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Abstract

The concept description formalisms of existing description logics systems

allow the user to express local cardinality restrictions on the �llers of a par-

ticular role. It is not possible, however, to introduce global restrictions on

the number of instances of a given concept. This article argues that such

cardinality restrictions on concepts are of importance in applications such as

con�guration of technical systems, an application domain of description logics

systems that is currently gaining in interest. It shows that including such re-

strictions in the description language leaves the important inference problems

such as instance testing decidable. The algorithm combines and simpli�es

the ideas developed for the treatment of quali�ed number restrictions and of

general terminological axioms.

1 Introduction

Description logics (DL) systems can be used to represent the conceptual and taxo-

nomic knowledge of an application domain in a structured and semantically well-

understood way. To describe this kind of knowledge one starts with atomic concepts



(unary predicates) and roles (binary predicates), and employs the concept descrip-

tion formalism provided by the system to de�ne more complex concepts. In addition

to this terminological component (TBox), most systems also have an assertional

component (ABox), in which concepts and roles can be instantiated by individual

names (constant symbols) representing particular elements of the problem domain.

The reasoning services of DL systems allow the user to retrieve not only the kno-

wledge that is explicitly stored in TBox and ABox, but to access implicitly repre-

sented knowledge as well. For a given TBox, the system automatically computes the

concept hierarchy according to subconcept-superconcept relationships (subsumption

relationships) induced by the structure of the concepts. In addition, it can determine

the consistency of the knowledge base (consisting of a TBox and an ABox), and it

answers queries regarding the existence of instance relationships between individuals

and concepts.

To make these inference services feasible, the description formalism of a DL

system must be of limited expressive power. On the other hand, a too severely

restricted formalism may turn out to be too weak for certain applications. For this

reason, several extensions of \core" concept languages have been investigated in the

literature (see, e.g., [3, 11, 1]). In the present paper, we shall consider an extension

that is motivated by the use of DL systems for solving con�guration tasks, which is

an application domain that is currently gaining more and more importance (see, e.g.,

[15, 5, 12, 21, 9, 10, 13, 19, 20]). Technical domains such as con�guration seem to be

well suited for DL systems since they usually rely on a large number of terminological

conventions, which are in most cases precisely de�ned. In contrast, more traditional

AI applications of DL systems, such as natural language processing [7], often rely on

vague notions and incomplete knowledge, which require the representation of beliefs,

as well as probabilistic and default information.

Unlike these very demanding, and not yet well-understood extensions of concept

description languages, the additional language construct we shall introduce in this

paper is more or less along the lines of traditional constructs, albeit of a rather

expressive and thus algorithmically hard to handle nature. It allows one to express

restrictions on the number of elements a concept may have: (� m C) and (� n C)

respectively express that the (possibly complex) concept C has at least m elements

and at most n elements, thus restricting the possible models of the knowledge base.

The traditional language constructs that most closely resemble this new one are

the so-called number restrictions, which are present in almost all existing systems.

Number restrictions allow one to specify the number of possible role-�llers of a par-

ticular role. Such a restriction can, for example, express that an admissible PC may

have at most 17 parts, by restricting the number of role-�llers of the has-part role to

less or equal 17. If one allows for quali�ed number restrictions [11] (which are not

available in most systems), one can also express that the PC must have exactly one

CPU and at most four 1MB memory chips, where CPU and 1MB-memory-chip may
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be complex concepts. These cardinality restrictions are, however, still localized to

the �llers of one particular role. In contrast, the cardinality restrictions on concepts

we propose here are global in the sense that they restrict the number of objects

belonging to a given concept for the whole domain of interest (e.g., the whole tech-

nical system that is con�gured). For example, one can express that (in a computer)

there must be exactly one electrical power supply unit, which supplies all the devices

with electrical power. With a conventional concept description language, even one

including quali�ed number restrictions, one can only express that every device must

have a power supply, but not that all must have the same (or one out of a speci�ed

number n).

1

The expressive power of the new construct is also demonstrated by the fact that

it can be used to express terminological axioms of the form C

:

= D (see Section 2

below), which express that the (possibly complex) concepts C and D have exactly

the same instances. Such axioms are known to be algorithmically hard to handle

(satis�ability is EXP-TIME hard) [17].

In a very restricted setting, cardinality restrictions have been considered by van

der Hoek and de Rijke [18]. However, their language is far less expressive than ours

(satis�ability is in PSPACE). Like number restrictions and several other concept

constructors, cardinality restrictions on concepts can be seen as speci�c generalized

quanti�ers [6]. In [16], Quantz proposes an integration of various generalized quanti-

�ers into terminological formalisms in order to cope with problems related to bound

anaphora resolution. However, like most of the research on generalized quanti�ers

in the area of linguistics and philosophical logics, Quantz's article is only concerned

with expressibility issues and not with computability. In fact, for his representation

language the important inference problems turn out to be undecidable. The main

goal of the present paper is to design sound and complete inference algorithms for

the language we propose.

In the following, we shall �rst formally introduce the terminological formalism

considered in this paper, which contains both cardinality restrictions on concepts

and quali�ed number restrictions. Section 2 also de�nes the relevant reasoning

services for terminological knowledge bases consisting of a terminological and an

assertional component. In Section 3 we shortly sketch how these services can be

utilized in a con�guration application. Then we shall develop an algorithm that tests

a knowledge base for consistency. This is su�cient since all the other interesting

inference services can easily be reduced to this task [4]. The consistency algorithm

combines the ideas developed in [2, 8] for handling inclusion axioms (in a language

with number restrictions), and in [11] for handling quali�ed number restrictions.

1

Quali�ed number restrictions could be used to express cardinality restrictions on concepts if the

description formalism contained a symbol for the \top-role" (i.e., the universal role that connects

all objects with each other). However, none of the implemented systems allows for such a top-role

symbol, and reasoning in a concept language where the top-role and ordinary roles coexist has|to

the best of our knowledge|not yet been investigated.
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2 The Terminological Formalism

The expressive power of a DL system is determined by the constructs available for

building concept descriptions, and by the way these descriptions can be used in the

terminological (TBox) and the assertional (ABox) component of the system. The

description language ALCQ de�ned below coincides with the one introduced in [11].

The new expressivity lies in the TBox, where the usual terminological axioms are

replaced by cardinality restrictions on concepts. The assertional component is the

standard one.

The description language The concept descriptions (for short, concepts) of the

language ALCQ are built from concept names and role names using the constructors

conjunction (C u D), disjunction (C t D), negation (:C), and quali�ed number

restrictions ((� n R C) and (� n R C)), where C, D stand for concepts, R for a

role name, and n for a nonnegative integer.

Note that (unquali�ed) number restrictions, value restrictions (8R:C) and exi-

stential restrictions (9R:C) are not explicitly included in the language since they

can all be expressed with the help of quali�ed number restrictions.

To de�ne the semantics of concept descriptions, we interpret concepts as subsets

of a domain of interest and roles as binary relations over this domain. More precisely,

an interpretation I consists of a set �

I

(the domain of I) and a function �

I

(the

interpretation function of I). The interpretation function maps every concept name

A to a subset A

I

of �

I

, and every role name R to a subset R

I

of �

I

��

I

.

The interpretation function is extended to arbitrary concept descriptions as fol-

lows. Let C, D be concept descriptions, R be a role name, n be a nonnegative

integer, and assume that C

I

and D

I

are already de�ned. Then

(C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

; (:C)

I

= �

I

n C

I

;

(� n R C)

I

= fa 2 �

I

j ]fb 2 �

I

j (a; b) 2 R

I

^ b 2 C

I

g � ng;

(� n R C)

I

= fa 2 �

I

j ]fb 2 �

I

j (a; b) 2 R

I

^ b 2 C

I

g � ng;

where ]X denotes the cardinality of a set X.

The terminological component A terminological axiom is an expression of the

form C

:

= D, where C and D are (possibly complex) concept descriptions. A �nite

set of such axioms is called a TBox. The semantics of a TBox is quite obvious: an

interpretation I satis�es an axiom C

:

= D i� C

I

= D

I

, and it is a model of a TBox

T i� it satis�es all axioms in T .

Most systems impose severe restrictions on admissible TBoxes: (1) The concepts

on the left-hand sides of axioms must be concept names, (2) concept names occur at

most once as left-hand side of an axiom, and (3) there are no cyclic de�nitions. The
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e�ect of these restrictions is that terminological axioms are just macro de�nitions

(introducing names for large descriptions), which can simply be expanded before

starting the reasoning process. Unrestricted terminological axioms are a lot harder

to handle algorithmically [17, 2, 8], but they are very useful in expressing important

constraints on admissible con�gurations (see Section 3 below).

Now we introduce a new type of axiom, which we call cardinality restrictions

on concepts, and which are even more expressive than unrestricted terminological

axioms of the form C

:

= D. Such a cardinality restriction is an expression of the form

(� n C) or (� n C), where C is a concept description and n a nonnegative integer.

An interpretation I satis�es the restriction (� n C) i� ]C

I

� n and (� n C) i�

]C

I

� n.

Obviously, saying that C and D have the same instances is equivalent to sta-

ting that the concept (C u :D) t (:C u D) is empty, i.e., contains at most zero

elements. This demonstrates that terminological axioms can be expressed by car-

dinality restrictions. For this reason, a TBox will from now on simply be a �nite

set of cardinality restrictions. The interpretation I is a model of such a TBox i� it

satis�es each of its restrictions.

The assertional component In this component, facts concerning particular ob-

jects in the application domain can be expressed as follows. The objects are referred

to by individual names, and these names may be used in two types of assertional

axioms: concept assertions C(a) and role assertions R(a; b), where C is a concept

description, R is a role name, and a; b are individual names. A �nite set of assertions

is called ABox.

In order to give a semantics to assertions we extend the interpretation function to

individuals. Each individual name a is interpreted as an element a

I

of the domain

such that the mapping from individual names to �

I

is 1-1. This restriction is

usually called unique name assumption (UNA). The interpretation I satis�es the

assertion C(a) i� a

I

2 C

I

and the assertion R(a; b) i� (a

I

; b

I

) 2 R

I

. We say that

an interpretation I is a model of an ABox A i� I satis�es every assertion in A.

The reasoning services A terminological knowledge base (KB) � = hA; T i con-

sists of an ABox A and a TBox T . After representing the relevant knowledge of

an application domain in such a KB, one can not just retrieve the information that

is explicitly stored. DL systems also provide their users with services that allow to

access knowledge that is only implicitly represented in the KB. For example, these

reasoning services provide answers to the following queries:

1. KB-consistency : Is the given KB consistent? That is, does there exist a model

of the KB (i.e., a model of both the ABox and the TBox)?
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2. Concept Satis�ability : Given a KB and a concept C, does there exist a model

of the KB in which C is interpreted as a nonempty set?

3. Subsumption: Given a KB and two concepts C and D, does C

I

� D

I

hold

for all models I of the KB? Subsumption detects implicit dependencies among

the concepts in the KB.

4. Instance Checking : Given a KB, an individual a and a concept C, does a

I

2 C

I

hold for any model I of the KB?

Concept satis�ability, subsumption of concepts, and instance checking can be

reduced to KB-consistency (or to its complement) in linear time. To make this pos-

sible, we must introduce an additional syntactic category in the ABox: individuals

that are not subjected to the UNA.

2

The only di�erence between this new type of

individuals (called new individuals) and the usual ones (called old individuals) is

that the interpretation function must be a 1{1-mapping only on the old individuals.

This means that di�erent new individuals may be interpreted by the same object,

and a new individual may also have the same interpretation as an old one.

Proposition 2.1 Let C;D be concepts, � = hA; T i a knowledge base, a an indivi-

dual, and let o be a new individual, i.e., an individual that does not appear in � and

is not subjected to the UNA. Then:

� C is satis�able i� hA [ fC(o)g; T i is consistent,

� C is subsumed by D i� hA [ f(C u :D)(o)g; T i is not consistent,

� a is instance of C i� hA [ f(:C)(a)g; T i is not consistent.

Consequently, it is su�cient to devise an algorithm for the KB-consistency problem.

Note that omitting the UNA for the (new) individual o is crucial for the soundness

of the reductions. For example, assume that T

1

= f(� 1 C)g and A

1

= fC(a)g,

where C is a concept name. Obviously, the concept C is satis�able with respect

to the KB hA

1

; T

1

i, but the KB hA

1

[ fC(o)g; T

1

i would not be consistent if o

was subjected to the UNA. In fact, the only way to satisfy hA

1

[ fC(o)g; T

1

i is to

interpret o and a by the same object.

Also note that in the reductions given above, the ABox cannot be omitted when

considering subsumption and satis�ability of concepts, and the TBox cannot be ex-

panded. This is in contrast to most description logic formalisms, where the following

two properties are satis�ed: (1) one can get rid of the concept de�nitions in the TBox

by an expansion process, and (2) the ABox does not in
uence concept satis�ability

2

The consistency algorithm presented in Section 4 will also make use of individuals not subjected

to the UNA.
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and subsumption (see [14]). Due to the presence of cardinality restrictions, this is no

longer true for our formalism. Indeed, the (standard) expansion procedure cannot

be applied in the presence of unrestricted terminological axioms, and thus property

(1) is no longer satis�ed. To see that property (2) is violated as well, we extend the

ABox A

1

by the assertion D(a). Because of the cardinality restriction in T

1

, a is

the only element of C. In addition, the new ABox says that a belongs to D, which

shows that in all models of T

1

and the new ABox, C is interpreted as a subset of D.

This yields an additional subsumption relationship between C and D, which does

not hold with respect to the TBox alone.

3 Application in Con�guration

Before describing a consistency algorithm for KBs with cardinality restrictions, we

give some ideas of how such an algorithm can be employed to solve con�guration

tasks. Of course, in order to build a complete con�gurator based on this approach,

further features like truth maintenance, control strategies, interactivity, and an ex-

planation component have to be integrated.

Figure 1 contains some parts of the description of a sparcstation 2 in our termi-

nological formalism. The �rst three axioms of the TBox are traditional concept

de�nitions, which (in a top-down manner) introduce names for complex descripti-

ons. A sparcstation 2 is de�ned to have four obligatory parts, namely system unit,

monitor, keyboard, and mouse and pad. In addition, it may have as optional parts

terminals and printers, but no other parts are admissible. The concepts standing for

the parts are again de�ned by descriptions. In the example, we have just given the

(simpli�ed) descriptions of the system unit, and of the main logic board, which is a

part of this unit. Note that (= n R C) is an abbreviation for (� n R C)u(� n R C).

The next �ve axioms are inclusion axioms of the form C v D, which should be

read as abbreviations of the corresponding cardinality restrictions (� 0 C u :D).

The (complex) concepts main logic board, hard drive, and diskette drive are required

to have a power supply, and certain types of terminals need speci�c cables. The

quali�ed number restrictions in these inclusion axioms express that each part has

exactly one power supply, but di�erent parts can still have di�erent power supplies.

The last terminological axiom, which is a cardinality restriction on the concept

power supply, makes sure that all parts use the same power supply. It seems to

be impossible to express such a constraint in a traditional terminological formalism

unless one allows for role-value maps (which would, however, cause undecidability).

Con�guration checking The instance test of a DL system can be employed to

check whether a computer con�guration is admissible. This idea has, for example,
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The TBox:

SPARCstation 2

:

=

(= 1 has-part System Unit) u (= 1 has-part Monitor) u

(= 1 has-part Keyboard) u (= 1 has-part Mouse&Pad) u

8has-part:(System Unit tMonitor t Keyboard tMouse&Pad t

Terminal t Printer)

System Unit

:

=

(= 1 has-part Main Logic Board) u

(= 1 has-part Power Supply) u

(= 2 has-part Hard Drive) u

(= 1 has-part Diskette Drive)

Main Logic Board

:

=

(= 1 has-part CPU) u

(= 16 has-part SIMM slots) u

(= 3 has-part SBUS slots)

Main Logic Board v (= 1 is-supplied-by Power Supply)

Hard Drive v (= 1 is-supplied-by Power Supply)

Diskette Drive v (= 1 is-supplied-by Power Supply)

Terminal u (� 1 has-type VT100) v (� 1 has-part Female-male null modem cable)

Terminal u (� 1 has-type WY-50) v (� 1 has-part Male-male null modem cable)

(� 1 Power Supply)

The ABox:

SPARCstation 2(sparci), has-part(sparci; term), Terminal(term),

has-type(term; vt100), VT100(vt100)

Figure 1: A sparcstation 2

been used in an application of the DL-system classic [21].

3

In the TBox, one de-

�nes a concept that describes admissible computer systems, and in the ABox one

describes the actual con�guration of a computer system. The instance test then

checks whether the individual corresponding to the con�guration is an instance of

the concept \admissible computer system." The description of the actual con�gu-

ration can be done on di�erent levels of abstraction. For example, we can describe

a sparcstation 2 by saying that it has four �llers of the has-part role that are re-

spectively in the concepts System Unit, Monitor, Keyboard, and Mouse&Pad. On a

lower level of abstraction, the realization that the parts belong to these concepts is

also left to the instance test.

In addition, one can also de�ne concepts that describe the most frequent er-

rors made when con�guring such a system (e.g., forgetting some cables). When

the instance test �nds out that the con�guration belongs to such an error concept

3

One should note, however, that this application is not restricted to simple con�guration

checking, and that, beside the instance test, the �ring of classic rules|which are not considered

here|plays an important role.
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then one knows the reason why the con�guration was not admissible, and can take

appropriate action.

Con�guration generation The con�guration domain is again modeled in the

TBox, and the ABox contains a (high level) description of what should be con�gured.

The consistency algorithm we shall describe below has the property that it not only

answers with \consistent" or \inconsistent." If the KB is consistent, it also yields a

�nite model (see the de�nition of the canonical model in Section 4), in which all the

implicit information contained in the TBox and ABox is made explicit. In principle,

this model describes an admissible con�guration.

In Figure 1, the ABox describes that we want to have a sparcstation 2 with an

additional VT100 terminal. If we invoke the consistency algorithm of Section 4, it

will generate the obligatory parts like system unit, etc. It also makes sure that the

integrity constraints expressed by the inclusion axioms and the cardinality restriction

are satis�ed (more information on this idea of con�guration by model generation can

be found in [9, 10]).

4 The Consistency Algorithm

The method for deciding consistency of a KB presented below is rule-based in the

sense that it starts with the original KB (consisting of an ABox A

0

and a TBox

T

0

), and applies certain consistency preserving transformation rules to the ABox

until no more rules apply. If the \complete" KB thus obtained contains an obvious

contradiction (called clash) then the original KB hA

0

; T

0

i was inconsistent. Other-

wise, hA

0

; T

0

i was consistent since the complete KB can be used to construct a �nite

model.

The transformation rule that handles number restrictions of the form (� n R C)

will generate n new ABox individuals x

1

; : : : ; x

n

that stand for the role-�llers required

by the restriction. Recall that unlike the individuals present in the original ABox

(the old individuals), the new individual names should not be subjected to the unique

name assumption. In fact, in a model they may well be interpreted identical to an

old individual or a new individual introduced by another rule application. What

must be ensured, however, is that x

1

; : : : ; x

n

are interpreted by di�erent objects. In

order to express this we need a new type of assertion, called inequality assertion.

Such an assertion is of the form s 6

:

= t for individuals s; t, and it has the obvious

semantics, i.e., an interpretation I satis�es s 6

:

= t i� s

I

6= t

I

. These assertions are

considered as being symmetric, i.e., saying that s 6

:

= t 2 A is the same as saying

that t 6

:

= s 2 A.

In the following, we assume that the set of individual names is partitioned into

a set I

old

of old individual names (subjected to the UNA) and a set I

new

of new

9



individual names. The elements of I

old

are just the individuals present in the original

ABox,

4

which means that I

old

is �nite. We assume that I

new

is in�nite to allow for

an arbitrary number of rule applications. We denote individuals of I

old

by the letters

a, b, of I

new

by x, y, and of I = I

old

[ I

new

by s, t (all possibly with subscript).

The transformation rule that handles disjunction (as well as the rules concerned

with at-most restrictions) is nondeterministic in the sense that a given ABox is

transformed into two (or �nitely many) new ABoxes such that the original ABox is

consistent with the TBox i� one of the new ABoxes is so. For this reason we will

consider generalized KBs of the form hM; T i, where M = fA

1

; : : : ;A

l

g is a �nite

set of ABoxes. This generalized KB is called consistent i� there is some i, 1 � i � l,

such that hA

i

; T i is consistent.

Treatment of cardinality restrictions So far, all that has been said also applies

to rule-based consistency algorithms for less expressive languages (see, e.g., [4]).

Cardinality restrictions give rise to two new problems.

To see the �rst problem, assume that the TBox contains the restriction (� n C),

and that all individuals contained in the ABox are either asserted to be in C or

in its complement. If the number m of individuals in C is larger than n then we

know that we must take action, whereas m � n shows that no action is required.

In general, however, the ABox will also contain individuals for which no assertions

relating them to C or :C are present. For these individuals, we do not know a priori

whether a model of the TBox and ABox will interpret them as elements of C or of

:C. Thus we are not necessarily able to decide whether action is required or not.

To make sure that in the end all such indeterminate situations are resolved, we

introduce a rule (called choose-rule below) that makes sure that at some stage of

the transformation process each individual will either be asserted to be in C or its

complement. (The choice is \don't know" nondeterministic, i.e., both cases have to

be considered.) In a slightly modi�ed way the idea of such a choose-rule was already

presented in [11], since quali�ed number-restrictions of the form (� n R C) cause a

similar problem.

The second problem is that, due to the choose-rule, the transformation process

need no longer terminate, unless one takes speci�c precautions to detect cyclic com-

putations. In fact, if the concept C from above is of the form (� m R D) (for

m � 1), then asserting C for an individual s

0

causes the introduction of a new

individual s

1

. Because of the choose-rule, at some stage of the transformation we

must consider an ABox were s

1

is asserted to be in C, which causes the introduction

of a new individual s

2

, etc.

4

Note that the individual o that might have been introduced when reducing the satis�abi-

lity or subsumption problem to the consistency problem is assumed to be a new individual (see

Proposition 2.1).
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In order to regain the termination property, we restrict the applicability of trans-

formation rules that generate new individuals. The idea is that the application of

such rules is blocked for a new individual x if there is another individual s in the

ABox that has all concept assertions that x has. Termination is then due to the

fact that there are only �nitely many di�erent concepts D that can occur in such

assertions. To prevent cyclic blocking, which would destroy the correctness of the

algorithm, we consider an enumeration t

0

; t

1

; t

2

; : : : of I in which all elements of

I

old

come before all elements of I

new

. We write t < t

0

i� t comes before t

0

in this

enumeration. Now blocking can formally be de�ned as follows:

De�nition 4.1 An individual x 2 I

new

is blocked by an individual s 2 I in an

ABox A i� fD j D(x) 2 Ag � fD

0

j D

0

(s) 2 Ag and s < x.

Note that only new individuals can be blocked.

Similar termination problems are already caused by terminological axioms of the

form C

:

= D. For this reason, the idea of blocking is already present in [8]. The

main di�erence between the two notions of blocking is that in [8] equality of sets is

required whereas we are satis�ed with set inclusion. It turns out that our notion of

blocking facilitates the termination proof. In addition, termination can be shown

for arbitrary sequences of rule applications, and no longer depends on the use of a

speci�c strategy (as required in [8]).

Preprocessing In order to facilitate the description of the transformation rules,

we start with a preprocessing step that transforms the original KB into a simpli�ed

form.

As usual, all concepts occurring in the KB are transformed into negation normal

form, where negation occurs only immediately in front of concept names. Negation

normal forms can be computed in linear time by pushing negation signs into the

descriptions (see, e.g., [4]). The expression �C will denote the negation normal

form of the concept :C.

In addition, we assume that the TBox contains only restrictions of the form

(� n C). In fact, a restriction (� n C) can be expressed in the ABox by adding

assertions C(x

i

) and x

i

6

:

= x

j

(for 1 � i; j � n; i 6= j), where the x

i

are new

individuals that did not occur in the original KB.

Finally, the UNA for old individuals is made explicit in the ABox by adding the

assertions a 6

:

= b for each pair of distinct elements a; b 2 I

old

.

The transformation rules As a result of the preprocessing step, the input of

the consistency algorithm is a generalized KB hfA

0

g; T

0

i where A

0

and T

0

are in the

simpli�ed form described above. Starting with hfA

0

g; T

0

i, the algorithm applies the

transformation rules of Figure 2 as long as possible.
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The !

u

-rule

Condition: A contains (C

1

u C

2

)(s), but it does not contain both C

1

(s) and

C

2

(s).

Action: A

0

:= A[ fC

1

(s); C

2

(s)g

The !

t

-rule

Condition: A contains (C

1

t C

2

)(s), but neither C

1

(s) nor C

2

(s).

Action: A

0

:= A[ fC

1

(s)g, A

00

:= A[ fC

2

(s)g

The !

�

-rule

Condition: A contains (� n R C)(s), s is not blocked in A, and there are no

individual names s

1

; : : : ; s

n

such that R(s; s

i

), C(s

i

), and s

i

6

:

= s

j

(1 �

i; j � n; i 6= j) are contained in A.

Action: A

0

:= A[ fR(s; x

i

); C(x

i

) j 1 � i � ng [ fx

i

6

:

= x

j

j 1 � i; j � n; i 6= jg,

where x

1

; : : : ; x

n

2 I

new

are distinct individuals such that x

i

> s

0

for all

individual names s

0

occurring in A.

The !

choose

-rule

Condition: A contains an individual t such that either

1. (� n R C)(s) and R(s; t) are in A, or

2. (� n C) is in T

0

,

and A does not contain (C t �C)(t).

Action: A

0

:= A[ f(C t �C)(t)g

The !

�

-rule

Condition: A contains distinct individuals t

1

; : : : ; t

n+1

such that either

1. (� n R C)(s) and R(s; t

1

); : : : ; R(s; t

n+1

) are in A, or

2. (� n C) is in T

0

,

and C(t

1

); : : : ; C(t

n+1

) are in A, and t

i

6

:

= t

j

is not in A for some i 6= j.

Action: For each pair t

i

; t

j

such that t

j

< t

i

and t

i

6

:

= t

j

is not in A the ABox

A

i;j

:= [t

i

=t

j

]A is obtained from A by replacing each occurrence of t

i

by

t

j

.

Figure 2: Completion rules of the consistency algorithm.

The rules should be read as follows. They are applied to a generalized KB

hM; T

0

i (where M is a set of ABoxes). The rules take an element A of M, and

12



replace it by one ABox A

0

, by two ABoxes A

0

and A

00

, or by �nitely many ABoxes

A

i;j

. The TBox T

0

of the input is left unchanged.

The transformation rules are sound in the sense that if there is a model for the

TBox T

0

and the ABox A, then there is also a model for T

0

and one of the ABoxes

A is replaced by. Thus, if hM; T

0

i is obtained from hfA

0

g; T

0

i by a sequence of rule

applications then hM; T

0

i is consistent if hA

0

; T

0

i is consistent (see Section 5 for the

proof).

The second important property of the set of transformation rules is that the

transformation process always terminates, i.e., there cannot be an in�nite sequence

of rule application (see Section 5 for the proof). Thus, after �nitely many trans-

formation steps we obtain a generalized KB to which no more rules apply. We

call such a generalized KB complete. Consistency of a complete (generalized) KB

hfA

1

; : : : ;A

n

g; T

0

i can be decided by looking for obvious contradictions, so-called

clashes, in the KBs hA

i

; T

0

i.

De�nition 4.2 A KB hA; T i contains a clash i� one of the following three situati-

ons occurs:

1. fB(s);:B(s)g � A for some individual s and some concept name B.

2. f(� n R C)(s); R(s; t

i

); C(t

i

); t

i

6

:

= t

j

j 1 � i; j � n + 1; i 6= jg � A for

individuals s; t

1

; : : : ; t

n+1

, a nonnegative integer n, a concept C, and a role

name R.

3. (� n C) 2 T and fC(s

i

); s

i

6

:

= s

j

j 1 � i; j � n + 1; i 6= jg � A for individuals

s

1

; : : : ; s

n+1

, a nonnegative integer n, and a concept C.

Obviously, a KB that contains a clash cannot be consistent. Consequently, if all KBs

hA

i

; T

0

i contain a clash, then hfA

1

; : : : ;A

n

g; T

0

i is inconsistent, which by soundness

of the rules implies that the original KB hA

0

; T

0

i was inconsistent.

If, however, one of the KBs �

i

= hA

i

; T

0

i is clash-free then the corresponding

canonical interpretation I

�

i

(as de�ned below) can be used to construct a model of

the original KB hA

0

; T

0

i (see Section 5 for the proof).

De�nition 4.3 Let � = hA; T i be a KB. The canonical interpretation I

�

induced

by � is de�ned as follows:

� The domain �

I

�

of I

�

consists of all the individuals occurring in A.

� For all concept names A we de�ne A

I

�

= fs j A(s) 2 Ag.

� For a role name R we de�ne R

I

�

inductively with respect to the total ordering

< on the individual names. If s

0

is the least element in �

I

�

then (s

0

; t) 2 R

I

�

i� R(s

0

; t) 2 A. Now let s 2 �

I

�

be di�erent from s

0

.
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{ If s is not blocked in A then we de�ne (s; t) 2 R

I

�

i� R(s; t) 2 A.

{ If s is blocked in A then let s

0

be the least (with respect to the ordering

<) individual name in �

I

�

that blocks s. By the de�nition of blocking,

s

0

< s, and thus we can assume that the set ft j (s

0

; t) 2 R

I

�

g is already

de�ned, and we de�ne (s; t) 2 R

I

�

i� (s

0

; t) 2 R

I

�

.

� For an individual s occurring in A we set s

I

�

:= s.

To sum up, we have seen that the transformation rules of Figure 2 reduce con-

sistency of a KB hA

0

; T

0

i to consistency of a complete generalized KB hM; T

0

i. In

addition, consistency of this complete KB can be decided by looking for obvious

contradictions (clashes). This shows the main result of the paper:

Theorem 4.4 It is decidable whether or not a KB hA

0

; T

0

i is consistent.

5 Proof of Correctness

To prove Theorem 4.4, we �rst show that the transformation rules are sound and

terminating. Then we show that the canonical interpretation of a complete and

clash-free KB can be used to construct a model of the original KB.

5.1 Soundness of the rules

Proposition 5.1 Assume that the generalized KB hM

0

; T

0

i is obtained from hM; T

0

i

by application of a transformation rule. If hM; T

0

i is consistent then hM

0

; T

0

i is

consistent.

Proof. In the following, we restrict our attention to the !

�

-rule and the !

�

-

rule. The other rules can be treated similarly.

(1) Assume that the !

�

-rule is applied to the ABox A in M, and that M

0

is

obtained fromM by replacingA by A

0

. Thus A contains an assertion (� n R C)(s),

and A

0

is obtained from A by adding R(s; x

i

), C(x

i

), and x

i

6

:

= x

j

(1 � i; j � n; i 6=

j), where x

1

; : : : ; x

n

2 I

new

are such that x

i

> s

0

for all individual names s

0

occurring

in A. It is su�cient to show that hA

0

; T

0

i is consistent if hA; T

0

i is consistent.

Thus, let I be a model of A and T

0

. Since the new individual names x

1

; : : : ; x

n

do not occur in A, validity of assertions in A does not depend on the interpretation

of these names. Because A contains (� n R C)(s), we know that s

I

2 (� n R C)

I

.

Thus there exist distinct elements d

1

; : : : ; d

n

of �

I

with (s

I

; d

i

) 2 R

I

and d

i

2 C

I

(1 � i � n). Obviously, if we modify I to an interpretation I

0

by interpreting the

new individuals x

1

; : : : x

n

as x

I

0

i

= d

i

, then I

0

is a model of A

0

and T

0

.
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(2) Assume that the !

�

-rule is applied to the ABox A in M. We restrict our

attention to the case where A contains assertions C(t

1

); : : : ; C(t

n+1

) and T

0

contains

the cardinality restriction (� n C) (the case of the quali�ed number restrictions can

be treated analogously). M

0

is obtained from M by replacing A by the �nitely

many ABoxes A

i;j

:= [t

i

=t

j

]A (for t

j

< t

i

and t

i

6

:

= t

j

not in A).

Now, let I be a model of A and T

0

. Since (� n C) 2 T

0

, we know that C

I

contains at most n elements. Thus there exist indices i; j (1 � i; j � n + 1; i 6= j)

such that t

I

i

= t

I

j

. Without loss of generality we assume that t

j

< t

i

. Since I is

a model of A, the assertion t

i

6

:

= t

j

cannot be contained in A, which implies that

[t

i

=t

j

]A is an element of M

0

. Obviously, I is also a model of [t

i

=t

j

]A and T

0

.

5.2 Termination

Proposition 5.2 Let hA

0

; T

0

i be a �nite KB. Then any sequence of rule applications

starting with hfA

0

g; T

0

i is �nite.

Before we can prove the proposition we have to introduce some notation. If a

transformation rule replaces the ABox A by A

1

; : : : ;A

n

, we write A ! A

i

(for all

i with 1 � i � n). In order to express which rule has been applied, the arrow is

equipped with the appropriate subscript; e.g., A !

�

A

i

means that the !

�

-rule

has been applied.

For an ABox A and an individual name s, we de�ne

CA(s;A) := fC j C(s) is a concept assertion in Ag:

Obviously, the new individual x is blocked by s in A i� s < x and CA(x;A) �

CA(s;A).

The following facts are an easy consequence of the way the transformation rules

and CA are de�ned:

Lemma 5.3 1. Let A! A

0

, and let s be an individual in A that is not replaced

in A

0

. Then we have CA(s;A) � CA(s;A

0

). If t

i

is an individual in A that

is replaced by t

j

in A

0

then we have t

j

< t

i

, CA(t

i

;A) � CA(t

j

;A

0

) and

CA(t

j

;A) � CA(t

j

;A

0

).

2. Let hA

0

; T

0

i be a �nite KB, let hM; T

0

i be obtained from this KB by a �nite

number of applications of transformation rules, and let A be an element of

M. For all concept assertions C(s) 2 A, the concept description C is a

subdescription of a description D t �D, where D occurs in hA

0

; T

0

i.

3. The second fact shows that there are only �nitely many di�erent sets CA(s;A)

for a given sequence of transformations starting from a �nite KB.
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To prove Proposition 5.2 we assume to the contrary that there exists an in-

�nite sequence of rule applications, which yields the KBs hfA

0

g; T

0

i, hM

1

; T

0

i,

hM

2

; T

0

i, : : : Since a transformation rule replaces one ABox by only �nitely many

new ABoxes, K�onig's lemma implies that there is an in�nite sequence of ABoxes

A

1

;A

2

; : : : such that A

0

!A

1

!A

2

! : : :

For any individual s occurring in these ABoxes, there are only �nitely many

di�erent concept assertions possible. Each rule application adds concept assertions

on an individual or removes an individual. Thus, to have an in�nite sequence of rule

applications, in�nitely many individuals must be generated, which means that the

!

�

-rule must have been applied in�nitely often. In addition, to a �xed individual

s, the !

�

-rule cannot be applied in�nitely many times. Indeed, s can occur in

only �nitely many di�erent at-least assertions, and to each at-least assertion, the

!

�

-rule is applied at most once. This shows that there must be in�nitely many

individual s

1

; s

2

; s

3

; : : : to which the !

�

-rule was applied. Since, for any individual

name s, there are only �nitely many smaller individual names, we may without loss

of generality assume that s

1

< s

2

< s

3

< : : :, and since I

old

is �nite we may assume

that all these individuals are new individuals, i.e., elements of I

new

.

For all i, let A

j

i

!

�

A

j

i

+1

be the transformation step at which the !

�

-rule is

applied to s

i

. Now consider the sets CA(s

i

;A

j

i

). Since there are only �nitely many

di�erent such sets, there must be indices k < l such that CA(s

k

;A

j

k

) = CA(s

l

;A

j

l

).

If s

k

is still present in A

j

l

(i.e., it has not been replaced by an application of the

!

�

-rule), then CA(s

l

;A

j

l

) = CA(s

k

;A

j

k

) � CA(s

k

;A

j

l

). Since s

k

< s

l

and s

l

is a

new individual, this means that s

l

should be blocked in A

j

l

, which is a contradiction

to our assumption that the !

�

is applied to s

l

in A

j

l

.

If s

k

is no longer present in A

j

l

then it has been replaced (possibly iteratively) by

another individual, say t, and we know that t < s

k

. Since in each replacement step

the replacing individual inherits all the concept assertions of the replaced individual,

we know that CA(s

k

;A

j

k

) � CA(t;A

j

l

). Again, we can conclude that s

l

is blocked

in A

j

l

. This completes the proof of termination.

5.3 Completeness

Let hfA

0

g; T

0

i be a generalized KB obtained as the result of our preprocessing step.

This means that T

0

contains only at-most restrictions. The ABox A

0

may contain

concept assertions and inequality assertions both for old and new individuals, but

all role assertions are of the form R(a; b) for old individuals a; b.

Assume that hM; T

0

i is a complete generalized KB that was obtained by starting

with hfA

0

g; T

0

i and applying the transformation rules of Figure 2 until no more rules

apply. Let A 2M be such that � = hA; T

0

i does not contain a clash, and let I

�

be

the corresponding canonical interpretation. In the following, we show that I

�

can
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be used to construct a model of hA

0

; T

0

i.

First, note that I

�

need not be a model of � = hA; T

0

i. The problem is that an

individual s that is blocked in A need not have been blocked at an earlier stage of

the transformation process. Thus, at such an earlier stage, the !

�

-rule may have

been applied to s, generating an individual t with R(s; t) 2 A. This role assertion

need not be satis�ed by the canonical interpretation (see the de�nition of role-�llers

for blocked individuals in the de�nition of the canonical interpretation).

However, I

�

is a model of a certain subset of A, and this will be su�cient to

show the desired result.

De�nition 5.4 The set of relevant assertions of an ABox B are de�ned as

rel(B) := fC(s) j C(s) is a concept assertion in Bg [

fR(a; b) j R(a; b) 2 B and a; b 2 I

old

g [

fs 6

:

= t j s 6

:

= t is an inequality assertion in Bg:

Thus, rel(B) is obtained from B by removing all role assertions involving new indivi-

duals. Since the ABox A

0

obtained by preprocessing does not contain role assertion

for new individuals, we know that rel(A

0

) = A

0

.

Lemma 5.5 Let � = hA; T

0

i be a complete and clash-free KB. Then the canonical

interpretation I

�

is a model of hrel(A); T

0

i.

Proof. First, consider a role assertion R(a; b) 2 rel(A). We know that a; b 2 I

old

,

and thus a cannot be blocked. By the de�nition of the canonical interpretation,

R(a; b) 2 A thus yields (a; b) 2 R

I

�

.

Second, consider an inequality assertion s

1

6

:

= s

2

2 rel(A). Since individual

names interpret themselves in I

�

, it is su�cient to show that s

1

and s

2

cannot be

identical names. Obviously, the ABox A

0

obtained after the preprocessing step does

not contain an inequality assertion of the form s 6

:

= s, and it is easy to see that this

property is invariant under rule application. In fact, the only rule that \identi�es"

di�erent individual names is the !

�

-rule. But this rule is applied for individuals t

i

and t

j

only if t

i

6

:

= t

j

is not contained in the ABox.

Third, consider a concept assertion C(s) 2 rel(A). We show by induction on the

structure of C that s 2 C

I

�

. Note that C(s) 2 rel(A) i� C(s) 2 A.

(1) Assume that C is a concept name B. Then B(s) 2 A implies s 2 B

I

�

by

de�nition of the canonical interpretation.

(2) Assume that C is of the form :B for a concept name B. SinceA was assumed

to be clash-free, we know that B(s) is not contained in A, and thus s 62 B

I

�

by

de�nition of the canonical interpretation.
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(3) Assume that C is of the form C

1

u C

2

for concept descriptions C

1

and C

2

.

Since the !

u

-rule is not applicable to A, we know that A contains both C

1

(s) and

C

2

(s). By induction, we can deduce that s 2 C

I

�

1

and s 2 C

I

�

2

, which obviously

implies s 2 (C

1

u C

2

)

I

�

.

(4) The case where C is of the form C

1

t C

2

can be treated analogously.

(5) Assume that C is of the form (� n R D). We have to distinguish two cases:

s can be blocked or not.

(5.1) Assume that s is not blocked. Thus, since the!

�

-rule is not applicable, we

know that A contains individuals s

1

; : : : ; s

n

such that the assertions R(s; s

i

), D(s

i

),

and s

i

6

:

= s

j

(1 � i; j � n; i 6= j) are in A. Because s is not blocked, R(s; s

i

) 2 A

implies (s; s

i

) 2 R

I

�

(by de�nition of I

�

). In addition, induction yields s

i

2 D

I

�

.

Finally, since we already know that I

�

satis�es all inequality assertions in A, the s

i

are all di�erent from each other. This shows that s 2 (� n R D)

I

�

.

(5.2) Now, assume that s is blocked in A. Let s

0

be the least (with respect to

the ordering <) individual name in �

I

�

that blocks s.

First, we show that s

0

is not blocked. Otherwise, the individual s

00

that blocks s

0

satis�es s

00

< s

0

< s and CA(s;A) � CA(s

0

;A) � CA(s

00

;A). Thus s

00

blocks s and

is smaller than s

0

, which is a contradiction.

Because CA(s;A) � CA(s

0

;A) we have (� n R D)(s

0

) 2 A. As shown in (5.1)

this implies that there are distinct individual names s

1

; : : : ; s

n

such that (s

0

; s

i

) 2

R

I

�

and s

i

2 D

I

�

. By de�nition of the canonical interpretation, we also have

(s; s

i

) 2 R

I

�

, which yields s 2 (� n R D)

I

�

.

(6) Assume that C is of the form (� n R D). In order to show that s 2 (�

n R D)

I

�

we assume to the contrary that there exist distinct individuals s

1

; : : : ; s

n+1

such that (s; s

i

) 2 R

I

�

and s

i

2 D

I

�

(for i = 1; : : : ; n + 1). Again, we have to

distinguish two cases, depending on whether s is blocked or not.

(6.1) Assume that s is not blocked. Then (s; s

i

) 2 R

I

�

implies R(s; s

i

) 2 A.

Since the !

choose

-rule is not applicable, we know that (D t �D)(s

i

) is in A for all

i, and since the !

t

-rule is not applicable, we have for all i that either D(s

i

) or

�D(s

i

) is in A. By induction, �D(s

i

) 2 A would yield s

i

2 (�D)

I

�

= (:D)

I

�

.

5

Thus, s

i

2 D

I

�

yields D(s

i

) 2 A for i = 1; : : : ; n + 1. This is a contradiction, since

now either the !

�

-rule must be applicable, or A must contain a clash.

(6.2) Now, assume that s is blocked in A. Let s

0

be the least (with respect to

the ordering <) individual name in �

I

�

that blocks s.

As in (5.2), we can deduce that s

0

is not blocked, and that A contains the

assertion (� n R D)(s

0

). In addition, (s; s

i

) 2 R

I

�

implies (s

0

; s

i

) 2 R

I

�

(by

de�nition of I

�

). Thus we can proceed as in (6.1), with s

0

in place of s. This

5

We assume that the negation sign does not contribute to the size of a concept term. Thus �D

has the same size as D (cf. [11]).
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completes the proof that I

�

satis�es all the concept assertions in A.

Finally, consider an element (� n C) of the TBox T

0

. Assume that there are

n+1 di�erent individuals s

1

; : : : ; s

n+1

2 �

I

�

such that s

i

2 C

I

�

for i = 1; : : : ; n+1.

As in (6.1) above, the fact that the !

choose

-rule is not applicable can be used to

show that C(s

i

) 2 A. Again, this is a contradiction, since now either the !

�

-rule

must be applicable, or A must contain a clash. This completes the proof that I

�

is

a model of hrel(A); T

0

i.

Lemma 5.6 Assume that B ! B

0

and that I

0

is a model of rel(B

0

) and T

0

. Then

there exists an interpretation I that is a model of rel(B) and T

0

.

Proof. If B

0

is obtained from B by an application of the !

u

-, !

t

-, !

�

-, or

!

choose

-rule then B is a subset of B

0

. Thus, rel(B) � rel(B

0

), which shows that we

can simply use I := I

0

.

Thus, the only interesting case is the !

�

-rule. This means that B

0

= [t

i

=t

j

]B

is obtained from B by replacing each occurrence of t

i

by t

j

(for some individuals t

i

and t

j

in B). We know that t

j

< t

i

and that t

i

6

:

= t

j

is not in B. Since t

i

has been

replaced by t

j

, we also know that t

i

does not occur in B

0

. Hence, if we de�ne I such

that I is identical to I

0

, with the exception that t

I

i

:= t

I

j

, then we know that I is a

model of rel(B

0

). It remains to be shown that I is also a model of rel(B).

Let � be the substitution that replaces t

i

by t

j

, and leaves all the other individuals

unchanged. Since B

0

= [t

i

=t

j

]B we know for all individuals s in B that C(s) 2 rel(B)

(respectively s 6

:

= t 2 rel(B)) implies C(�(s)) 2 rel(B

0

) (respectively �(s) 6

:

= �(t) 2

rel(B

0

)). In addition, by our de�nition of I, we have �(s)

I

= s

I

. This shows that

all the concept and inequality assertions in rel(B) are satis�ed by I.

Finally, let R(a; b) be a role assertion in rel(B). Thus we know that a and b

are old individuals. Neither of these two individuals can be equal to t

i

. To show

this, assume (without loss of generality) that a is equal to t

i

. Since t

j

< t

i

= a, this

implies that t

j

is also an old individual. But then we have t

i

6

:

= t

j

in B (because in the

preprocessing step the unique name assumption for old individuals has been made

explicit). This is a contradiction since the!

�

-rule generates the ABox [t

i

=t

j

]B only

if t

i

6

:

= t

j

is not in B.

Since a and b are di�erent from t

i

we know that R(a; b) is also contained in

rel(B

0

), and we are done.

To sum up, Lemma 5.5 shows that I

�

is a model of the clash-free and complete

KB hrel(A); T

0

i. By applying Lemma 5.6 iteratively, we can deduce that hrel(A

0

); T

0

i

has a model. Since the ABox A

0

obtained after preprocessing satis�es rel(A

0

) = A

0

,

we thus know that hA

0

; T

0

i has a model. This completes the proof of Theorem 4.4.
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6 Conclusion

We have shown how to extend a terminological KR formalism by a construct that

can express global restrictions on the cardinality of concepts. The usefulness of

these cardinality restrictions on concepts was demonstrated by an example from a

con�guration application.

Because of the possibility of global restrictions, knowledge bases in our new

formalism have signi�cantly di�erent properties from knowledge bases in more tra-

ditional terminological formalisms. We have seen that in the presence of cardinality

restrictions, subsumption between concepts depends not only on the TBox, but also

on the ABox. In addition, it is no longer true that unconnected objects (i.e., objects

not connected by role relationships) in an ABox or a model cannot in
uence each

other. This complicates the algorithmic treatment of the new construct.

Unlike role-value maps, however, (which could be used to model similar situa-

tions), our new construct leaves all the important inference problems decidable.

As a lower complexity bound, we know that KB-consistency is EXP-TIME-hard,

since cardinality restrictions on concepts can express general terminological axioms,

for which EXP-TIME-hardness is known [17]. Our algorithm yields as upper bound

NEXP-TIME, but it is not clear whether a deterministic exponential time algorithm

can be derived.

The consistency algorithm combines and simpli�es the ideas developed for the

treatment of quali�ed number restrictions and of terminological axioms. In particu-

lar, our new de�nition of blocked objects allows for a termination proof that does

not require a speci�c strategy for rule application.
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