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1 Introduction

Knowledge representation languages based on Description Logics (DL languages)

can be used to represent the terminological knowledge of an application domain

in a structured and formally well-understood way [7, 3]. With the help of these

languages, the important notions of the domain can be described by concept

terms, i.e., expressions that are built from atomic concepts (unary predicates)

and atomic roles (binary predicates) using the concept constructors provided

by the DL language. The atomic concepts and concept terms represent sets of

individuals, whereas roles represent binary relations between individuals. For

example, using the atomic concept Woman and the atomic role child, the concept

of all women having only daughters (i.e., women such that all their children are

again women) can be represented by the concept term

Woman u 8child:Woman:

Knowledge representation systems based on Description Logics provide their users

with various inference capabilities that allow them to deduce implicit knowledge

�
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from the explicitly represented knowledge. For instance, the subsumption algo-

rithm allows one to determine subconcept-superconcept relationships. For exam-

ple, the concept term Woman subsumes the concept term Womanu8child:Woman

since all instances of the second term are also instances of the �rst term, i.e., the

second term is always interpreted as a subset of the �rst term. With the help of

the subsumption algorithm, a newly introduced concept term can automatically

be placed at the correct position in the hierarchy of the already existing concept

terms.

Two concept terms are equivalent if they subsume each other, i.e., if they

always represent the same set of individuals. For example, the terms Woman u

8child:Woman and (8child:Woman)uWoman are equivalent since u is interpreted

as set intersection, which is obviously commutative. The equivalence test can, for

example, be used to �nd out whether a concept term representing a particular

notion has already been introduced, thus avoiding multiple introduction of the

same concept into the concept hierarchy. This inference capability is very im-

portant if the knowledge base containing the concept terms is very large, evolves

during a long time period, and is extended and maintained by several knowledge

engineers.

1

However, testing for equivalence of concepts is not always su�cient to

�nd out whether, for a given concept term, there already exists another concept

term in the knowledge base describing the same notion. For example, assume

that one knowledge engineer has de�ned the concept of all women having only

daughters by the concept term

Woman u 8child:Woman:

A second knowledge engineer might represent this notion in a somewhat more

�ne-grained way, e.g., by using the term FemaleuHuman in place of Woman. The

concept terms Woman u 8child:Woman and

Female u Human u 8child:(Female u Human)

are not equivalent, but they are meant to represent the same concept. The

two terms can obviously be made equivalent by substituting the atomic concept

Woman in the �rst term by the concept term Female u Human. This leads us to

uni�cation of concept terms, i.e., the question whether two concept terms can

be made equivalent by applying an appropriate substitution, where a substitu-

tion replaces (some of the) atomic concepts by concept terms. Of course, it is

not necessarily the case that uni�able concept terms are meant to represent the

same notion. A uni�ability test can, however, suggest to the knowledge engineer

possible candidate terms.

In the following, we consider the uni�cation problem for a rather small DL

language called FL

0

in the literature [2]. We shall see that this problem can be

1

This work was motivated by an application in chemical process engineering, in which this

situation occurs.
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viewed as a uni�cation problem modulo an appropriate equational theory: the

theory ACUIh of a binary associative, commutative, and idempotent function

symbol with a unit and several homomorphisms. This theory turns out to be a

so-called commutative (or monoidal) theory [1, 12, 4], in which uni�cation can

be reduced to solving equations in a corresponding semiring, which in the case of

ACUIh is the polynomial semiring (in non-commuting indeterminates) over the

Boolean semiring.

2

The problem of solving linear equations over this semiring

can in turn be reduced to a certain formal languages problem, which can be

solved using automata on �nite trees. This provides us with an exponential time

algorithm for deciding solvability of ACUIh-uni�cation problems, and thus also

for uni�cation of concept terms of the DL language FL

0

. It can also be shown

that the problem is at least PSPACE-hard.

2 The DL language FL

0

In this section, we introduce syntax and semantics of the knowledge representation

language FL

0

, and give a formal de�nition of subsumption, equivalence, and

uni�cation of concept terms.

De�nition 2.1 Let C and R be disjoint sets, the set of atomic concepts and the

set of atomic roles. The set of all FL

0

-concept terms is inductively de�ned as

follows:

� Every element of C is a concept term (atomic concept).

� The symbol > is a concept term (top concept).

� If C and D are concept terms, then C u D are concept terms (concept

conjunction).

� If C is a concept term and R is an atomic role (i.e., R 2 R), then 8R:C is

a concept term (value restriction).

The following de�nition provides a model-theoretic semantics for FL

0

:

De�nition 2.2 An interpretation I consists of a non-empty set �

I

, the domain

of the interpretation, and an interpretation function that assigns to every atomic

concept A 2 C a set A

I

� �

I

, and to every atomic role R 2 R a binary relation

2

Note that this is not the Boolean ring (with operations conjunction and ex-or), but the

Boolean semiring (with operations conjunction and disjunction).
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R

I

� �

I

��

I

. The interpretation function is extended to complex concept terms

as follows:

>

I

:= �

I

;

(C uD)

I

:= C

I

\D

I

;

(8R:C)

I

:= fd 2 �

I

j 8e 2 �

I

: (d; e) 2 R

I

! e 2 C

I

g:

Based on this semantics, subsumption and equivalence of concept terms is de�ned

as follows: Let C and D be FL

0

-concept terms.

� C is subsumed by D (C v D) i� C

I

� D

I

for all interpretations I.

� C is equivalent to D (C � D) i� C

I

= D

I

for all interpretations I.

In order to de�ne uni�cation of concept terms, we must �rst introduce the notion

of a substitution operating on concept terms. To this purposes, we partition the

set of atomic concepts into a set C

v

of concept variables (which may be replaced

by substitutions) and a set C

c

of concept constants (which must not be replaced

by substitutions). Intuitively, C

v

are the atomic concepts that have possibly been

given another name or been speci�ed in more detail in another concept term

describing the same notion. The elements of C

c

are the ones of which it is assumed

that the same name is used by all knowledge engineers (e.g., standardized names

in a certain domain).

A substitution � is a mapping from C

v

into the set of all FL

0

-concept terms.

This mapping is extended to concept terms in the obvious way, i.e.,

� �(A) := A for all A 2 C

c

,

� �(>) := >,

� �(C uD) := �(C) u �(D), and

� �(8R:C) := 8R:�(C).

De�nition 2.3 Let C and D be FL

0

-concept terms. The substitution � is a

uni�er of C and D i� �(C) � �(D). In this case, the concept terms C and D are

called uni�able.

3 The equational theory ACUIh

In this section we show that uni�cation of FL

0

-concept terms can be reduced to

the well-known notion of uni�cation modulo an equational theory , which allows

us to employ methods and results developed in uni�cation theory [5].
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First, we show how concept terms can be translated into terms over an ap-

propriate signature �

R

, which consists of a binary function symbol ^, a constant

symbol T, and for each R 2 R a unary function symbol h

R

. In addition, every el-

ement of C

v

is considered as a variable symbol, and every element of C

c

as a (free)

constant. The translation function � is de�ned by induction on the structure of

concept terms:

� �(A) := A for all A 2 C,

� �(>) := T,

� �(C uD) := �(C) ^ �(D), and

� �(8R:C) := h

R

(�(C)).

Obviously, � is a bijective mapping between the set of all FL

0

-concept terms

(with atomic concept from C = C

v

[ C

c

and atomic roles from R) and the set of

all terms over the signature �

R

built using variables from C

v

and free constants

from C

c

.

The equational theory that axiomatizes equivalence of FL

0

-concept terms is

de�ned by the following identities:

ACUIh := f (x ^ y) ^ z = x ^ (y ^ z); x ^ y = y ^ x; x ^ x = x; x ^ T = x g

[ f h

R

(x ^ y) = h

R

(x) ^ h

R

(y); h

R

(T) = T j R 2 R g:

Lemma 3.1 Let C and D be FL

0

-concept terms. Then

C � D i� �(C) =

ACUIh

�(D):

Proof. The if-direction is an easy consequence of the de�nition of FL

0

-concept

terms. In fact, since concept conjunction is interpreted as set union, it inherits

associativity, commutativity, and idempotency (modulo equivalence) from set

union. In addition, it is easy to see that Cu> � C, 8R:> � >, and 8R:(CuD) �

(8R:C) u (8R:D) hold for arbitrary concept terms C and D.

To show the only-if-direction, we �rst respresent FL

0

-concept terms in a cer-

tain normal form. Using the equivalences noted in the proof of the if-direction, any

FL

0

-concept term can be transformed into an equivalent FL

0

-concept term C

0

that is either > or a (nonempty) conjunction of terms of the form 8R

1

: � � � 8R

n

:A

for n � 0 (not necessarily distinct) role names R

1

; : : : ; R

n

and a concept name

A 6= >. Since the transformation into this normal form uses only identities from

ACUIh, we have �(C) =

ACUIh

�(C

0

).

Now, assume that �(C) 6=

ACUIh

�(D). Consequently, the corresponding nor-

mal forms C

0

; D

0

also satisfy �(C

0

) 6=

ACUIh

�(D

0

). This implies that one of these
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two normal forms contains a conjunct 8R

1

: � � � 8R

n

:A (for n � 0 and A 6= >) that

does not occur in the other normal form. We assume without loss of generality

that this conjunct occurs in C

0

, but not in D

0

.

We use this conjunct to construct an interpretation I such that C

0I

6= D

0I

,

which implies C

0

6� D

0

and thus C 6� D. The domain �

I

of this interpretation

consists of n+1 distinct individuals d

0

; : : : ; d

n

. The interpretation of the concept

names is given by B

I

:= �

I

for all names B 6= A, and A

I

:= �

I

n fd

n

g. Finally,

the role names are interpreted as S

I

:= f(d

i�1

; d

i

) j S = R

i

g. As an obvious

consequence of this de�nition, we obtain d

0

62 (8R

1

: � � � 8R

n

:A)

I

, and thus d

0

62

C

0I

= C

I

. On the other hand, d

0

2 >

I

and d

0

2 (8S

1

: � � � 8S

m

:B)

I

for all

concept terms of the form 8S

1

: � � � 8S

m

:B that are di�erent to 8R

1

: � � � 8R

n

:A.

Consequently, d

0

2 D

0I

= D

I

.

The lemma shows that the concept terms C and D are uni�able i� the cor-

responding terms �(C) and �(D) are uni�able modulo ACUIh. In uni�cation

theory, one usually considers uni�cation problems that consist of a �nite set of

term equations � = fs

1

=

?

t

1

; :::; s

n

=

?

t

n

g rather than a single equation s =

?

t.

For ACUIh, we can show that the system � has an ACUIh-uni�er i� the single

equation

h

R

1

(s

1

) ^ � � � ^ h

R

n

(s

n

) =

?

h

R

1

(t

1

) ^ � � � ^ h

R

n

(t

n

)

has an ACUIh-uni�er, provided that h

R

1

; : : : ; h

R

n

are n distinct unary function

symbols in �

R

. Thus, solving systems of equations is equivalent to solving a single

equation in this case. The correctness of this reduction is an easy consequence of

the following lemma.

Lemma 3.2 Let C

1

; : : : ; C

n

; D

1

; : : : ; D

n

be FL

0

-concept terms, and R

1

; : : : ; R

n

be n pairwise distinct role names. Then

8R

1

:C

1

u � � � u 8R

n

:C

n

� 8R

1

:D

1

u � � � u 8R

n

:D

n

i� C

1

� D

1

; : : : ; C

n

� D

n

:

Proof. The if-direction of the lemma is trivially satis�ed. In order to show the

only-if-direction, assume that C

i

6� D

i

for some i; 1 � i � n. Thus, there exists an

interpretation I such that C

I

i

6= D

I

i

. We assume (without loss of generality) that

there exists d

0

2 �

I

such that d 2 C

I

i

nD

I

i

. We extend the interpretation I to an

interpretation I

0

by de�ning �

I

0

:= �

I

[ feg, where e 62 �

I

. The interpretation

in I

0

of all concept names and of all role names di�erent from R

i

coincides with

their interpretation in I. Finally, R

I

0

i

:= R

I

i

[ f(e; d)g. By construction of I

0

,

we have e 62 (8R

i

:D

i

)

I

0

. In addition, e 2 (8R

j

:C

j

)

I

0

for all j; 1 � j � n. Thus,

e 2 (8R

1

:C

1

u � � � u 8R

n

:C

n

)

I

0

, but e 62 (8R

1

:D

1

u � � � u 8R

n

:D

n

)

I

0

, which shows

that the two terms are not equivalent.

The uni�cation type of ACUIh has been determined in [1]: ACUIh is of

type zero, which means that ACUIh-uni�cation problems need not have a min-

imal complete set of ACUIh-uni�ers. In particular, this implies that there exist
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ACUIh-uni�cation problems for which the set of all uni�ers cannot be represented

by a �nite complete set of uni�ers. The problem of deciding solvability of ACUIh-

uni�cation problems has not been considered in [1]. In the following, we will show

that this problem is decidable. Note that uni�cation in the closely related theory

ACUh, which is obtained from ACUIh by removing the axiom x ^ x = x, has

been shown to be undecidable [11].

4 Reducing ACUIh-uni�cation to solving linear

equations

The theory ACUIh is a so-called commutative theory [1], for which solving uni-

�cation problems can be reduced to solving systems of linear equations over a

corresponding semiring [12, 4]. Conversely, every system of linear equations over

this semiring corresponds to a uni�cation problem.

Let us �rst consider the theory ACUI, which consists of the axioms specifying

that ^ is associative, commutative and idempotent, and that T is a unit element

with respect to ^. The corresponding semiring is obtained by considering the

ACUI-free algebra in one generator (say x), and then taking the set of all endo-

morphisms of this algebra. Since the ACUI-free algebra generated by x consists

of two congruence classes, with representatives x and T, respectively, there are

two possible endomorphisms: 0, which is de�ned by x 7! T, and 1, which is

de�ned by x 7! x. The multiplication � of this semiring is just composition of

endomorphisms, and the addition + is obtained by applying ^ argument-wise,

e.g., (1 + 0)(x) := 1(x) ^ 0(x) = x ^ T =

ACUI

x = 1(x). It is easy to see that +

behaves like disjunction and � like conjunction on the truth values 0 and 1. Thus,

the semiring corresponding to ACUI is the Boolean semiring.

As shown in [4], adding homomorphisms to a commutative theory corresponds

to going to a polynomial semiring (in non-commuting indeterminates) on the

semiring side, where every indeterminate corresponds to one of the homomor-

phisms. Thus, the semiring S

ACUIh

corresponding to ACUIh is the polynomial

semiring (in jRj non-commuting indeterminates) over the Boolean semiring.

Let � be the set of these indeterminates. Monomials in S

ACUIh

are simply

words over the alphabet �, and since the addition operation in the semiring is

idempotent, the elements of the semiring can be seen as �nite sets of words over

this alphabet. Consequently, the problem of solving systems of linear equations

over S

ACUIh

can be reduced to solving the following formal language problem:

For i = 1; : : : ; m, let S

i;0

; S

i;1

; : : : ; S

i;n

; T

i;0

; T

i;1

; : : : ; T

i;n

be �nite sets of words

over the alphabet �. We consider the system of equations

S

1;0

[X

1

S

1;1

[ � � � [X

n

S

1;n

= T

1;0

[X

1

T

1;1

[ � � � [X

n

T

1;n
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.

.

.

.

.

.

S

m;0

[X

1

S

m;1

[ � � � [X

n

S

m;n

= T

m;0

[X

1

T

m;1

[ � � � [X

n

T

m;n

A solution of this system assigns �nite sets of words over � to the variables X

i

such that the equations hold. For example, the equation

faaag [X

1

faag [X

2

; = fbaag [X

1

; [X

2

fa; aag

has as a solution X

1

= f"; bg and X

2

= fag (where " denotes the empty word).

Theorem 4.1 Solvability of ACUIh-uni�cation problems (with free constants)

can be decided in deterministic exponential time.

This theorem can be proved by reducing solvability of the above formal language

problem to the emptiness problem for (root-to-frontier) tree automata [10]. The

main idea underlying the proof is as follows. A �nite set of words over an alphabet

� of cardinality k can be represented by a �nite tree, where each node has at

most k sons. In such a tree, every path from the root to a node can be represented

by a unique word over �. If the nodes of the tree are labelled with 0 or 1, then

we can take the set of all words representing paths from the root to nodes with

label 1 as the �nite set of words represented by the tree.

For the sake of simplicity assume that we have only one equation of the form

S

0

[X

1

S

1

[ � � � [X

n

S

n

= T

0

[X

1

T

1

[ � � � [X

n

T

n

(�)

In principle, we build a tree automaton that accepts the trees representing the

�nite sets of words obtained by instantiating this equation with its solutions. In

the above example, the given solution yields the language faa; aaa; baag.

In order to accept the trees corresponding to the �nite sets of words obtained

by instantiating the equation (�) by one of its solutions, the automaton guesses

at each node whether it (more precisely, the path leading to it) belongs to one of

the X

i

(more precisely, to the set of words instantiated for X

i

), and then does the

necessary book-keeping to make sure that the concatenation with the elements

of S

i

and T

i

is realized: if S

i

contains a word w, and the automaton has decided

that a given node � belongs to X

i

, then if one starts at � and follows the path

corresponding to w, one must �nd a node with label 1. Vice versa, every label 1

in the tree must be justi�ed this way. The same must hold for T

i

in place of S

i

.

The size of the set of states of this automaton turns out to be exponential

in the the size of the equation (due to the necessary book-keeping). Since the

emptiness problem for tree automata working on �nite trees can be solved in

polynomial time (in the size of the automaton), this yields the exponential time

algorithm claimed in the theorem.

8



5 ACUIh-uni�cation is PSPACE-hard

We show in this section that the ACUIh-uni�cation problem is PSPACE-hard.

The reduction is from the Finite State Automata Intersection problem, which

has been shown to be PSPACE-complete by Kozen (see [9]). This problem can

be described as follows: given a sequence A

1

; : : : ; A

n

of deterministic �nite state

automata (dfa) over the same input alphabet �, decide whether there exists a

word w accepted by each of these automata. (Note that the problem is polynomial

for any �xed number n of automata.)

For simplicity assume that the transition relation of a dfa A is represented

using a �nite word rewriting system R = fl

i

! r

i

j 1 � i � kg. Each left-hand

side l

i

is of the form p

i

a

i

for a state p

i

of the automaton and an input symbol

a

i

2 �, and the right-hand side is a state q

i

of the automaton. Thus, l

i

! r

i

represents the transition that says: if the automaton is in state p

i

and reads

the symbol a

i

, then it goes into state q

i

. Since the automata are assumed to

be deterministic, there exists at most one rule with left-hand side p

i

a

i

for each

pair (p

i

; a

i

). The automaton represented by R accepts the word w i� q

0

w can be

reduced to q

f

(where q

0

is the initial state of the automaton, and q

f

is one of the

�nal states).

We may also assume that the dfa has exactly one �nal state. In fact, if we

modify the automata A

1

; : : : ; A

n

by adding a new symbol ] and a new �nal state,

and a transition with ] from each original �nal state to this new one, then the

resulting automata accept a common word i� the original ones did.

Given such a dfa A over � with �nal state q

f

and initial state q

0

, we consider

the alphabet � that consists of � and the states of A. We construct the following

linear equation, where the variables X;X

i

range over �nite sets of words over �:

fq

0

gX [ fr

1

gX

1

[ : : : [ fr

k

gX

k

= fq

f

g [ fl

1

gX

1

[ : : : [ fl

k

gX

k

We want to show that for any solution � of this equation, all elements of X belong

to the language accepted by A.

To this purpose, we will consider a more general situation. Let T be a �nite

set of words over �. We want to show that the problem

T [ fr

1

gX

1

[ : : : [ fr

k

gX

k

= fq

f

g [ fl

1

gX

1

[ : : : [ fl

k

gX

k

has a solution i� all the words in T can be reduced to q

f

.

The if-direction is not hard to see. Thus, let us consider the only-if direction,

i.e., assume that � is a solution of the equation.

We prove the statement by induction on the sum of the lengths of the elements

of T , i.e.,

P

w2T

jwj.
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Note that, for i 6= j, the sets of words fl

i

g�(X

i

) and fl

j

g�(X

j

) are disjoint,

no matter what solution � we consider (since the dfa is deterministic). But this

need not be the case for the sets on the lhs.

Let w be an element of T . Since � was assumed to be a solution of the

equation, there are two cases: either w = q

f

, or w belongs to (exactly) one of the

sets fl

i

g�(X

i

) on the rhs. In the �rst case, there is nothing to show. Thus, assume

that w is contained in the set fl

i

g�(X

i

). Thus, w = l

i

u for a word u 2 �(X

i

), and

hence r

i

u is contained in fr

i

g�(X

i

). Note that w reduces to r

i

u in one step using

the transition rules. Consider

T

0

:= (T n fwg) [ fr

i

ug;

and de�ne a new substitution �, which coincides with � on all variables di�erent

from X

i

. For the de�nition of �(X

i

) we distinguish two cases:

1. if w occurs in one of the sets fr

j

g�(X

j

), then �(X

i

) := �(X

i

);

2. otherwise, �(X

i

) := �(X

i

) n fug.

This substitution is a solution for

T

0

[ fr

1

gX

1

[ : : : [ fr

k

gX

k

= fq

f

g [ fl

1

gX

1

[ : : : [ fl

k

gX

k

:

In fact, in the second case, w = l

i

u is removed from the left-hand side of the

equation as well as from the right-hand side. The word r

i

u is removed from

fr

i

g�(X

i

) on the left-hand side, but it is added to T

0

. Since it has occurred on

the right-hand side for solution � (and is di�erent from w = l

i

u because it is

shorter), it still occurs on the right-hand side for solution �. In the �rst case,

w = l

i

u remains on the right-hand side (since u is still in �(X

i

)). It is also

contained in the left-hand side (by the assumption that it is contained in some

fr

j

g�(X

j

)).

Obviously, T

0

is lower in our measure than T since jl

i

uj = jr

i

uj + 1. Thus,

induction yields that r

i

u reduces to the �nal state q

f

, which shows that w = l

i

u

does the same.

It is also easy to show that for T = ; there does not exist a solution. In fact,

for a solution �, the left-hand side of the equation cannot be empty (since the

rhs isn't). Thus, take a word of maximal length in fr

1

g�(X

1

) [ : : : [ fr

k

g�(X

k

),

and assume that it belongs to fr

i

g�(X

i

). Then, fl

i

g�(X

i

) contains a longer word,

which yields the necessary contradiction.

For n deterministic �nite automata, we can thus construct a system consisting

of n such equations. We assume that the only variable shared by these equations

is the variable X. Since in a solution of this system the variable X cannot be

replaced by the empty set, and since the words in the set substituted for X always

10



belong to the languages accepted by the automata, we have thus reduced the

Finite State Automata Intersection problem to the problem of solving a system

of linear equations over sets of �nite words.

Theorem 5.1 Solvability of ACUIh-uni�cation problems (with free constants) is

PSPACE-hard.

The linear equations corresponding to ACUIh-uni�cation problems introduced

in the previous section actually di�ered from the linear equations considered in

this section in that the variables occurred in front of the sets of words rather

than behind. However, by going to the mirror languages, one can easily reduce

solvability of one type of linear equations to solvability of the other.

6 Future and related work

Apart from the technical problem of obtaining a tight complexity bound, the

main topic for future work is to extend the decidability result to more expressive

DL languages. Another interesting problem is how to cope with the fact that

ACUIh-uni�cation (and thus uni�cation of FL

0

-concept terms) is of type zero.

First, note that a more expressive language might lead to a theory with a better

uni�cation type (since in a richer signature there are more substitutions available).

Second, it might well be the case that the instantiation ordering on substitutions

is not the right ordering to use when dealing with substitutions operating on

concept terms. It is possible that another ordering, induced by the subsumption

hierarchy, is more appropriate.

Borgida and McGuinness [6] consider matching of concept terms (of the DL

languages used by the classic system [8]) modulo subsumption: for given con-

cept terms C and D they ask for a substitution � such that C v �(D). More

precisely, they are interested in �nding \minimal" substitution for which this is

the case, i.e., � should satisfy the property that there does not exist another

substitution � such that C v �(D) < �(D). Since C v D i� C u D � C,

this matching problem can be reduced to a uni�cation problem. This yields an

additional motivation for investigating orderings on uni�ers that are induced by

subsumption.
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