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Abstract

We show that extending description logics by

simple aggregation functions as available in

database systems may lead to undecidability

of inference problems such as satis�ability and

subsumption.

1 Motivation

Aggregation is a very useful mechanism available in

many expressive representation formalisms such as

database schema and query languages. Most systems

provide for a �xed set of aggregation functions like sum,

min, max, average, count, which can be used over a given

built-in domain, like the integers or the reals. In this pa-

per, the generic Description Logic ALC(D), as introduced

in

[

Baader&Hanschke1991

]

, is extended by aggrega-

tion. ALC(D) is an extension of the well-known descrip-

tion language ALC (see

[

Schmidt-Schau�&Smolka1991;

Hollunder et al.1990; Donini et al.1991

]

) by a so-called

concrete domain. In the basic language ALC, con-

cepts can be built using propositional operators, (i.e.,

and (u), or (t), and not (:)), and value restrictions

on those individuals associated to an individual via a

certain role. These are existential restrictions like in

(9has child:Girl) as well as universal restrictions like

(8 has child:Human). Additionally, in ALC(D), abstract

individuals, which are described using ALC, can be re-

lated to values in a concrete domain (e.g., the integers

or strings) via features, i.e., functional roles. This allows

us to describe managers that spend more money than

they earn by Manageru (less(income; expenses)): In our

extension of ALC(D), aggregation is viewed as a means

to de�ne new features. In Figure 1, a person, Josie, is

given who spends, in some months, more money than

she earns, and in others less. If we want to know the dif-

ference between income and expenses for a whole year,

we have to consider the sum over all months. Then we

�
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can state that or ask whether Josie is an instance of

Human u (9year:less( sum(month�income);

sum(month�expenses)));

where the complex feature sum(month � income) relates

an individual to the sum over all values reachable over

month followed by income. This new, complex feature is

built using the aggregation function sum, the role name

month, and the feature income.

In this paper, we present a generic extension ofALC(D)

by aggregation that is based on this idea of introducing

new \aggregated features." Unfortunately, it turns out

that, given a concrete domain together with aggregation

functions satisfying some very weak conditions, this ex-

tension has an undecidable satis�ability problem. More-

over, this result can even be tightened: extending FL

0

,

a very weak Description Logic allowing for conjunction

and universal value restrictions only, by a weak form of

aggregation already leads to undecidability of satis�abil-

ity and subsumption.

For database research, these results are, for exam-

ple, of interest in the context of intensional reasoning

in the presence of aggregation, as considered in

[

Ross

et al.1998; Gupta et al.1995; Mumick&Shmueli1995;

Levy&Mumick1996; Srivastava et al.1996

]

. They are

not comparable with the undecidability results presented

in

[

Mumick&Shmueli1995

]

since our prerequisites are

weaker and no recursion mechanisms are used. Nei-

ther are they contained in the undecidability results in

[

Ross et al.1998

]

: the results presented there concern

constraints involving multiplication and addition as well

as rather complex aggregation functions like average or

count|in contrast to the results presented here.

2 The basic Description Logic ALC(D)

Before we can introduce ALC(D), as de�ned in

[

Baader&Hanschke1991

]

, we must specify the notion of

a concrete domain.

De�nition 1

A concrete domain D = (dom(D); pred(D)) consists of
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Figure 1: Example for aggregation

a set dom(D) (the domain) and a set of predicate sym-

bols pred(D). Each predicate symbol P 2 pred(D) is

associated with an arity n and an n-ary relation P

D

�

dom(D)

n

.

In

[

Baader&Hanschke1991

]

, concrete domains are re-

stricted to so-called admissible concrete domains in order

to keep the inference problems of this extension decid-

able. We recall that, roughly spoken, a concrete domain

D is called admissible i� (a) pred(D) is closed under nega-

tion and contains a unary predicate name > for dom(D),

and (b) satis�ability in D of �nite conjunctions over

pred(D) is decidable. The syntax of ALC(D)-concepts

is now de�ned as follows:

De�nition 2 Let N

C

, N

R

, and N

F

be disjoint sets of

concept, role, and feature names. The set of ALC(D)-

concepts is the smallest set such that

1. every concept name is a concept and

2. if C, D are concepts, R is a role or a feature name,

P 2 pred(D) is a predicate name, and u

1

; : : : ; u

n

are feature chains,

1

then (C u D), (C t D), (:C),

(8R:C), (9R:C), and P (u

1

; : : : ; u

n

) are concepts.

In order to �x the exact meaning of these concepts, their

semantics is de�ned in the usual model-theoretic way.

De�nition 3 An interpretation I = (�

I

; �

I

) consists of

a set �

I

disjoint from dom(D), called the domain of I,

and a function �

I

that maps every concept to a subset

1

A feature chain u = f

1

�: : :�f

m

is a sequence of features.

of �

I

, every role to a subset of �

I

� �

I

, and every

feature name f 2 N

F

to a partial function f

I

: �

I

!

�

I

[dom(D). Furthermore, I has to satisfy the following

properties

(C uD)

I

= C

I

\D

I

;

(C tD)

I

= C

I

[D

I

;

:C

I

= �

I

n C

I

;

(9R:C)

I

= fd 2 �

I

j Exists e 2 �

I

with

(d; e) 2 R

I

and e 2 C

I

g;

(8R:C)

I

= fd 2 �

I

j For all e 2 �

I

;

if (d; e) 2 R

I

, then e 2 C

I

g;

P (u

1

; : : : ; u

n

)

I

= fx 2 �

I

j (u

I

1

(x); : : : ; u

I

n

(x)) 2 P

D

g;

where (f

1

�: : :�f

m

)

I

(x) := f

I

1

(f

I

2

(: : : (f

I

m

(x) : : :): A con-

cept C is called satis�able i� there is some interpretation

I such that C

I

6= ;. A concept D is said to subsume an-

other concept C (written C v D) i� all interpretations I

satisfy C

I

� D

I

. For an interpretation I, an individual

x 2 �

I

is called an instance of a concept C i� x 2 C

I

.

From the results presented in

[

Baader&Hanschke

1991

]

, it follows immediately that subsumption and sat-

is�ability are decidable for ALC(D) concepts|given that

D is admissible. The authors present a tableau-based

procedure that decides these and other problems.

3 Extension of ALC(D) by aggregation

In order to de�ne aggregation appropriately, �rst, we

will introduce the notion of multisets : in contrast to



simple sets, in a multiset an individual can occur more

than once; for example, the multiset f1g is di�erent from

the multiset f1; 1g. Multisets are needed to ensure, e.g.,

that Josie's income is calculated correctly in the case

she earns the same amount of money in more than one

month.

De�nition 4 Let S be a set. A multiset M over S is a

mapping M : S ! IN, where M(s) denotes the number

of occurrences of s in M . We write s 2M as shorthand

for M(s) � 1. A multiset M is said to be �nite i�

fs jM(s) 6= 0g is a �nite set.

As the aggregation functions depend strongly on the spe-

ci�c concrete domains, the notion of a concrete domain

is extended accordingly. Furthermore, the notion of con-

crete features is introduced. These are features which can

be built using aggregation over roles followed by features.

Then ALC(D+�)-concepts are de�ned.

De�nition 5 The notion of a concrete domain D as in-

troduced in De�nition 1 is extended by a set of aggre-

gation functions agg(D), where each � 2 agg(D) is a

partial function from the set of multisets over dom(D)

into dom(D).

The set of concrete features is inductively de�ned as

follows:

� Each feature name f 2 N

F

is a concrete feature,

� feature chains are concrete features,

� if R 2 N

R

is a role, f is a concrete feature, and

� 2 agg(D) is an aggregation function, then �(R�f)

is a concrete feature.

Finally, ALC(D+�)-concepts are obtained from ALC(D)-

concepts by allowing, additionally, the use of concrete

features f

i

in predicate restrictions P (f

1

; : : : ; f

n

) (recall

that in ALC(D), only feature chains were allowed).

It remains to extend the semantics of ALC(D) to the new

feature forming operator:

De�nition 6 An ALC(D+�)-interpretation I is an

ALC(D)-interpretation I which additionally satis�es

(�(R�f))

I

= f(x; y) 2 �

I

� dom(D) j �

D

(M

R�f

x

) = yg

where, for x 2 �

I

, a concrete feature f , and a role

R, M

R�f

x

denotes the multiset over dom(D) where the

number of occurrences of z 2 dom(D) is determined by

the number of R

I

-successors y of x with f

I

(y) = z, i.e.

for z 2 dom(D) we have

M

R�f

x

(z) := #fy 2 �

I

j (x; y) 2 R

I

and f

I

(y) = zg:

We point out two consequences of this de�nition, which

might not be obvious at �rst sight: (a) if (R �f)

I

(x)

contains individuals in �

I

, then these individuals have

no in
uence on M

R�f

x

: it is de�ned in such a way that

it takes only into account (R�f)

I

-successors of x in the

concrete domain dom(D); (b) if M

R�f

x

is not �nite, then

the outcome depends on D and �: for example, the min-

imum of a (possibly in�nite) subset of the positive inte-

gers is always de�ned, whereas the sum is unde�ned for

in�nite subsets.

Unfortunately, the following theorem shows that ad-

missibility of a concrete domain does no longer guarantee

decidability of the interesting inference problems:

Theorem 7 For a concrete domain D where

� dom(D) includes the non-negative integers IN,

� pred(D) contains a (unary) predicate P

=1

that tests

for equality with 1, and the (binary) equality pred-

icate P

=

,

� agg(D) contains min;max; sum,

satis�ability and subsumption of ALC(D+�)-concepts is

undecidable.

Remarks: (a) The aggregation functions min;max; sum

are supposed to be de�ned as usual, i.e., \�" is an ex-

tension of \�" on IN, and

sum(M) =

(

P

y2M

M(y) � y if M is �nite

unde�ned otherwise

min(M) =

8

>

<

>

:

m if there exists m 2 M such

that n � m for all n 2 M

unde�ned if such an m does not exist

max(M) =

8

>

<

>

:

m if there exists m 2 M such

that n � m for all n 2 M

unde�ned if such an m does not exist

(b) At �rst sight, this undecidability result may seem

to be rather restricted. Note, however, that it just re-

quires that dom(D) contains the non-negative integers.

Furthermore, the aggregation functions min;max; sum

are among those normally considered as built-in func-

tions in databases (see, for example,

[

Gupta et al.1995;

Mumick&Shmueli1995; Levy&Mumick1996; Srivastava

et al.1996

]

). Finally, to test whether a certain value

equals 1 or whether two values are equal is possible in

all database systems with built-in predicates.

Proof of Theorem 7: The proof is by reduction of

Hilbert's 10th problem

[

Davis1973

]

to the satis�ability

of concepts, i.e., for polynomials P;Q 2 IN[x

1

; : : : ; x

m

],

one can construct an ALC(D+�)-concept C

P;Q

that is

satis�able i� the polynomial equation

P (x

1

; : : : ; x

m

) = Q(x

1

; : : : ; x

m

) (1)

has a solution in IN

m

. When building the reduction con-

cept C

P;Q

, one encounters three major problems: (a) We



only know that dom(D) contains IN, but the solution of

Equation 1 has to be in IN

m

, and D need not provide

for a predicate that tests for being a non-negative inte-

ger. (b) The reduction asks for the simulation of calcu-

lations such as addition, multiplication, and exponentia-

tion. (c) It has to be assured that (the representation of)

each variable x

i

is associated with the same non-negative

integer wherever it occurs in a model of C

P;Q

.

In the following, we sketch how these problems can be

solved|details and the de�nition of C

P;Q

can be found

in

[

Baader&Sattler1997

]

: (a) is solved by making use of

the concept

E

R

g

:= (8R:(P

=1

(f))) u P

=

(sum(R�f); g);

whose instances have as g-successor the number of their

R-successors. Hence their g-successor is in IN or unde-

�ned (if there are in�nitely many R-successors). (b) Ad-

dition can be realized by the aggregation function sum,

and multiplication (and hence exponentiation) can be

reduced to addition. (c) This problem is solved by in-

troducing features x

i

for each variable x

i

and by making

strong use of the concept Inv. All R-successors of an in-

stance a of Inv have the same x

i

-successor, which equals

the x

i

-successor of a.

Inv := u

1�i�m

(8R:>(x

i

)u P

=

(min(R�x

i

);max(R�x

i

)) u

P

=

(x

i

;max(R�x

i

))):

This concept can be used to guarantee that all \relevant"

individuals in a model of C

P;Q

have the same x

i

-successor

for each variable x

i

.

Then the idea of the reduction is to represent the

(sub)term structure of the polynomial P (resp. Q) as

a tree which is related to an instance of C

P;Q

via the

feature P (resp. Q). Each leaf of these trees stands for

one of the variables x

i

, whose value is \spread" over the

whole structure using the concept Inv described above.

We want to emphasize that C

P;Q

does not make any

use of the possibility to apply aggregation functions to

feature chains, i.e., wherever a subconcept of C

P;Q

con-

tains �(R�f) for some aggregation function �, f is a

feature name (and not a complex feature chain or con-

crete feature).

A closer investigation of the concept C

P;Q

reveals that

(a) negation does not occur, (b) no concept of the form

9R:C is used, and (c) the only place where disjunction

t occurs is in concepts E

R

n

describing individuals having

exactly n R-successors (which are used to represent the

coe�cients of the polynomials):

E

R

n

:= 8R:

�

t

1�i�n

P

=1

(f

i

)

�

u

8R:

�

u

1�i�n

(P

=1

(f

i

)) (u

j 6=i

?(f

j

)))

�

u

u

1�i�n

P

=1

(sum(R�f

i

)):

For an instance a of E

R

n

, every R-successor has an f

i

-

successor for exactly one i; 1 � i � n, and this f

i

-

successor has value 1 (�rst two lines). The constraint

on the concrete feature sum(R �f

i

) (third line) makes

sure that there is exactly one R-successor with an f

i

-

successor for each i, which implies that a has exactly

n R-successors. In ALC(D+�), with D as described in

the preconditions of Theorem 7, it seems to be impos-

sible to describe the fact that an individual has exactly

n R-successors without using union. However, given a

concrete domain D that provides, in addition to what

was required in Theorem 7, for all non-negative integers

n a unary predicate P

=n

that test for equality with n,

then the following concept E

R

n

0

can be used to describe

those individuals having exactly n R-successors:

E

R

n

0

:= 8R:P

=1

(f) u P

=n

(sum(R�f)):

Hence, the reduction concept C

P;Q

can be rewritten us-

ing only conjunction u and universal value restriction

8R:C. As introduced in

[

Baader1990

]

, let FL

0

denote

the set of those concepts that are built using conjunction

and universal value restriction only, and let FL

0

(D+�)

denote the extension of this language by concrete do-

mains and aggregation. Then the following corollary is

an immediate consequence of the remarks made above.

Corollary 8 For a concrete domain D where

� dom(D) includes the non-negative integers IN,

� pred(D) contains, for all non-negative integers n,

(unary) predicates P

=n

that test for equality with

n, and the (binary) equality predicate P

=

,

� agg(D) contains min;max; sum,

satis�ability and subsumption of FL

0

(D+�)-concepts is

undecidable.

Undecidability of satis�ability is shown, as sketched

above, by a reduction of Hilbert's 10th problem. From

this, undecidability of subsumption follows because a

concept C is satis�able i� it is not subsumed by an un-

satis�able concept, and because the FL

0

(D+�)-concept

C

?

:= >(f) u ?(f) is such an unsatis�able concept.

4 Conclusion

Reasoning with constraints involving aggregation func-

tions is a crucial task for many advanced information sys-

tems like decision support and on-line-analytical process-

ing systems, data warehouses, and (statistical) databases

[

Ross et al.1998; Gupta et al.1995; Mumick&Shmueli

1995; De Giacomo&Naggar1996; Levy&Mumick1996;

Srivastava et al.1996

]

. The more the amount of data

grows that are processed by these systems, the more im-

portant become aggregation functions for summarizing,

consolidating and analyzing these large amounts of data.



Hence, traditional techniques for query rewriting, query

optimization, view maintenance, etc. must be extended

such that they are able to cope with aggregation func-

tions.

The two undecidability results presented in this paper

indicate that this task will be di�cult. The aggregation

functions min;max; sum that su�ce to obtain undecid-

ability are the most \well-behaved" ones: aggregation

functions like count or average are much more di�cult

to handle. For example, min;max; sum are monotonic,

i.e., if S � S

0

, then

min(S) � min(S

0

);

max(S) � max(S

0

);

sum(S) � sum(S

0

);

whereas these relations cannot be established for count

or average. Furthermore, they are \compositional" in

the sense that the aggregation f 2 fmin;max; sumg

of two disjoint multisets S; S

0

can be computed using

f; f(S); f(S

0

) only|which does not hold, for example,

for average. Hence, our undecidability result cannot be

said to be caused by using a too powerful set of aggre-

gation functions.

Arguing from another perspective, ALC(D+�) is a

rather expressive Description Logic and it might not be

very surprising that adding aggregation to ALC(D) leads

to undecidability. In contrast, FL

0

is, to our knowl-

edge, the weakest Description Logic ever considered. It

is of such a low expressive power that subsumption be-

tween two FL

0

-concepts can be reduced to answering

conjunctive queries: given two FL

0

-concepts C

1

and C

2

,

C

1

subsumes C

2

if and only if an individual x of an ex-

tensional database edb

C

1

(x)

constructed from C

1

is in

the answer set of a conjunctive query q

C

2

constructed

from C

2

. This reduction is, for several reasons, not pos-

sible for FL

0

(D+�)-concepts. However, it leads to the

speculation that (intensional) reasoning for conjunctive

queries with (simple) aggregation functions and built-in

predicates is of high computational complexity.
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