
Knowledge representation in process engineering

Franz Baader and Ulrike Sattler

RWTH Aachen, fbaader,ulig@cantor.informatik.rwth-aachen.de

Abstract

In process engineering, as in many other

application domains, the domain spe-

ci�c knowledge is far too complex to

be described entirely using description

logics. Hence this knowledge is often

stored using an object-oriented system,

which, because of its high expressive-

ness, provides only weak inference ser-

vices. In particular, the process engi-

neers at RWTH Aachen have developed

a frame-like language for describing pro-

cess models. In this paper, we investi-

gate how the powerful inference services

provided by a DL system can support

the users of this frame-based system. In

addition, we consider extensions of de-

scription languages that are necessary

to represent the relevant process engi-

neering knowledge.

The application domain

Process engineering is concerned with the design

and operation of chemical processes that take

place in large chemical plants. This engineering

task includes activities like deciding on an ap-

propriate 
owsheet structure (e.g. con�guration

of reaction and separation systems), mathemat-

ical modeling and simulation of the process be-

havior (e.g. stating mathematical equations and

performing numerical simulations), sizing of com-

ponents (like reactors, heat exchangers etc.) as

well as budgeting and engineering economics.

These highly complex tasks can be supported

by building computer models of the chemical

plants and processes, using appropriate software

tools such CAD, decision support systems and

numerical tools. Rather than designing each new

model from scratch, one wants a system that of-

fers standard building blocks that can easily be

put together. Standard building blocks

[

Mar-

quardt, 1994; Bogusch&Marquardt, 1995

]

are

objects representing

� material entities such as reactors, pipes, con-

trol and cooling units,

� models of these devices such as device-,

environment-, and connection-models,

� interfaces between these models and so-

called implementations describing their be-

haviour,

� symbolic equations specifying these imple-

mentations and variables occuring in these

equations, which are related to each other

as speci�ed in the interfaces.

Since there is a great variety of di�erent build-

ing blocks, they must be stored in an appropriate

database. Since process engineering is a quickly

evolving �eld, the number of standard building

blocks increases constantly. Hence it must be

possible to de�ne new building blocks in a com-

fortable way.

The process engineers at the RWTH Aachen

we are cooperating with have developed a frame-

like language for describing these standard build-

ing blocks,

[

Bogusch&Marquardt, 1995; Mar-

quardt, 1994

]

. This language allows to group

building blocks into classes, and to order the

classes in an is-a/specialization-of hierarchy. It

should be noted that this hierarchy is explic-

itly given by the person de�ning the classes (the

knowledge engineer), and not automatically in-

ferred from the de�nition of the class.

As the complexity of the database increases,

navigation in the class hierarchy becomes di�-

cult, and modifying or extending the hierarchy

becomes dangerous. More precisely, the knowl-

edge engineer is faced with the following prob-



lems:

1. Finding an old class: If the knowledge engi-

neer does not know the exact name or even

de�nition of the class (s)he is looking for,

navigation in the class hierarchy is di�cult,

especially in those parts of the database not

often used by the knowledge engineer.

2. De�ning a new class: There is no support

for �nding the appropriate place in the hier-

archy at which the new class should be in-

serted. This is left to the intuition of the

knowledge engineer.

Often, (s)he may know that A is a subclass

of B, but might be uncertain whether the

database already contains a more speci�c

subclass B

0

of B such that A is also a sub-

class of B

0

. Because of this uncertainty it

often happens that the hierarchy becomes

broader than necessary.

On the other hand, the de�nition of the new

class might be inconsistent, have unintended

consequences, or may not be consistent with

the place in the hierarchy at which the new

class is inserted.

3. Distributed modeling: If the class hierarchy

is built by di�erent persons simultaneously,

then there is a high probability that several

classes (with di�erent names) describe the

same type of building block in syntactically

di�erent terms. This does not only blow up

the size of the database; it is also a source

for misunderstanding and errors.

The rôle of the DL system

In order to avoid some of these problems, we in-

tend to provide the database with an interface to

a description logic system. In principle, the DL

system maintains a TBox that contains concept

de�nitions that are obtained from the class def-

initions of the frame language. Since the frame

system does not have a strict formal semantics,

and since it provides means like methods, trig-

gers, etc., which cannot be expressed in descrip-

tion logics, these concept de�nitions can only be

approximations of the class de�nitions. What we

require, however, is that the concept hierarchy

computed by the DL system coincides with the

class hierarchy of the frame system. This is ac-

complished by an interaction with the knowledge

engineer. Whenever (s)he de�nes a new class,

the corresponding concept is classi�ed in the al-

ready existing concept hierarchy. If its place in

this taxonomy di�ers from the place at which the

knowledge engineer has put the class, then (s)he

is noti�ed, and there are two di�erent ways to

overcome the problem:

� either (s)he reconsiders her/his decision.

This happens if the knowledge engineer no-

tices that the class de�nition was incorrect.

� or the concept is modi�ed such that classi�-

cation puts it at the right place. This hap-

pens if the class de�nition was correct, but

the corresponding concept does not re
ect

the class de�nition entirely due to the re-

stricted expressive power of the description

language.

Navigation can now be supported as follows: The

knowledge engineer describes|possibly in an in-

complete way|the class (s)he is looking for, and

then the description logic interface computes the

most speci�c classes subsumed by this descrip-

tion. A closer look at these classes might then

reveal how to specialize the description, and the

process of going down in the hierarchy can be

continued until an appropriate concept is found.

The de�nition of new classes can be supported

since the subsumption test of the DL system can

compute all equivalent concepts, and then the

knowledge engineer can decide whether the newly

de�ned class is redundant or whether its de�ni-

tion must be modi�ed. In addition, the concept

descriptions can be tested for unsatis�ability, and

the knowledge engineer can be warned whenever

unsatis�ability is detected.

The reason for using a DL system in

this context was, on the one hand, that

this type of knowledge representation lan-

guages is rather similar to frame-like lan-

guages. On the other hand, DL systems are

equipped with subsumption algorithms neces-

sary for providing the envisioned modeling sup-

port, as outlined above. In the last decade,

a great variety of di�erent description log-

ics has been investigated

[

Levesque&Brachman,

1987; Nebel, 1988; Schmidt-Schauss, 1989; Patel-

Schneider, 1989; Hollunder et al., 1990; Donini

et al., 1991; Baader&Hanschke, 1993; De

Giacomo&Lenzerini, 1994; Calvanese et al.,

1995

]

. However, the adequate representation of

standard building blocks for models in process

engineering requires additional expressive power.

Language extensions

The main concern is here to provide appropri-

ate means for describing the structure of chem-



ical plants, of the process models, of equations,

etc. For this reason, we have investigated part-

whole relations (for the vertical representation of

structure), and more expressive number restric-

tions (which can be used to describe horizontal

relationships).

Part-whole relations: Since the plants to be

modeled are very complex, one should be able

both to decompose and to aggregate devices and

connections occurring in the plants. A modeling

tool should thus be able to support top-down and

bottom-up modeling along a su�ciently large

number of decomposition levels, or, even better,

along any (�nite) number of decomposition lev-

els.

In order to represent composite objects cor-

rectly, the inference algorithms of the DL sys-

tem must take the special properties of part-

whole relations into account. As in other applica-

tions

[

Gerstl&Pribbenow, 1993; Franconi, 1994;

Artale et al., 1994; Pribbenow, 1995

]

, we were

thus confronted with the question

� which types of part-whole relations are

needed for the appropriate representation

of the complex objects in our application.

It turned out that objects are decomposed

with respect to the component-composite,

segment-entity, and member-collection rela-

tion, each of them a specialization of the gen-

eral part-whole relation. Roughly speaking,

parts with respect to the member-collection

relation are not coupled with each other

and are of the same kind, whereas compo-

nents are coupled with each other in a rather

arbitrary way and may be of quite di�er-

ent kinds; �nally, segments are of a similar

kind, but coupled with each other. Since the

knowledge engineer might want to refer to a

part, not knowing on which level of decom-

position it can be found and with respect to

which speci�c part-whole relation it is ob-

tained, the general transitive part-whole re-

lation must also be available.

� how these relations interact. If, in the

intuition of the knowledge engineer, the

segment-entity relation is transitive, then it

must be represented as a transitive role. But

what about a component a of a segment b of

a whole c: is a also a component of c? Ques-

tions concerning these interactions are not

yet completely answered, but without an ap-

propriate solution, composite objects cannot

be handled appropriately.

� which additional properties concerning the

part-whole relation are relevant in the ap-

plication. For example, the existence of a

certain part can be essential for the proper

de�nition of the whole, in contrast to other

parts being optional; a part can be exclu-

sive in the sense that it might be a part of

at most one object, without the possibility

to be shared by other objects; a part can be

functional for an object in that this object

does no longer work correctly if this part is

broken; and many other important proper-

ties are conceivable. The appropriate rep-

resentation of these properties can be quite

useful: it allows, for example, to �nd out

whether all essential parts are speci�ed; if

this is not the case, the knowledge engineer

can be informed, and the missing parts can

be determined.

Since at least the general part-whole relation

is transitive, the DL system used in this applica-

tion must be able to handle some kind of transi-

tive relations. Hence, an interesting question is

in which ways transitive relations can be included

into description languages and how to design ap-

propriate inference algorithms. In

[

Sattler, 1996

]

,

three di�erent extensions of the description lan-

guageALC by transitivity have been investigated.

Number restrictions: As in many other ap-

plications, objects in our application are often

characterized by the number of other objects to

which they are related via a certain relation. For

example, we want to describe devices having at

least 7 inputs or devices having exactly 5 outputs.

In description logics, this kind of knowledge can

be expressed using number restrictions, as in

(deviceu (� 7 input)); or

(device u (= 5 output)):

This traditional type of number restrictions

has rather weak expressive power: the roles oc-

curring in them are atomic, and one can only

use �xed numbers (and not variables ranging over

numbers). To overcome this de�cit, we have in-

vestigated various more expressive number re-

strictions.

In

[

Baader&Sattler, 1996a

]

, we have intro-

duced so-called symbolic number restrictions,

which allow for variables, and can thus be used



to describe concepts like devices having the same

number of inputs and outputs, as in

(deviceu (= � input) u (= � output));

or devices having less inputs than each of their

parts have, as in

(device u (= � input) u (8part:(> � input)));

where � is interpreted as some nonnegative in-

teger. The following example reveals a certain

ambiguity:

deviceu (8part:(= � input) u (= � output)))

It describes devices where each part has the same

number of inputs and outputs. However, it de-

pends on the reading whether di�erent parts can

have di�erent numbers of inputs or not. To over-

come this ambiguity, we introduced explicit exis-

tential quanti�cation of numerical variables (de-

noted by # �) to distinguish between (1) a device

where for each of its parts the number of its in-

puts equals the number of its outputs and (2) a

device where all parts have the same number of

inputs and outputs:

deviceu

(8part:(# �:(= � input) u (= � output))) (1)

deviceu

(# �:(8part:(= � input) u (= � output))) (2)

Unfortunately, it turned out that the basic in-

ference problems, such as satis�ability and sub-

sumption, are undecidable if this kind of number

restrictions is allowed in an unrestricted way. For

a restricted language, we have shown that satis-

�ability is decidable.

Another interesting extension is to allow for

complex roles in number restrictions. For exam-

ple, we are interested in describing devices that

have at most 7 parts that are components of their

components, as in

deviceu(� 7 has-component�has-component);

or we want to describe a device that is controlled

by the same control unit as all the devices it is

connected to:

deviceu

(= 1 control-byt connect-to�control-by):

In these examples, complex roles are built using

the operators composition and union of roles.

Other interesting operators are intersection

and inversion of roles. Intersection can be used to

express, for example, that a devices has at least

2 bidirectional connections:

deviceu (� 2 input u output):

Inversion comes in if we need the role part-of

beside the role has-part. In

[

Baader&Sattler,

1996b

]

, it is shown which types of complex roles

lead to undecidable inference problems, and for

which types of complex roles subsumption and

satis�ability remain decidable.

Outlook

This paper describes work in progress. From

our cooperation with process engineers, we have

learned that the system services provided by DL

systems appear to be very useful for their appli-

cation: a description logics based browser could

support the engineers in building and maintain-

ing their frame-based database. Before building

this browser, we have investigated which expres-

sive power is needed to describe relevant prop-

erties of objects occuring in this application. It

turned out that transitivity and expressive num-

ber restrictions play an important rôle in this

application. However, we have not yet made a

�nal decision as to which particular description

logic is \most appropriate". We need to �nd a

compromise between necessary expressive power

and acceptable computational complexity. In the

near future, such a description language will be

�xed and we will test whether the support DL

systems can provide in this application is really

as high as we expect.

References

[

Artale et al., 1994

]

A. Artale, F. Cesarini,

E. Grazzini, F. Pippolini, and G. Soda. Mod-

elling composition in a terminological language

environment. In Workshop Notes of the ECAI

Workshop on Parts and Wholes: Conceptual

Part-Whole Relations and Formal Mereology,

pages 93{101, Amsterdam, 1994.

[

Baader&Hanschke, 1993

]

F. Baader and P. Hanschke. Extensions of

concept languages for a mechanical engineer-

ing application. In Proc. of the 16th Ger-

man AI-Conference, GWAI-92, volume 671

of LNCS, pages 132{143, Bonn, Deutschland,

1993. Springer-Verlag.



[

Baader&Sattler, 1996a

]

F. Baader and U. Sat-

tler. Description logics with symbolic number

restrictions. In W. Wahlster, editor, Proc. of

ECAI-96. John Wiley & Sons Ltd, 1996.

[

Baader&Sattler, 1996b

]

F. Baader and U. Sat-

tler. Number restrictions on complex roles in

description logics. In Proc. of KR-96. M. Kauf-

mann, Los Altos, 1996.

[

Bogusch&Marquardt, 1995

]

R. Bogusch and

W. Marquardt. A formal representation of pro-

cess model equations. Computers and Chemi-

cal Engineering, 19:211{216, 1995.

[

Calvanese et al., 1995

]

D. Calvanese, G. De Gi-

acomo, and M. Lenzerini. Structured objects:

Modeling and reasoning. In Proc. of DOOD-

95, volume 1013 of LNCS, pages 229{246,

1995.

[

De Giacomo&Lenzerini, 1994

]

G. De Giacomo

and M. Lenzerini. Concept language with

number restrictions and �xpoints, and its rela-

tionship with mu-calculus. In Proc. of ECAI-

94, 1994.

[

Donini et al., 1991

]

F. Donini, M. Lenzerini,

D. Nardi, and W. Nutt. The complexity of

concept languages. In Proc. of KR-91, Boston

(USA), 1991.

[

Franconi, 1994

]

E. Franconi. A treatment of

plurals and plural quanti�cations based on a

theory of collections. Minds and Machines,

3(4):453{474, November 1994.

[

Gerstl &Pribbenow, 1993

]

P. Gerstl

and S. Pribbenow. Midwinters, end games and

bodyparts. In N. Guarino and R. Poli, editors,

International Workshop on Formal Ontology-

93, pages 251{260, 1993.

[

Hollunder et al., 1990

]

B. Hollunder, W. Nutt,

and M. Schmidt-Schauss. Subsumption algo-

rithms for concept description languages. In

ECAI-90, Pitman Publishing, London, 1990.

[

Levesque&Brachman, 1987

]

H. Levesque and

R. J. Brachman. Expressiveness and tractabil-

ity in knowledge representation and reasoning.

Computational Intelligence, 3:78{93, 1987.

[

Marquardt, 1994

]

W. Marquardt. Trends in

computer-aided process modeling. In Proc. of

ICPSE '94, pages 1{24, Kyongju, Korea, 1994.

[

Nebel, 1988

]

B. Nebel. Computational complex-

ity of terminological reasoning in BACK. Ar-

ti�cial Intelligence, 34(3):371{383, 1988.

[

Patel-Schneider, 1989

]

P. F. Patel-Schneider.

Undecidability of subsumption in NIKL. AIJ,

39:263{272, 1989.

[

Pribbenow, 1995

]

S. Pribbenow. Modeling

physical objects: Reasoning about (di�erent

kinds of) parts. In Time, Space, and Move-

ment Workshop 95, Bonas, France, 1995.

[

Sattler, 1996

]

U. Sattler. A concept language

extended with di�erent kinds of transitive

roles. In G. G�orz and S. H�olldobler, editors, 20.

Deutsche Jahrestagung f�ur K�unstliche Intelli-

genz, volume 1137 of LNAI. Springer-Verlag,

1996.

[

Schmidt-Schauss, 1989

]

M. Schmidt-Schauss.

Subsumption in KL-ONE is undecidable. In

Proc. of KR-89, pages 421{431, Boston (USA),

1989.


