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Abstract

Uni�cation of concept terms is a new kind of in-

ference problem for Description Logics, which

extends the equivalence problem by allowing

to substitute certain concept names by con-

cept terms before testing for equivalence. We

show that this inference problem is of interest

for applications, and present �rst decidability

and complexity results for a small concept de-

scription language.

1 Motivation

The �rst motivation for considering uni�cation of con-

cept terms comes from an application in chemical pro-

cess engineering [4]. In this application, the DL system

is used to support the design of a large terminology of

concepts describing parts of chemical plants as well as

processes that take place in these plants. Since sev-

eral knowledge engineers are involved in de�ning new

concepts, and since this knowledge acquisition process

takes rather long (several years), it happens that the

same (intuitive) concept is introduced several times, of-

ten with slightly di�ering descriptions. Our goal was

to use the reasoning capabilities of the DL system (in

particular, testing for equivalence of concept terms) to

support avoiding this kind of redundancy. However, test-

ing for equivalence of concepts is not always su�cient to

�nd out whether, for a given concept term, there already

exists another concept term in the knowledge base de-

scribing the same notion. For example, assume that one

knowledge engineer has de�ned the concept of all women

having only daughters

1

by the concept term

Woman u 8child:Woman:

�
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We use an example from the family domain since ex-

amples from process engineering would require too much

explanation.

A second knowledge engineer might represent this notion

in a somewhat more �ne-grained way, e.g., by using the

term Female u Human in place of Woman. The concept

terms Woman u 8child:Woman and

Female u Human u 8child:(Female u Human)

are not equivalent, but they are meant to represent the

same concept. The two terms can obviously be made

equivalent by substituting the atomic concept Woman

in the �rst term by the concept term Female u Human.

This leads us to uni�cation of concept terms , i.e., the

question whether two concept terms C;D can be made

equivalent by applying an appropriate substitution �,

where a substitution replaces (some of the) atomic con-

cepts by concept terms. A substitution is a uni�er of

C;D i� �(C) � �(D) (where � denotes equivalence of

concept terms). Of course, it is not necessarily the case

that uni�able concept terms are meant to represent the

same notion. A uni�ability test can, however, suggest to

the knowledge engineer possible candidate terms.

Another motivation for considering uni�cation of con-

cept terms comes from the work of Borgida and McGuin-

ness [6], who introduce matching of concept terms (of the

DL language used by the classic system) modulo sub-

sumption: for given concept terms C and D they ask for

a substitution � such that C v �(D). More precisely,

they are interested in �nding \minimal" substitutions

for which this is the case, i.e., � should satisfy the prop-

erty that there does not exist another substitution � such

that C v �(D) < �(D). Since C v D i� C u D � C,

this matching problem can be reduced to a uni�cation

problem.

2 Uni�cation of FL

0

-concept terms

As a �rst test case, we have investigated the uni�cation

problem for the rather small DL language FL

0

, which

allows for concept conjunction (C uD), value restriction

(8R:C), and the top concept (>). The semantics of these

operators is de�ned in the usual way. Two FL

0

-concept

terms are equivalent (C � D) i� they denote the same



concept in every interpretation (i.e., C

I

= D

I

for all

interpretations I).

In order to de�ne uni�cation of concept terms, we

must �rst introduce the notion of a substitution operat-

ing on concept terms. To this purposes, we partition the

set of atomic concepts into a set C

v

of concept variables

(which may be replaced by substitutions) and a set C

c

of

concept constants (which must not be replaced by sub-

stitutions). Intuitively, C

v

are the atomic concepts that

have possibly been given another name or been speci�ed

in more detail in another concept term describing the

same notion. The elements of C

c

are the ones of which it

is assumed that the same name is used by all knowledge

engineers (e.g., standardized names in a certain domain).

A substitution � is a mapping from C

v

into the set

of all FL

0

-concept terms. This mapping is extended to

concept terms in the obvious way, i.e.,

� �(A) := A for all A 2 C

c

,

� �(>) := >,

� �(C uD) := �(C) u �(D), and

� �(8R:C) := 8R:�(C).

De�nition 1 Let C and D be FL

0

-concept terms. The

substitution � is a uni�er of C andD i� �(C) � �(D). In

this case, the concept terms C andD are called uni�able.

For example, if A 2 C

c

and X;Y 2 C

v

, then � = fX 7!

A u 8S:A; Y 7! 8R:Ag is a uni�er of the concept terms

8R:8R:Au 8R:X and Y u 8R:Y u 8R:8S:A.

Reduction to an equational uni�cation problem

Uni�cation of FL

0

-concept terms can be reduced to the

well-known notion of uni�cation modulo an equational

theory , which allows us to employ methods and results

developed in uni�cation theory [5].

First, we show how concept terms can be translated

into terms over an appropriate signature �

R

, which con-

sists of a binary function symbol ^, a constant symbol

T, and for each R 2 R a unary function symbol h

R

. In

addition, every element of C

v

is considered as variable

symbol, and every element of C

c

as a (free) constant.

The translation function � is de�ned by induction on

the structure of concept terms:

� �(A) := A for all A 2 C,

� �(>) := T,

� �(C uD) := �(C) ^ �(D), and

� �(8R:C) := h

R

(�(C)).

Obviously, � is a bijective mapping between the set of

all FL

0

-concept terms (with atomic concept from C =

C

v

[C

c

and atomic roles from R) and the set of all terms

over the signature �

R

built using variables from C

v

and

free constants from C

c

.

The equational theory ACUIh that axiomatizes equiv-

alence of FL

0

-concept terms consists of the following

identities:

(x ^ y) ^ z = x ^ (y ^ z); x ^ y = y ^ x;

x ^ x = x; x ^ T = x;

and for all R 2 R

h

R

(x ^ y) = h

R

(x) ^ h

R

(y); h

R

(T) = T:

Let =

ACUIh

denote the congruence relation on term in-

duced by ACUIh, i.e., s =

ACUIh

t holds i� s can be

transformed into t using identities from ACUIh.

Lemma 2 Let C and D by FL

0

-concept terms. Then

C � D i� �(C) =

ACUIh

�(D):

Proof. The if-direction is an easy consequence of the

semantics of FL

0

-concept terms. In fact, since con-

cept conjunction is interpreted as set union, it inherits

associativity, commutativity, and idempotency (modulo

equivalence) from set union. In addition, it is easy to

see that C u > � C, 8R:> � >, and 8R:(C u D) �

(8R:C)u(8R:D) hold for arbitrary concept terms C and

D.

To show the only-if-direction, we �rst represent FL

0

-

concept terms in a certain normal form. Using the

equivalences noted in the proof of the if-direction, any

FL

0

-concept term can be transformed into an equivalent

FL

0

-concept term C

0

that is either > or a (nonempty)

conjunction of terms of the form 8R

1

: � � � 8R

n

:A for

n � 0 (not necessarily distinct) role names R

1

; : : : ; R

n

and a concept name A 6= >. Since the transformation

into this normal form uses only identities from ACUIh,

we have �(C) =

ACUIh

�(C

0

).

Now, assume that �(C) 6=

ACUIh

�(D). Conse-

quently, the corresponding normal forms C

0

; D

0

also sat-

isfy �(C

0

) 6=

ACUIh

�(D

0

). This implies that one of these

two normal forms contains a conjunct 8R

1

: � � � 8R

n

:A

(for n � 0 and A 6= >) that does not occur in the other

normal form. We assume without loss of generality that

this conjunct occurs in C

0

, but not in D

0

.

We use this conjunct to construct an interpretation I

such that C

0I

6= D

0I

, which implies C

0

6� D

0

and thus

C 6� D. The domain �

I

of this interpretation consists of

n+ 1 distinct individuals d

0

; : : : ; d

n

. The interpretation

of the concept names is given by B

I

:= �

I

for all names

B 6= A, and A

I

:= �

I

n fd

n

g. Finally, the role names

are interpreted as S

I

:= f(d

i�1

; d

i

) j S = R

i

g. As an

obvious consequence of this de�nition, we obtain d

0

62

(8R

1

: � � � 8R

n

:A)

I

, and thus d

0

62 C

0I

= C

I

. On the

other hand, d

0

2 >

I

and d

0

2 (8S

1

: � � � 8S

m

:B)

I

for

all concept terms of the form 8S

1

: � � � 8S

m

:B that are

di�erent to 8R

1

: � � � 8R

n

:A. Consequently, d

0

2 D

0I

=

D

I

.



As a consequence of this lemma, the concept terms

C and D are uni�able i� the corresponding terms �(C)

and �(D) are uni�able modulo ACUIh. For example, the

concept terms 8R:8R:Au8R:X and Y u8R:Y u8R:8S:A

are translated into the terms t

1

:= h

R

(h

R

(a)) ^ h

R

(x)

and t

2

:= y ^ h

R

(y) ^ h

R

(h

S

(a)), and the substitution

�

0

:= fx 7! a ^ h

S

(a); y 7! h

R

(a)g is an ACUIh-uni�er

of these terms, i.e., �(t

1

) =

ACUIh

�(t

2

).

2

In uni�cation theory, one usually considers uni�cation

problems that consist of a �nite set of term equations

� = fs

1

=

?

t

1

; :::; s

n

=

?

t

n

g rather than a single equation

s =

?

t. For ACUIh, we can show that the system � has

an ACUIh-uni�er i� the single equation

h

R

1

(s

1

) ^ � � � ^ h

R

n

(s

n

) =

?

h

R

1

(t

1

) ^ � � � ^ h

R

n

(t

n

)

has an ACUIh-uni�er, provided that h

R

1

; : : : ; h

R

n

are

n distinct unary function symbols in �

R

. Thus, solv-

ing systems of equations is equivalent to solving a single

equation in this case. The correctness of this reduction

is an easy consequence of the following lemma.

Lemma 3 Let C

1

; : : : ; C

n

; D

1

; : : : ; D

n

be FL

0

-concept

terms, and R

1

; : : : ; R

n

be n pairwise distinct role names.

Then 8R

1

:C

1

u � � � u 8R

n

:C

n

� 8R

1

:D

1

u � � � u 8R

n

:D

n

i� C

1

� D

1

; : : : ; C

n

� D

n

.

Reduction to solving linear equations

The theory ACUIh belongs to the class of so-called com-

mutative theories [1], for which solving uni�cation prob-

lems can be reduced to solving systems of linear equa-

tions over a corresponding semiring [9, 3]. Conversely,

every system of linear equations over this semiring corre-

sponds to a uni�cation problem. (A semiring is similar

to a ring, but the addition need not have an inverse;

e.g., the nonnegative integers with addition and multi-

plication are a semiring, but not a ring.) Since we have

seen above that in the case of ACUIh-uni�cation, solv-

ing systems of equations is equivalent to solving a single

equation, we can restrict our attention to the problem of

how to solve a single linear equation over the semiring

corresponding to ACUIh.

This semiring can be described as follows:

� its elements are �nite sets of words (over the alpha-

bet of all role names),

� its addition operation is union of sets with the

empty set ; as unit,

� its multiplication operation is element-wise concate-

nation with the set f"g consisting of the empty word

as unit.

2

To distinguish between concept names in concept terms

and variable and constant symbols in terms over �

R

, we use

upper-case letters for concept names and the corresponding

lower-case letters for constants and variables.

For example, fRS; Sg and f";Rg are elements of this

semiring, and multiplying them yields fRS; Sgf";Rg =

fRS; S;RSR; SRg.

ACUIh-uni�cation problems (consisting w.l.o.g. of a

single equation) are translated into linear equations of

the form

S

0

[ S

1

X

1

[ � � � [ S

n

X

n

=

T

0

[ T

1

X

1

[ � � � [ T

n

X

n

(�)

The coe�cients S

i

; T

i

of this equation are semiring el-

ements (i.e., �nite sets of words). A solution of this

equation assigns �nite sets of words to the variables

X

i

such that the equation holds. For example, the

ACUIh-uni�cation problem h

R

(h

R

(a)) ^ h

R

(x) =

?

ACUIh

y ^ h

R

(y) ^ h

R

(h

S

(a)) from above is translated into the

(inhomogeneous) linear equation

fRRg [ fRgX [ ;Y = fRSg [ ;X [ f";RgY;

and X = f"; Sg, Y = fRg is a solution.

Theorem 4 Solvability of ACUIh-uni�cation problems

(with free constants) can be decided in deterministic ex-

ponential time, and the problem is at least PSPACE

hard.

The decidability result can be obtained by reducing

solvability of linear equations in the above semiring to

the emptiness problem for (root-to-frontier) tree au-

tomata working on �nite trees [8]. The main idea un-

derlying the proof is as follows. A �nite set of words

over an alphabet � of cardinality k can be represented

by a �nite tree, where each node has at most k sons. In

such a tree, every path from the root to a node can be

represented by a unique word over �. If the nodes of the

tree are labelled with 0 or 1, then we can take the set of

all words representing paths from the root to nodes with

label 1 as the �nite set of words represented by the tree.

Our approach for solving linear equations with the

help of tree automata cannot treat the equation (�) from

above directly: it needs an equation where the variables

X

i

are in front of the coe�cients S

i

. However, such an

equation can easily be obtained from (�) by consider-

ing the mirror images of the involved languages. For

a word w = R

1

: : : R

m

, its mirror image is de�ned as

w

R

:= R

m

: : : R

1

, and for a �nite set of words L =

fw

1

; : : : ; w

`

g, its mirror image is L

R

:= fw

R

1

; : : : ; w

R

`

g.

Obviously, X

1

= L

1

; : : : ; X

n

= L

n

is a solution of (�) i�

Y

1

= L

R

1

; : : : ; Y

n

= L

R

n

is a solution of the corresponding

mirrored equation (��):

S

R

0

[ Y

1

S

R

1

[ � � � [ Y

n

S

R

n

=

T

R

0

[ Y

1

T

R

1

[ � � � [ Y

n

T

R

n

(��)

In principle, we build a tree automaton that accepts

the trees representing the �nite sets of words obtained by



instantiating this equation with its solutions. To achieve

this goal, the automaton guesses at each node whether it

(more precisely, the path leading to it) belongs to one of

the Y

i

(more precisely, to the set of words instantiated

for Y

i

), and then does the necessary book-keeping to

make sure that the concatenation with the elements of

S

R

i

and T

R

i

is realized: if S

R

i

contains a word w, and the

automaton has decided that a given node � belongs to Y

i

,

then if one starts at � and follows the path corresponding

to w, one must �nd a node with label 1. Vice versa, every

label 1 in the tree must be justi�ed this way. The same

must hold for T

R

i

in place of S

R

i

. The size of the set of

states of this automaton turns out to be exponential in

the the size of the equation (due to the necessary book-

keeping). Since the emptiness problem for tree automata

working on �nite trees can be solved in polynomial time

(in the size of the automaton), this yields the exponential

time algorithm claimed in the theorem.

The hardness result can be shown by reduction from

the Finite State Automata Intersection problem, which

has been shown to be PSPACE-complete by Kozen (see

[7]). This problem can be described as follows: given

a sequence A

1

; : : : ;A

n

of deterministic �nite state au-

tomata (dfa) over the same input alphabet �, decide

whether there exists a word w accepted by each of these

automata. (Note that the problem is polynomial for any

�xed number n of automata.)

For simplicity assume that the transition relation of a

dfa A is represented using a �nite word rewriting system

R = fl

i

! r

i

j 1 � i � kg. Each left-hand side l

i

is of

the form p

i

a

i

for a state p

i

of the automaton and an input

symbol a

i

2 �, and the right-hand side is a state q

i

of

the automaton. Thus, l

i

! r

i

represents the transition

that says: if the automaton is in state p

i

and reads the

symbol a

i

, then it goes into state q

i

. Since the automata

are assumed to be deterministic, there exists at most one

rule with left-hand side p

i

a

i

for each pair (p

i

; a

i

). The

automaton represented by R accepts the word w i� q

0

w

can be reduced to q

f

(where q

0

is the initial state of the

automaton, and q

f

is one of the �nal states).

We may also assume that the dfa has exactly one �nal

state. In fact, if we modify the automata A

1

; : : : ;A

n

by adding a new symbol ] and a new �nal state, and

a transition with ] from each original �nal state to this

new one, then the resulting automata accept a common

word i� the original ones did.

Given such a dfa A over � with �nal state q

f

and

initial state q

0

, we consider the alphabet � that consists

of � and the states of A. We construct the following

linear equation, where the variables X;X

i

range over

�nite sets of words over �:

fq

0

gX [ fr

1

gX

1

[ : : : [ fr

k

gX

k

=

fq

f

g [ fl

1

gX

1

[ : : : [ fl

k

gX

k

It can be shown (see [2]) that for any solution of this

equation, X is a nonempty subset of the language ac-

cepted by A. In addition, for any �nite subset T of this

language, there exists a solution of the equation such

that X = T .

For n deterministic �nite automata, we can thus con-

struct a system consisting of n such equations. We as-

sume that the only variable shared by these equations

is the variable X . Since in a solution of this system

the variable X cannot be replaced by the empty set,

and since the words in the set substituted for X always

belong to the languages accepted by the automata, we

have thus reduced the Finite State Automata Intersec-

tion problem to the problem of solving a system of lin-

ear equations over sets of �nite words. This system of

equations can be translated into a corresponding ACUIh-

uni�cation problem, which proves the PSPACE-hardness

result.

3 A direct reduction to linear equations

The fact that equivalence of FL

0

-concept terms can be

axiomatized by a commutative equational theory has al-

lowed us to employ known results from uni�cation theory

about the connection between uni�cation modulo com-

mutative theories and solving linear equations in semi-

rings. In this section, we show how the linear equations

corresponding to a uni�cation problem between FL

0

-

concept terms can be obtained directly, without the de-

tour through equational uni�cation. On the one hand,

this may be helpful for readers not familiar with the

relevant literature in uni�cation theory. On the other

hand, it opens the possibility to use a similar approach

for concept languages for which equivalence cannot be

axiomatized by a commutative theory.

Let C;D be the two FL

0

-concept terms to be uni�ed,

and assume that ; 6= fA

1

; : : : ; A

k

g � C

c

contains all the

concept names of C

c

that occur in C;D. In addition,

let X

1

; : : : ; X

n

be the concept names of C

v

that occur in

C;D.

First, we show that C;D can be transformed into a

certain normal form. We know that any FL

0

-concept

term can be transformed into an equivalent FL

0

-concept

term that is either > or a (nonempty) conjunction of

terms of the form 8R

1

: � � � 8R

m

:A for m � 0 (not nec-

essarily distinct) role names R

1

; : : : ; R

m

and a con-

cept name A 6= >. We abbreviate 8R

1

: � � � 8R

m

:A by

8R

1

: : : R

m

:A, where R

1

: : : R

m

is considered as a word

over the alphabet of all role names �. In addition,

instead of 8w

1

:A u : : : u 8w

`

:A we write 8L:A where

L := fw

1

; : : : ; w

`

g is a �nite set of words over �. The

term 8;:A is considered to be equivalent to >. Using



these abbreviations, the terms C;D can be rewritten as

C �8S

0;1

:A

1

u : : : u 8S

0;k

:A

k

u 8S

1

:X

1

u : : : u 8S

n

:X

n

D�8T

0;1

:A

1

u : : : u 8T

0;k

:A

k

u 8T

1

:X

1

u : : : u 8T

n

:X

n

for �nite sets of words S

0;i

; S

j

; T

0;i

; T

j

(i = 1; : : : ; k; j =

1; : : : ; n). The following lemma is not hard to show.

Lemma 5 C;D are uni�able i� for all i = 1; : : : ; k, the

linear equation

S

0;i

[ S

1

X

1

[ � � � [ S

n

X

n

=

T

0;i

[ T

1

X

1

[ � � � [ T

n

X

n

has a solution.

Note that this is not a system of k equations that must

be solved simultaneously: each of these equations can be

solved separately.

For example, consider the concept terms C = 8R:(A

1

u

8R:A

2

) u 8R:8S:X

1

and D = 8R:8S:(8S:A

1

u 8R:A

2

) u

8R:X

1

u8R:8R:A

2

. The corresponding concept terms in

normal form are C

0

= 8fRg:A

1

u8fRRg:A

2

u8fRSg:X

1

and D

0

= 8fRSSg:A

1

u 8fRSR;RRg:A

2

u 8fRg:X

1

,

which lead to the two linear equations

fRg [ fRSgX

1

= fRSSg [ fRgX

1

fRRg [ fRSgX

1

= fRSR;RRg [ fRgX

1

The �rst equation (the one for A

1

) has X

1

= f"; Sg as a

solution, and second (the one for A

2

) has X

1

= fRg as a

solution. These two solutions yield the following uni�er

of C;D:

fX

1

7! A

1

u 8S:A

1

u 8R:A

2

g

4 Future work

Beside the technical problem of obtaining a tight com-

plexity bound, the main topic for future work is to ex-

tend the decidability result to more expressive DL lan-

guages. Using a direct reduction of the uni�cation prob-

lem to a corresponding formal language problem (as de-

scribed in the previous section), our approach may also

be applicable to languages for which equivalence of con-

cept terms is not axiomatizable by a commutative equa-

tional theory.

Another interesting problem is how to de�ne an ap-

propriate ordering on uni�ers. For the instantiation pre-

order usually employed in uni�cation theory, ACUIh is

not well-behaved [1]: it is not possible to represent all

uni�ers by �nitely many most general ones. However,

note that a more expressive language might lead to a

theory with a better behaviour (since in a richer signa-

ture there are more substitutions available). Second, it

might well be the case that the instantiation ordering

on substitutions (which is appropriate for the applica-

tions of equational uni�cation in theorem proving, term

rewriting, and logic programming) is not the right or-

dering to use when dealing with substitutions operating

on concept terms. As indicated by the work of Borgida

and McGuinness [6], another ordering, induced by the

subsumption hierarchy, might be more appropriate.
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