
Description Logics with Symbolic Number Restrictions
Franz Baader and Ulrike Sattler 1

Abstract. Motivated by a chemical engineering application, we in-
troduce an extension of the concept description language ALCN

by symbolic number restrictions. This first extension turns out to
have an undecidable concept satisfiability problem. For a restricted
language—whose expressive power is sufficient for our application—
we show that concept satisfiability is decidable.

1 Introduction

In recent years, a great variety of different concept description langu-
ages has been used in description logic systems and investigated in the
literature. First, there was a trend of restricting the expressive power of
the description language [4], to avoid the undecidability of subsump-
tion in early systems [14, 12] and the high worst-case complexity of
some of the decidable languages [9, 11]. Driven by demands from
applications and facilitated by the realization that worst-case intrac-
table languages may behave quite well in practice [1], this trend was
reversed, however, by adding expressive application-relevant opera-
tors that do not cause undecidability, but may increase the worst-case
complexity.

Motivated by a chemical engineering application [10, 3], we con-
sider an extension of the expressive power of so-called number re-
strictions, which are present in almost all implemented systems. In
its simplest form, this construct just restricts the number of role-
successors w.r.t. a given role. For example, assume that device
is a concept (unary predicate) and input is a role (binary predi-
cate). Then we can describe all devices (e.g., a reactor in a chemical
plant) having exactly 5 inputs and at most 6 outputs by the concept
device u (= 5 input) u (� 6 output): A more expressive
variant of number restrictions considered in the literature [6], but
usually not available in implemented systems, are so-called qualify-
ing number restrictions. They can be used to restrict the number of
role-successors belonging to a particular concept, as for example in
the concept device u (� 5 input :pipe), which describes those
devices having at least 5 inputs that are pipes.

A very severe restriction of the expressive power of number re-
strictions is the fact that we must always give exact numbers.2In order
to express by traditional number restrictions that the number of inputs
and outputs of a device must be the same, we need to know the exact
number of inputs and outputs. If disjunction of concepts is available,
it is sufficient to have an upper bound for the allowed number of
inputs and outputs, but it is still not possible to allow for an arbitrary
finite number. Symbolic number restrictions, which are introduced in
the present paper, overcome this problem by allowing for variables
ranging over the nonnegative integers in place of the fixed numbers

1 RWTH-Aachen, LuFG Theoretical Computer Science, Ahornstr. 55, 52074
Aachen, Germany. This work was supported by the Deutsche Forschungs-
gemeinschaft under Grant No. Sp 230n 6–6.

2 As pointed out in [9], an important aspect of expressiveness is, however,
“what can be left unsaid” in a representation.

in ordinary number restrictions. Devices where the number of inputs
and outputs agree can thus be described by

device u (= � input) u (= � output):

The expressive power of this construct can further be increased by
introducing explicit quantifiers for the numerical variables. In fact,
using explicit quantification we can, on one hand, describe devices
such that for every of its components the number of inputs and outputs
agree:

device u 8component : (#�:(= � input) u (= � output)):

Here, #� stands for an existential quantification of �. It is important
that this quantifier comes after the value restriction on component,
because we want to allow for devices where different components
have a different number of inputs. On the other hand, it is sometimes
important to introduce a quantified numerical variable before the
value restriction in which it is used:

device u #�:8component : (= � input)

makes sure that all components of the device have the same number
of inputs.

If we use a concept language allowing for full negation of concepts,
the existential quantifier for numerical variables induces a universal
quantifier, which we will abbreviate as "�. The expressive power of
the universal quantifier is demonstrated by the fact that it can force
the number of role successors of an object to be infinite: devices
belonging to the concept

device u "�:(� � input)

must have an unbounded (and thus infinite) number of inputs. This
is in contrast to most of the description languages considered un-
til now, in which every concept can be satisfied by a finite model.
It turns out that universal quantification of numerical variables can
even cause undecidability. In Section 2.2, we show that an extension
of the concept description language ALCN (which allows for full
negation) by symbolic number restrictions leads to a language with
an undecidable satisfiability problem for concepts. However, if we
restrict ourselves to atomic negation (i.e., extend ALUEN rather than
ALCN), and disallow universal quantification of numerical variables,
we end up with a decidable satisfiability problem. It should be noted
that all the reasonable examples from our application can be expres-
sed using existentially quantified variables only. Unfortunately, the
subsumption problem for this restricted language is still undecidable.

2 ExtendingALCN by symbolic number restrictions

2.1 Basic definitions

We extend the concept language ALCN , as introduced in [7, 5], by
allowing for numerical variables � (ranging over the nonnegative in-

c

 1996 F. Baader and U. Sattler
ECAI 96. 12th European Conference on Artificial Intelligence
Edited by W. Wahlster
Published in 1996 by John Wiley & Sons, Ltd.

tegers) in number restrictions, and by adding existential quantification
of numerical variables (written as #�).

Definition 1 Let N
C

be a set of concept names, N
R

a set of role
names, N

V

a set of numerical variables, and let rel 2 f=; <;>;�;
�g. The set of concepts of ALCN S is the smallest set such that

� every concept name is a concept.
� if C and D are concepts, R is a role name, � is a variable and
n 2 IN a nonnegative integer, then (C u D), (C t D), (:C),
(8R:C), (9R:C), (#�:C), (rel� R), (reln R) are concepts.

Concepts of the form (rel� R) or (reln R) are called number re-
strictions.ALCN is obtained fromALCN

S by disallowing both quan-
tification of numerical variables and symbolic number restrictions,
i.e., number restrictions of the form (rel� R).

Additional Boolean operators, such as implication, will be used as
abbreviations: for example, A) B stands for :A t B. Since
ALCN

S allows for full negation of concepts, universal quantification
of numerical variables can be expressed: In the following, we us
("�:C) as shorthand for :(#�::C). Before formally defining the
semantics of ALCNS-concepts, we illustrate the expressiveness of
the new language by three examples from our chemical engineering
application. In ALCN

S , we can describe by a concept aggregates
having more connections than devices as parts:

#�:((= � has device) u (> � has connection)):

In ALCN , one could express by a large disjunction that an aggregate
has 0 devices and at least 1 connection, or 1 device and at least 2
connections, or ..., but to obtain a finite disjunction, we need a fixed
upper bound for the number of devices.

The next concept describes aggregates all of whose components
have the same number of inputs and the same number of outputs:

#�#�:(8component:((= � input) u (= � output))):

Since variables are explicitly quantified, their scope varies depending
on where this quantification occurs: commuting#� and8component
in the above concept would yield a concept that only expresses that
each component must have some finite number of outputs, without
requiring any agreements of the number of outputs between different
components.

The third concept illustrates how variables can be used to express
restrictions on different role-levels of a nested concept. In our appli-
cation, each device may have several context-dependent realizations,
each of which must have sufficiently many parameters to describe all
relevant properties of the device:

#�:((= � property) u (8realization:(� � param))):

Definition 2 The occurrence of a variable � 2 N

V

is said to be
bound in C iff � occurs in the scope C

0 of a quantified subterm
(#�:C

0

) of C. Otherwise, the occurrence is said to be free. Note that,
as usual, a variable can occur free and bound in a concept. The set
free(C) � N

V

denotes the set of variables that occur free in C. A
concept C is closed iff free(C) = ;. The concept C[

n

�

] is obtained
from a concept C by substituting all free occurrences of � by n.

Using this notation, we can define the semantics ofALCN S-concepts.

Definition 3 An interpretation I = (4

I

; �

I

) consists of a set 4I ,
called the domain of I, and a function �I that maps every concept to

a subset of 4I , and every role to a subset of 4I �4

I such that

(C u D)

I

= C

I

\D

I

(C t D)

I

= C

I

[D

I

:C

I

= 4

I

n C

I

(9R:C)

I

= fd 2 4

I

j 9e 2 4

I : (d; e) 2 R

I

^ e 2 C

I

g

(8R:C)

I

= fd 2 4

I

j 8e 2 4

I : (d; e) 2 R

I

) e 2 C

I

g

(#�:C)

I

=

[

n2IN

(C[

n

�

])

I

(reln R)

I

= fd 2 4

I

j #fe 2 4I j (d; e) 2 R

I

g relng

Here #X denotes the cardinality of the set X . If C is not closed and
free(C) = f�1; : : : ; �ng for n � 1 then CI := (#�1: : : : #�n:C)

I

:

For a role name R, an interpretation I and some x 2 4I , we define

x

R

I

= #fy 2 4I j (x; y) 2 R

I

g:

Since ("�:C) is an abbreviation for :(#�::C), we can describe its
semantics directly as

("�:C)

I

=

\

n2IN

(C[

n

�

])

I

:

A concept C is called satisfiable iff there is some interpretation
I such that CI

6= ;. We call such an interpretation a model of C.
A concept D subsumes a concept C (written C v D) iff for each
interpretation I we have CI

� D

I . Two concepts C;D are said to
be equivalent iff C v D and D v C.

2.2 Satisfiability of ALCNS-concepts is undecidable

In order to show this undecidability result, we reduce a variant of the
well-known domino problem to satisfiability of ALCN S-concepts.

Definition 4 A tiling system is given by a non-empty set D =

fD1; : : : ; Dm

g of domino types, and by horizontal and vertical mat-
ching pairs H � D � D, V � D � D. Our variant of the do-
mino problem asks for a compatible tiling of the “second eighth”
(IN � IN)

�

:= f(a; b) j a; b 2 IN and a � bg of the plane, i.e., a
mapping t : (IN� IN)

�

! D such that

(t(a; b); t(a+ 1; b)) 2 H for all a < b in IN;

(t(a; b); t(a; b+ 1)) 2 V for all a � b in IN:

The standard domino problem asks for a compatible tiling of the
whole plane. However, a compatible tiling of the second eighth yields
compatible tilings of arbitrarily large finite rectangles, which in turn
yield a compatible tiling of the plane [8]. Thus, the undecidability
result for the standard problem [2] carries over to our variant.

Intuitively, our reduction works as follows: First, we define an
ALCN

S-concept CIN such that for each model of CIN there is a natural
relationship between tuples (a; b) 2 (IN� IN)

�

and certain elements
y

a;b

of the model. Second, for a given tiling system D, we construct
a concept C

D

that (1) is subsumed by CIN, (2) ensures that every
y

a;b

has exactly one domino type, and (3) encodes the compatibility
conditions of the matching pairs.

The formal definition of CIN is given in Figure 1. Assume that I is
an interpretation and x 2 4

I such that x 2 C

I

IN . Now, C1 expresses
that for every nonnegative integer a, x has an S-successor having
exactly a L-successors. The precondition of C2 makes sure that a is
smaller than b, and thus the whole implication says that for each pair

Knowledge Representation 284 F. Baader and U. Sattler

CIN := ("�:"�:(C1 u C2 u C3)) where C1 := (9S:(= � L))

C2 := ((9S:(= � L) u (� � L))) (9S:(= � L) u (= � R)))

C3 := (8S:((= � L) u (= � R))) (� � L))

Given a tiling system D = (fD1; : : : ; Dm

g; H; V) and the subconcepts C1; C2; C3 of CIN defined above, let

C

D

:= (8S:(t1�i�m(D

i

u (u 1�j�m
i6=j

:D

j

)))) u CIN u

("�:"�: u1�i�m(9S:((= � L) u (= � R) u D

i

)))

((8S:((6= � L) t (6= � R) t D

i

)) u (1)

("
:(<(�; �) u =(�+ 1;
))) (8S:(((=
 L) u (= � R))) t

(D

i

;D

j

)2H

D

j

))) u (2)

("
:(=(� + 1;
)) (8S:(((= � L) u (=
 R))) t

(D

i

;D

j

)2V

D

j

))))))); (3)

Figure 1. Definition of the concepts CIN and C
D

used for the reduction of the domino problem to the ALCNS satisfiability problem

a � b of nonnegative integers, x has an S-successor having exactly
a L-successors and b R-successors (there can be more than one such
S-successor). Finally, C3 says that whenever an S-successor of x has
a L-successors and b R-successors, we have a � b. Thus, there is an
obvious correspondence between S-successors of x and points in the
second eighth of the plane: every S-successor corresponds to a point
in (IN� IN)

�

and vice versa.
Obviously, the following “canonical” model I = (4

I

; �

I

) of CIN

satisfies x 2 C

I

IN :

4

I := fxg] fy

a;b

j a; b 2 IN and a � bg]

fl

a

; r

b

j a; b 2 INg;
S

I := f(x; y

a;b

) j a; b 2 IN and a � bg;

L

I := f(y

a;b

; l

a

0

) j a; a

0

; b 2 IN and a0 < a � bg;

R

I := f(y

a;b

; r

b

0

) j a; b; b

0

2 IN and a � b and b0 < bg:

The definition of the concept C
D

associated with a tiling system D

is given in Figure 1, where the following abbreviations are employed

<(�; �) := (9S:((= � L) u (= � R) u :(= � L)));

=(�+ 1; �) := <(�; �) u (8S:((� � L) t (� � L))):

In the context of the concept CIN, these abbreviations really express
the relation < and the successor relation on natural numbers: For
x 2 CIN

I we have

x 2 (<(�; �)[

a

�

][

b

�

])

I iff a < b;

x 2 (=(�+ 1; �)[a
�

][

b

�

])

I iff a+ 1 = b:

The first line in the definition of C
D

makes sure that CIN subsumes
C

D

, and that every S-successor of an instance x of C
D

has exactly
one domino type. In the remainder of the definition, we consider an
S-successor y

a;b

with domino type D
i

and a L- and b R-successors.
Now, (1) ensures that every S-successor with the same number of L-
andR-successors as y

a;b

has the same domino typeD
i

, (2) takes care
of the horizontal matching condition, and (3) of the vertical matching
condition. Given this intuition, it is easy to show that the following
lemma holds (see [13] for a complete proof).

Lemma 5 C

D

is satisfiable iff there exists a compatible tiling of the
first eighth of the plane using D.

Thus, undecidability of the domino problem yields undecidability of
the satisfiability problem forALCNS-concepts. SinceC is unsatisfia-
ble iff C v (A u :A), this implies undecidability of subsumption.

Theorem 1 Satisfiability and subsumption of ALCNS-concepts are
undecidable.

3 Satisfiability of ALUENS-concepts is decidable

In the following, we show that satisfiability of ALCN S-concepts be-
comes decidable if negation is restricted to concept names. The only
effect of this restriction is that universal quantification of numerical
variables can no longer be expressed. In fact, we still have all of
ALCN as sublanguage because everyALCN -concept can be transfor-
med into an equivalent one in negation normal form (where negation
is only applied to concept names).

Definition 6 Concepts ofALUENS are those concepts ofALCN S in
which negation occurs only in front of concept names.

In order to simplify our investigation of the satisfiability problem for
ALUEN

S-concepts, we will restrict our attention to concepts where
each numerical variable occurs either bound or free, and where each
variable is bound at most once by #. It is easy to see that each
ALUEN

S-concept can be transformed to an equivalent concept of this
form by existentially quantifying all free variables and by renaming
of bound variables.

Decidability of satisfiability of ALUENS-concepts will be shown
by presenting a tableau-based algorithm and showing that for each
ALUEN

S-concept C, this algorithm is sound, complete, and termi-
nating. The basic data structure this algorithm works on are so-called
constraints:

Definition 7 We assume that we have a countably infinite set � =

fx; y; z; : : :g of individual variables, and for each pair (�; x) 2 N

V

�

� a new numerical variable �
x

which may occur free in concepts. A
constraint is either of the form

xRy, where R is a role name in N
R

and x; y 2 � , or
x :D for some ALUENS-concept D and some x 2 � .

A constraint system is a set of constraints.
An interpretation I is a model of a constraint system S iff there is

a mapping � : � ! 4

I and a mapping � : N
V

� � ! IN such that
I; �; � satisfy each constraint in S, i.e., we have

(�(x); �(y)) 2 R

I for all xRy 2 S,
�(x) 2 �(D)

I for all x :D 2 S,

where �(D) is obtained from D by replacing each variable �
y

by its
�-image �(�; y).

A constraint systemS is said to contain a clash iff for some concept
name A and some variable x 2 � we have fx :A; x ::Ag � S.

Knowledge Representation 285 F. Baader and U. Sattler

A constraint system S is said to be numerically consistent iff the
conjunction of all numerical constraints in S, i.e.,

^

x :(reln R) 2 S

x 2 �; R 2 N

R

; n 2 IN

(x

R

reln) ^
^

x :(rel�
y

R) 2 S

x; y 2 �; R 2 N

R

; � 2 N

V

(x

R

rel�
y

);

is satisfiable in (IN; <), where x
R

; �

y

are interpreted as variables for
nonnegative integers.

A constraint system S is called complete iff S is clash-free, nume-
rically consistent and none of the completion rules of Figure 2 can be
applied to S.

Before showing that the completion algorithm described in Figure 2
yields a decision procedure for satisfiability of ALUENS-concepts,
let us make some comments on the rules. First, note that each of the
completion rules adds constraints when applied to a constraint system,
none of the rules removes constraints, and individual variables x 2 �

are never identified or substituted. With respect to this last property,
our algorithm differs from the tableau-based algorithm for ALCN
described in [5]. Unlike our Rule 4, their algorithm introduces for
each constraint of the form x : 9R:C a new R-successor of x. If x
also has a constraint of the form x :(� n R), and more than n R-
successors have been introduced, then some of these individuals are
identified. Our Rule 4 avoids identification by “guessing” the number
of allowed R-successors of x before introducing these successors.
In fact, since we do not have explict numbers, and since restrictions
on numerical variables �

y

in constraints x :(� �

y

R) can derive
from different parts of the constraint system, an identification on
demand is not possible here. The second new feature is Rule 3. Given
a constraint x :(#�:D), we substitute a new numerical variable �

x

for � to make sure that the semantics of the existential quantifier #�
is obeyed, i.e., that the valuation for � depends on x. If we would just
use �, the difference between #�:8R:D and 8R:(#�:D) would not
be captured.

Decidability of satisfiability of ALUENS-concepts is an easy con-
sequence of the following lemma.

Lemma 8 1. For each closed input ALUENS-concept C0, the com-
pletion algorithm terminates.

2. Let C0 be a closed ALUENS-concept and let S be a constraint
system obtained by applying the completion rules to fx0 :C0g.
Then for each completion rule R that can be applied to S and for
each interpretation I we have:

I is a model of S iff R yields some S
i

satisfied by I.

3. If S is a complete constraint system obtained by applying the
completion rules to fx0 :C0g for some closed ALUENS-concept
C0, then there exists an interpretation I satisfying S.

4. If S is a constraint system that contains either a clash or is not
numerically consistent, then S is unsatisfiable.

Proof: 1. The termination proof is similar to the one for the tableau-
based algorithm for ALCN [5].

2. The proof, which can be found in [13], is rather straightforward,
but somewhat technical. Here, we only consider Rule 3. Applica-
tion of this rule adds a constraint x :C[

�

x

�

] to S, if x : #�:C is
contained in S. If I; �; � satisfy S, then we know that there exists
an n 2 IN such that �(x) 2 �(C[

n

�

])

I . Since the variable �
x

does
not occur in S (by our assumption that every variable is bound
only once in the input concept), we can assume without loss of
generality that �(�

x

) = n, and thus I; �; � satisfy x :C[

�

x

�

]. The
other direction is trivial.

3. As usual, we construct the canonical interpretation I
S

induced
by S: 4IS consists of the individual variables occurring in S,
(x; y) 2 R

I

S iff xRy 2 S, and x 2 A

I

S iff x :A 2 S. This
yields a tree-like interpretation, which need not be a model of
S, since some number restrictions might not be satisfied for the
following reasons: Either (1) an individual does not have any role
successors, but their existence is implied by number restrictions, or
(2) it has some, but not sufficiently many role successors. Note that
exact numerical restrictions on the number of role successors are
given by a solution in (IN; <) of the numerical constraints (which
are satisfiable since S is numerically consistent). In the first case,
S does not contain any constraints on such role successors, and
we can simply generate an appropriate number of them. In the
second case, the idea is to add sufficiently many copies of some
already existing role successor y. More precisely, we need to copy
the whole subtree that has y as its root. Proceeding like this from
the leaves to the root, we end up with a model of S. This can be
shown by induction on the structure of concepts in constraints.

4. This is obvious.

Theorem 2 Satisfiability of ALUENS-concepts is decidable.

Proof: Lemma 8 implies that the completion algorithm always termi-
nates. In addition, the second statement of the lemma shows that the
original system fx0 :C0g has a model iff one of the leaves of the tree
obtained by the algorithm has a model. Thus, if none of the leaves
is complete, the fourth statement of the lemma shows that fx0 :C0g

does not have a model. On the other hand, if one of the leaves is
complete, the third statement shows that fx0 :C0g has a model. Ob-
viously, fx0 :C0g has a model iff C0 is satisfiable. It remains to be
shown that it is decidable whether a constraint system contains a clash
and whether a constraint system is numerically consistent. Detecting
clashes is trivial. Numerical consistency can be tested using a modi-
fied cycle detection algorithm running in time cubic to the size of the
formula.

Unfortunately, asALUENS is not propositionally closed, subsump-
tion cannot be reduced to satisfiability. A closer look at the specific
form of the concept C

D

introduced in Figure 1 reveals that it can
be written as C

D

= D1 u :D2 for two ALUENS-concepts D1; D2:
In fact, D1 is the first conjunct of C

D

and D2 is the negation of the
remainder of C

D

. Note that D1 does not contain numerical variables.
Furthermore, all numerical variables occurring in the remainder of
C

D

are universally quantified, which shows that D2 contains only
existential quantification of numerical variables. Since D1 u :D2 is
unsatisfiable iff D1 v D2, this implies:

Theorem 3 Subsumption of ALUENS-concepts is undecidable.

4 Conclusion

Even though the expressiveness of ALCNS is still rather restricted—
for example, we did not even allow for arithmetic operations on nume-
rical variables—the presence of universal quantification of numerical
variables makes satisfiability of concepts undecidable. Since none of
the concepts in our application really needs universal quantification,
we have defined the restricted language ALUENS , and have shown
that satisfiability of ALUENS-concepts is decidable. Unfortunately,
subsumption of ALUENS-concepts has turned out to be undecida-
ble, which makes complete terminological reasoning in ALUEN

S

impossible. On the other hand, the satisfiability algorithm can easily

Knowledge Representation 286 F. Baader and U. Sattler

Completion rules:

1. Intersection: If x :(C1 u C2) 2 S and x :C1 62 S or x :C2 62 S

S !

u

S [fx :C1; x :C2g

2. Union: If x :(C1 t C2) 2 S and x :C1 62 S and x :C2 62 S

S !

t

S1 = S [fx :C1g

S !

t

S2 = S [fx :C2g

3. Numerical Existential Quantification: If x :(#�:D) 2 S and x :D[

�

x

�

] 62 S

S !

#

S [fx :D[

�

x

�

]g

4. New Objects
If xRy 62 S for all y 2 � and m > 0; k � 0 are maximal such that fx :(9R:E1); : : : ; x :(9R:E

m

); x :(8R:D1); : : : ; x :(8R:D
k

)g � S

and Rules 1–3 cannot be applied to S, then for each n with 1 � n � m and for each n-Partition P =]1�i�nPi = f1; : : : ;mg of m
let S

P

be defined as follows:
S !

R

S

P

= S [fxRy

i

; j 1 � i � ng [fy

i

:E
j

j 1 � i � n; j 2 P

i

g [fy

i

:D
j

j 1 � i � n; 1 � j � kg [fx :(� n R)g

where y
i

2 � are new variables (i.e., variables not occurring in S).

5. Prophylactic new objects
If xRy 62 S for all y 2 � and x :(= 0 R) 62 S and k maximal with x :(8R:D

i

) 2 S for 1 � i � k, x :(relN R) 2 S for N 2 IN or
N = �

y

for some y 2 �; � 2 N

V

and Rules 1–4 cannot be applied to S, then S1; S2 are defined as follows:
S !

n

S1 = S [fx :(= 0 R)g

S !

n

S2 = S [fxRyg [fy :D
i

j 1 � i � kg [fx :(> 0 R)g where y 2 � is a new variables (i.e., a variable not occurring in S).

Figure 2. The completion algorithm works on a tree where each node is labelled with a constraint system. It starts with a tree consisting of a root labelled with
S = fx0 :C0g for some closed concept C0. A rule can only be applied to a leaf labelled with a clash-free constraint system. Applying a rule S ! S

i

(1 � i � n)
to such a leaf leads to the creation of n new successors of this node labelled with the constraint systems S

i

. The algorithm terminates if none of the rules can be
applied to any of the leaves. The algorithm answers with “C0 is satisfiable” iff one of the leaves obtained this way is a complete constraint system.

be extended to an algorithm that decides consistency of ALUENS-
ABoxes. This allows us to answer instantiation queries onALUENS-
ABoxes with negated ALUENS-concepts, and thus in particular with
ALCN -concepts.

An open problem is the exact complexity of satisfiability inALUEN S:
the algorithm as presented above needs exponential time and space.
ForALCN , one can turn a similar algorithm into a PSPACE-algorithm
by considering different role-successors of an individual separately
in so-called traces. For ALUENS , this does not seem to be possible
since we must collect the numerical constraints of all traces, and test
them together for satisfiability in (IN; <).

A variable-free approach for comparing numbers of role successors
of different roles R; S could be to write something like (= R S),
with the intended meaning “the number of role successors of R
and S agree.” If only atomic roles are allowed here, the expressive
power is rather restricted (only the first example in Section 2.1 can be
expressed). If we allow for complex roles (for example composition of
roles), we add another source of expressiveness, which is orthogonal
to the one introduced by explicit quantification of numerical variables.

REFERENCES

[1] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich, ‘An
empirical analysis of optimization techniques for terminological repre-
sentation systems or: Making KRIS get a move on’, Applied Artificial
Intelligence, 4, 109–132, (1994).

[2] R. Berger, ‘The undecidability of the dominoe problem’, Mem. Amer.
Math. Soc., 66, (1966).

[3] R. Bogusch and W. Marquardt, ‘A formal representation of process
model equations’, Computers and Chemical Engineering, 19, (1995).

[4] R. J. Brachman, D. McGuinness, P. Patel-Schneider, L. Resnick, and
A. Borgida, ‘Living with CLASSIC: When and how to use a KL-ONE-
like language’, in Principles of Semantic Networks, ed., John F. Sowa,
M. Kaufmann, Los Altos, (1991).

[5] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt, ‘The complexity of
concept languages’, in Proc. of KR-91, Boston (USA), (1991).

[6] B. Hollunder and F. Baader, ‘Qualifying number restrictions in concept
languages’, in Proc. of KR-91, pp. 335–346, Boston (USA), (1991).

[7] B. Hollunder, W. Nutt, and M. Schmidt-Schauss, ‘Subsumption algo-
rithms for concept description languages’, in ECAI-90, Pitman Publis-
hing, London, (1990).

[8] D.E. Knuth, The Art of computer programming, volume 1, Addison
Wesley Publ. Co., Reading, Massachussetts, 1968.

[9] H. Levesque and R. J. Brachman, ‘Expressiveness and tractability in
knowledge representation and reasoning’, Computational Intelligence,
3, 78–93, (1987).

[10] W. Marquardt, ‘Trends in computer-aided process modeling’, in Proc.
of ICPSE ’94, pp. 1–24, Kyongju, Korea, (1994).

[11] B. Nebel, ‘Computational complexity of terminological reasoning in
BACK’, Artificial Intelligence, 34(3), 371–383, (1988).

[12] P. F. Patel-Schneider, ‘Undecidability of subsumption in NIKL’, AIJ,
39, 263–272, (1989).

[13] U. Sattler and F. Baader, ‘Description logics with symbo-
lic number restrictions’. Technical Report, available via
ftp: cantor.informatik.rwth-aachen.de/pub/papers/
Symb-Numb.ps.Z.

[14] M. Schmidt-Schauss, ‘Subsumption in KL-ONE is undecidable’, in
Proc. of KR-89, pp. 421–431, Boston (USA), (1989).

Knowledge Representation 287 F. Baader and U. Sattler

