Description Logics with Symbolic Number Restrictions

Franz Baader and Ulrike Sattler 1

Abstract. Motivated by a chemica engineering application, wein-
troduce an extension of the concept description language ALCN
by symbolic number restrictions. This first extension turns out to
have an undecidable concept satisfiability problem. For a restricted
language—whose expressive power issufficient for our application—
we show that concept satisfiability is decidable.

1 Introduction

Inrecent years, agreat variety of different concept description langu-
ages hasbeen used in description logic systemsand investigated inthe
literature. First, therewasatrend of restricting the expressive power of
the description language [4], to avoid the undecidability of subsump-
tion in early systems [14, 12] and the high worst-case complexity of
some of the decidable languages [9, 11]. Driven by demands from
applications and facilitated by the realization that worst-case intrac-
table languages may behave quite well in practice [1], this trend was
reversed, however, by adding expressive application-relevant opera-
torsthat do not cause undecidability, but may increase the worst-case
complexity.

Motivated by a chemical engineering application [10, 3], we con-
sider an extension of the expressive power of so-called number re-
strictions, which are present in almost al implemented systems. In
its simplest form, this construct just restricts the number of role-
successors w.r.t. a given role. For example, assume that devi ce
is a concept (unary predicate) and i nput is arole (binary predi-
cate). Then we can describe al devices (e.g., areactor in a chemical
plant) having exactly 5 inputs and at most 6 outputs by the concept
device n (= 5input) n (< 6 out put). A more expressive
variant of number restrictions considered in the literature [6], but
usually not available in implemented systems, are so-called qualify-
ing number restrictions. They can be used to restrict the number of
role-successors belonging to a particular concept, as for example in
theconcept devi ce m (> 5i nput . pi pe), which describesthose
devices having at least 5 inputs that are pipes.

A very severe restriction of the expressive power of number re-
strictionsisthefact that we must always give exact numbers.2In order
to express by traditional number restrictionsthat the number of inputs
and outputs of adevice must be the same, we need to know the exact
number of inputs and outputs. If digunction of conceptsis available,
it is sufficient to have an upper bound for the allowed number of
inputs and outputs, but it isstill not possible to alow for an arbitrary
finite number. Symbolic number restrictions, which areintroduced in
the present paper, overcome this problem by allowing for variables
ranging over the nonnegative integers in place of the fixed numbers

1 RWTH-Aachen, LUFG Theoretical Computer Science, Ahornstr. 55, 52074
Aachen, Germany. This work was supported by the Deutsche Forschungs-
gemeinschaft under Grant No. Sp 230\ 6-6.

2 As pointed out in [9], an important aspect of expressiveness is, however,
“what can be left unsaid” in a representation.

(© 1996 F. Baader and U. Sattler

ECAI 96. 12th European Conference on Artificial Intelligence
Edited by W. Wahlster

Published in 1996 by John Wiley & Sons, Ltd.

in ordinary number restrictions. Devices where the number of inputs
and outputs agree can thus be described by

devi cern (= «input) n (=« out put).

The expressive power of this construct can further be increased by
introducing explicit quantifiers for the numerical variables. In fact,
using explicit quantification we can, on one hand, describe devices
such that for every of its components the number of inputs and outputs

agree;
devi ce rvYconponent . (la.(= a i nput) N (= a out put)).

Here, la stands for an existential quantification of «. It isimportant
that this quantifier comes after the value restriction on conponent ,
because we want to alow for devices where different components
have a different number of inputs. On the other hand, it is sometimes
important to introduce a quantified numerical variable before the
vauerestriction in which it is used:

devi ce 1 Ja.Yconponent . (= « i nput)

makes sure that all components of the device have the same number
of inputs.

If we use aconcept language allowing for full negation of concepts,
the existential quantifier for numerical variables induces a universal
quantifier, which we will abbreviate as t«. The expressive power of
the universal quantifier is demonstrated by the fact that it can force
the number of role successors of an object to be infinite: devices
belonging to the concept

devi ce nta.(> ainput)

must have an unbounded (and thus infinite) number of inputs. This
is in contrast to most of the description languages considered un-
til now, in which every concept can be satisfied by a finite model.
It turns out that universal quantification of numerical variables can
even cause undecidability. In Section 2.2, we show that an extension
of the concept description language ALCN (which allows for full
negation) by symbolic number restrictions leads to a language with
an undecidable satisfiability problem for concepts. However, if we
restrict ourselves to atomic negation (i.e., extend AZEN rather than
ACCN), and disallow universal quantification of numerical variables,
we end up with a decidable satisfiability problem. It should be noted
that al the reasonable examples from our application can be expres-
sed using existentially quantified variables only. Unfortunately, the
subsumption problem for thisrestricted language is still undecidable.

2 Extending ACCN by symbolic number restrictions

2.1 Basic definitions

We extend the concept language ALCN, as introduced in [7, 5], by
alowing for numerical variables « (ranging over the nonnegative in-

tegers) in number restrictions, and by adding existential quantification
of numerical variables (written as |«a).

Definition 1 Let N¢ be a set of concept names, Nr a set of role
names, Ny aset of numerical variables, and let rel € {=, <, >, <,
>}. The set of concepts of ACCN isthe smallest set such that

e every concept nameis a concept.

e if C and D are concepts, R is arole name, « is a variable and
n € N anonnegative integer, then (C' 1 D), (C u D), (=C),
(VR.C), (3R.C), (1a.C), (rla R), (rel n R) are concepts.

Concepts of the form (rel « R) or (rel n R) are called number re-
drictions. ACCN isobtained from ALCN by disallowing both quan-
tification of numerical variables and symbolic number restrictions,
i.e., number restrictions of theform (rel a R).

Additional Boolean operators, such as implication, will be used as
abbreviations: for example, A = B stands for =A U B. Since
ACCN® dlows for full negation of concepts, universal quantification
of numerical variables can be expressed: In the following, we us
(Ta.C) as shorthand for —(la.—C'). Before formally defining the
semantics of ACCN ®-concepts, we illustrate the expressiveness of
the new language by three examples from our chemical engineering
application. In ACCN®, we can describe by a concept aggregates
having more connections than devices as parts:

la.((= a has_devi ce) n (> a has_connecti on)).

In ACCN, one could express by alarge digunction that an aggregate
has O devices and at least 1 connection, or 1 device and at least 2
connections, or ..., but to obtain afinite digunction, we need a fixed
upper bound for the number of devices.

The next concept describes aggregates all of whose components
have the same number of inputs and the same number of outputs:

lalB.(Yconponent .((= ai nput) (= B out put))).

Since variables are explicitly quantified, their scope varies depending
onwherethisquantification occurs: commuting | 3 andVconmponent
in the above concept would yield a concept that only expresses that
each component must have some finite number of outputs, without
requiring any agreements of the number of outputs between different
components.

The third concept illustrates how variables can be used to express
restrictions on different role-levels of a nested concept. In our appli-
cation, each device may have several context-dependent realizations,
each of which must have sufficiently many parameters to describe al
relevant properties of the device:

la.((=aproperty)n(vreal i zation.(> « param)).

Definition 2 The occurrence of a varisble o € Ny is said to be
bound in C iff « occurs in the scope C’ of a quantified subterm
(1a.C") of C. Otherwise, the occurrence is said to be free. Note that,
as usual, a variable can occur free and bound in a concept. The set
free(C') C Nv denotes the set of variables that occur freein C. A
concept C' is closed iff free(C') = 0. The concept C[2] is obtained
from aconcept C' by substituting all free occurrences of a by n.

Using this notation, we can define the semantics of ACCN S -concepts.

Definition 3 An interpretation Z = (A%, .T) consists of a set AF,
called the domain of Z, and a function - that maps every concept to

Knowledge Representation

asubset of A7, and every roleto asubset of AT x AL such that

(cnbDy = c¢*nD*
(cubDy* = c*ub*

ot = AT \ c?
(AR.C)" = {de X |3ee ' :(de)e R" Nee CTY
(VR.C)" = {de N |Yee N :(dye)e R = ecC}
ta.0)® = Jw@izn*

neN

rdnR)* = {de AN |#{eec A |(de) e R }ren}

Here #X denotes the cardinality of the set X. If C is not closed and
free(C) = {a1,...,an} forn > Lthen C% := (las.... Ja,.C)L.
For arole name R, an interpretation Z and some z € AL, we define

et =#{y e A | (z,y) € R*}.

Since (ta.C) is an abbreviation for =(la.—C'), we can describe its
semantics directly as

(ta.0)F = ((CL2)*.

neN

A concept C' is caled satisfiable iff there is some interpretation
T such that C% # (). We call such an interpretation a mode! of C.
A concept D subsumes a concept C' (written C T D) iff for each
interpretation Z we have C* C D”. Two concepts C, D are said to
be equivalent iff C C Dand D C C.

2.2 Satisfiability of AN -conceptsis undecidable

In order to show this undecidability result, we reduce a variant of the
well-known domino problem to satisfiability of ALCA®-concepts.

Definition 4 A tiling system is given by a non-empty set D =
{Ds,..., Dy} of domino types, and by horizontal and vertical mat-
ching pairs H C D x D,V C D x D. Our variant of the do-
mino problem asks for a compatible tiling of the “second eighth”
(N x N)< := {(a,b) | a,b € Nanda < b} of the plane, i.e,, a
mapping ¢t : (N x N)< — D such that

(t(a,b),t(a+ 1,b)) € H
(t(a,b),t(a,b+1)) €V

forala < binN,
forala <binN.

The standard domino problem asks for a compatible tiling of the
whole plane. However, acompatibletiling of the second eighth yields
compatible tilings of arbitrarily large finite rectangles, which in turn
yield a compatible tiling of the plane [8]. Thus, the undecidability
result for the standard problem [2] carries over to our variant.

Intuitively, our reduction works as follows: First, we define an
ALCN S -concept Cy such that for each model of Cy thereisanatural
relationship between tuples (a, b) € (N x N)< and certain elements
Ya,» Of themodel. Second, for agiven tiling system D, we construct
a concept Cp that (1) is subsumed by Cy, (2) ensures that every
Ya,» has exactly one domino type, and (3) encodes the compatibility
conditions of the matching pairs.

The formal definition of Cy isgivenin Figure 1. Assumethat Z is
an interpretation and = € A” suchthat = € Cf. Now, C expresses
that for every nonnegative integer a, z has an S-successor having
exactly a L-successors. The precondition of C, makes surethat a is
smaller than b, and thus the whole implication says that for each pair

F. Baader and U. Sattler

Cn = (ta.1B.(C1 1 C2 11 C3)) where C1 =
Cr, =
C; =

(3S.(= a L))

Given atilingsystem D = ({D», ..
Cp = (VS.(Licicm(Di 1 (Magj<m =D;)))) M COn M
i#j

(tatB. Mici<m(3S.((=a L) N (=B R) 1 Dy)) =

(@S(=al)n(<p L)) = (3S(=al)n(=pR))
(VS.(=aL)n (=B R) = (<4 L))

., D}, H, V) and the subconcepts C1, C>, C3 of Cn defined above, let

(VS((FaL)u(#BR)uDi))N (
(ty-(<le,f) N =(a+1,7)) = (VS(((= 7 L) N (= B R)) = Up,.pj)en Dj))) M (
(M(=B+17) = (VS((=aL)n

N P~
— =

(=7 R)) = Uw;.05ev Di))))))),

—
w
=

Figurel. Définition of the concepts Ciy and Cp used for the reduction of the domino problem to the ACCNS satisfiability problem

a < b of nonnegative integers, x has an S-successor having exactly
a L-successors and b R-successors (there can be more than one such
S-successor). Finally, C3 saysthat whenever an S-successor of = has
a L-successors and b R-successors, we havea < b. Thus, thereisan
obvious correspondence between S-successors of = and pointsin the
second eighth of the plane: every S-successor corresponds to a point
in (N x N)< and vice versa
Obvioudly, the following “canonical” moddl Z = (A%, -T) of Cn

satisfiesz € Cf:

A= {2} W {yap | a,b € Nanda < b}

{la,ms | a,b € N},

ST = {(,Yap) | a,b € Nanda < b},

LT == {(Yap,la) | a,a’,b € Nand a’ < a < b},

RY = {(Yap,yry) | a,b,b) € Nanda < band b’ < b}.

The definition of the concept C'p associated with a tiling system D
isgivenin Figure 1, where the following abbreviations are employed

<(a,) = (@AS((=alL)n(=BR)N~(=pL)),
=(a+1,p) <(a,B) N (VS.((LaL)u (=B L))).
In the context of the concept Ch, these abbreviations really express
the relation < and the successor relation on natural numbers: For
z € CnT we have

z € (<(a, OIE]IFD* iff a <o,
z € (=(a+1, B)[%][%])Z iff a+1=h.

The first line in the definition of C'p makes sure that Cy subsumes
Cp, and that every S-successor of an instance x of C'p has exactly
one domino type. In the remainder of the definition, we consider an
S-successor y,,» With domino type D; and a L- and b R-successors.
Now, (1) ensuresthat every S-successor with the same number of L-
and R-successorsasy,,,» hasthe same domino type D;, (2) takes care
of the horizontal matching condition, and (3) of the vertical matching
condition. Given this intuition, it is easy to show that the following
lemma holds (see [13] for a complete proof).

Lemma5 Cfp issatisfiableiff there exists a compatible tiling of the
first eighth of the plane using D.

Thus, undecidability of the domino problem yields undecidability of
the satisfiability problem for ACCA S -concepts. Since C isunsatisfia-
bleiff C' C (A n —A), thisimplies undecidability of subsumption.

Theorem 1 Satisfiability and subsumption of ACCA ™ -concepts are
undecidable.

Knowledge Representation

3 Satisfiability of AN -conceptsis decidable

In the following, we show that satisfiability of ACCA > -concepts be-
comes decidable if negation is restricted to concept names. The only
effect of thisrestriction is that universal quantification of numerical
variables can no longer be expressed. In fact, we still have al of
ALCN as sublanguage because every ALCN -concept can be transfor-
med into an equivalent one in negation normal form (where negation
isonly applied to concept names).

Definition 6 Concepts of AN are those concepts of ALCN in
which negation occurs only in front of concept names.

In order to simplify our investigation of the satisfiability problem for
ACUENS -concepts, we will restrict our attention to concepts where
each numerical variable occurs either bound or free, and where each
variable is bound at most once by |. It is easy to see that each
ACUENS -concept can betransformed to an equivalent concept of this
form by existentially quantifying all free variables and by renaming
of bound variables.

Decidability of satisfiability of AZIN S -concepts will be shown
by presenting a tableau-based agorithm and showing that for each
ACUENS -concept C, this algorithm is sound, complete, and termi-
nating. The basic data structure this a gorithm works on are so-called
constraints:

Definition 7 We assume that we have a countably infinite set 7 =
{z,y,z,...}ofindividual variables, andfor eachpair (o,) € Ny x
T anew numerical variable «, which may occur freein concepts. A
constraint is either of the form

xRy, where Risarolenamein Ng andz,y € 7, or
x:D for some ACUENS-concept D and somez € 7.

A constraint systemisaset of constraints.

Aninterpretation Z isamodel of aconstraint system S iff thereis
amapping w : 7 — AT and amapping v : Ny x 7 — N such that
7T, m,v satisfy each constraint in S, i.e., we have

(n(z),n(y)) € R* foral xRy € S,
n(z) e v(D)* fordlz:D € S,

where v(D) isobtained from D by replacing each variable o, by its
v-image v(a, y).

A constraint system S issaid to contain aclashiff for some concept
name A and some variable z € r we have {z: A,z:-A} C S.

F. Baader and U. Sattler

A constraint system S is said to be numerically consistent iff the
conjunction of all numerical constraintsin S, i.e.,

/\ (zrren) A /\ (zrre ay),
z:(rdn R) € S zi(rlay R) € S
re€T,Re€ Ng,n €N z,y € T,R € Nr,aa € Nv

issatisfiablein (N, <), where z g, o, areinterpreted as variables for
nonnegative integers.

A constraint system S iscalled completeiff S is clash-free, nume-
rically consistent and none of the completion rules of Figure 2 can be
appliedto S.

Before showing that the completion algorithm described in Figure 2
yields a decision procedure for satisfiability of AZIEN S -concepts,
let us make some comments on the rules. First, note that each of the
compl etion rulesadds constraintswhen applied to aconstraint system,
none of the rules removes constraints, and individual variablesz €
are never identified or substituted. With respect to this last property,
our agorithm differs from the tableau-based algorithm for ALCN
described in [5]. Unlike our Rule 4, their algorithm introduces for
each congtraint of the form z: 3R.C anew R-successor of z. If z
aso has a constraint of the form z:(< n R), and more than n R-
successors have been introduced, then some of these individuals are
identified. Our Rule 4 avoidsidentification by “guessing” the number
of allowed R-successors of z before introducing these successors.
In fact, since we do not have explict numbers, and since restrictions
on numerical variables o, in constraints z (< «a, R) can derive
from different parts of the constraint system, an identification on
demand is hot possible here. The second new featureisRule 3. Given
acongtraint z :(Ja.D), we substitute a new numerical variable a,
for o to make sure that the semantics of the existential quantifier |«
isobeyed, i.e., that the valuation for o« depends on z. If we would just
use «, the difference between |a.VR.D and VR.(}«.D) would not
be captured.

Decidability of satisfiability of AQIENS -conceptsis an easy con-
sequence of the following lemma.

Lemma8 1. For each closed input ACUEN S -concept Co, the com-
pletion algorithm terminates.

Let Co be a closed AZIENS -concept and let S be a constraint
system obtained by applying the completion rules to {zo: Co}.
Then for each completion rule R that can be applied to .S and for
each interpretation Z we have:

Zisamodel of S iff R yieldssome S; satisfied by Z.

2.

If S is a complete constraint system obtained by applying the
completion rules to {zo: Co} for some closed AUEN S -concept
Co, then there exists an interpretation Z satisfying S.

If S isa constraint system that contains either a clash or is not
numerically consistent, then S is unsatisfiable.

Proof: 1. Thetermination proof issimilar to the one for the tableau-
based algorithm for ACCN [5].

The proof, which can be found in [13], is rather straightforward,
but somewhat technical. Here, we only consider Rule 3. Applica-
tion of this rule adds a congtraint z: C[%=] to S, if z:la.C is
contained in S. If Z, 7, v satisfy S, then we know that there exists
ann € Nsuchthat 7(z) € v(C[2])”. Sincethe variable o, does
not occur in S (by our assumption that every variable is bound
only once in the input concept), we can assume without |oss of
generality that v(a.) = n, andthus Z, 7, v satisfy = : C[22]. The
other direction istrivial.

2.

Knowledge Representation

286

3. Asusua, we construct the canonical interpretation Zs induced
by S: ATs consists of the individual variables occurring in S,
(r,y) € RTs iff xRy € S,andz € ATs iff z: A € S. This
yields a tree-like interpretation, which need not be a model of
S, since some number restrictions might not be satisfied for the
following reasons: Either (1) an individual does not have any role
successors, but their existenceisimplied by number restrictions, or
(2) it has some, but not sufficiently many role successors. Note that
exact numerical restrictions on the number of role successors are
given by asolutionin (N, <) of the numerical constraints (which
are satisfiable since S’ is numerically consistent). In the first case,
S does not contain any constraints on such role successors, and
we can simply generate an appropriate number of them. In the
second case, the idea is to add sufficiently many copies of some
already existing role successor y. More precisely, we need to copy
the whole subtree that has y asitsroot. Proceeding like this from
the leaves to the root, we end up with a model of S. This can be
shown by induction on the structure of concepts in constraints.

4. Thisisobvious.]

Theorem 2 Satisfiahility of AQENS -concepts is decidable.

Proof: Lemma8 impliesthat the completion algorithm always termi-
nates. |n addition, the second statement of the lemma shows that the
original system {zo: Co} hasamodel iff one of the leaves of thetree
obtained by the algorithm has a model. Thus, if none of the leaves
is complete, the fourth statement of the lemma shows that {zo: Co}
does not have a model. On the other hand, if one of the leaves is
complete, the third statement shows that {zo: Co} has amodel. Ob-
vioudly, {zo: Co} has a model iff Cy is satisfiable. It remains to be
shown that it isdecidable whether aconstraint system containsaclash
and whether a constraint system is numerically consistent. Detecting
clashesistrivia. Numerical consistency can be tested using a modi-
fied cycle detection algorithm running in time cubic to the size of the
formula (]

Unfortunately, as ACUEN isnot propositionally closed, subsump-
tion cannot be reduced to satisfiability. A closer ook at the specific
form of the concept C'p introduced in Figure 1 reveals that it can
be written as C'p = Dy 1 =D> for two AEN S -concepts D1, Dy:
In fact, D, isthe first conjunct of C'p and D; is the negation of the
remainder of C'p. Notethat D1 does not contain numerical variables.
Furthermore, all numerical variables occurring in the remainder of
Cp are universally quantified, which shows that D, contains only
existential quantification of numerical variables. Since D1 M —D; is
unsatisfiable iff D1 E D», thisimplies:

Theorem 3 Subsumption of AZ/EN S -concepts is undecidable.

4 Conclusion

Even though the expressiveness of ACCN™® is still rather restricted—
for example, wedid not even allow for arithmetic operations on nume-
rical variables—the presence of universal quantification of numerical
variables makes satisfiability of concepts undecidable. Since none of
the concepts in our application really needs universal quantification,
we have defined the restricted language AZEN®, and have shown
that satisfiability of AZEN -concepts is decidable. Unfortunately,
subsumption of AZ/EN S -concepts has turned out to be undecida-
ble, which makes complete terminological reasoning in AZENS
impossible. On the other hand, the satisfiability algorithm can easily

F. Baader and U. Sattler

Completion rules:
1. Intersection: If z:(C1 1 C2) € Sandz:C1 ¢ Sorx:Cr & S
S —>nSU{z:Crz:C}

2. Union: Ifz:(ChuCz) e Sandz:Cr g Sandz:Co ¢ S
S = S1i=SU{z:Ci}
S =y SzZSU{lZCz}

S —, Su{z:D[%=]}
4. New Objects

let Sp be defined as follows:

wherey; € T are new variables (i.e., variables not occurring in S).

5. Prophylactic new objects

S —=n, S1=SU{z:(=0R)}

3. Numerical Existential Quantification: If z:(Ja.D) € Sandz:D[*=] ¢ S

IfzRy ¢ Sforally € Tandm > 0,k > Oaremaxima suchthet {z :(3R.E1),...,z:(3R.En),z:(VR.D1),...,z:(VR.D)} C S
and Rules 1-3 cannot be applied to .S, then for each n with 1 < n < m and for each n-Partition P = Wi<i<, P = {1,...,m} of m

S—=rSp=SU{zRy;,|1<i<n}U{yi:E; |1<i<n,j€P}U{y;:D; |1<i<n,1<j<k}U{z:(>nR)}

If tRy ¢ Sforaly € Tandz:(=0R) ¢ S and k maximal withz :(VR.D;) € Sfor1<i < k,z:(relN R) € Sfor N € Nor
N = a, forsomey € 7,a € Ny and Rules 1-4 cannot be applied to S, then S1, S> are defined as follows:

S =, So=SU{zRy}U{y:D; |1<i<k}U{z:(>0R)}wherey € risanew variables (i.e., avariable not occurring in S).

Figure2. Thecompletion algorithm works on atree where each node is labelled with a constraint system. It starts with atree consisting of aroot |abelled with
S = {xo: Co} for someclosed concept Cy. A rule can only be applied to aleaf labelled with aclash-free constraint system. Applyingarule S — S; (1 <i < n)
to such aleaf leads to the creation of n new successors of this node labelled with the constraint systems S;. The algorithm terminates if none of the rules can be
applied to any of the leaves. The algorithm answers with “ Cy is satisfiable” iff one of the leaves obtained this way is a complete constraint system.

be extended to an algorithm that decides consistency of AZENS-
ABoxes. This allows us to answer instantiation queries on AZUEN S -
ABoxes with negated ACZEN -concepts, and thus in particular with
ALCN -concepts.

Anopen problemistheexact complexity of satisfiability in ACEN °:
the algorithm as presented above needs exponential time and space.
For ALCN, one can turn asimilar algorithm into aPSPACE-al gorithm
by considering different role-successors of an individual separately
in so-called traces. For ACUEN, this does not seem to be possible
since we must collect the numerical constraints of al traces, and test
them together for satisfiability in (N, <).

A variable-freeapproach for comparing numbersof rolesuccessors
of different roles R, S could be to write something like (= R S),
with the intended meaning “the number of role successors of R
and S agree.” If only atomic roles are alowed here, the expressive
power israther restricted (only thefirst examplein Section 2.1 can be
expressed). If weallow for complex roles(for exampl e composition of
roles), we add another source of expressiveness, which is orthogonal
totheoneintroduced by explicit quantification of numerical variables.

REFERENCES

[1] F Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich, ‘An
empirical analysis of optimization techniques for terminologica repre-
sentation systems or: Making KRIS get a move on’, Applied Artificial
Intelligence, 4, 109-132, (1994).

[2] R. Berger, ‘The undecidability of the dominoe problem’, Mem. Amer.
Math. Soc., 66, (1966).

Knowledge Representation

287

(3]
(4

(9]
(6]
[7]

(8]
(9]

(10
(11
(12

[13]

(14

R. Bogusch and W. Marquardt, ‘A formal representation of process
model equations’, Computers and Chemical Engineering, 19, (1995).
R. J. Brachman, D. McGuinness, P. Patel-Schneider, L. Resnick, and
A. Borgida, ‘Living with CLASSIC: When and how to use a KL-ONE-
like language’, in Principles of Semantic Networks, ed., John F. Sowa,
M. Kaufmann, Los Altos, (1991).

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt, ‘The complexity of
concept languages', in Proc. of KR-91, Boston (USA), (1991).

B. Hollunder and F. Baader, ‘ Qualifying number restrictions in concept
languages’, in Proc. of KR-91, pp. 335-346, Boston (USA), (1991).

B. Hollunder, W. Nutt, and M. Schmidt-Schauss, ‘ Subsumption ago-
rithms for concept description languages', in ECAI-90, Pitman Publis-
hing, London, (1990).

D.E. Knuth, The Art of computer programming, volume 1, Addison
Wesley Publ. Co., Reading, Massachussetts, 1968.

H. Levesgue and R. J. Brachman, ‘Expressiveness and tractability in
knowledge representation and reasoning’, Computational Intelligence,
3, 78-93, (1987).

W. Marquardt, ‘ Trends in computer-aided process modeling’, in Proc.
of ICPSE 94, pp. 1-24, Kyongju, Korea, (1994).

B. Nebel, ‘Computational complexity of terminological reasoning in
BACK’, Artificial Intelligence, 34(3), 371-383, (1988).

P. F. Patel-Schneider, ‘Undecidability of subsumption in NIKL’, AlJ,
39, 263-272, (1989).

U. Sattler and F. Baader, ‘Description logics with symbo-
lic number restrictions'. Technical Report, available via
ftp: cantor.informatik. rw h-aachen. de/ pub/ papers/
Synb- Nunb. ps. Z.

M. Schmidt-Schauss, ‘ Subsumption in KL-ONE is undecidable’, in
Proc. of KR-89, pp. 421-431, Boston (USA), (1989).

F. Baader and U. Sattler

