) is a transition of A. The label
U1U2U3… of this infinite path may be a finite or an infinite word. In the
example, the infinite path A, σ, A, ε, B, ε, A, ε, B, ε, A, ε, B, ε, A, … has
the finite word σ as label, and the infinite path A, τ, C, στ, C, στ, C, … has
the infinite word τστστ… as label. We shall sometimes omit some of the
insignificant intermediate states in the description of a path. For example,
assume that we are interested in those infinite paths starting with p where the
state q is reached infinitely often. Such a path may be written as p, W0, q, W1,
q, W2, … where W0 is the label of a path from p to q and the Wi for i ≥ 1 are
labels of non-empty paths from q to q.

For two states p, q of the semi-automaton with word transitions A, let
LA(p,q) denote the set of all finite words that are labels of paths fom p to q. If it
is clear from the context, we shall omit the index A. In Example 5, L(A,B) =
(σ∪τ)*  = Σ*  and L(A,C) = (σ∪τ)*τ(στ)*  = {Wτ(στ)m; W ∈ Σ* , m ≥ 0}.
Obviously, the languages L(p,q) are regular, and on the other hand, any regular
language can be obtained this way. If the regular language L = L(A) is accepted
by a finite automaton A with initial state q0 and set of terminal state Qfin, i.e., L
= ∪ t∈QfinL(q0,t), then we can add a new state qfin to A , and transitions
(t,ε,qfin) for all t ∈ Qfin. Then L = L(q0,qfin). The case of more than one initial
state can be treated analogously.

With respect to the accepted regular languages, semi-automata with word
transitions are not more expressive than semi-automata with letter transitions. In
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fact, any semi-automaton with word transitions A can be transformed (in
polynomial time) into a semi-automaton with letter transitions B such that for all
states p1, p2 in A there exist states q1, q2 in B with LA(p1,p2) = LB(q1,q2) (see
[27] or [19]). Words of length greater than one can easily be eliminated by
introducing intermediate states. In the example, we could introduce a new state
C’ and replace the transition (C,στ,C) by the two transitions (C,σ,C’) and (C’,
τ,C). The elimination of ε-transitions is more difficult (see [19], p. 26). In the
example, we could simply join the states A and B to a new state AB with the
transitions (AB,σ,AB), (AB,τ,AB), (AB,τ,C).

For a state p of the semi-automaton with word transitions A, let UA(p)
denote the set of all words that are labels of infinite paths starting with p. As for
L, we shall often omit the index A. Note that U(p) may also contain finite words
that are labels of infinite paths starting with p. In the example, U(A) = U(B) =
Σ*  ∪ Σω and U(C) is the singleton {στστστ…}.

3 – A Small Terminological Representation Language

The language considered in this paper will be called FL0. It has only two
constructs for building complex concept descriptions: concept conjunction and
value-restriction.

Definition 6 (concept terms and terminologies)
Let C be a set of concept names and R be a set of role names. The set of concept
terms  of FL0 is inductively defined. As a starting point of the induction,

(1) any element of C is a concept term. (atomic terms)
Now let C and D be concept terms already defined, and let R be a role name.

(2) Then C ® D is a concept term. (concept conjunction)
(3) Then ∀R:C is a concept term. (value-restriction)

Let A be a concept name and let D be a concept term. Then A = D is a
terminological axiom. A terminology (T-box) is a finite set of terminological
axioms with the additional restriction that no concept name may appear more
than once as a left hand side of a definition.

A T-box contains two different kinds of concept names. Defined concepts
occur on the left hand side of a terminological axiom. The other concepts are
called primitive concepts.2 The following is an example of a T-box in this
formalism: Let Man, Human, Male, Mos (for “man that has only sons”), and Momo
(for “man that has only male offspring”) be concept names and let child be a role
name. The T-box consists of the following axioms:

2For our language, roles are always primitive since we do not have role definitions.
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Man = Human ® Male
Mos = Man ® ∀child: Man

Momo = Man ® ∀child: Momo.

This means that a man is human and male. A man that has only sons is a man
such that all his children are male humans. Male and Human are primitive concepts
while Man and Mos are defined concepts. As mentioned in the introduction, one
cannot just introduce a new role name offspring to define the concept Momo. This
is so because there would be no connection between the two primitive roles child
and offspring, whereas the intended meaning of offspring is that it is the transitive
closure of child. Thus we have used a cyclic definition, which intuitively means:
A man that has only male offspring is himself a man, and all his children are men
having only male offspring. This is a very simple cyclic definition. In general,
cycles in terminologies are defined as follows.

Definition 7 (terminological cycles)
Let A, B be concept names and let T be a T-box. We say that A directly uses B
in T iff B appears on the right hand side of the definition of A. Let “uses” denote
the transitive closure of the relation “directly uses.” Then T contains a
terminological cycle iff there exists a concept name A in T such that A uses A.

The next definition gives a model-theoretic semantics for the language
introduced in Definition 6.

Definition 8 (interpretations and models)
An interpretation I consists of a set dom(I), the domain of the interpretation, and
an interpretation function, which associates with each concept name A a subset
AI of dom(I) and with each role name R a binary relation RI on dom(I), i.e., a
subset of dom(I) ≈ dom(I). The sets AI, RI are called extensions of A, R with
respect to I.
The interpretation function—which gives an interpretation for atomic terms—can
be extended to arbitrary terms as follows: Let C, D be concept terms and R be a
role name. Assume that CI and DI are already defined. Then

(C ® D)I := CI ∩ DI,
(∀R:C)I := {x ∈ dom(I); for all y: (x,y) ∈ RI implies y ∈ CI}.

An interpretation I is a model of the T-box T iff it satisfies

AI = DI for all terminological axioms A = D in T.

As mentioned in the introduction, an important inference service
terminological systems provide their users with is computing the subsumption
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hierarchy, i.e., computing all subconcept-superconcept relationships induced by
the definitions in the T-box.

Definition 9  
Let T be a terminology and let A, B be concept names. We define

A –T B  iff  AI ⊆ BI  for all models I of T.

In this case we say that B subsumes A in T.

The semantics we have just defined will in the following be called descriptive
semantics. It is not restricted to non-cyclic terminologies. For cyclic
terminologies this kind of semantics may, however, seem unsatisfactory. One
might think that the extension of a defined concept should completely be
determined by the extensions of the primitive concepts and roles. Otherwise, the
use of the term “concept definition” is not really justified. Non-cyclic
terminologies satisfy this requirement.

More precisely, let T be a T-box containing the defined concepts C1, …, Cn,
the primitive concepts P1, ..., Pm, and the roles R1, ..., Rk. A primitive
interpretation J consists of a set dom(J), the domain of the primitive
interpretation, and extensions P1J, ..., PmJ, R1J, ..., RkJ of the primitive
concepts and roles. An interpretation I of T extends the primitive interpretation J
iff dom(I) = dom(J), P1I = P1J, ..., PmI = PmJ and R1I = R1J, ..., RkI = RkJ.
Such an extension I of J can be described by the n-tuple (C1I ,…,CnI)
∈ (2dom(J))n, where 2dom(J) denotes the set of all subsets of dom(J).

On the other hand, any primitive interpretation J together with an n-tuple A ∈
(2dom(J))n yields an interpretation I for T. Any defined concept in T corresponds
to a component of the tuple A. If the defined concept B corresponds to the i-
component of A, i.e., BI = (A)i, we shall say that index(B) = i. Of course, we
are mostly interested in extensions of J that are models of T. If T does not
contain cycles, then any primitive interpretation can uniquely be extended to a
model of T (see, e.g., [30], Theorem 3.2). If T contains cycles, a given
primitive interpretation may have different extensions to models of T.

Example 10  
Let Momo and Man be concept names, and child be a role name. The terminology
T consists of the single axiom Momo = Man ® ∀child: Momo.
We consider the following primitive interpretation:

dom(J) := {Charles1, Charles2, Charles3, ...} ∪ {James1, ..., JamesLast}
ManJ := dom(J), and
childJ := {(Charlesi,Charlesi+1); i ≥ 1} ∪ {(Jamesi,Jamesi+1; 1 ≤ i < Last}.

This means that the Charles dynasty does not die out, whereas there is a last
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member of the James dynasty. It is easy to see that this primitive interpretation
has two different extensions to models of T. The defined concept Momo may
either be interpreted as {James1, ..., JamesLast} or as dom(J). Note that
individuals without children (i.e., without childJ-successors) are in the extension
of the term ∀child: Momo, no matter how Momo is interpreted.

The example also demonstrates that, with respect to descriptive semantics as
defined above, the definition Momo = Man ® ∀child: Momo does not express the
value-restriction Momo = Man ® ∀offspring: Man for the transitive closure offspring
of child. This implies that descriptive semantics does not capture the intuition
underlying our definition of the concept Momo. In fact, according to this intuition
only the second model (where Momo is interpreted as the whole domain) is
appropriate: any male member of the Charles dynasty satisfies the requirement
that he is himself a man, and all his children have only male offspring.

To overcome this problem we shall now consider alternative types of
semantics for terminological cycles.

4 – Fixed-point Semantics for Terminological Cycles

A terminology may be considered as a parallel assignment where the defined
concepts are the variables, and the primitive concepts and roles are parameters.

Example 11 
Let R, S be role names and A, B, P be concept names,3 and let T be the
terminology  A = Q ® ∀S:B,  B = P ® ∀R:B. We consider the following
primitive interpretation J, which fixes the values of the parameters P, Q, R, S:
dom(J) := {a0, a1, a2, ...}, PJ := {a1, a2, a3, ...}, QJ := {a0}, RJ := {(ai+1,ai);
i ≥ 1}, and SJ := {(a0,ai); i ≥ 1}.
For given values of the variables A, B, the parallel assignment A := Q ® ∀S:B,
B := P ® ∀R:B yields new values for A, B. If A and B are interpreted as the
empty set, an application of the assignment T yields the values Ø for A and {a1}
for B. If we reapply the assignment to these values we obtain Ø for A and {a1,
a2} for B.

In the general case, a terminology T together with a primitive interpretation J
defines a mapping TJ: (2dom(J))n → (2dom(J))n, where n is the number of defined

3We shall no longer use intuitive names for concepts and roles, since I agree with [6],
p.176, that “suggestive names can do more harm than good in semantic networks and other
representation schemes.” Suggestive names may seemingly exclude models that are admissible
with respect to the formal semantics.
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concepts in T.

Definition 12 
Let T be the terminology that consists of the concept definitions C1 = D1, …, Cn
= Dn, and let J be a primitive interpretation. The mapping TJ: (2dom(J))n →
(2dom(J))n is defined as follows: 
Let A be an element of (2dom(J))n and let I be the interpretation defined by J and
A. Then TJ(A) := (D1I,…,DnI).

For the above example we have seen that TJ(Ø,Ø) = (Ø,{a1}) and
TJ(Ø,{a1}) = (Ø,{a1, a2}).

Obviously, the interpretation defined by J and A is a model of T if and only if
A  is a fixed-point of the mapping TJ, i.e., if and only if TJ(A) = A . In our
example, the element ({a0},{a 1, a2, a3, ...}) of (2dom(J))2 is a fixed-point of TJ.
If we extend J to I by defining AI := {a0}, B I := {a1, a2, a3, ...}, we obtain a
model of T.

One may now ask whether any primitive interpretation J can be extended to a
model of T, or equivalently, whether any mapping TJ has a fixed-point. The
answer is yes, because (2dom(J))n, ordered componentwise by inclusion, is a
complete lattice (see Example 1) and the mappings TJ are monotonic.4 Thus the
following definition makes sense:

Definition 13 (three types of semantics for cyclic terminologies)
Let T be a terminology, possibly containing terminological cycles.
(1) The descriptive semantics allows all models of T as admissible models.
(2) The least fixed-point semantics (lfp-semantics) allows only those models of
T that come from the least fixed-point of a mapping TJ (lfp-models).
(3) The greatest fixed-point semantics (gfp-semantics) allows only those models
of T that come from the greatest fixed-point of a mapping TJ (gfp-models).

Any primitive interpretation J can uniquely be extended to a lfp-model (gfp-
model) of T. In Example 10, the extension of J that interprets Momo as {James1,
..., JamesLast} is a lfp-model of T, and the extension that interprets Momo as
dom(J) is a gfp-model of T. It is easy to see that, for cycle-free terminologies,
lfp-, gfp- and descriptive semantics coincide (see [30], p.134). For
terminologies with cycles, this is not the case, however, as we have just
illustrated by Example 10. Thus one also obtains different notions of
subsumption, depending on which semantics is employed.

4This can easily be proved; but it is also a consequence of Proposition 4.5, which states
that these mappings are even downward ω-continuous.
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Definition 14 (subsumption of concepts revisited)
Let T be a terminology and let A, B be concept names.

A –T B  iff  AI ⊆ BI  for all models I of T,
A –lfp,T B  iff  AI ⊆ BI  for all lfp-models I of T,
A –gfp,T B  iff  AI ⊆ BI  for all gfp-models I of T.

In this case we say that B subsumes A in T w.r.t. descriptive semantics (resp.
lfp-semantics, gfp-semantics).

The next question we shall consider is how lfp-models (gfp-models) can be
constructed from a given primitive interpretation. Nebel [29,30] claimed that the
mappings TJ are even upward continuous, and that thus lfp(TJ) =
∪i≥0TJi(bottom), where bottom denotes the least element of (2dom(J))n, namely
the n-tuple (Ø,...,Ø). Unfortunately, this is not true.

Proposition 15  
In general, we may have lfp(TJ) ≠ ∪i≥0TJi(bottom).

Proof  
We consider Example 11. It is easy to see that TJi(Ø,Ø) = (Ø,{a1, a2, ..., ai}).
Thus ∪i≥0TJi(Ø,Ø) = (Ø,{ai; i ≥ 1}), which is not a fixed-point since TJ(Ø,{ai;
i ≥ 1}) = ({a0},{a i; i ≥ 1}).  ❏

In this example, the least fixed-point is reached by applying TJ once more
after building the limit, i.e., lfp(TJ) = TJ↑ω+1. In general, one may need even
greater ordinals to obtain the least fixed-point. On the other hand, we shall now
show that the greatest fixed-point can always be reached by ω-iteration of TJ.

Proposition 16 
The mappings TJ are always downward ω-continuous. Conse-quently, the
greatest fixed-point may be obtain as gfp(TJ) = ∩i≥0TJi(top), where top denotes
the greatest element of (2dom(I))n, i.e., top = (dom(I),...,dom(I)).

Proof  
Let J be a primitive interpretation, and let A (0) ⊃  A (1) ⊃  A (2) ⊃  ... be a
decreasing chain in (2dom(J))n. We have to show that

∩k≥0TJ(A(k)) = TJ( ∩k≥0A(k) ).

For k ≥ 0, let Ik be the interpretation of T defined by J and A(k) and let I be the
interpretation defined by J and A := ∩k≥0A(k). In the following, Ai denotes the i-
th component of the tuple A and Ai(k) the i-th component of the tuple A (k).By
Definition 12, it is sufficient to demonstrate that, for any concept term D, we
have
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∩k≥0 DIk = DI.

We proceed by induction on the size of D.
(1) D = P for a primitive concept P. Then DI = PJ = DIk for all k ≥ 0 and hence
∩k≥0 DIk = PJ = DI.
(2) D = Ci for a defined concept Ci.5 Then DI = Ai, and for all k ≥ 0, DIk =
Ai(k).But Ai = ∩k≥0Ai(k) by definition of A.
(3) D = E ® F for concept terms E, F. We have DI = EI ∩ FI and by induction
we get EI = ∩k≥0 EIk and FI = ∩k≥0 FIk. Hence DI = (∩k≥0 EIk) ∩ (∩k≥0 FIk)
= ∩k≥0 (EIk ∩ FIk) = ∩k≥0 DIk.
(4) D = ∀R:C for a role name R and a concept term C. By Definition 8, DI = {x
∈ dom(I); ∀y: ((x,y) ∈ RI  →  y ∈ CI)}, and hence, by induction and the
definition of I, DI = {x ∈ dom(J); ∀y: ((x,y) ∈ RJ → y ∈ ∩k≥0 CIk)}. This
means that we have

x ∈ DI  iff  ∀y: ((x,y) ∈ RJ → ∀k: y ∈ CIk).

It is well-known (see e.g., [13], p. 305), that a formula of the form ∀y: (A →
∀k: B), where k has no free occurrence in A, is equivalent to the formula
∀y:∀k: (A → B). If we permute the quantifiers6 we obtain ∀k:∀y: (A → B).
This shows that

x ∈ DI  iff  ∀k:∀y: ((x,y) ∈ RJ → y ∈ CIk).

Since {x ∈ dom(J); ∀y: ((x,y) ∈ RJ → y ∈ CIk)} = D Ik, we have shown that
∩k≥0 DIk = DI. This completes the proof of the proposition.  ❏

The two propositions show that, from a constructive point of view, gfp-
semantics is preferable. However, if dom(J) is finite, the greatest and the least
fixed-point can be reached after a finite number of applications of TJ, and as
shown in [30] subsumption relationships do not change if models are restricted
to be finite.

5 – Characterization of the Semantics using Finite Automata

The close connection between terminologies of FL0 and finite automata was first
observed by B. Nebel [31]. He used this connection in the case of non-cyclic
terminologies to show that subsumption for non-cyclic terminologies of FL0 is
coNP-hard.

Before we can associate a semi-automaton AT with a terminology T we must

5We assume that index(Ci) = i.
6This is the point where the proof for the least fixed-point goes wrong. In this case we

would have the quantifiers “∀y:∃k:”  which cannot be permuted.
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transform T into some kind of normal form. It is easy to see that the concept
terms ∀R:(B ® C) and (∀R:B) ® (∀R:C) are equivalent, i.e., they have the
same extension in any interpretation. Hence, any concept term can be
transformed into a finite conjunction of terms of the form ∀R1:∀R2:...∀Rn:A,
where A is a concept name. We shall abbreviate the prefix “∀R1:∀R2:...∀Rn”
by “∀W” where W = R1R2...Rn is a word over RT , the set of role names
occurring in T. In the case n = 0 we also write “∀ε:A” instead of simply “A”.
For an interpretation I and a word W = R1R2...Rn, WI denotes the composition
R1I°R2I°...°RnI of the binary relations R1I, R2I, ..., RnI. The term εI denotes the
identity relation, i.e., εI = {(d,d); d ∈ dom(I)}.

Definition 17 
Let T be a terminology where all terms are normalized as described above. The
(nondeterministic) semi-automaton with word transitions AT is defined as
follows: The alphabet of AT is the set RT of all role names occurring in T; the
states of AT are the concept names occurring in T; a terminological axiom of the
form A = ∀W1:A1 ®  ... ®  ∀Wk:Ak gives rise to k transitions, where the
transition from A to Ai is labeled by the word Wi.

The next example illustrates Definition 17.

Example 18 (A normalized terminology and its semi-automaton)

A =    R: A       S: D

D =    S: D     P

B =    RS: D        S: C∀ ® ∀

C =    R: C∀

R

A D P

B C

R

S

S

RS

S

ε
∀ ® ∀

∀ ®

The primitive concepts are exactly those states in AT that do not have
successor states. The semi-automaton AT can be used to characterize gfp- and
descriptive semantics and, after a modification, also lfp-semantics.

5.1 – Characterization of the gfp-Semantics

Before we can show that subsumption w.r.t. gfp-semantics can be reduced to
inclusion of regular languages, we need the following proposition, which
describes under what conditions an individual d of a gfp-model I is in the
extension AI of a concept A.
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Proposition 19  
Let T be a terminology and let AT be the corresponding semi-automaton. Let I be
a gfp-model of T and let A be a concept name occurring in T. For any d ∈
dom(I) we have:  

d ∈ AI iff for all primitive concepts P, all words W ∈ L(A,P) and all
 individuals e ∈ dom(I): (d,e) ∈ WI implies e ∈ PI.

A proof of this proposition can be found in Appendix A. For the terminology
Momo = Man ® ∀child: Momo of Example 10, L(Momo,Man) = child*  = {childn; n ≥
0}. Hence it is an immediate consequence of the proposition that this
terminology—if interpreted with gfp-semantics—expresses value-restriction
with respect to the reflexive-transitive closure of child. In this case, the condition
of the proposition says that d ∈ MomoI if and only if, for all n ≥ 0, and all e such
that d(child I )ne, e ∈  M a n I  holds. This means that for all e such that
d(∪n≥0(childI)n)e, e ∈ ManI holds. But the relation ∪n≥0(childI)n is the reflexive-
transitive closure of childI.

Proposition 19 also implies that concepts are never inconsistent w.r.t. gfp-
semantics, i.e., for any terminology T and any concept A in T there exists a gfp-
model I of T such that AI ≠ Ø. Obviously, it is enough to take the gfp-model that
is defined by a primitive interpretation J satisfying PJ = dom(J) for all primitive
concepts P.

The proposition can intuitively be understood as follows: The languages
L(A,P) stand for the possibly infinite number of constraints of the form ∀W: P
that the terminology imposes on A. An individual d is in the extension of A if
and only if it satisfies all of these constraints. If a concept has to satisfy more
constraints, its extension will become smaller. This motivates the following
theorem, which characterizes subsumption w.r.t. gfp-semantics.

Theorem 20  
Let T be a terminology and let AT be the corresponding semi-automaton. Let I be
a gfp-model of T and let A, B be concept names occurring in T. Subsumption in
T can be reduced to inclusion of regular languages defined by AT. More
precisely,

A  –gfp,T B   iff   L(B,P) ⊆ L(A,P) for all primitive concepts P.

Again, the proof is deferred to the appendix. In Example 18, B subsumes A
w.r.t. gfp-semantics since L(B,P)  = RSS*  is a subset of L(A,P) = R*SS* .

The theorem shows that the problem of determining subsumption w.r.t. gfp-
semantics can be reduced to the inclusion problem for regular languages in
polynomial time. If we want to solve the subsumption problem A –gfp,T B for a
terminology T with k primitive concepts, we have to solve k inclusion problems
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for regular languages that are defined by a nondeterministic semi-automaton
having the same size as the terminology.

On the other hand, the inclusion problem for regular languages (given by
arbitrary nondeterministic automata) can be reduced to the subsumption problem.
Assume that A1 = (Σ,Q1,E1) and A2 = (Σ,Q2,E2) are two (nondeterministic)
semi-automata defining the regular languages L1 = LA1(p1,q1) and L2 =
LA2(p2,q2). Without loss of generality we may assume that Q1 and Q2 are
disjoint and that A1 and A2 are trim, i.e., any state can reach the terminal state qi
and can be reached from the initial state pi (see [12], p. 23). We consider the
semi-automaton A = (Σ,Q1 ∪ Q2 ∪ {t},E), where t is a new state not occurring
in Q1 ∪ Q2 and E = E1 ∪ E2 ∪ {(q1,ε,t), (q2,ε,t)}. Obviously, LA1(p1,q1) =
LA(p1,t) and LA2(p2,q2) = LA(p2,t). It is easy to see that A  = AT for a
terminology T that has the states in Q1 ∪ Q2 as its defined concepts and the state
t as the only7 primitive concept. But then L1 ⊆ L2 if and only if p2 –gfp,T p1.

Corollary 21  
The problem of determining subsumption w.r.t. gfp-semantics is PSPACE-
complete.

Proof
We have seen that subsumption w.r.t. gfp-semantics can be reduced to inclusion
of regular languages (defined by nondeterministic automata) in polynomial time
and vice versa. It is well-known that the inclusion problem for regular languages
defined by a nondeterministic automata is PSPACE-complete (see [14]).  ❏

This shows that, even for our very small language, subsumption
determination w.r.t. gfp-semantics is rather hard from a computational point of
view. On the other hand, [31] shows that, even without cycles, this language
has a coNP-complete subsumption problem.

5.2 – Characterization of the lfp-Semantics

This characterization must take into account both finite and infinite paths of the
semi-automaton AT.

Proposition 22  
Let T be a terminology and let AT be the corresponding semi-automaton. Let I be
the lfp-model of T defined by the primitive interpretation J and let A be a concept
name occurring in T. For any d0 ∈ dom(I) we have d0 ∈ AI  iff  the following
two properties hold:
(P1) For all primitive concepts P, all words W ∈ L(A,P) and all individuals 

7 Starting with trim automata guarantees this property.
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e ∈ dom(I), (d0,e) ∈ WI implies e ∈ PI.
(P2) For all infinite paths A, W1, C1, W2, C2, W3, C3, ..., and all individuals

d1, d2, d3, ... there exists n ≥ 1 such that (dn–1,dn) ∉ WnI.

A proof of this proposition can be found in Appendix B. To illustrate the
effect that condition P2 has, let us reconsider the “finite directed acyclic graph”
example of the introduction. Thus, consider the terminology T that consists of
the single axiom

Dag = Node ® ∀arc: Dag.

The primitive interpretation J is defined by dom(J) := {a, b, c, d} =: NodeJ, and
arcJ := {(a,b), (b,b), (c,d)}. The concept Node is the only primitive concept, and
since NodeJ = dom(J), all elements of dom(J) satisfy condition P1. Thus,
Proposition 19 yields that the greatest fixed-point model induced by J interprets
Dag as the whole domain dom(J). Condition P2, however, is only satisfied for c
and d, but neither for a nor for b. In fact, there is an infinite path Dag, arc, Dag,
arc, Dag, arc, ... and we have an infinite sequence of individuals a, b, b, b, ...
such that (a,b) ∈ arcJ and (b,b) ∈ arcJ. More generally, it is easy to see that
conditions P2 excludes a node from the extension of Dag if, from this node, one
can reach a cyclic path in the graph described by the arc-relation. The same is
true for infinite instead of cyclic paths in the graph described by the arc-relation.
This shows that in this case lfp-semantics is more appropriate than gfp-
semantics.

As a consequence of condition P2 of the proposition, ε-cycles in AT—i.e.,
non-empty paths of the form B, ε, ..., ε, B—are important for the lfp-
semantics. In particular, inconsistency of concepts can be described with the
help of ε-cycles. We say that the concept A of T is inconsistent w.r.t. lfp-
semantics iff it has the empty extension in all lfp-models of T.

Corollary 23  
The concept A is inconsistent w.r.t. lfp-semantics if and only if there exists a
path with label ε from A to a state B that is the initial state of an ε-cycle.

Proof  
(1) Assume that there is a path A, ε, ..., ε, B and a non-empty path B, ε, ..., ε,
B. Thus we have an infinite path starting with A where all transitions are labeled
by ε. Since dεId for all lfp-models I and individuals d ∈ dom(I), property (P2)
of the proposition is never satified for A and arbitrary d. Hence A is
inconsistent.
(2) Assume that A is inconsistent w.r.t. lfp-semantics. We define a primitive
interpretation J as follows:  dom(J) := {d0}, PJ := {d0} for all primitive concepts
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P, and RJ := Ø for all roles R.
Let I be the lfp-model of T defined by J. Since A is inconsistent, we have d0 ∉
AI. The definition of J implies that property (P1) of Proposition 22 holds for A,
d0. Hence property (P2) cannot hold. This means that there exists an infinite
path A, W1, C1, W2, C2, W3, C3, ..., and individuals d1, d2, d3, ... such that
(dn–1,dn) ∈ WnI for all n ≥ 1. The definition of J implies dn = d0 and Wn = ε for
all n ≥ 1. Hence there is an infinite path starting with A where all transitions are
labeled by ε, and since AT has only finitely many states, there is a state B that
occurs infinitely often in this path.  ❏

An easy consequence of this corollary is that inconsistency of concepts w.r.t.
lfp-semantics can be decided in linear time. Starting from A, one has to search
along ε-transitions for an ε-cycle.

Because of the role ε-cycles play for inconsistency, the semi-automaton AT
has to be modified before we can express subsumption w.r.t. lfp-semantics. We
add a new state Qloop to AT, a transition with label ε from Qloop to Qloop, and
for each role R in T a transition with label R from Qloop to Qloop. For any state B
of AT lying on an ε-cycle, we add a transition with label ε from B to Qloop, and
for any primitive concept P we add a transition with label ε from Qloop to P.
This modified semi-automaton will be called BT.

The effect of this modification is as follows: If A is inconsistent w.r.t. lfp-
semantics—i.e., by Corollary 23, there exists a path with label ε from A to a
state B in AT that is the initial state of an ε-cycle in AT—then we have LBT(A,P)
= Σ*  for all primitive concept P, and UBT(A) = Σ*  ∪ Σω in the semi-automaton
BT. This means that, for the smallest concepts, the languages are made as large
as possible.

Obviously, LAT(B,P) ⊆ LBT(B,P) and UAT(B) ⊆ UBT(B) for all concepts B.
More precisely,  LBT(B,P) = LAT(B,P) ∪ {UV; U is a finite word in UAT(B)
and V ∈ Σ*} and UBT(B) = UAT(B) ∪ {UV; U is a finite word in UAT(B) and V
∈ Σ*  ∪ Σω}. This is so because, obviously, U is a finite word in UAT(B) iff U
is the label of a finite path in AT from B to a concept C which lies on an ε-cycle
in AT.

Theorem 24  
Let T be a terminology and let BT be the corresponding modified semi-
automaton. Then A –lfp,T B  iff  UBT

(B) ⊆ UBT
(A) and LBT

(B,P) ⊆ LBT
(A,P)

for all primitive concepts P.

The proof of the theorem is given in the Appendix B. In Example 18, B does
not subsumes A w.r.t. lfp-semantics since U(B) contains the infinite word
SRRR..., which is not in U(A).
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If we want to decide subsumption with the help of this theorem, we have to
show how the inclusion “UBT(B) ⊆ UBT(A)” can be decided. It is possible to
split this problem into two subproblems. Let FBT contain all finite words of UBT
and let IBT contain all infinite words of UBT. Obviously, UBT(B) ⊆ UBT(A) iff
FBT(B) ⊆ FBT(A) and IBT(B) ⊆ IBT(A).

Lemma 25  
Let B be an arbitrary semi-automaton with word transitions. Then FB(B) ⊆
FB(A) can be decided by a PSPACE-algorithm.

Proof  
The semi-automaton B = (Σ,Q,E) is modified to a semi-automaton C = (Σ,Q ∪
{Fin},E’) where Fin is a new state and E’ := E ∪ {(C,ε,Fin); C ∈ Q and C lies
on an ε-cycle}. Obviously, this modification can be done in polynomial time.

Claim: For all states A ∈ Q we have FB(A) = LC(A,Fin).
Proof of the Claim.  (1) Assume that W ∈ FB(A). Then there exists an
infinite path A, W1, C1, W2, C2, W3, C3, ... in B that has W as label. Since W
is a finite word almost all labels Wi have to be empty. Let k ≥ 1 be such that Wi
= ε for all i ≥ k. Then W = W1…Wk-1 and there exist i, j such that k ≤ i < j and
Ci = Cj. This means that Ci lies on an ε-cycle and W is the label of path from A
to Ci. But then W ∈ LC(A,Fin).
(2) Assume that W ∈ LC(A,Fin). This means that there exists a path in B with
label W from A to a state C that lies on an ε-cycle. Now W ∈ FB(A), since there
is an infinite path A, W, C, ε, C, ε, … with label W.  ❏ (Claim)

The problem LC(B,Fin) ⊆ LC(A,Fin) is an inclusion problem for regular
languages, which can be decided by a PSPACE-algorithm.  ❏

Lemma 26  
Let B be an arbitrary semi-automaton with word transitions. Then IB(B) ⊆ IB(A)
can be decided by a PSPACE-algorithm.

Proof  
The proof proceeds in three steps.
(1) The semi-automaton with word transitions B = (Σ,Q,E) can be modified in
polynomial time to a semi-automaton with letter transitions A = (Σ,Q1,E1) such
that the following properties hold:

(1.1) Q ⊆ Q1;  
(1.2) There does not exist an infinite path in A using only states of Q1 \ Q;
(1 .3 ) For all A, B in Q and all finite words W ≠ ε: 

W ∈ LB(A,B) iff W ∈ LA(A,B).

The additional states in Q1 are intermediate states that are necessary for the
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elimination of transitions that are labeled by words of length greater than 1.
Obviously, these intermediate states cannot give rise to new infinite paths. For
the elimination of ε-transitions, see [19], p. 26, Theorem 2.2.

Claim 1: For all states A ∈ Q we have IB(A) = IA(A).
Proof of the Claim.  Let W be an infinite word in IB(A), i.e., there exists an
infinite path A, W0, C1, W1, C2, W2, C3, ... in B that has W as label. Since W
is an infinite word, there exist infinitely many indices 0 < i1 < i2 < … such that
the words W0…W i1-1, Wi1…W i2–1, … are not empty. By property (1.3),
W0…Wi1–1 ∈ LA(A,Ci1), Wi1…Wi2–1  ∈ LA(Ci1,Ci2), … . This shows that
there exists an infinite path from A with label W in A, i.e., W ∈ IA(A).
On the other hand, let W be an infinite word in IA(A), i.e., there exists an
infinite path A, W0, C1, W1, C2, W2, C3, ... in A that has W as label. By
property (1.2), there exist infinitely many indices 0 < i1 < i2 < … such that Ci1,
Ci2, … are in Q. By property (1.3), W0…Wi1–1 ∈ LB(A,Ci1), Wi1…Wi2–1  ∈
LB(Ci1,Ci2), … . This shows that there exists an infinite path from A with label
W in B, i.e., W ∈ IB(A).  ❏ (Claim 1)

(2) Without loss of generality we may now assume that all states of A lie on
some infinite path. The other states can easily be eliminated in polynomial time.
For a state A of A we define EA(A) := ∪C∈Q1LA(A,C).

Claim 2: For all states A, B ∈ Q1 we have IA(B) ⊆ IA(A)  iff  EA(B) ⊆ EA(A).
Proof of the Claim.  Assume that W ∈ IA(B) \ IA(A). Then all finite initial
segments U of W are in EA(B). We cannot have all finite initial segments U of
W in EA(A) since, by König’s Lemma, this would imply that W ∈ IA(A).
On the other hand, assume that U ∈ EA(B) \ EA(A). Since all states of A lie on
some infinite path, the path with label U can be extended to an infinite path, i.e.,
U is the initial segment of some infinite word W ∈ IA(B). Now W ∉ IA(A)
since otherwise we would have U ∈ EA(A).  ❏ (Claim 2)

(3) Obviously, the languages EA(A) are regular languages defined by A. Hence
there is a PSPACE-algorithm that decides EA(B) ⊆ EA(A).  ❏

The two lemmata together with the theorem show that subsumption w.r.t.
lfp-semantics can be decided by a PSPACE-algorithm.

Corollary 27  
The problem of determining subsumption w.r.t. lfp-semantics is PSPACE-
complete.

Proof  
It remains to be shown that this problem is PSPACE-hard. This will be shown
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by reducing the inclusion problem for regular languages to the subsumption
problem. Assume that A1 = (Σ,Q1,E1) and A2 = (Σ,Q2,E2) are two semi-
automata8  defining the regular languages L1 = LA1(p1,q1) and L2 = LA2(p2,q2).
Without loss of generality we may assume that Q1 and Q2 are disjoint and that
A1 and A2 are trim (see proof of Corollary 21). We consider the semi-automaton
A = (Σ,Q1 ∪ Q2 ∪ {t, f},E), where t and f are a new states not occurring in Q1
∪ Q2, and E = E1 ∪ E2 ∪ {(q1,ε,t), (q2,ε,t)} ∪ {(p1,ε,f), (p2,ε,f)} ∪ {(f, σ,f);
σ ∈ Σ}. Obviously, LA1(p1,q1) = LA(p1,t) and LA2(p2,q2) = LA(p2,t). In
addition, UA(p1) = Σω = UA(p2).
It is easy to see that A = AT = BT for a terminology T that has the states in Q1 ∪
Q2 ∪ {f} as its defined concepts and the state t as the only primitive concept.
But then L1 ⊆ L2 if and only if p2 –lfp,T p1.  ❏

5.3 – Characterization of the Descriptive Semantics

Firstly, we need a proposition for A-gfp-models (see Corollary 4) that is similar
to Proposition 19 for gfp-models.

Proposition 28  
Let T be a terminology and let AT be the corresponding semi-automaton. Let J
be a primitive interpretation and let A be a tuple such that TJ(A) ⊆ A. Let I be the
model of T defined by J and the tuple A-gfp(TJ) (see Corollary 4).
For any concept A and any individual d ∈ dom(I) we have: d ∈ AI iff the
following two properties hold:
(1) For all primitive concepts P, all words W ∈ L(A,P), and all individuals 

e ∈ dom(I), (d,e) ∈ WI implies e ∈ PI.
(2) For all defined concepts B, all words W ∈ L(A,B), and all individuals 

e ∈ dom(I), (d,e) ∈ WI implies e ∈ (A)j  (where j = index(B)).

The proof is deferred to Appendix C. Using this proposition, we can
characterize subsumption w.r.t. descriptive semantics. Infinite paths are still
important but it is not enough to consider just their labels. The states that are
reached infinitely often by this path are also significant. An infinite path that has
initial state A and reaches the state C infinitely often will be represented in the
form A, U0, C, U1, C, U2, C, ... where the Ui are labels of non-empty paths
from A to C for i = 0 and from C to C for i > 0.

Theorem 29  
Let T be a terminology and let AT be the corresponding semi-automaton. Let A,
B be concepts in T. Then we have A –T B iff the following two properties hold:

8Without loss of generality the transitions are only labeled by letters of the alphabet.
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(P1) For all primitive concepts P, L(B,P) ⊆ L(A,P) holds.
(P2) For all defined concepts C and all infinite paths of the form B, U0, C, 

U1, C, U2, C, ..., there exists k ≥ 0 such that U0…Uk ∈ L(A,C).

Again, the proof can be found in the appendix. This theorem clearly shows
that structurally identical definitions need not lead to equivalent concepts. The
names chosen for defined concepts that lie on infinite paths are also relevant. For
the T-box

Momo = Man ® ∀child: Momo,

Mnfo = Man ® ∀child: Mnfo,

there is an infinite path Momo, child, Momo, child, ... in the corresponding semi-
automaton, but there is no k such that childk+1 ∈ L(Mnfo,Momo). This shows that
Mnfo is not subsumed by Momo w.r.t. descriptive semantics.

If we want to decide subsumption using this theorem, it remains to be shown
how (P2) can be decided for given states A, B, C of a semi-automaton. For this
problem we cannot obtain an ad hoc reduction to an inclusion problem for
regular languages. In the next section we shall see that the problem can be
reduced to an inclusion problem for certain languages of infinite words, which
have already been considered in the context of monadic second-order logic (see
[8] and [12], Chapter XIV ).

One should note, however, that it might not be the best solution to decide
(P2) for each state C separately. For a fixed state C, it is easy to show that
deciding (P2) is PSPACE-hard. It is not yet clear whether deciding the
conjunction for all C is also PSPACE-hard.

6 – Büchi Automata and Subsumption w.r.t. Descriptive Semantics

Let A = (Σ,Q,E) be a semi-automaton with letter transitions and let I, T be
subsets of Q. Since we are interested in languages of infinite words accepted by
the automaton, we call A together with I, T a Büchi automaton. The language
BA(I,T) ⊆ Σω accepted by this automaton is defined as BA(I,T) := {W ∈ Σω;
W is the label of an infinite path starting from some state in I and reaching some
state of T infinitely often}.

Let L ⊆ Σ*  be an arbitrary language of finite words. Then Lω is the set of all
infinite words W that can be obtained as W = W1W2W3… where W1, W2, W3,
… are non-empty words in L. The languages Lω for regular L can be used for
an alternative characterization of the languages accepted by Büchi automata.
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Theorem 30  (Büchi-McNaughton)
( 1 ) For any language L ⊆ Σω the following two conditions are equivalent:

(1.1) L = BA(I,T) for a Büchi automaton A.
(1.2) L is the finite union of languages H⋅Kω where H and K are regular
languages in Σ* .9

( 2 ) The class of all languages accepted by Büchi automata is closed under the 
Boolean operations union, intersection and complement.

Proof  
See [12], p.382, Theorem 1.4. The proof is constructive, but it takes eight
pages, which shows that we are dealing with a hard problem.  ❏

As an easy consequence of this theorem we obtain

Corollary 31  
The inclusion problem is decidable for the class of all languages accepted by
Büchi automata.

Proof  
Obviously, L1 ⊆ L2 iff L 1 ∩ (Σω \ L2) = Ø. Thus the inclusion problem can be
reduced to the emptiness problem since the proof of Theorem 1.4 in [12] is
effective, i.e., from given Büchi automata for L1 and L2 one can effectively
construct a Büchi automaton for L1 ∩ (Σω \ L2). Note, however, that this
automaton may have a size that is exponential in the size of the initial automata
(see [34,39] for size bounds for the complement automaton).
Let L = BA(I,T) for a Büchi automaton A. It is easy to see that L ≠ Ø iff there
exists i ∈ I, t ∈ T such that there is a path from i to t and a path from t to t. This
is an easy search problem in a graph, which can be done in time polynomial in
the size of A.  ❏

The argument used in the proof of Corollary 31 does not yield the complexity
of the inclusion problem. However, [39] shows that equality of languages
accepted by Büchi automata can be decided with a PSPACE-algorithm. Since L1
⊆ L2 iff L 1 ∩ L2 = L1, and since the automaton for the intersection can be
constructed in polynomial time (see [40], proof of Lemma 1.2), we obtain a
PSPACE-algorithm for the inclusion problem. On the other hand, inclusion of
regular languages can be reduced to inclusion of languages accepted by Büchi
automata as follows. Let L1, L2 be regular languages over Σ, and let # be a
symbol not contained in Σ . Then L1 ⊆  L2 iff L 1⋅{#} ω  ⊆  L2⋅{#} ω . By
Theorem 30, L1⋅{#} ω)and L2⋅{#} ω  are languages accepted by Büchi

9The language H⋅Kω consists of the infinite words W0W1W2W3… where W0 ∈ H and
W1, W2, W3, … are non-empty words in K.
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automata. Thus we have shown:

Proposition 32  
The inclusion problem for the class of all languages accepted by Büchi automata
is PSPACE-complete.

It remains to be shown that our problem (P2) from Section 5.3 can be
reduced to an inclusion problem for languages accepted by Büchi automata. Let
B = (Σ,Q,E) be a semi-automaton with word transitions, and let A, B, C be
states in Q. We want to decide whether the following property holds:
(P2) For all infinite paths of the form B, U0, C, U1, C, U2, C, ..., there

exists k ≥ 0 such that U0…Uk ∈ L(A,C).
Let # be a new symbol not contained in Σ and let p, q be states in A. We

define the language Lp,q over the alphabet Σ as

Lp,q := {W; W ∈ Σ*  is the label of a non-empty path from p to q}.

For a language L over Σ,  the language L# over Σ# := Σ ∪ {#} is defined as

L# := {W#; W ∈ L}.

Obviously, the languages Lp,q and Lp,q# are regular. Let ψ: Σ#*  → Σ*  be the
homomorphism defined by ψ(σ) = σ for σ ∈ Σ and ψ(#) = ε. Then ψ-1(Lp,q) :=
{W ∈ Σ#* ; ψ(W) ∈ Lp,q} and ψ-1(Lp,q)# are regular (see [19], Theorem 3.5).

Lemma 33  
(P2) holds for A, B, C iff (LB,C#)(LC,C#)ω ⊆ (ψ-1(LA,C)#)(LC,C#)ω.

Proof  
(1) Assume that (P2) holds. Let W be an element of (LB,C#)(LC,C#)ω, i.e., W
= U0#U1#U2#…, where U0 is the label of a non-empty path from B to C and
the Ui for i ≥ 1 are labels of non-empty paths from C to C. By (P2) there exists
k ≥ 0 such that U0…Uk ∈ L(A,C). Hence U0…Uk is an element of LA,C. But
then U0#…#Uk is an element of ψ -1(L A,C) and thus W = U0#U1# …
Uk#Uk+1#… ∈ (ψ-1(LA,C)#)(LC,C#)ω.
(2) Assume that (LB,C#)(LC,C#)ω ⊆ (ψ-1(LA,C)#)(LC,C#)ω. Let B, U0, C, U1,
C, U2, C, ... be an infinite paths starting with B and reaching C infinitely often.
Then we know that the infinite word U0#U1#U2#… is an element of
(LB,C#)(LC,C#)ω ⊆ (ψ-1(LA,C)#)(LC,C#)ω. Since the last symbol of any word
in in ψ-1(LA,C)# is #, there exists k ≥ 0 such that U0#…Uk# is an element of
ψ-1(LA,C)#. But then U0#…Uk-1#Uk ∈ ψ-1(LA,C), and U0…Uk ∈ LA,C.  ❏

We know by Theorem 30 that (LB,C#)(LC,C#)ω and (ψ-1(LA,C)#)(LC,C#)ω

are languages accepted by Büchi automata. Thus, by Proposition 32, the
inclusion problem (LB,C#)(LC,C#)ω ⊆ (ψ-1(LA,C)#)(LC,C#)ω can be decided by
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a PSPACE-algorithm. This yields

Corollary 34  
Subsumption w.r.t. descriptive semantics can be decided with polynomial space
using Büchi automata.

Büchi automata are, however, not indispensable for deciding subsumption
w.r.t. gfp-semantics. Using Theorem 29 from above, B Nebel was able to
characterize equivalence of concepts w.r.t. descriptive semantics with the help of
deterministic finite automata. This characterization also yields PSPACE-
algorithms for equivalence and for subsumption w.r.t. descriptive semantics (see
[32]). It is still an open problem whether these problems are PSPACE-hard.

7 – Extensions of the Results for gfp-Semantics

We consider two extensions of the results for gfp-semantics. In the first
subsection, we shall allow an additional concept forming construct, namely so-
called exists-restrictions. In the second subsection, we shall introduce an
assertional component into our terminological system, and consider hybrid
inferences with respect to the terminological and the assertional part of the
knowledge base.

7.1 – The Language FL¯ and gfp-Semantics

In order to extend our language FL0 to the language FL¯ of [23], we have to
add a fourth rule to the definition of concept terms (Definition 6): Let R be a role
name.

(4) Then ∃R is a concept term. (exists-restriction)

For example, using this new construct, the concept Father can be defined as

Father = Man ® ∃child

This means that a father is a man that has a child. The semantics of the exists-
restriction is defined in the obvious way, namely

(∃R)I := {d ∈ dom(I); there exists e ∈ dom(I) such that (d,e) ∈ RI}.

Let T be a terminology of the language FL¯ and let J be a primitive
interpretation. The mapping TJ is defined as in Definition 12. It is easy to see
that this mapping is still downward ω-continuous. Hence TJ has a greatest fixed-
point, which can be obtained as gfp(TJ) = ∩i≥0TJi(top).
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Any concept term of FL¯ can be transformed into a finite conjunction of
terms of the form ∀R1:∀R2:...∀Rn:D, where D is a concept name or a term of
the form ∃R. As in Section 5, the prefix “∀R1:∀R2:...∀Rn” will be abbreviated
by “∀W” where W = R1R2  ...Rn. Let T be a terminology of FL¯. The
corresponding (nondeterministic) semi-automaton AT is defined as in Definition
17. The only difference is that we also have the terms ∃R occurring in T as states
of AT. These states are similar to the states P for primitive P in that they do not
have successor states. We shall see that this similarity also extends to the
characterization of gfp-semantics and of subsumption w.r.t. gfp-semantics.

Proposition 35  
Let T be a terminology of FL¯, and let AT be the corresponding semi-automa-
ton. Let I be a gfp-model of T, and let A be a concept name occurring in T. For
any d ∈ dom(I) we have  d ∈ AI   iff  the following two properties hold:
( 1 ) For all primitive concepts P, all words W ∈ L(A,P), and all individuals 

e ∈ dom(I), (d,e) ∈ WI implies e ∈ PI.
( 2 ) For all terms ∃R in T, all words W ∈ L(A,∃R), and all individuals e ∈ 

dom(I), (d,e) ∈ WI implies e ∈ (∃R)I, i.e., there is f ∈ dom(I) such that 
(e,f) ∈ RI.

Proof 
The proof is very similar to the proof of Proposition 19.  ❏

Theorem 36  
Let T be a terminology of FL¯, and let AT be the corresponding semi-automa-
ton. Let I be a gfp-model of T and let A, B be concept names occurring in T.
Then we have:

A  –gfp,T B   iff L(B,P) ⊆ L(A,P) for all primitive concepts P in T, and 
L(B,∃R) ⊆ L(A,∃R) for all terms ∃R occurring in T.

A proof of the theorem is given in Appendix D. The theorem shows that,
with respect to subsumption, terms of the form ∃R behave just like primitive
concepts. As a consequence, we obtain:

Corollary 37  
With respect to gfp-semantics, the subsumption problem for FL¯ can be reduced
in linear time to the subsumption problem for FL0.

Proof  
Assume that T is a T-box of FL¯. For any role R in T let PR be a new primitive
concept. Now substitute any ∃R term in T by PR. This yields a T-box T0 of
FL0, which has the same size as T. In addition, Theorems 20 and 36 imply that
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A –T B iff A –T0
 B.  ❏

Subsumption relationships w.r.t. gfp-semantics in FL¯ can thus be
computed by a PSPACE-algorithm. Since FL0 is a sublanguage of FL¯, the
subsumption problem w.r.t. gfp-semantics in FL¯ is also PSPACE-hard.

Corollary 38  
The problem of determining subsumption w.r.t. gfp-semantics in FL¯ is
PSPACE-complete.

The characterization of descriptive semantics for FL0 (Proposition 28 and
Theorem 29) can be generalized to FL¯ in an analogous way, i.e., the terms ∃R
are treated like primitive concepts as in condition (2) of Proposition 35. For lfp-
semantics, one can also prove an analogous generalization of Proposition 22.
For subsumption, one runs into new problems, though. The reason is that there
exists an additional source of inconsistency (see Example 39 below). For this
reason, an appropriate generalization of Theorem 24 probably requires a more
sophisticated modification of the semi-automaton.

Example 39 
Consider the terminology T:  A = ∀S:A,  B = ∀R:B ® ∃R. The concept B has
the empty extension in all lfp-models of T. In fact, assume that J is a primitive
interpretation, and let λ be the least ordinal such that (TJ↑λ)2 ≠ Ø (where
index(B) = 2). Evidently, λ is a successor ordinal, i.e., λ = α + 1 for some
ordinal α. Let I be the interpretation of T defined by J and TJ↑α. Now d ∈
(TJ↑λ)2 means that d ∈ (∀R:B)I ∩ (∃R)I. From d ∈ (∃R)I we obtain some
individual e such that dRIe, and d ∈ (∀R:B)I yields e ∈ BI. This contradicts the
fact that BI = (TJ↑α)2 = Ø.
Since B is inconsistent w.r.t. lfp-semantics, we know that B –lfp,T A. But
UBT(A) = {SSS…} ⊄ UBT(B) = {RRR…}.

7.2 – Extending FL0 by an Assertional Formalism

A terminology (T-box) T restricts the number of possible worlds (from all
interpretations to the models of T); a world description (A-box) A10 describes a
part of a given world. Terminological systems that allow the user to state both
terminological and assertional knowledge are sometimes called hybrid systems.

Definition 40 (world descriptions, A-boxes)
Let C be a set of concept names, R be a set of role names, and I be a set of

10In this subsection, A will always stand for an A-box. To avoid overloading, A will no
longer be used as a metavariable for concept names.
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individual names. A world description (A-box) is a finite set of axioms of the
form C(a) or R(a,b) where a, b are constants in I, C is a concept name, and R is
a role name.

For example, let Man be a concept name, child be a role name, and WILLY and
BRIAN be individual names. Then Man(WILLY) and child(WILLY,BRIAN) can be
part of a world description. This means that Willy is a man, who has the child
Brian.

Definition 41  (interpretations and models)
Let T be a T-box of FL0 and A be an A-box defined over the same sets of
concept and role names. An interpretation of T (see Definition 8) can be extended
to an interpretation of T ∪ A as follows: the interpretation function does not only
assign subsets of dom(I) to concept names, and binary relations on dom(I) to
role names, but also individuals of dom(I) to individual names, i.e., for any
individual name a, aI is an element of dom(I).
An interpretation I of T ∪ A is a model of T ∪ A  iff  I is a model of T and
satisfies

aI ∈ CI for all axioms C(a) in A, (aI,bI) ∈ RI for  all axioms R(a,b) in A, and
aI ≠ bI for all individual names a ≠ b in I (unique name assumption).11

A model I of T ∪ A is a gfp-model (lfp-model) of T ∪ A  iff  I is a gfp-model
(lfp-model) of T.

Let T be a T-box of FL0. If we take a primitive interpretation J with PJ =
dom(J) for all primitive concepts P, and RJ = dom(J) ≈ dom(J), then gfp(TJ) =
top by Proposition 19. This shows that the gfp-model of T defined by J is a
model of T ∪ A for any A-box A. Thus any combination T ∪ A of a T-box of
FL0 with an A-box is consistent w.r.t. gfp-semantics, and w.r.t. descriptive
semantics. But such a combination need not have an lfp-model. In fact, if C is a
concept in T that is inconsistent w.r.t lfp-semantics (see Corollary 23), and A
contains an axiom C(a), then T ∪ A does not have an lfp-model.

An important inference service concerning both T-box and A-box is
computing instance relationships, i.e., determining which new assertions of the
form C(a) can be deduced from a given T-box and A-box.

Definition 42 (instance relationship)
Let T be a T-box of FL0 and A be an A-box defined over the same sets of
concept and role names. Let a be an individual name in A, and C be a concept
name in T. Then

11Note that we do not impose a closed world assumption; e.g., if D(b) is not in A, we
may nevertheless have bI ∈ DI in a model I of T ∪ A.
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a ∈T∪A C  iff  aI ∈ CI for all models I of T ∪ A,

a ∈lfp,T∪A C  iff  aI ∈ CI for all lfp-models I of T ∪ A,

a ∈gfp,T∪A C  iff  aI ∈ CI for all gfp-models I of T ∪ A.

In this case we say that a is an instance of C in T ∪  A w.r.t. descriptive
semantics (resp. lfp-semantics, gfp-semantics).

In the following we shall only consider instance relationships with respect to
gfp-semantics. We have seen that a T-box T of FL0 gives rise to a semi-
automaton AT that has the concept names of T as states, and the set of role
names in T as alphabet. Without loss of generality we may assume that AT is a
semi-automaton with letter transitions. In fact, Proposition 19 and Theorem 20
show that, for gfp-semantics, we are only interested in regular languages of the
form LAT(A,P). These languages do not change if we transform the semi-
automaton with word transitions into a semi-automaton with letter transitions.
An A-box A defines a semi-automaton (with letter transitions) AA as follows: the
states of AA are the individual names of A; the alphabet of AA are the role names
occurring in A; an axiom of the form R(a,b) gives rise to a transition from a to b
with label R.

We can now build the product semi-automaton BT∪A = AT ≈ AA of AT and
AA (see e.g., [12], p. 17). The states of BT∪A are pairs (C,a) where C is a state
of AT and a is a state of AA; BT∪A has a transition with label R from (C,a) to
(D,b) iff AT has a transition from C to D with label R, and AA has a transition
from a to b with label R. Obviously, W ∈  LBT∪A ((C,a),(D,b)) iff W ∈
LAT(C,D) and W ∈ LAA(a,b).

Theorem 43  
Let T be a T-box of FL0 and A be an A-box defined over the same sets of
concept and role names. Let b be an individual name in A and B be a concept
name in T. Then  b ∈gfp,T∪A B  iff  for all primitive concepts P, and all words
W ∈ LAT

(B,P) there exist concepts E, F, a word U, and an individual name f
such that

(1) W ∈ LAT
(E,P),

(2) U ∈ LBT∪A
((F,f),(E,b)) and F(f) is an axiom in A.

Since, at first sight, the conditions in the theorem seem to be rather complex,
we try to give an intuitive explanation what these conditions mean. A formal
proof of the theorem can be found in Appendix E. First note that “W ∈
LAT(B,P)” means that any element of (the extension of) B must satisfy the value
restriction ∀W: P. Second, we will argue that conditions (1) and (2) of the
theorem imply that (the interpretation of) b satisfies this value restriction. From
condition (1) we can deduce that any element of E satisfies ∀W: P, and thus it is
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sufficient to convince ourself that conditions (2) implies that b is an element of
E. First, note that F(f) ∈  A implies that f is an element of F, and U ∈
LBT∪A((F,f),(E,b)) implies that U ∈ LAT(F,E), i.e., f satisfies the restriction
∀U: E. But if we consider U ∈ LBT∪A((F,f),(E,b)) with respect to the second
component of the product semi-automaton, then we see that b can be reached
from f via U (according to the A-box), which implies that b must be in E.

It remains to be shown that the property stated on the right hand side of the
theorem can be decided for given b, B. To this purpose, we define Q(b) := {E;
there exists a state (F,f) in B T∪ A  and a word U such that U ∈
LBT∪A

((F,f),(E,b)) and F(f) is an axiom in A}. Computing Q(b) for a give
individual name b is a simple search problem in a graph; this can be done in time
polynomial in the size of BT∪A.

Lemma 44  
The right hand side of the theorem holds for given b, B if and only if for all
primitive concepts P, LAT

(B,P) ⊆ ∪E∈Q(b)LAT
(E,P) holds.

Proof  
(1) Assume that LAT(B,P) ⊆ ∪E∈Q(b)LAT(E,P) holds, and let W be an element
of LAT(B,P). Then W ∈ LAT(E,P) for some E ∈ Q(b). The definition of Q(b)
yields F, f and a word U such that (1) and (2) of the theorem hold.
(2) Assume that the right hand side of the theorem holds, and let W be an
element of LAT(B,P) where P is primitive. Then we get E, F, U, f satisfying (1)
and (2) of the theorem. This means that W ∈ LAT(E,P) and E ∈ Q(b).  ❏

The lemma together with the theorem shows that there is a PSPACE-
algorithm for instance testing since the instance problem “b ∈gfp,T∪A B?” can be
reduced to an inclusion problem for regular languages in polynomial time. On
the other hand, subsumption determination can be reduced to instance testing in
linear time.

Lemma 45  
Let T be a T-box of FL0, and let C, D be concept names occurring in T. Let A
be the A-box containing C(c) as the only axiom. Then we have c ∈gfp,T∪A D if
and only if C –gfp,T D.

Proof  
(1) The “if” direction is trivial.
(2) Assume that C «gfp,T D, i.e., there exists a gfp-model I of T such that CI is
not contained in DI. This means that there exists an individual e ∈ dom(I) such
that e ∈ CI \ DI. The interpretation I of T is extended to the interpretation I of T
∪ A by defining cI := e. Obviously, I is a model of T ∪ A, but cI ∉ DI. This
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shows that c ∉gfp,T∪A D.  ❏

Since the subsumption problem w.r.t. gfp-semantics in FL0 is PSPACE-
complete, we have thus proved:

Corollary 46  
Instance testing w.r.t. gfp-semantics in FL0 is PSPACE-complete.

8 – Conclusion and Related Work

We have restricted our attention to the rather small terminological representation
language FL0, because for this language the meaning of terminological cycles
with respect to different types of semantics—and in particular, the subsumption
problem with respect to these semantics—could completely be characterized with
the help of finite automata (see Section 5). These results may help to decide
what kind of semantics for cyclic definitions is most appropriate for a particular
representation task, possibly not only for this small language, but also for
suitably extended languages.

We have seen that the results for subsumption in FL0 can be generalized in
two directions. First, they have been extended to cyclic definitions in a larger
language: we have shown that our automata-theoretic approach also applies to
subsumption w.r.t. gfp-semantics in the language FL¯ of [23]. It is, however,
not clear how this approach could be extended to languages allowing both
conjunction and disjunction of concepts. Also note that in the presence of
negation of concepts, greatest and least fixed-point need no longer exist. As a
second way of extending the results of Section 5, we have shown that, for gfp-
semantics, hybrid inferences such as “instance testing” can also be treated by our
automata-theoretic approach.

Since the first publication of a preliminary version of this work in [2,3],
several other papers on cyclic definitions in terminological representation
languages have appeared. Dionne, Mays, and Oles [10,11] give an intensional
semantics for cyclic definitions in roughly the same language we have
considered here. This is done by mapping concept descriptions to (possibly non-
well-founded) sets that embody the “abstract structure” of the descriptions. In
[11] it is shown, however, that the “structural” subsumption relation obtained
this way coincides with subsumption w.r.t. gfp-semantics (as defined above).

As pointed out in the introduction, one motivation for using cyclic definitions
in terminologies is that they can be used to express transitive closure of roles.
Alternatively, one could allow for transitive closure as role constructor. In [4],
the role constructors union, composition, and transitive closure are added to
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terminological representation languages. For FL0, it is shown that this extension
has the same expressive power as FL0 with cyclic definitions interpreted by gfp-
semantics. For a considerably larger language, called ALC, subsumption in the
extended language, called ALC trans, is still decidable. Interestingly,
subsumption w.r.t. descriptive semantics for cyclic ALC-terminologies can be
reduced to the subsumption problem for ALC trans. Similar results have
independently been obtained by K. Schild as byproducts of the correspondence
he exhibits between ALCtrans and propositional dynamic logics (see [36]).

Employing a similar correspondence between ALC with cyclic definitions
and the propositional mu-calculus, Schild [37] and Giacomo and Lenzerini [15]
introduce a more flexible treatment of cyclic definitions in ALC, where lfp-, gfp-
and descriptive semantics coexist. [9] proposes to split the T-box into a
“schema” and a “view” terminology, where the schema terminology is
interpreted with descriptive semantics, and the view terminology is interpreted
with an appropriate fixed-point semantics. The idea is that the terminological
axioms in the view terminology are really seen as definitions (and thus must
yield a unique extension for the defined concepts), whereas the axioms in the
schema terminology function as integrity constraints (restricting the possible
extensions of the defined concepts).
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Appendix A: Proofs of the Results of Section 5.1

Proposition 19  
Let T be a terminology and let AT be the corresponding semi-automaton. Let I be
a gfp-model of T and let A be a concept name occurring in T. For any d ∈
dom(I) we have:  

d ∈ AI iff for all primitive concepts P, all words W ∈ L(A,P) and all
 individuals e ∈ dom(I): (d,e) ∈ WI implies e ∈ PI.

Proof  
If A is a primitive concept, then L(A,A) = {ε} and L(A,P) = Ø for A ≠ P. Since
εI = {(d,d); d ∈ dom(I)}, the proposition follows immediately.
Assume that A is a defined concept. The gfp-model I is given by a primitive
interpretation J and the tuple gfp(TJ) = ∩k≥0TJk(top). The defined concept A
corresponds to a component of this tuple, i.e., AI = (gfp(TJ))i for i = index(A).
(1) Assume that d ∉ AI. Then there exists k ≥ 0 such that d ∉ (TJk(top))i. We
proceed by induction on k.
For k = 0, we have d ∉ (top)i = dom(I), which is a contradiction.
For k > 0 we have d ∉ (TJ(TJk-1(top)))i. Let the defining axiom for A be of the
form A = … ® ∀W: B ® … and assume that ∀W: B is responsible for d ∉
(TJ(TJk-1(top)))i. This means that there exists e ∈ dom(I) such that dWIe and e
∉ BJ = BI (if B is a primitive concept) or e ∉ (TJk-1(top))j (if B is a defined
concept and index(B) = j). In the first case, B is a primitive concept and
obviously, W ∈ L(A,B). In the second case, we can apply the induction
hypothesis to e ∉ (TJk-1(top))j. Thus there exist a primitive concept P, a word V
∈ L(B,P) and an individual f ∈ dom(I) such that eVIf and f ∉ PI. But then WV
∈ L(A,P) and d(WV)If. This completes the proof of the “if” direction.
(2) Assume that there exist a primitive concept P, a word W ∈ L(A,P) and an
individual e ∈ dom(I) such that dWIe and e ∉ PI. Let W be the label of the (non-
empty) path A, U0, C1, …, Cn-1, Un, P. Since W = U0…Un and dWIe, there
are individuals d1, …, dn-1 such that dU0Id1…dn-1UnIe. We proceed by
induction on n.
For n = 0, W = U0 and the defining axiom for A is of the form A = … ® ∀W:
P ® … . Thus d ∉ (TJ(top))i.
For n > 0, we know by induction that d1 ∉ (Th(top))j for some h > 0 (where
index(C1) = j). But then d ∉ (Th+1(top))i. This completes the proof of the
proposition since AI = (gfp(TJ))i = ∩k≥0(TJk(top))i.  ❏

As an easy consequence of this proposition one obtains a characterization of
subsumption w.r.t  gfp-semantics.
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Theorem 20  
Let T be a terminology and let AT be the corresponding semi-automaton. Let I be
a gfp-model of T and let A, B be concept names occurring in T. Subsumption in
T can be reduced to inclusion of regular languages defined by AT. More
precisely,

A  –gfp,T B   iff   L(B,P) ⊆ L(A,P) for all primitive concepts P.

Proof  
(1) Assume that L(B,P) ⊄ L(A,P) for some primitive concept P, i.e., there is a
word W such that W ∈  L(B,P) \ L(A,P). Let W = R1R2...Rn for n (not
necessarily different) role names R1, R2, ..., Rn. We define the primitive
interpretation J as follows: dom(J) := {d0, …, dn}; QJ := dom(J) for all primitive
concepts Q ≠ P; PJ := dom(J) \ {dn}; RJ := {(di,di+1); 0 ≤ i ≤ n–1 and R =
Ri+1} for all roles R. The definition of the role extensions implies that d0VJdn iff
V = W.
Let I be the gfp-model defined by J. Since W ∈ L(B,P), d0WIdn and dn ∉ PI,
we know by Proposition 19 that d0 ∉ BI. On the other hand, assume that d0 ∉
A I. By Proposition 19, there exists a primitive concept Q, a word V ∈ L(A,Q)
and an individual f ∈ dom(I) such that d0V If and f ∉ QI. The definition of J
implies that Q = P and f = dn. But then d0V Idn yields V = W. This contradicts
our assumption that W ∉ L(A,P). Hence we have shown that d0 ∈ AI \ BI,
which implies that A «gfp,T B.
(2) Now assume that A «gfp,T B, i.e., there exists a gfp-model I and an
individual d ∈ dom(I) such that d ∈ AI \ BI. Assume that L(B,P) ⊆ L(A,P) for
all primitive concepts P. Since d ∉ BI, Proposition 19 says that there exists a
primitive concept P, a word W ∈ L(B,P) and an individual e ∈ dom(I) such that
dWIe and e ∉ PI. But then L(B,P) ⊆ L(A,P) yields W ∈ L(A,P) and thus d ∉
AI, which is a contradiction.  ❏

Appendix B: Proofs of the Results of Section 5.2

In order to obtain a characterization of lfp-semantics that is similar to the
characterization of gfp-semantics in Proposition 19, we need two lemmata.

Let J be a primitive interpretation of the terminology T, let A, B be defined
concepts in T, and let AT be the semi-automaton corresponding to T. The least
fixed-point of TJ can be obtained as lfp(TJ) = TJ↑α for some ordinal α. Without
loss of generality we may assume that α is a limit ordinal. This means that
lfp(TJ) = ∪λ<αTJ↑λ. Let I be the lfp-model of T defined by J. Assume that
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index(A) = i and index(B) = j, i.e., AI = (lfp(TJ))i and BI = (lfp(TJ))j. For an
individual d ∈ dom(I) we have d ∈ AI if and only if there exists λ < α such that
d ∈ (TJ↑λ)i.

Lemma 47  
Let ind(A) = i and ind(B) = j, and assume that d ∈ (TJ↑λ)i, dWIe and that
(A,W,B) is a transition of AT. Then there exists γ < λ such that e ∈ (TJ↑γ)j.

Proof  
The lemma is proved by transfinite induction on λ.
(1) For λ = 0, (TJ↑λ)i = (bottom)i = Ø. Hence there is no such individual d.
(2) For λ = δ + 1, TJ↑λ = TJ(TJ↑δ). The definition of A in T is of the form A =
… ® ∀W: B ® …  and we have d ∈ (TJ(TJ↑δ))i and dWIe. Thus e must be an
element of (TJ↑δ)j and we can take γ = δ.
(3) Let λ be a limit ordinal. Then TJ↑λ = ∪δ<λTJ↑δ, and thus d ∈ (TJ↑λ)i iff
there exists δ < λ such that d ∈ (TJ↑δ)i. If we apply the induction hypothesis to
δ, we get γ < δ < λ such that e ∈ (TJ↑γ)j.  ❏

Lemma 48  
Assume that d ∈ (TJ↑λ)i, that dWIe, and that W ∈ L(A,P). Then we have e ∈
PI.

Proof  
The lemma is proved by transfinite induction on λ.
(1) For λ = 0, there is no such individual d.
(2) For λ = δ + 1, TJ↑λ = TJ(TJ↑δ). Let W be the label of the (non-empty) path
A, U0, C1, …, Cn-1, Un, P. Since W = U0…Un and dWIe, there are individuals
d1, …, dn-1 such that dU0Id1…dn-1UnIe.
For n = 0, W = U0 and the defining axiom for A is of the form A = … ® ∀W: P
® … . Thus d ∈ (TJ(TJ↑δ))i and dWIe imply e ∈ PI.
For n > 0, the defining axiom for A is of the form A = … ® ∀U0: C1 ® …, and
thus d ∈ (TJ(TJ↑δ))i and dU0Id1 imply d1 ∈ (TJ↑δ)k (where the defined concept
C1 has index(C1) = k). The induction hypothesis for δ yields e ∈ PI.
(3) Let λ be a limit ordinal. Then TJ↑λ = ∪δ<λTJ↑δ and thus d ∈ (TJ↑λ)i iff
there exists δ < λ such that d ∈ (TJ↑δ)i. If we apply the induction hypothesis to
δ we get e ∈ PI.  ❏

We can now characterize lfp-semantics with the help of finite and infinite
paths in the automaton AT.

Proposition 22  
Let T be a terminology and let AT be the corresponding semi-automaton. Let I be
the lfp-model of T defined by the primitive interpretation J and let A be a concept
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name occurring in T. For any d0 ∈ dom(I) we have d0 ∈ AI  iff  the following
two properties hold:
(P1) For all primitive concepts P, all words W ∈ L(A,P) and all individuals 

e ∈ dom(I), (d0,e) ∈ WI implies e ∈ PI.
(P2) For all infinite paths A, W1, C1, W2, C2, W3, C3, ..., and all individuals 

d1, d2, d3, ... there exists n ≥ 1 such that (dn–1,dn) ∉ WnI.

Proof  
The case where A is a primitive concept is trivial. In the following, let A be a
defined concept.
(1) Assume that d0 ∈ AI = (lfp(TJ))i. Then there exists an ordinal λ such that d0
∈ (TJ↑λ)i, and thus property (P1) is an immediate consequence of Lemma 48. If
(P2) does not hold then there exists an infinite path A, W1, C1, W2, C2, W3,

C3, ..., and individuals d1, d2, d3, ... such that (dn–1,dn) ∈ WnI for all n ≥ 1. By
Lemma 47, there exist ordinals λ > λ1 > λ2 > λ3 > … such that dn ∈ (TJ↑λn)jn
(for all n ≥ 1 and appropriate indices jn). But there can be no such infinitely
decreasing chain of ordinals since the ordering of ordinals is well-founded.
(2) Assume that (P1) and (P2) hold. We define an ordering “>” on 3-tuples of
the form (W,d,B) where B is a defined concept, W is the label of a path from A
to B,12 and d is an individual with d0WId. Let P be the set of all such tuples and
let (V,d,B) and (W,e,C) be two elements of P. Then (V,d,B) > (W,e,C) iff W =
VU where U is the label of a non-empty path from B to C and dUIe. Obviously,
“>” is a strict partial ordering, and property (P2) ensures that this ordering is
well-founded. The following claim will be proved by Noetherian induction13 on
“>”.

Claim: For any (W,d,B) ∈ P there exists an ordinal λ < α such that
d ∈ (TJ↑λ)j (where index(B) = j).14

Proof of the claim.  (2.1) Let (W,d,B) be a minimal element of P. Let the
defining axiom of B be of the form B = … ® ∀U: C ® … ® ∀V: P …, where P
is primitive and C defined. The minimality of (W,d,B) implies that there does
not exist an individual e with dUIe. Assume that dVIe. Since WV ∈ L(A,P) and
d0(WV) Ie, property (P1) implies e ∈ PI. This shows that d ∈ (TJ(bottom))j.
Hence we can take λ = 1.
(2.2) Assume that (W,d,B) is not a minimal element of P. Let the defining
axiom of B be of the form B = ∀U1: C1 ® … ® ∀Un: Cn ® … ® ∀V: P …,
where P is primitive and the Ci are all the defined concepts in the definition of B.

12For A = B this may also be the empty path.
13See e.g., [13], p. 9, 10, for the definition and justification of Noetherian induction.
14Recall that α was a limit ordinal such that lfp(TJ) = TJ↑α.



F. Baader / Semantics of Terminological Cycles 43

As in (2.1) we can show for all individuals e that dVIe implies e ∈ PI. Assume
that dUi Ie and index(Ci) = k. We have (WUi,e,Ci) ∈  P  and (W,d,B) >
(WUi,e,Ci). Hence, by the induction hypothesis, there is an ordinal λ(i,e) < α
such that e ∈ (TJ↑λ(i,e))k. We define γ := sup{λ(i,e); where 1 ≤ i ≤ n and
dUiIe}. Then we have γ ≤ α and it is easy to see that d ∈ (TJ↑γ+1)j. But then d
∈ (TJ↑α+1)j and since TJ↑α is the fixed-point of TJ, d ∈ (TJ↑α)j. Since α is a
limit ordinal, this means that there exists λ < α such that we have d ∈ (TJ↑λ)j.
This completes the proof of the claim.  ❏ (Claim)

If we apply the claim to (ε,d0,A), we get d0 ∈ (TJ↑λ)i for some λ < α, and thus
d0 ∈ AI.  ❏

To take the role of ε-cycles into account, the semi-automaton AT is modified
as follows. We add a new state Qloop to AT, a transition with label ε from Qloop
to Qloop, and for each role R in T a transition with label R from Qloop to Qloop.
For any state B of AT lying on an ε-cycle, we add a transition with label ε from
B to Qloop, and for any primitive concept P we add a transition with label ε from
Qloop to P. This modified semi-automaton is called BT.

For all concepts B we thus have LBT(B,P) = LAT(B,P) ∪ {UV; U is a finite
word in UAT(B) and V ∈ Σ*} and UBT(B) = UAT(B) ∪ {UV; U is a finite word
in UAT(B) and V ∈ Σ*  ∪ Σω}.

Theorem 24  
Let T be a terminology and let BT be the corresponding modified automaton.
Then A –lfp,T B  iff  UBT

(B) ⊆ UBT
(A) and LBT

(B,P) ⊆ LBT
(A,P) for all primi-

tive concepts P.

Proof  
The proof is structured as follows: In part (1) we show that LBT(B,P) ⊄
LBT(A,P) implies A «lfp,T B. In part (2) and (3), the same is shown for the case
UBT(B) ⊄ UBT(A). In part (2) we assume that an infinite word is responsible for
UBT(B) ⊄ UBT(A), and in part (3) we assume that this is due to a finite word.
This will establish the “only if” direction of the theorem. Part (4) of the proof is
devoted to the “if” direction.
(1) Assume that LBT(B,P) ⊄ LBT(A,P), i.e., there is a word W = R1…Rn such
that W ∈ LBT(B,P) \ LBT(A,P). The primitive interpretation J is defined as
follows: dom(J) := {d0, …, dn};  QJ := dom(J) for all primitive concepts Q ≠ P;
PJ := dom(J) \ {dn}; RJ := {(di,di+1); 0 ≤ i ≤ n–1 and R = Ri+1} for all roles R.
The definition of the roles implies that d0VJdn iff V = W. Let I be the lfp-model
defined by J.
(1.1) If W ∈ LAT(B,P), then d0WIdn and dn ∉ PI imply that d0 ∉ BI because
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(P1) of Proposition 22 is not satisfied. If W ∈ LBT(B,P) \ LAT(B,P), then W =
UV where U ∈ UAT(B) ∩ Σ*  is the label of a path in AT from B to a concept C
that lies on an ε-cycle in AT. Since d0UIdk for some k ≤ n and dkεIdkεIdk…,
property (P2) of Proposition 22 is not satisfied, which yields d0 ∉ BI.
(1.2) On the other hand, assume that d0 ∉ AI. By Proposition 22, (P1) or (P2)
is not satisfied. In the first case, there exist a primitive concept Q, a word V ∈
LAT(A,Q) and an individual f ∈ dom(I) such that d0V If and f ∉ QI. The
definition of J implies that Q = P and f = dn. But then d0VIdn yields V = W. This
contradicts our assumption that W ∉ LBT(A,P) since LAT(A,P) ⊆ LBT(A,P). In
the second case, there exists an infinite path A, W1, C1, W2, C2, W3, C3, ... in
AT and individuals e0 = d0, e1, e2, e3, ... such that (em–1,em) ∈ WmI for all m >
0. The definition of J implies that there exists k ≥ 0 such that W1…Wk is a
prefix of W and Wk+1 = Wk+2 = … = ε. This means that Ck is inconsistent, and
thus by the definition of BT, W1…WkU is in LBT(A,P) for all words U. In
particular, this yields W ∈ LBT(A,P), which is a contradiction.
Hence we have shown that d0 ∈ AI \ BI, which implies that A «lfp,T B.
(2) Assume that UBT(B) ⊄ UBT(A) because there exists an infinite word W =
R1R2R3… such that W ∈ UBT(B) \ UBT(A). The primitive interpretation J is
defined as follows: dom(J) := {d0, d1, d2, …};  PJ := dom(J) for all primitive
concepts P; RJ := {(di,di+1); i ≥ 0 and R = Ri+1} for all roles R. Let I be the lfp-
model defined by J.
(2.1) If W ∈ UAT(B), then it is the label of an infinite path B, W1, C1, W2, C2,
W3, C3, ... in AT. Obviously, (P2) of Proposition 22 is not satisfied for d0 and
B, which yields d0 ∉ BI. If W ∈ UBT(B) \ UAT(B), then W has a finite initial
segment U that is the label of a finite path in AT from B to a concept C that lies
on an ε-cycle in AT. As in part (1.1) of the proof, we can deduce d0 ∉ BI.
(2.2) On the other hand, assume that d0 ∉ AI. By Proposition 22, (P1) or (P2)
is not satisfied. Since we have defined PJ := dom(J) for all primitive concepts P,
(P1) is always satisfied. Thus (P2) does not hold, i.e., there exist an infinite
path A, W1, C1, W2, C2, W3, C3, ... in AT and individuals e0 = d0, e1, e2, e3,
... such that (en–1,en) ∈ WnI for all n > 0. If the label W1W2W3... of this infinite
path is an infinite word, the definition of J implies that it is equal to W. Hence W
∈ UAT(A), which contradicts our assumption that W ∉ UBT(A). If the label
W1W2W3... of the infinite path is a finite word U, the definition of J implies that
U is a finite initial segment of W. By the definition of BT, UV ∈ UBT(A) for all
infinite words V ∈ Σω. Hence W ∈ UBT(A), which is a contradiction.
Thus we have shown that d0 ∈ AI \ BI, which implies that A «lfp,T B.
(3) Assume that UBT(B) ⊄ UBT(A) because there exists a finite word W such
that W ∈ UBT(B) \ UBT(A). From W ∈ UBT(B) we can deduce that there is a
prefix U = R1…Rn of W and a path with label U in AT from B to a concept C
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that lies on an ε-cycle in AT. The primitive interpretation J is defined as follows:
dom(J) := {d0, d2, …, dn };  PJ := dom(J) for all primitive concepts P; RJ :=
{(d i,di+1); 0 ≤ i ≤ n–1 and R = Ri+1} for all roles R. Let I be the lfp-model
defined by J.
(3.1) Obviously, the pair d0, B doesn’t satisfy (P2) of Proposition 22, and thus
d0 ∉ BI.
(3.2) On the other hand, assume that d0 ∉ AI. As in part (2.2) of the proof we
can deduce that (P2) does not hold, i.e., that there there exist an infinite path A,
W1, C1, W2, C2, W3, C3, ... in AT and individuals e0 = d0, e1, e2, e3, ... such
that (em–1,em) ∈ WmI for all m > 0. The definition of J implies that there exists
k ≥ 0 such that W1…Wk is a prefix of U and Wk+1 = Wk+2 = … = ε. This
means that Ck is inconsistent, and thus by the definition of BT, W1…WkV is in
UBT(A) for all words V ∈ Σ* . In particular, W ∈  UBT(A), which is a
contradiction.
Thus we have shown that d0 ∈ AI \ BI, which implies that A «lfp,T B.
(4) Let UBT(B) ⊆ UBT(A), and LBT(B,P) ⊆ LBT(A,P) for all primitive concepts
P. Assume that A «gfp,T B, i.e., there exist a lfp-model I of T and an individual
d0 ∈ dom(I) such that d0 ∈ AI \ BI. Now d0 ∉ BI implies that (P1) or (P2) of
Proposition 22 does not hold for d0, B.
(4.1) If (P1) does not hold, then there exist a primitive concept P, a word W ∈
LAT(B,P), and an individual e ∈ dom(I) such that d0WIe and e ∉ PI. Since
LAT(B,P) ⊆  LBT(B,P) ⊆  LBT(A,P), we have W ∈  LBT(A,P). For W ∈
LAT(A,P), Proposition 22 yields d0 ∉ AI, which is a contradiction. Assume that
W ∈ LBT(A,P) \ LAT(A,P). This means that W = UV, and there is a path with
label U in AT from A to a concept C that lies on an ε-cycle. Now d0WIe implies
that there exists an individual f such that d0UIf. Since fεIfεIf…, property (P2) of
Proposition 22 is not satisfied. This yields d0 ∉ AI, which is a contradiction.
(4.2) If (P2) does not hold, then there exist an infinite path B, W1, C1, W2,
C2, W3, C3, ... in AT and individuals d1, d2, d3, ... such that (dn–1,dn) ∈ WnI

for all n > 0.
(4.2.1) First, we assume that the label W1W2W3... of this path is an infinite
word W. Then we have W ∈  UBT(B) ⊆  UBT(A). If W ∈  UAT(A), we
immediately get d0 ∉ AI, which is a contradiction. If W ∈ UBT(A) \ UAT(A),
then there exists a finite initial segment U of W such that there is a path with
label U in AT from A to a concept C that lies on an ε-cycle. As in (4.1) this
implies d0 ∉ AI. This contradicts our assumption.
(4.2.2) Assume that the label W1W2W3... of the infinite path B, W1, C1, W2,
C2, W3, C3, ... is a finite word W. We have W ∈ UBT(B) ⊆ UBT(A). But W ∈
UBT(A) means that there exists a prefix U of W such that there is a path with
label U in AT from A to a concept C that lies on an ε-cycle. As in (4.1) this
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implies d0 ∉ AI, which is a contradiction.
This completes the proof of the theorem.  ❏

Appendix C: Proofs of the Results of Section 5.3

Proposition 28  
Let T be a terminology and let AT be the corresponding semi-automaton. Let J
be a primitive interpretation and let A be a tuple such that TJ(A) ⊆ A. Let I be the
model of T defined by J and the tuple A-gfp(TJ) (see Corollary 4).
For any concept A and any individual d ∈ dom(I) we have: d ∈ AI iff the
following two properties hold:
(1) For all primitive concepts P, all words W ∈ L(A,P), and all individuals 

e ∈ dom(I), (d,e) ∈ WI implies e ∈ PI.
(2) For all defined concepts B, all words W ∈ L(A,B), and all individuals 

e ∈ dom(I), (d,e) ∈ WI implies e ∈ (A)j  (where j = index(B)).

Proof  
The case where A is a primitive concept is trivial (see the proof of Proposition
19). Let A be a defined concept and let i = index(A), i.e., AI = (A-gfp(TJ))i. We
know that A-gfp(TJ) = ∩k≥0TJk(A).
(1) Assume that d ∉ AI. Then there exists k ≥ 0 such that d ∉ (TJk(A))i. We
proceed by induction on k.
For k = 0 we have d ∉ (A)i, dεId and ε ∈ L(A,A).
For k > 0 we have d ∉ (TJ(TJk-1(A)))i. Let the defining axiom for A be of the
form A = … ® ∀W: C ® …, and assume that ∀W: C is responsible for d ∉
(TJ(TJk-1(A)))i. This means that there exists e ∈ dom(I) such that dWIe and e ∉
CJ = CI (if C is a primitive concept) or e ∉ (TJk-1(A))m (if C is a defined concept
and index(C) = m). In the first case, C is a primitive concept, and obviously W
∈ L(A,C). In the second case, we can apply the induction hypothesis to e ∉
(TJk-1(A))m. Thus there exist a primitive concept P (resp. a defined concept B
with index j), a word V ∈ L(C,P) (resp. V ∈ L(C,B)) and an individual f ∈
dom(I) such that eVIf and f ∉ PI (resp. f ∉ (A)j). But then WV ∈ L(A,P) (resp.
WV ∈ L(A,B)) and d(WV)If. This completes the proof of the “if” direction.
(2) Assume that (1) or (2) does not hold. Then d ∉ AI follows as in the proof of
Proposition 19.  ❏

For subsumption with respect to descriptive semantics, the not only the
labels of infinite paths are important, but also the states that are reached infinitely
often.
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Theorem 29  
Let T be a terminology and let AT be the corresponding semi-automaton. Let A,
B be concepts in T. Then we have A –T B iff the following two properties hold:
(P1) For all primitive concepts P, L(B,P) ⊆ L(A,P) holds.
(P2) For all defined concepts C and all infinite paths of the form B, U0, C, 

U1, C, U2, C, ..., there exists k ≥ 0 such that U0…Uk ∈ L(A,C).

Proof  
(1) Assume that (P1) and (P2) hold. Let I be a model of T defined by the
primitive interpretation J and a fixed-point A of TJ. Obviously, TJ(A) ⊆ A and A
= A-gfp(TJ). Let d be an individual such that d ∉ BI. We have to show that d ∉
AI. By Proposition 28, d ∉ BI means that (1) or (2) of the proposition does not
hold.
(1.1) Let P be a primitive concept, W ∈ L(B,P) be a word and let e ∈ dom(I)
be a individual such that (d,e) ∈ WI and e ∉ PI. By (P1), W ∈ L(A,P) and thus
Proposition 28 yields d ∉ AI.
(1.2) Let C1 be a defined concept, W1 ∈ L(B,C1) be a word and let e1 ∈
dom(I) be a individual such that (d,e1) ∈ W1I and e1 ∉ (A )i1 (where i1 =
index(C1)). Since I is the model defined by J and A, (A)i1 = C1I and we can
proceed with C1 in place of A.
Assume that we have already obtained a sequence C1, W1, e1, …, Ck, Wk, ek
such that ei ∉ CiI, ei-1WiIei and Wi ∈ L(Ci-1,Ci) for 1 ≤ i ≤ n (where e0 := d
and C0 := B). By Proposition 28, ek ∉  CkI  means that (1) or (2) of the
proposition does not hold.
If (1) does not hold we get a primitive concept,  a word W ∈ L(Ck,P) and an
individual e ∈ dom(I) such that (ek,e) ∈ WI and e ∉ PI. But then W1…WkW ∈
L(B,P) ⊆ L(A,P), e ∉ PI and d(W1…WkW)Ie imply d ∉ AI.
If (2) does not hold we get ek+1, Ck+1 such that ek+1 ∉ Ck+1I, ekWk+1Iek+1 and
Wk+1 ∈ L(Ck,Ck+1).
If this second case holds for all k we get an infinite path B, W1, C1, W2, C2,
W 3, C3, ... and corresponding individuals e1, e2, e3, … with the above
described properties. But then there is a concept C such that C = Ci for infinitely
many indices i. This means that the above path is of the form B, U0, C, U1, C,
U2, C, ... . By property (P2), there exists k ≥ 0 such that U0…Uk ∈ L(A,C). In
addition, we know that there is an individual em such that d(U0…Uk)Iem and em
∉ CI = (A)j (where j = index(C)). Thus Proposition 28  yields d ∉ AI.
(2) Assume that A –T B. This implies A –gfp,T B and thus, by Theorem 20,
property (P1) holds. Now assume that (P2) does not hold, i.e.,  there exists an
infinite path of the form B, U0, C, U1, C, U2, C, ... such that U0…Uk ∉
L(A,C) for all k ≥ 0.
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The primitive interpretation J is defined as follows: If U := U0U1U2… is an
infinite word R1R2R3…, then dom(J) := {d0, d1, d2, …}; PJ := dom(J) for all
primitive concepts P; RJ := {(di-1,di); i ≥ 1 and R = Ri} for all roles R. If U :=
U0U1U2… is a finite word R1R2…Rs then dom(J) := {d0, d1, …, ds}; PJ :=
dom(J) for all primitive concepts P; RJ := {(di-1,di); 1 ≤ i ≤ s and R = Ri} for all
roles R.
Let j1 ≤ j2 ≤ … be the indices such that d0U0Jdj1U1Jdj2U2J… .The tuple A is
defined as follows: Let D be a defined concept in T and m = index(D). Then
(A)m := dom(J) \ {e; There exist finite words W, V and an index k ≥ 0 such 

that WV = U0…Uk, W ∈ L(B,D), V ∈ L(D,C), 
d0WJe and eVJdjk+1}.

Claim:  TJ(A) ⊆ A.
Proof of the claim.  Let D be a defined concept in T and m = index(D).
Assume that e ∉ (A)m. We have to show that e ∉ (TJ(A))m.
By the definition of A, e ∉ (A)m means that there exist finite words W, V and an
index k ≥ 0 such that WV = U0…Uk, W ∈ L(B,D), V ∈ L(D,C), d0WJe and
eVJdjk+1. Without loss of generality we may assume that the path from D to C is
not empty.15 Thus V = V1V2, there exists an individual e’ with eV1Je’ and
e’V2Jdjk+1, and the defining axiom for D is of the form D = … ® ∀V1: D’ ® …
Let m’ be the index of D’. The definition of A yields e’ ∉ (A)m’ and thus e ∉
(TJ(A))m.  ❏ (Claim)

Let I be the model of T defined by J and A-gfp(TJ). Let j be the index of B, i.e.,
BI = (A-gfp(TJ))j. We have d0εJd0, d0U0Jdj1 and ε ∈ L(B,B), U0 ∈ L(B,C).
This shows that d0 ∉ (A)j and thus d0 ∉ (A-gfp(TJ))j = BI.
Assume that d0 ∉ AI. Because all primitive concepts have dom(I) as extension,
Proposition 28 implies that there exist a defined concepts D, a word U ∈ L(A,D)
and an individual e ∈ dom(I) such that d0U Ie and e ∉ (A )m  (where m =
index(C)). Thus, by definition of A, there are finite words W, V and an index k
≥ 0 such that WV = U0…Uk, W ∈ L(B,D), V ∈ L(D,C), d0WJe and eVJdjk+1.
But d0UJe and d0WJe imply U = W (by the definition of the role extensions in
J). This shows that UV = WV  = U0…Uk is an element of L(A,C). This
contradicts our assumption that (P2) does not hold.  ❏

15Otherwise we could take U0...Uk+1 instead of U0...Uk.
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Appendix D: Proof of Theorem 36

Theorem 36  
Let T be a terminology of FL¯, and let AT be the corresponding semi-automa-
ton. Let I be a gfp-model of T and let A, B be concept names occurring in T.
Then we have:

A  –gfp,T B  iff L(B,P) ⊆ L(A,P) for all primitive concepts P in T, and 
L(B,∃R) ⊆ L(A,∃R) for all terms ∃R occurring in T.

Proof  
(1) Assume that L(B,P) ⊄ L(A,P) for some primitive concept P, i.e., there is a
word W such that W ∈  L(B,P) \ L(A,P). Let W = R1R2...Rn for n (not
necessarily different) role names R1, R2, ..., Rn. We define the primitive
interpretation J as follows: dom(J) := {d0, …, dn, e}; QJ := dom(J) for all
primitive concepts Q ≠ P; PJ := dom(J) \ {dn}; RJ := {(di,di+1); 0 ≤ i ≤ n–1 and
R = Ri+1} ∪ {(d i,e); 0 ≤ i ≤ n} ∪ {(e,e)} for all roles R. The definition of the
role extensions implies that d0VJdn iff V = W, and that (∃R)J = dom(J) for all
roles R.
Let I be the gfp-model defined by J. As in part (1) of the proof of Theorem 20
one can show that d0 ∈ AI \ BI. This implies that A «gfp,T B.
(2) Assume that L(B,∃R) ⊄ L(A,∃R) for some term ∃R in T, i.e., there is a
word W such that W ∈ L(B,∃R) \ L(A,∃R). Let W = R1R2...Rn for n (not
necessarily different) role names R1, R2, ..., Rn. We define the primitive
interpretation J as follows: dom(J) := {d0, …, dn, e}; PJ := dom(J) for all
primitive concepts P; SJ := {(di,di+1); 0 ≤ i ≤ n–1 and S = Ri+1} ∪ {(d i,e); 0 ≤ i
≤ n} ∪ {(e,e)} for all roles S ≠ R; RJ := {(di,di+1); 0 ≤ i ≤ n–1 and R = Ri+1}
∪ {(d i,e); 0 ≤ i ≤ n–1} ∪ {(e,e)}. The definition of the role extensions implies
that d0VJdn iff V = W, that (∃S)J = dom(J) for all roles S ≠ R, and that (∃R)J =
dom(J) \ {dn}.
Let I be the gfp-model defined by J. Since W ∈ L(B,∃R), d0WIdn and dn ∉
(∃R)I, we know by Proposition 35 that d0 ∉ BI. On the other hand, assume that
d0 ∉ AI. Since PI = dom(I) for all primitive concepts P, and (∃S)J = dom(J) for
all roles S ≠ R, Proposition 35 implies that there exists a word V ∈ L(A,∃R),
and an individual f ∈ dom(I) such that d0VIf and f ∉ (∃R)I. By definition of J,
we get f = dn, and thus V = W. This contradicts our assumption that W ∉
L(A,∃R). Hence we have shown that d0 ∈ AI \ BI, which implies that A «gfp,T
B.
(3) The proof of the “if” direction is similar to part (2) of the proof of Theorem
20.  ❏
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Appendix E: Proof of Theorem 43

Theorem 43  
Let T be a T-box of FL0 and A be an A-box defined over the same sets of
concept and role names. Let b be an individual name in A and B be a concept
name in T. Then  b ∈gfp,T∪A B  iff  for all primitive concepts P, and all words
W ∈ LAT

(B,P) there exist concepts E, F, a word U, and an individual name f
such that

(1) W ∈ LAT
(E,P),

(2) U ∈ LBT∪A
((F,f),(E,b)) and F(f) is an axiom in A.

Proof  
(1) Assume that there is a primitive concept P and a word W = R1…Rk ∈
LAT(B,P) such that there do not exist E, F, U, f satisfying (1) and (2) of the
theorem. Let M be a gfp-model of T ∪ A, and bM =: e0 ∈ dom(M). We want to
construct a gfp-model I of T ∪ A such that bI ∉ BI.
(1.1) Without loss of generality we may assume that RM = {(cM,dM); R(c,d) ∈
A} for all roles R. This is true because making role extensions smaller only
makes concept extensions larger w.r.t. gfp-semantics. Hence all axioms of the
form C(e) remain satisfied if we restrict the role extensions to {(cM,dM); R(c,d)
∈ A}.
(1.2) The primitive interpretation J is defined as follows:  dom(J) := dom(M) ∪
{e1, …, ek} where e1, …, ek are new individuals; RJ := RM ∪ {(ei-1,ei); 1 ≤ i ≤
k and R = Ri} for all roles R; QJ := QM ∪ {e1, …, ek} for all primitive concepts
Q ≠ P; PJ := PM ∪ {e1, …, ek-1}. Let I be the gfp-model of T defined by J. The
interpretation I of T is extended to an interpretation I of T ∪ A by defining cI :=
cM for all individual names c.
Obviously, bIWIek, W ∈ LAT(B,P), and ek ∉ PI imply e0 = bI ∉ BI.
(1.3) It remains to be shown that I is in fact a gfp-model of T ∪ A. Obviously,
(cI,dI) ∈ RI for all axioms R(c,d) in A. Assume that F(f) is an axiom of A, but fI

∉  FI. By Proposition 19, there exist a primitive concept Q, a word U ∈
LAT(F,Q), and an individual e such that fIUIe and e ∉ QI.
If f IUIe does not use some ei (i ≥ 1) as intermediate individual, then we also
have fMUMe and e ∉ QM. Hence fM ∉ FM, which contradicts our assumption
that M is a model of T ∪ A.
Otherwise, the definition of the role extensions implies that U = U1U2,
fIU1Ie0U2Ie and e = ei for some i ≥ 1. But now e ∉ QI yields Q = P, e = ek, and
U2 = W. Because U = U1W ∈ LAT(F,P), there exists a state E of AT such that
U1 ∈ LAT(F,E) and W ∈ LAT(E,P). In addition, fIU1Ie0 implies fMU1Me0 = bI,
and thus, by (1.1), we have U1 ∈  LAA (f,b). This shows that U1 ∈
LBT∪A((F,f),(E,b)). But then E, F, U1, f satisfy (1) and (2) of the theorem. This
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contradicts our assumption.
(2) Assume that b ∉gfp,T∪A B, but the right hand side of the theorem holds. Let
I be a gfp-model of T ∪ A such that bI ∉ BI. By Proposition 19, there exist a
primitive concept P, a word W ∈ LAT(B,P), and an individual e such that bIWIe
and e ∉ PI. For W ∈ LAT(B,P) there exist concepts E, F, a word U, and an
individual name f satisfying (1) and (2) of the theorem. But then U ∈
LBT∪A((F,f),(E,b)) and W ∈ LAT(E,P) yield UW ∈ LAT(F,P) and fIUIbI.16

Thus we have UW ∈ LAT(F,P), fI(UW)Ie, and e ∉ PI. This means that fI ∉ FI,
which contradicts our assumption that I was model of T ∪ A since F(f) is an
axiom in A.  ❏

16Since I is a model of T ∪ A, U ∈ LAA(f,b) implies fIUIbI.


