
A concept language extended with di�erent kinds of transitive roles

Ulrike Sattler

RWTH Aachen

Lehr- und Forschungsgebiet Theoretische Informatik

Ahornstr. 55

52074 Aachen

Germany

email: uli@cantor.informatik.rwth-aachen.de

Phone: +49-241-8021130

+49-241-804566

Fax: +49-241-8888360

Fachbeitrag

Keywords:

Knowledge Representation, Description Logics, Concept Language.

A concept language extended with di�erent

kinds of transitive roles

Ulrike Sattler

?

RWTH Aachen, uli@cantor.informatik.rwth-aachen.de

Abstract. Motivated by applications that demand for the adequate re-

presentation of part-whole relations, di�erent possibilities of representing

transitive relations in terminological knowledge representation systems

are investigated. A well-known concept language, ALC, is extended by

three di�erent kinds of transitive roles. It turns out that these extensions

di�er largely in expressiveness and computational complexity, hence this

investigation gives insight into the diverse alternatives for the representa-

tion of transitive relations such as part-whole relations, family relations

or partial orders in general.

1 Introduction

Terminological knowledge representation systems (TKR-systems) are powerful

means to represent the unambiguous, well-de�ned terminological knowledge in

technical and other domains. Mainly, TKR-systems consist of two parts: A kno-

wledge base, which contains the explicit concept de�nitions given in a so-called

concept language, and an inference engine which is able to infer implicit pro-

perties of the de�ned concepts such as satis�ability or subclass/superclass re-

lations among these concepts. A concept language is characterized by a set of

operators that can be used to de�ne complex concepts (which are interpreted as

subsets of an interpretation universe) and roles (which are interpreted as binary

relations on an interpretation universe) from primitive concepts and roles.

Looking for a concept language with su�cient expressive power to be used

for the representation of complex objects, one observes that part-whole relations

are indispensable in the description of these objects. The following concept, for

example, describes devices having at least one part that is a battery: device u

(9 has part:battery):

Since part-whole relations have special properties used for reasoning about

complex objects, they are subject to a great variety of investigations

[

ACG

+

94;

Pri95; Sim87; Fra94

]

. A point of view supported by most of them is that there

are di�erent part-whole relations (such as component{aggregate and ingredient{

object) with di�erent properties, and that there is a general transitive part-

whole relation. Hence part-whole relations deserve special attention and cannot

be represented by simple binary relations.

?

The author is sponsored by the Deutsche Forschungsgemeinschaft under Grant No.

Sp 230n 6{6

Even if a concrete decomposition of a given object may seem object inherent

and natural, it is rather arbitrary in most cases. This can be seen by comparing

decompositions of the same object made by di�erent persons or made with di�e-

rent intentions. Hence, given an object, it is rarely possible to associate an exact

level of decomposition to each of its parts. In one decomposition, two parts may

be found in the same level whereas in another decomposition, these parts are

at di�erent levels. Thus, if we want to address a part of an object, it might be

necessary to address various levels of decomposition. Furthermore, it might be

necessary to refer to all levels of decomposition or to all parts of an object. If

the maximum depth of decomposition is known in advance, this can be achieved

by using a concept language that allows for disjunction of concepts, as for ex-

ample in the following concept that describes devices having a carcinogenic part

at some level of decomposition:

device u ((9has part:carcinogenic) t

(9has part:(9has part:carcinogenic)) t

(9has part:(9has part:(9has part:carcinogenic))) t : : :)

If this maximum depth is not known in advance, other, more expressive

means have to be used to refer to these parts

2

. A �rst approach is to represent

the part-whole relation by a transitive role has some part that is interpreted

as a transitive relation. Using this role, we are now able to represent dangerous

devices as given above by device u (9has some part:carcinogenic): On the

other hand, there are cases where we want to distinguish between a direct part

and a part of a part of : : : , for example, this might be the case if an object

is decomposed into components and we want to distinguish between a device

equipped with a battery and a device having|at some level of decomposition|

a part that has a battery. A concept language having the expressive power to

formulate this di�erence is one where, beside primitive roles, one is allowed to use

the transitive closure R

+

of a role R. The above examples can then be described

by

device u (9has part:battery) and

device u (9has part

+

:(9has part:battery)):

Unfortunately, extending the well-known concept language ALC

[

SS91

]

by the

transitive closure of roles severely increases the computational complexity of

the according inference problems such as subsumption or satis�ability. Even

if this increase in complexity can be justi�ed by the simultaneous growth in

expressive power, one might not be willing to accept this complexity, and look

for an alternative to the transitive closure of roles. Using results from Modal

Logic

[

Lad77; HM92

]

, it can be shown that the use of transitive roles is in general

less expensive in terms of complexity than the use of the transitive closure of

roles. In fact, it is the interaction between a role and its transitive closure which

is responsible for the high computational complexity.

2

As pointed out in

[

LB87

]

, an important aspect of expressiveness is, however, \what

can be left unsaid" in a representation.

The natural question arising here is whether there exists an alternative for the

representation of transitive relations: One that is more expressive than transitive

roles, and which has less dramatic e�ects on the computational complexity than

the transitive closure of roles. Since the transitive closure of a relation R is the

smallest transitive relation containing R, a natural candidate for this alternative

is some transitive relation containing R.

In this paper, we present three extensions of the concept language ALC by

di�erent kinds of transitive roles:

{ In ALC

+

, the operator

+

can be applied to role names. The role R

+

is then

interpreted as the smallest transitive relation containing R.

{ In ALC

R

+
, certain roles have to be interpreted as transitive roles without the

possibility to relate them to a generating role as in the �rst extension.

{ In ALC

�

, the operator

�

can be applied to role names. The role R

�

is

then interpreted as some (not necessarily the smallest) transitive relation

containing R.

As a consequence of the results given in

[

FL79

]

, the basic inference problems for

ALC extended by the transitive closure of roles, ALC

+

, are Exptime-complete,

whereas these problems are Pspace-complete for ALC. Using results from modal

logic

[

Lad77; HM92

]

, we show that these problems remain Pspace-complete for

ALC

R

+
. Finally, it turns out that for ALC

�

, these problems are as hard as for

ALC

+

, namely Exptime-complete.

2 Preliminaries

The concept language underlying this investigation is ALC, a well-known con-

cept language introduced by

[

SS91

]

and investigated, for example, in

[

HNS90;

DLNN91; DLNN95

]

.

De�nition 1. Let N

C

be a set of concept names and let N

R

be a set of role

names . The set of ALC-concepts is the smallest set such that

1. every concept name is a concept and

2. if C and D are concepts and R is a role name, then (C u D), (C t D), (:C),

(8R:C), (9R:C) are concepts.

An interpretation I = (�

I

; �

I

) consists of a set �

I

, called the domain of I,

and a function �

I

which maps every concept to a subset of �

I

and every role to

a subset of �

I

��

I

such that

(C u D)

I

= C

I

\D

I

(C t D)

I

= C

I

[D

I

:C

I

= �

I

n C

I

(9R:C)

I

= fd 2 �

I

j There exists some e 2 �

I

with (d; e) 2 R

I

and e 2 C

I

g

(8R:C)

I

= fd 2 �

I

j For all e 2 �

I

, if (d; e) 2 R

I

, then e 2 C

I

g

A concept C is called satis�able i� there is some interpretation I such that

C

I

6= ;. Such an interpretation is called a model of C. A concept D subsumes

a concept C (written C v D) i� C

I

� D

I

holds for each interpretation I. For

an interpretation I, an individual x 2 �

I

is called an instance of a concept C

i� x 2 C

I

.

One can observe that extending ALC by composition or disjunction of roles

does not change the expressive power of ALC because of the following equivalen-

ces:

9(R � S):C � 9R:(9S:C) and 9(R t S):C � (9R:C) t (9S:C):

In contrast, extending ALC by the transitive closure of roles really increases its

expressive power (see

[

Baa91

]

).

3 ALC Extended by the Transitive Closure of Roles

De�nition 2. ALC

+

is the extension of ALC obtained by allowing, for each role

R 2 N

R

, the use of its transitive closure R

+

inside concepts. Interpretations

have to satisfy additionally:

(d; e) 2 (R

+

)

I

i�

for k � 1 exists d

0

= d; d

1

; : : : ; d

k

= e such that (d

i

; d

i+1

) 2 R

I

for all i < k:

On one hand, the e�ect of this extension on the expressive power can be seen by

noting that ALC

+

can no longer be viewed as a subclass of �rst order logic. This

is due to the fact that the transitive closure of a relation cannot be expressed in

�rst order logic, in contrast to transitivity.

On the other hand, ALC loses the �nite tree model property

3

when extended

by the transitive closure of roles. For example, the following concept describes

instances of A having some R-successor in A and where each individual reachable

over some R-path has itself some R-successor in A:

A u (9R:A) u (8R

+

:(9R:A))

This concepts is satis�able, but each of its models has either an in�nite R-

chain or it contains some R-cycle.

As a consequence of this fact, algorithms (like tableau-based algorithms) that

try to construct a model of a concept containing the transitive closure of roles

need special \cycle detection mechanisms"

[

Baa91

]

: They have to distinguish

between cases where constraints on individuals propagated along some (possibly

in�nite) role chain are simply regenerated but satis�ed and cases where their

satisfaction is postponed in each step. This could happen for example while

trying to construct a model of

A u (9R

+

::A) u (8R

+

:A):

3

A concept language has the �nite tree model property if each satis�able concept has

a �nite tree model.

This cycle detection demands for the storage of a high amount of information and

cannot be accomplished using polynomial space: As stated in Theorem 3.1. and

Theorem 4.4. of

[

FL79

]

, satis�ability of ALC

+

-concepts is Exptime-complete.

A translation of this result from dynamic logic to the vocabulary of concept

languages can be found in

[

Sch91

]

.

4 ALC Extended by Transitive Roles

Recently, results from the �eld of modal logic gave new insight into problems

concerning concept languages: It is well-known

[

Sch91

]

that ALC is a notational

variant of propositional multi-modal logicK

n

. In the present work, results for the

modal logic K4

n

, which is a multi modal logic with n so-called agents extending

propositional logic, gave the impetus to look closer at transitive roles. If ALC-

interpretations are restricted to those where all role names are interpreted as

transitive relations, then there is a 1� 1 correspondance between K4

n

-formulae

and ALC-concepts in such a way that a formula � is satis�able i� its translation

is satis�able with respect to the restricted semantics. Since it is shown in

[

HM92

]

that satis�ability of K4

n

formulae is Pspace-complete, it is not surprising that

we can even show that satis�ability of ALC extended by transitive roles (beside

ordinary roles) is also Pspace-complete.

De�nition 3. ALC

R

+
is an extension of ALC obtained by allowing the use of

transitive roles inside concepts. The set of role names N

R

is a disjoint union of

role names N

P

= fP

1

; P

2

; : : :g and role names N

+

= fR

1

; R

2

; : : :g. An interpre-

tation I = (�

I

; �

I

) has to satisfy additionally

if (d; e) 2 R

i

I

and (e; f) 2 R

i

I

, then (d; f) 2 R

i

I

for each role R

i

2 N

+

.

In this section, a tableau based algorithm is presented that tests for the satis�a-

bility of ALC

R

+-concepts. The algorithm extends and combines those presented

in

[

HM92

]

for multi modal logics in order to deal with the simultaneous use

of both ordinary and transitive roles. It will be shown that this algorithm uses

space polynomial in the length of the concept.

For simplicity, all concepts are supposed to be in negation normal form.

This means that negation is applied to concept names only. A concept can be

transformed into an equivalent one in negation normal form by pushing negation

into concepts, for example :(C t D) � :C u :D and :(9R:C) � (8R::C).

The tableau algorithm given below constructs a tree whose nodes represent

individuals. Each node is labelled with a set of ALC

R

+
-concepts. When started

with an ALC

R

+
-concept D in negation normal form, these sets can be restricted

to subconcepts sub(D) of D. It is easy to see that the number of subconcepts

of D is linear in the length of D. Soundness and completeness of the tableau

algorithm will be proved by showing that it creates a so-called tableau:

De�nition 4. Let D be a ALC

R

+
-concept and let fP

1

; : : : P

n

; R

1

; : : : R

m

g be the

set of role names occuring in D. A tableau T = (S;L;P

1

; : : : ;P

n

;R

1

; : : :R

m

) for

D is de�ned as follows: S is a set of individuals, P

i

;R

i

� S � S, and L : S !

2

sub(D)

matches each individual to a set of subconcepts of D such that:

1. for some s

0

2 S we have D 2 L(s

0

), and for all s 2 S it holds that:

2. if C 2 L(s), then :C 62 L(s),

3. if C

1

u C

2

2 L(s), then C

1

2 L(s) and C

2

2 L(s),

4. if C

1

t C

2

2 L(s), then C

1

2 L(s) or C

2

2 L(s),

5. if (8P

i

:C) 2 L(s) and (s; t) 2 P

i

, then C 2 L(t),

6. if (9P

i

:C) 2 L(s), then there is some t 2 S with (s; t) 2 P

i

and C 2 L(t),

7. if (8R

i

:C) 2 L(s) and (s; t) 2 R

i

, then C 2 L(t) and (8R

i

:C) 2 L(t),

8. if (9R

i

:C) 2 L(s), then there is some t 2 S with (s; t) 2 R

i

and C 2 L(t).

Lemma5. An ALC

R

+-concept D is consistent i� there exists a tableau for D.

Sketch of the proof: Let T = (S;L;P

1

; : : : ;P

n

; R

1

; : : :R

m

) be a tableau

for D, de�ne I = (�

I

; �

I

) as follows:

�

I

:= S,

for all C 2 sub(D) de�ne s 2 C

I

i� C 2 L(s),

P

I

i

:= P

i

,

R

I

i

:= R

i

+

where R

i

+

denotes the transitive closure of R

i

.

By induction on the structure of concepts, it can be shown that I is well-de�ned

and that D

I

6= ;. For concepts of the form (C

1

u C

2

);:C

1

; (9P

i

:C), (8P

i

:C) and

(9R

i

:C) it follows immediately that they are correctly interpreted. If we have

(8R

i

:C) 2 L(s), (s; t) 2 R

i

and (t; u) 2 R

i

, then (8R

i

:C) 2 L(t) and C 2 L(u).

Hence s 2 (8R

i

:C)

I

holds and concepts of the form (8R

i

:C) are also correctly

interpreted.

For the converse, let I = (�

I

; �

I

) be a model of D. De�ne T = (S;L;P

1

; : : : ;

P

n

; R

1

; : : : ;R

m

) with:

S := �

I

;

P

i

:= P

I

i

for P

i

2 N

P

;

R

i

:= R

I

i

for R

i

2 N

+

;

L(s) := fC 2 sub(D) j s 2 C

I

g:

It follows by construction that T is a tableau for D.

Using Lemma 5, an algorithm which constructs a tableau for an ALC

R

+
-

concept D can be used as a decision algorithm for satis�ability of D. The algo-

rithm given here builds a tree starting with a single node and expanding it by

either expanding labels of its leafs or by adding new nodes. Nodes of this tree

are labelled with sets of subconcepts of D and are possibly marked \satis�able".

Edges are either unlabelled or they are labelled with j or j

+

for role na-

mes P

j

; R

j

occuring in D (unlabelled edges are generated when testing whether

an individual satis�es a disjunction because it satis�es the �rst or the second

R1 Construct a tree T consisting of a node x

0

labelled with L(x

0

) = fDg.

R2 Repeat (a) to (d) and possibly expand T until none of them applies:

(a) (Pre-tableau) If x

i

is a leaf of T , L(x

i

) is clash-free, L(x

i

) is not a

pre-tableau and C is the least witness to this fact, then

if C = C

0

u C

1

, then L(x

i

) := L(x

i

) [fC

0

; C

1

g.

if C = C

0

t C

1

, then create two successors x

i0

; x

i1

of x

i

with

L(x

ij

) := L(x

i

) [fC

j

g:

(b) (Successors) For x

i

a leaf of T , L(x

i

) a clash-free pre-tableau, do:

For each (9P

j

:C) 2 L(x

i

) create a j-successor x

ij

with

L(x

ij

) := fCg [L(x

i

)=P

j

.

For each (9R

j

:C) 2 L(x

i

), let

`(x

i

; (9R

j

:C)) := fCg [L(x

i

)=R

j

[f(8R

j

:E) j (8R

j

:E) 2 L(x

i

)g.

If for some ancestor w of x

i

: L(w) � `(x

i

; (9R

j

:C)),

then create a j

+

-successor x

ij

+
with L(x

ij

+
) := ;,

else create a j

+

-successor x

ij

+
with L(x

ij

+
) := `(x

i

; (9R

j

:C)).

(c) Mark a node x \satis�able" i�

- L(x) is not a pre-tableau and some successor of x is marked

\satis�able".

- L(x) is a clash-free pre-tableau which does not contain a concept

of the form (9R

j

:C) or (9P

j

:C).

- L(x) is a pre-tableau, x has successors, and all of them are mar-

ked \satis�able".

R3 If the root is marked \satis�able", return \D is satis�able" else \D is

unsatis�able".

Fig. 1. Tableau construction for a ALC

R

+
-concept D

disjunct). A node y which is a successor of a node x is called a j- (resp. j

+

-)

successor of x if the edge between them is labelled with j (resp. j

+

). A node

x

0

is called a pre-successor of x if there is an unlabelled path from x to x

0

. A

node x is called an ancestor of a node y if there is a path from x to y regard-

less of the labels of its edges. Concerning the labels of the nodes, the following

abbreviations are introduced.

Let M be a set of concepts. We callM a pre-tableau i�M satis�es conditions

2{4 of De�nition 4 with M in place of L(s). We say that M contains a clash

i� there is a concept C with fC;:Cg � M . For a role name R 2 N

P

[N

+

, let

M=R := fC j (8R:C) 2 Mg. The maximum role depth of M , depth(M), is the

maximum of nested (9R:C); (8R:C) concepts of all concepts in M .

For the construction, we assume that concepts (in sub(D)) are linearly or-

dered and that fP

1

; : : : ; P

n

; R

1

; : : : ; R

m

g is the set of role names occuring in D.

The algorithm is given in Figure 1, and two examples of the tableau construc-

"sat."

"sat."

"sat."

x

1

x

2

x

3

;

R

1

R

1

x

1

x

2

fDg[

fA; (9R

1

:A); (8R

1

:(9R

1

:A))g

fA; (9R

1

:A); (8R

1

:(9R

1

:A))g

1

+

1

+

x

1

x

2

fA;:A; (8R

1

::A)g

1

+

fD

0

g [f:A; (9R

1

:A); (8R

1

::A)g

Contains a clash, rules R2 (a), (b), (c) can not be applied,

x

1

; x

2

are not marked "satis�able"

The tree and the induced tableau for D = A u (9R

1

:A) u (8R

1

:(9R

1

:A)):

The tree for D

0

= :A u (9R

1

:A) u (8R

1

::A):

Fig. 2. Two examples for tableau construction

tions can be found in Figure 2. Please note that the empty set is a clash-free

pre-tableau.

Lemma6. For each ALC

R

+
-concept D, the tableau construction terminates.

Proof: Let jsub(D)j = m. We have depth(L(x)) � m for all nodes x. Since

nodes are labelled with subsets of sub(D), jL(x)j � m for all nodes x. Further-

more, if C 2 L(x), then C 2 L(x

0

) for all pre-successors x

0

of x.

Besides showing termination, we want to give also an upper bound for the

space needed by the algorithm, hence we investigate the depth of the tree con-

structed more closely.

Fact 1: Rule R2 (a) can be applied at most m times along an unlabelled path

until it creates a node x such that L(x) contains a clash.

Fact 2: If y is a j-successor of x, then depth(L(y)) < depth(L(x)). If y is

a j

+

-successor of x, C 2 L(y) and C is not of the form (8R

+

j

:C

1

), then

depth(fCg) < depth(L(x)).

Fact 3: If z is a j- or a j

+

-successor of y, y is a k- or a k

+

-successor of x and

j 6= k, then depth(L(z)) < depth(L(x)).

Fact 4: The only way that the depth of the labels does not decrease is along

some mixed j

+

- and pre-path. Let x

0

; : : : ; x

k

be nodes on

such a path labelled with clash-free pre-tableaux L(x

i

) such

that each x

i

is a j

+

-predecessor of ~x

i

and a pre-successor

of ~x

i�1

. Then each L(~x

i

) can be divided into two parts

L1

i

; L2

i

: The �rst consists of concepts of the form f(8R

j

:E) j

(8R

j

:E) 2 L(x

i

)g [L(x

i

)=R

j

and by construction we have

L1

i

� L1

i+1

. The second is L2

i

= fCg where (9R

j

:C) led

to the creation of ~x

i

. Since for all ancestors w of ~x, we have

L(~x

i

) 6� L(w) or L(~x

i

) = ; by construction, there are at

most m choices for L2

i

and at most m di�erent choices for

L1

i

. Hence we have k � m

2

.

~x

i+1

x

i+1

j

+

.

.

.

x

i

~x

i

j

+

Collecting these facts, we have that the tree built by the tableau construction

algorithm has depth at most m

4

and it is of bounded out-degree. Hence its

construction terminates.

Lemma7. A ALC

R

+
-concept D is satis�able i� the tableau construction for D

returns \D is satis�able".

Proof: Let T be the tree constructed by the tableau construction algorithm for

D. De�ne a tableau T = (S;L;P

1

; : : : ;P

n

;R

1

; : : :R

m

) with

S = fx j x is a node in T ; x is marked satis�able,

and L(x) is a non-empty, clash-free pre-tableaug,

(x; y) 2 P

j

i� y is a pre-successor of a j-successor of x,

(x; y) 2 R

j

i� y is a pre-successor of a j

+

-successor of x and L(y) 6= ; or

x has a j

+

-successor z with L(z) = ;, y is an ancestor of x

and L(y) � `(x; (9R

j

:C))

It is easy to see that T is a tableau forD: First,D 2 L(x) for all pre-successors

x of the root x

0

of T . Leafs of this subtree are either labelled with clash-free

pre-tableaus or their labels contain a clash. If x

0

is marked \satis�able", at least

one of these leafs is marked \satis�able", hence D 2 L(s) for some s 2 S.

T satis�es properties 2{4 of De�nition 4 because each x 2 S is labelled with

a clash-free pre-tableau. R2 (c) creates for each (9P

j

:C) 2 L(x

i

) (resp. for those

(9R

j

:C) 2 L(x

i

) where it is necessary) a j-successor (resp. j

+

-successor) x

ij

such

that C 2 L(x

ij

), hence properties 6 and 8 are satis�ed. Property 5 is satis�ed

because L(x

i

)=P

j

� L(x

ij

) holds for all j-successors of x

i

. Finally, property 7

holds because L(x

i

)=R

j

[f(8R

j

:E) j (8R

j

:E) 2 L(x

i

)g � L(y) holds for all y

with (x

i

; y) 2 R

j

.

For the converse, we show by induction on h(x), the height of the subtree

below x that, if x is not marked \satis�able", then X := u

C2L(x)

C is not satis-

�able.

Let h(x) = 0, hence x is a leaf. If x is not marked satis�able, it contains a clash

and X is clearly unsatis�able. Now let h(x) = `+1. If L(x) is not a pre-tableau

and x is not marked satis�able, then none of its successors is marked satis�able.

Hence we have C

1

t C

2

2 L(x) and neither x

1

with L(x

1

) = L(x)[fC

1

g nor x

2

with L(x

2

) = L(x) [fC

2

g is marked satis�able. It follows by induction that X

is not satis�able. If L(x) is a pre-tableau and x is not marked satis�able, then

there is either some j- or j

+

-successor of x which is not marked satis�able or

L(x) does not contain any subconcept of the form (9R:C) but contains a clash.

In both cases, it follows by induction that X is not satis�able.

Theorem8. Satis�ability of ALC

R

+
-concepts can be decided using polynomial

space.

Proof: As stated in the proof of Lemma 6, the tree T constructed by the tableau

construction algorithm for D is of depth at most m

4

where jsub(D)j � m. Once

this algorithm has marked a node satis�able, it can forget about the subtree

below this node and reuse the space where it was memorized. Since each L(x)

is a subset of sub(D), each L(x) can be stored in m bits. Since there are less

than m concepts of the form (9R:C) in sub(D), there are less than m subtrees

directly below a node x, and we can memorize which of them still have to be

investigated in m bits.

Hence at each moment the algorithm is running, it has to store the following

information for its actual node x at depth h: L(x); which of the subtrees below

x still have to be investigated, and these two pieces of information for each of its

h ancestors. This can be stored in m +m+ h(m+m) = (1 + h)2m bits. Since

h � m

4

, the tableau construction algorithm needs at most c+2m+2m

5

bits of

storage for some constant c.

Theorem9. Satis�ability of ALC

R

+
-concepts is Pspace-complete.

As ALC is a sublanguage of ALC

R

+
, Pspace-hardness of satis�ability of ALC

R

+
-

concepts follows immediately from Pspace-completeness of satis�ability of ALC-

concepts (see

[

SS91

]

). Pspace-completeness is then implied by Theorem 8.

As we have seen, worst-case complexity of ALC

R

+
is lower than those of

ALC

+

. The price in expressive power one has to pay for this lower complexity is

illustrated by the following example: Let a queen be de�ned as a women whose

children are princes or princesses and whose descendants are nobles:

queen = women u (8child:(prince t princess)) u (8child

+

:noble): (1)

This cannot be expressed if only a transitive role descendants can be used

without the possibility to refer to successors of a subrole child: In 1, we express

that all individuals p for which the longest child-path from an instance q of

queen to p is of length 1 are instances of (prince t princess) and that all

individuals reachable over some child-path from q are instances of noble. If

only transitive roles are available as in ALC

R

+
, we can not distinguish between

those "close" role successors and those reachable over some longer child-path.

5 ALC Extended by Transitive Orbits of Roles

The investigation of ALC extended by transitive orbits, ALC

�

, was motivated by

the gap between ALC

R

+
and ALC

+

in both computational complexity and ex-

pressive power. ALC

�

is the natural candidate for a compromise between ALC

R

+

and ALC

+

because, on one hand, it allows to relate a relation with a transitive

superrelation and, on the other hand, there is a chance that its handling could

be algorithmically easier.

De�nition 10. ALC

�

is an extension of ALC obtained by allowing the use of

transitive orbits of roles inside concepts. The transitive orbit of a role R is de-

noted R

�

and interpreted as a transitive role containing R

I

, i.e., we have

if there exist d = d

0

; d

1

; : : : ; d

k

= e with (d

i

; d

i+1

) 2 R

I

for all i < k

then (d; e) 2 (R

�

)

I

:

A small example is given to highlight the di�erence between ALC

+

and ALC

�

concepts. Let � 2 f+;�g, and let

device u (9has part

�

:carcinogenic) (2)

Let � = �, let I be an interpretation of 2 and let d be an instance of 2. Then

I is a correct interpretation even if there is no has part

I

chain from d to some

c 2 carcinogenic

I

: For d being an instance of 2, it is su�cient that there is

some c 2 carcinogenic

I

with (d; c) 2 (has part

�

)

I

.

In general, each model of an ALC

+

-concept D is also a model of its ALC

�

-counterpart which is obtained by replacing each R

+

in D by R

�

. If C

0

v D

0

holds for two ALC

�

concepts C

0

; D

0

, then clearly C v D holds for their ALC

+

-

counterparts C;D. The converse does not hold:

(8R:(A u :A)) v (8R

�

:(A u :A))

holds for � = + (if x has noR

I

-successors, then it has clearly no R

+

I

-successors),

but it does not hold for � = � (x can have an R

�

I

-successor without having an

R

I

-successor).

The tableau construction algorithm given in Section 4 can easily be modi�ed

to handle ALC

�

-concepts: In rule R2 (b), roles R

�

i

are handled in the same way

as role names R

i

2 N

+

. For an ordinary role R

j

, possible labels of j-successors

of x

i

are

`(x

i

; (9R

j

:C)) := fCg [L(x

i

)=R

j

[L(x

i

)=R

�

j

[f(8R

�

j

:E) j (8R

�

j

:E) 2 L(x

i

)g

and the same test whether an ancestor of x

i

is labelled by a superset of `(x

i

; (9R

j

))

has to be accomplished. In contrast to the trees constructed for ALC

R

+
-concepts,

the depth of trees constructed by this modi�ed algorithm can no longer be bo-

unded polynomially in the length of the concept. For example, if

~

A

i

is de�ned

as given below, each model of the concept

D = (9R:(:A

1

u :A

2

u : : ::A

n

)) u

(8R

�

:((9R:>) u (

~

A

1

u

~

A

2

u : : : u

~

A

n

)))

can have paths of length 2

n

: It can be viewed as the representation of the binary

encoding of the numbers 0 to 2

n

�1. The concepts

~

A

i

have to be de�ned in such

a way that for the k+1-th R

I

-successor y of x 2 D

I

we have y 2 A

I

i

i� the i-th

bit in the binary encoding of k is equal to 1. More precisely,

~

A

0

= (A

0

u (8R::A

0

)) t (:A

0

u (8R:A

0

))

~

A

i

= (u

0�j<i

A

j

u ((A

i

u 8R::A

i

) t (:A

i

u 8R:A

i

))) t

(:u

0�j<i

A

j

u ((A

i

u 8R:A

i

) t (A

i

u 8R::A

i

))):

The length of D is then quadratic in n whereas each model I of D has an

R

I

-path of length in O(2

n

).

Theorem11. Satis�ability of ALC

�

-concepts is Exptime-complete.

Proof: Satis�ability of ALC

�

-concepts is in Exptime because it can be decided

by the modi�ed tableau construction algorithm. It is easy to see that for an

ALC

�

-concept D, this modi�ed algorithm creates a tree whose depth is expo-

nentially bounded by the length of D because of the tests performed whether an

ancestor is labelled by a superset of the label of new nodes.

To show that satis�ability of ALC

�

-concepts is indeed Exptime-hard, we can

modify the proof of Exptime-hardness for satis�ability in PDL given in

[

FL79

]

.

The proof gives, for an alternating Turing Machine M , a PDL formula f

M

(x)

such that f

M

(x) is satis�able i� x is accepted by a simpli�ed trace of M . The

translation of this proof to ALC

+

-concepts is straightforward and ends with a

concept D using a single role R and its transitive closure R

+

. This concept is of

the form

D = C

1

u C

2

u (8R

+

:C

2

)

where R is the only role name occuring in C

1

; C

2

. Furthermore, R

+

occurs

neither in C

1

nor in C

2

. Because of its special form, D is satis�able i� its ALC

�

-counterpart D

0

= C

1

u C

2

u (8R

�

:C

2

) is satis�able:

Each model of D is clearly a model of D

0

. Now let I

0

be a model of D

0

with

x 2 D

0I

0

. Then x 2 C

I

0

1

u C

I

0

2

and for all y with (x; y) 2 R

�

I

0

it holds that

y 2 C

I

0

2

. Let I be an interpretation of D which is equal to I

0

for concept and

role names in C

1

; C

2

and where R

+

I

is the transitive closure of R

I

0

. Hence we

have that (x; y) 2 R

+

I

implies (x; y) 2 R

�

I

0

for all x; y 2 �

I

. It follows that

y 2 C

I

2

for all (x; y) 2 R

+

I

, and �nally we have x 2 D

I

. Hence I is a model of

D.

6 Conclusion

Transitive roles per se, without referring to an underlying subrole, are algorith-

mically easier to handle than the transitive closure of roles, whereas substituting

the transitive closure of a role by some transitive superrole does not seem to make

reasoning easier. Hence, when using a description logic based knowledge repre-

sentation system, one should really think about whether the transitive closure of

roles is needed for this application or whether one can live with transitive roles.

In the latter case, a terminological knowledge representation system based on

ALC can be modi�ed in such a way that it is able to handle transitive relati-

ons without severely increasing its computational complexity, but nevertheless

increasing its expressive power: In the de�nition of concepts or description of

individual objects, one can now refer to parts (ancestors, friends or relatives) at

a level of decomposition (in a generation, at a degree of relationship) not known

in advance. An interesting question arising from these observations is whether

this holds for extensions of other concept languages as well.

Acknowledgement I would like to thank Franz Baader, Diego Calvanese and

the anonymous referees for valuable suggestions and comments.

References

[

ACG

+

94

]

A. Artale, F. Cesarini, E. Grazzini, F. Pippolini, and G. Soda. Modelling

composition in a terminological language environment. In Workshop No-

tes of the ECAI Workshop on Parts and Wholes: Conceptual Part-Whole

Relations and Formal Mereology, pages 93{101, Amsterdam, 1994.

[

Baa91

]

F. Baader. Augmenting concept languages by transitive closure of roles: An

alternative to terminological cycles. In Proc. of IJCAI-91, 1991.

[

DLNN91

]

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of con-

cept languages. In Proc. of KR-91, Boston (USA), 1991.

[

DLNN95

]

F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of

concept languages. Technical Report RR-95-07, DFKI, Kaiserslautern,

Deutschland, 1995.

[

FL79

]

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular

programs. J. of Computer and System Science, 18:194{211, 1979.

[

Fra94

]

E. Franconi. A treatment of plurals and plural quanti�cations based on a

theory of collections. Minds and Machines, 3(4):453{474, November 1994.

[

HM92

]

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for

modal logic of knowledge and belief. Arti�cial Intelligence, 54:319{379,

1992.

[

HNS90

]

B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Subsumption algorithms

for concept description languages. In ECAI-90, Pitman Publishing, London,

1990.

[

Lad77

]

R.E. Ladner. The computational complexity of provability in systems of

modal propositional logic. SIAM J. of Computing, 6(3):467{480, 1977.

[

LB87

]

H. Levesque and R. J. Brachman. Expressiveness and tractability in kno-

wledge representation and reasoning. Computational Intelligence, 3:78{93,

1987.

[

Pri95

]

S. Pribbenow. Modeling physical objects: Reasoning about (di�erent kinds

of) parts. In Time, Space, and Movement Workshop 95, Bonas, France,

1995.

[

Sch91

]

K. Schild. A correspondence theory for terminological logics: Preliminary

report. In Proc. of IJCAI-91, pages 466{471, Sydney, 1991.

[

Sim87

]

P. M. Simons. Parts. A study in Ontology. Oxford: Clarendon, 1987.

[

SS91

]

Manfred Schmidt-Schau� and Gert Smolka. Attributive concept descripti-

ons with complements. Arti�cial Intelligence, 48(1):1{26, 1991.

