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1 Introduction

Reduction orderings that are total on ground terms play an important rôle in

many areas of automated deduction. For example, unfailing completion [4]|a

variant of Knuth-Bendix completion that avoids failure due to incomparable crit-

ical pairs|presupposes such an ordering. In addition, using a reduction ordering

that is total on ground terms, one can show that any �nite set of ground equations

has a decidable word problem [13, 20]. It is very easy to obtain such orderings.

Indeed, many of the standard methods for constructing reduction orderings yield

orderings that are total on ground terms: both Knuth-Bendix orderings [12] and

lexicographic path orderings [10] are total on ground terms if they are based on

a total precedence ordering on the set of function symbols.

Things become more complex if one is interested in reduction orderings that

are compatible with a given equational theory E. Such orderings, which are, for

example, used in rewriting modulo equational theories [8, 9, 2], can be seen as or-

derings on E-equivalence classes. E-compatible reduction orderings that are total

on (E-equivalence classes of) ground terms can be employed for similar purposes

as the usual reduction orderings that are total on ground terms. For example,

let AC denote a theory that axiomatizes associativity and commutativity of sev-

eral binary function symbols, where the signature may contain additional free

function symbols. An AC-compatible reduction ordering that is total on ground

terms can be used to show that for any �nite set G of ground equations, the word

problem is decidable for AC [ G [14, 15]. The �rst AC -compatible reduction

ordering total on ground terms was described in [15]. It is based on a relatively

complex polynomial interpretation in which the coe�cients of the polynomials

are again integer polynomials. Surprisingly, it turned out to be rather hard to



construct AC-compatible reduction orderings by appropriately modifying stan-

dard orderings such as recursive path orderings [7]. The main idea underlying

most proposals in this direction (e.g., [5, 3, 11, 6]) is to apply certain transfor-

mations such as 
attening to the terms before comparing them with one of the

standard path orderings. A major drawback of these approaches is that they im-

pose rather strong restrictions on the precedence orderings on function symbols

that may be used. One consequence of these restrictions is that the obtained AC -

compatible orderings are not total on ground terms if more than one AC-symbol

is present. This problem has �nally been overcome in [18, 19], where an AC -

compatible reduction ordering total on ground terms is de�ned that is based on

a recursive path ordering (with status). In [17] it was shown that this approach

can even be used to construct reduction orderings total on ground terms that

are compatible with theories that axiomatize several associative, commutative,

associative-commutative, and free symbols.

The present paper proposes a di�erent way of attacking the problem of how

to construct E-compatible orderings that are total on ground terms. It was moti-

vated by the observation that it is very easy to de�ne an AC -compatible reduction

ordering total on ground terms if there is only one AC-symbol in the signature.

Instead of directly de�ning an AC -compatible ordering total on ground terms

for the case of more than one AC-symbol, we try to obtain such an ordering by

combining the orderings that exist for the case of one AC-symbol.

1

To be more

precise, assume that AC

1

axiomatizes associativity-commutativity of the symbol

+ 2 �

1

and that AC

2

axiomatizes associativity-commutativity of the symbol

� 2 �

2

, where �

1

and �

2

are disjoint signatures that may contain additional free

function symbols. For i = 1; 2, let �

i

be an AC

i

-compatible reduction ordering

that is total on the AC

i

-equivalence classes of ground terms, i.e., �

i

can be seen

as a total ordering on T (�

i

; ;)=

=

AC

i

. In order to de�ne a reduction ordering that

is total on T (�

1

[�

2

; ;)=

=

AC

1

[AC

2

from the given orderings �

1

and �

2

, we utilize

the fact that this combined algebra can be represented as the amalgamated prod-

uct of the single algebras T (�

i

; ;)=

=

AC

i

. This product was introduced in [1] in

the context of combining uni�cation algorithms. The construction of the amal-

gamated product represents the universe of T (�

1

[�

2

; ;)=

=

AC

1

[AC

2

as a (possibly

in�nite) tower of layers. In principle, the combined ordering compares elements

of the combined algebra �rst with respect to the layers they are in: elements in

higher layers are larger than elements in lower ones. If two elements are in the

same layer, then one of the original orderings (�

1

or �

2

) is used to compare them.

This combination approach is, of course, not restricted to AC-theories. It

can be used to combine arbitrary compatible reduction orderings that are to-

1

This should not be confused with Rubio's approach for combining orderings on disjoint

signatures [17]. To obtain his combined ordering, which extends given orderings on terms over

the single signatures to an ordering on terms over the union of the signatures, he presupposes the

existence of a compatible reduction ordering total on ground terms for the combined signature.

In the present paper, the main goal is to show that such an ordering exists.
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tal on ground terms, provided that the single theories are over disjoint signa-

tures and satisfy some additional properties that will be introduced below. For

example, theories that axiomatize associativity, commutativity, or associativity-

commutativity of a binary function symbol satisfy these properties.

2 Compatible reduction orderings

Let � be a signature, and let T (�; X) denote the terms over � with variables inX.

A reduction ordering on T (�; X) is a strict partial ordering � that is Noetherian,

stable under �-operations (i.e., s � t implies f(: : : ; s; : : :) � f(: : : ; t; : : :) for all

f 2 �), and stable under substitutions (i.e., s � t implies �(s) � �(t) for all

�-substitutions �). In the following, we will restrict our attention to reduction

orderings on ground terms, which means that stability under substitutions can be

dispensed with. However, the ground terms that will be considered may contain

additional free constants from a set of constants C with C \ � = ;. By a slight

abuse of notation, the set of these ground terms will be written as T (�; C). The

only di�erence between variables and free constants is the fact that constants

cannot be replaced by substitutions, and thus it is possible to order them with a

reduction ordering.

Let E be a set of identities over �, and let =

E

denote the equational theory

induced by E. A reduction ordering � is E-compatible i� s � t, s =

E

s

0

, and

t =

E

t

0

imply s

0

� t

0

. Thus, an E-compatible reduction ordering induces a well-

de�ned ordering on the set of =

E

-equivalence classes. For a set of free constants

C, the E-free algebra with generators C, i.e., T (�; C)=

=

E

, will be denoted by

hCi

�;E

. The set of free constants occurring in a term t is denoted by C(t). We

call a reduction ordering total on hCi

�;E

(or simply \total on ground terms," if

the set of ground terms is clear from the context) i� it induces a total ordering

on hCi

�;E

, i.e., i� for all s; t 2 T (�; C) we have s � t, or s =

E

t, or s � t.

If E is a consistent equational theory (i.e., admits models of cardinality greater

than 1), then we have c 6=

E

c

0

for every pair of distinct free constants c; c

0

2

C. Thus, an E-compatible reduction ordering total on hCi

�;E

yields a total

Noetherian ordering on C. We say that an E-compatible reduction ordering

extends a total Noetherian ordering > on C i� its restriction to C coincides with

>. In the following, we consider only consistent equational theories (without

mentioning it explicitly as a condition).

We close this second by stating some properties of equational theories and

reduction orderings compatible with equational theories that will be important

for the proof of our combination result:

Lemma 2.1 1. If there exists a non-empty E-compatible reduction ordering,

then E is a regular equational theory. In particular, we have for all terms
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s; t 2 T (�; C) that s =

E

t implies C(s) = C(t).

2. If there exists a non-empty E-compatible reduction ordering, then for any

free constant c 2 C and term t 2 T (�; C) we can have c =

E

t only if c

occurs exactly once in t.

3. If � is an E-compatible reduction ordering total on hCi

�;E

, then c 2 C(t)

for a free constant c 2 C and a term t 6=

E

c implies t � c.

4. Let � be an E-compatible reduction ordering total on hCi

�;E

, and assume

that 0 2 � is a signature constant and c 2 C is a free constant. If there

exists a term s containing 0 such that s =

E

c, then 0 is the smallest element

of hCi

�;E

with respect to �.

3 Combination of compatible reduction order-

ings

In principle, we want to solve the following combination problem: Let �

1

;�

2

be

disjoint signatures and E

1

; E

2

be equational theories over the respective signature.

Assume that, for i = 1; 2 and any set C of free constants, there exists an E

i

-

compatible reduction ordering �

i

that is total on hCi

�

i

;E

i

. Can the orderings

�

1

;�

2

be used to construct an (E

1

[ E

2

)-compatible reduction ordering that is

total on hCi

�

1

[�

2

;E

1

[E

2

?

The next example demonstrates that this is not always possible.

Example 3.1 Let �

1

:= f+; 0g, �

2

:= f�; 1g, E

1

:= fx + 0 = xg, and E

2

:=

fx�1 = xg. It is easy to see that there exist E

i

-compatible reduction orderings �

i

that are total on hCi

�

i

;E

i

. In fact, since any term in T (�

1

; C) is =

E

1

-equivalent

to a term in T (f+g; C), and since =

E

1

is the syntactic equality on T (f+g; C), one

can simply take a lexicographic path ordering that is induced by a well-ordering

of C. The same argument applies to E

2

.

However, assume that � is an (E

1

[ E

2

)-compatible reduction ordering total

on hCi

�

1

[�

2

;E

1

[E

2

. Obviously, we have c+0 =

E

1

[E

2

c and c�1 =

E

1

[E

2

c. By Prop-

erty 4 of Lemma 2.1, both 0 and 1 must be the smallest element in hCi

�

1

[�

2

;E

1

[E

2

,

which is a contradiction since 0 6=

E

1

[E

2

1.

In our general combination result, this kind of problem is avoided by restricting

the attention to theories whose signatures do not contain constant symbols, i.e.,

the only constants that may occur are free constants.

2

There is a second restriction that must hold for our method to apply. The

orderings �

1

;�

2

must satisfy the following constant dominance condition:

2

Actually, it would be su�cient to apply this restriction to one of the two theories to be

combined.
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De�nition 3.2 Let � be an E-compatible reduction ordering total on hCi

�;E

.

Then � satis�es the constant dominance condition (CDC) i� for all t 2 T (�; C)

and c 2 C such that c � c

0

for all c

0

2 C(t), we have c � t.

Intuitively, this means that large constants dominate terms containing only small

constants. An arbitrary E-compatible reduction ordering total on ground terms

need not satisfy this property. For certain equational theories, however, the

existence of an arbitrary E-reduction ordering total on ground terms implies the

existence of such an ordering that also satis�es the CDC. Let C be a countably

in�nite set of free constants. For a term t 2 T (�; C) and a free constant c 2 C,

let jtj

c

denote the number of occurrences of c in t. We say that the equational

theory E is strongly regular i� s =

E

t implies jsj

c

= jtj

c

for all terms s; t 2 T (�; C)

and free constants c.

Lemma 3.3 Let E be strongly regular. If there exists an E-compatible reduction

ordering total on hCi

�;E

, then there also exists such an ordering that additionally

satis�es the CDC.

For example, theories axiomatizing commutativity, associativity, or associativity-

commutativity of a binary function symbol are obviously strongly regular.

Our method for combining compatible reduction orderings depends on the

representation of hCi

�

1

[�

2

;E

1

[E

2

as the free amalgamated product of hCi

�

1

;E

1

and hCi

�

2

;E

2

, as introduced in [1].

3

The free amalgamated product

The free amalgamated product of hCi

�

1

;E

1

and hCi

�

2

;E

2

is de�ned using two

ascending towers of the following form: We consider disjoint sets of free constants

C

1

=

S

1

i=0

C

i

and D

1

=

S

1

i=0

D

i

such that C

0

= C. In addition, for n � 0,

let A

n

be the carrier set of h

S

n

i=0

C

i

i

�

1

;E

1

, and let B

n+1

be the carrier set of

h

S

n

i=0

D

i

i

�

2

;E

2

. The partitioning of C

1

and D

1

into the sets C

i

and D

i

is such

that sets on corresponding 
oors of the double tower shown in Figure 1 have the

same cardinality.

Thus, there are bijections h

0

: A

0

! D

0

, g

1

: B

1

nD

0

! C

1

, and for all n � 1,

bijections h

n

: A

n

n (A

n�1

[ C

n

)! D

n

and g

n+1

: B

n+1

n (B

n

[D

n

)! C

n+1

.

Let A

1

be the carrier set of hC

1

i

�

1

;E

1

, i.e., the union of all set in the left

tower, and let B

1

be the carrier set of hD

1

i

�

2

;E

2

, i.e., the union of all set in

the right tower. The above bijections can be used in the obvious way to de�ne

3

It should be noted, however, that we use a slightly modi�ed construction, which is not as

symmetric as the original one, but more easy to adapt to our purposes.
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: : : : : :

A

n+1

n (A

n

[ C

n+1

) D

n+1

C

n+1

B

n+1

n (B

n

[D

n

)

A

n

n (A

n�1

[ C

n

) D

n

C

n

B

n

n (B

n�1

[D

n�1

)

: : : : : :

C

2

B

2

n (B

1

[D

1

)

A

1

n (A

0

[ C

1

) D

1

C

1

B

1

nD

0

A

0

D

0

Figure 1: The double tower of the amalgamation construction.

bijections

h

1

:=

1

[

i=0

h

i

[ g

�1

i+1

: A

1

! B

1

and g

1

:=

1

[

i=0

h

�1

i

[ g

i+1

: B

1

! A

1

:

By de�nition, A

1

is equipped with a �

1

-structure, and the bijections h

1

and

g

1

can be used to carry the �

2

-structure on B

1

to A

1

(see [1] for details). As

shown in [1], the (�

1

[�

2

)-algebra A

1

with carrier set A

1

that is obtained this

way is isomorphic to hCi

�

1

[�

2

;E

1

[E

2

.

An ordering on the free amalgamated product

As mentioned above, we assume that the signatures �

1

and �

2

do not contain

constant symbols, i.e., the only constants are free constants. In addition, assume

that, for i = 1; 2, there is a mechanism for constructing E

i

-compatible reduction

orderings that satis�es the following properties:

1. For any �nite or countably in�nite set of free constants C and any total

Noetherian ordering > on C, the mechanism yields an E

i

-compatible re-

duction ordering �

(i)

C;>

that extends >, is total on hCi

�

i

;E

i

, and satis�es the

CDC.

2. The mechanism is monotone in the following sense: Let C

1

� C

2

, let >

1

be a total Noetherian ordering on C

1

, and let >

2

be a total Noetherian

6



ordering on C

2

such that >

1

� >

2

. Then �

(i)

C

1

;>

1

� �

(i)

C

2

;>

2

.

3. The mechanism is invariant under monotone renaming of free constants. To

be more precise, let >

1

be a total Noetherian ordering on C

1

, >

2

be a total

Noetherian ordering on C

2

, and let � : C

1

! C

2

be an order isomorphism.

Then s �

(i)

C

1

;>

1

t implies �(s) �

(i)

C

2

;>

2

�(t), where the terms �(s); �(t) are

obtained from s; t by replacing the free constants in these terms by their

�-images.

Theorem 3.4 Assume that �

1

and �

2

are disjoint signatures that do not contain

constant symbols, and that, for i = 1; 2, there exist mechanisms for constructing

E

i

-compatible reduction orderings total on ground terms satisfying the three con-

ditions from above.

1. Then there exists an (E

1

[ E

2

)-compatible reduction ordering that is total

on hCi

�

1

[�

2

;E

1

[E

2

.

2. If the word problem for E

i

and the orderings �

(i)

C;>

are decidable for i = 1; 2,

then the combined ordering is also decidable.

Instead of giving a formal proof of the �rst part of the theorem (which would

violate the page limit), we give an intuitive description of how this ordering looks

like. Its de�nition depends on the representation of hCi

�

1

[�

2

;E

1

[E

2

as the free

amalgamated product A

1

of hCi

�

1

;E

1

and hCi

�

2

;E

2

. Going from bottom to top,

one simultaneously de�nes an ordering on A

1

and B

1

by induction. Elements

that belong to di�erent levels of one of the towers are compared according to

their height in the tower. Elements in a level A

n

n (A

n�1

[ C

n

) are compared

with respect to the E

1

-compatible ordering on A

n

obtained by the mechanism

(assuming that the precedence ordering on

S

n

i=0

C

i

is already de�ned). Elements

in a level C

n

are ordered using the bijection g

n

: B

n

n (B

n�1

[ D

n�1

) ! D

n

(assuming that the ordering on B

n

n (B

n�1

[D

n�1

) is already de�ned). The right

tower is treated analogously.

In this construction, the induction base is given by an arbitrary total Noethe-

rian ordering on C. The combined ordering obtained this way depends on the set

C and on the ordering on C used for starting the inductive construction. Thus,

we again obtain a construction mechanism that transforms a given total Noethe-

rian ordering on a set of free constants C into an (E

1

[E

2

)-compatible reduction

ordering that is total on hCi

�

1

[�

2

;E

1

[E

2

. The combined ordering does not satisfy

the CDC. However, if E

1

and E

2

are strongly regular, then so is E

1

[ E

2

. Thus,

Lemma 3.3 can be used to modify the combined ordering into one satisfying the

CDC. It can be shown that the mechanism satis�es the other properties required

in Theorem 3.4. Consequently, the construction can be applied iteratedly, pro-

vided that the involved theories are strongly regular.
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The decision procedure for the combined ordering depends on a method that

is similar to the approach used to show that the word problem for E

1

[ E

2

is

decidable, provided that the word problems for the single theories E

1

; E

2

are

decidable (see, e.g., [16]).

4 Conclusion

The aim of this work was to develop a general approach for combining compatible

orderings that are total on ground terms. The main motivation was that it is

often relatively easy to design such orderings for \small" signatures and theories,

whereas it is rather involved to give a direct de�nition of an appropriate ordering

in the case of signatures that contain several symbols axiomatized by equational

theories over disjoint subsets of the signature. As an example, we have mentioned

the case of signatures containing free symbols and more than one AC-symbol.

The main restrictions that must hold for this combination approach to apply

are

1. The signatures of the single theories must not contain constant symbols,

i.e., the only available constants are free constants.

2. Both theories must admit compatible orderings total on ground terms that

satisfy the constant dominance condition (CDC).

These restrictions seem to be not overly severe. In fact, we have shown by an

example that a violation of the �rst condition may lead to cases where a com-

patible ordering total on ground terms does not exist for the combined theory.

In addition, for strongly regular theories (such as associativity, commutativity,

or associativity-commutativity of a binary function symbol), the existence of a

compatible orderings total on ground terms implies the existence such an ordering

that also satis�es the CDC.

A major drawback of the presented combination approach is that until now

it does not yield a non-trivial ordering for terms with variables. Indeed, we have

de�ned an ordering on hCi

�

1

[�

2

;E

1

[E

2

, where the elements of C are treated as

free constants. For an ordering on terms with variables, one must also have

stability under substitution. For some application (e.g., the decision problem for

ground equations modulo AC), having an ordering on ground terms is su�cient.

For other applications where one works with terms containing variables (such as

unfailing completion), this is not quite satisfactory. For example, for unfailing

completion, using an ordering where all terms with variables are incomparable

would mean that none of the identities can be oriented into a rule, and thus all

of them must be used in both directions to compute critical pairs. Thus, an

important open problem is to extend the combined ordering in a non-trivial way

8



to an ordering on terms with variables. It might be that this makes additional

restrictions on the theories necessary (such as requiring them to be collapse-free).
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