
A Rule-Based Language for Ordered Multidimensional

Databases

�

Mohand-Sa��d Hacid

LuFg Theoretical Computer Science

RWTH Aachen, Ahornstra�e 55, 52074 Aachen, Germany

hacid@cantor.informatik.rwth-aachen.de

Patrick Marcel, Christophe Rigotti

Laboratoire d'Ing�enierie des Syst�emes d'Information

INSA Lyon, Bâtiment 501, F-69621 Villeurbanne Cedex

T�el : +33 4 72 43 85 88 - Fax : +33 4 72 43 87 13

fpatrick,crigg@lisi.insa-lyon.fr

Abstract

This paper presents a rule-based language that supports multidimensional tables. It

provides a simple and declarative way to express every query computable in polynomial

time on ordered tables. We de�ne its model-theoretic semantics and develop an equivalent

�xpoint theory that is a basis for the reuse of standard optimization techniques.

1 Introduction

Representation of data in multidimensional structures with direct access (i.e., ordered data

structures like lists or multidimensional arrays) is desirable in a variety of disciplines. In the

area of databases, Maier and Vance [12] argued that the proposed extensions of the relational

model (e.g., nested relations, complex objects, bags, lists, : : :) lack in representation capabili-

ties for contexts that could bene�t from database technologies (such as scienti�c computing),

and thus they pointed out the need for better supports of ordered data structures. More

recently, multidimensional structures has become the central focus of data representations

and manipulations used in On-Line Analytical Processing (OLAP) [7, 8], a new challenging

technology. Data models and languages capturing some of the OLAP functionalities have

been designed [9, 4], however to our knowledge no rule-based language has been proposed.

In this paper we introduce such a language supporting ordered multidimensional tables. It

is based on the point of view that a Datalog-like fact represents an entry (called cell reference)

in a table. The main problem is to handle simultaneously, at a logical level, the important

aspects of multidimensional data representations and manipulations, namely:

�

This work is partially supported by Esprit Basic Research Action no. 22469 - Foundations of Data

Warehouse Quality.

123

� the relative position of cells,

� the monovaluation of cells, i.e., the association of a unique cell contents to each cell

reference, and

� schema browsing (i.e., table and attribute names used as data).

This di�culty is overcome by combining techniques stemming from previous works done

in the area of databases and logic programming:

� the use of a totally ordered domain (e.g., [3, chap. 17]),

� the semantics of \monovaluation" as in Datalog with single-valued data functions [2],

and

� a higher-order syntax as in Hilog [6] allowing schema browsing as in F-logic [11].

The main contributions of this paper are the following: �rst, we de�ne a model-theoretic

declarative semantics, that allows a high level speci�cation of multidimensional data ma-

nipulations. Next we give a formal equivalent operational semantics that is a basis for the

reuse of optimization methods developed for deductive databases. Finally, we show that the

resulting language expresses exactly every query computable in polynomial time on ordered

multidimensional tables.

This paper is organized as follows. Section 2 introduces the data model. We illustrate

through examples the most salient features of the language in Section 3. In Section 4 we

give its model-theoretic semantics, and an equivalent �xpoint semantics that leads to a naive

evaluation procedure. Section 5 concentrates on the expressive power of the language. We

conclude in Section 6.

2 Data Model Overview

In this section, we outline informally the data model underlying our language.

Cells. In our multidimensional data model, data are organized in cells. A cell is identi�ed

by a cell reference, and is associated with a unique cell contents. A cell reference is of

the form N(N

1

; N

2

; : : : ; N

p

), where N;N

1

; N

2

; : : : ; N

p

are names. N is called the table

name, and N

1

; N

2

; : : : ; N

p

are called attribute names. A cell contents is a tuple of names.

Associations of cells contents with cells references are represented by ground atoms of the

form N(N

1

; N

2

; : : : ; N

p

) : hN

p+1

; : : : ; N

p+q

i.

Tables. Amultidimensional table (table for short) is a set of ground atoms having a common

table name, in which the same reference does not appear more than once to ensure cell

monovaluation.

Example 2.1 Consider the description of the box o�ce positions for some �lms according

to their year of release in various countries. One can represent this information in a table

called boxOffice as follows:

f boxOffice(1977; starWars; france) : h1i,

boxOffice(1980; raidersOfTheLostArk; italy) : h103i ,

124

boxOffice(1979; raidersOfTheLostArk; usa) : h1i ,

.

.

.

boxOffice(1975; closeEncounterOfThe3Kind; italy) : h6i g

where, for example, boxOffice(france; 1977; starWars) : h1i is used to identify a cell con-

taining the box o�ce position of the �lm Star Wars, for its French year of release, 1977.

Fig. 1 shows a graphical representation of the table of Example 2.1. All �gures have been

gathered in the appendix. �

Database. A multidimensional database is a set of ground atoms in which the same refer-

ence does not appear more than once.

In order to re
ect the speci�c aspects of multidimensional data representation, our model

includes the following features:

� table and attribute names are \rei�ed": they belong to the same domain as cell contents.

It provides symmetric treatment to cell references and cell contents,

� structured (nested) names can be built from names using the syntactical constructor

\�",

� the relative position of the cells is �xed by a total order on the constant of the domain.

In our examples, we use the standard lexicographic order (and we assume that digits

are lesser than letters, and make no di�erence between uppercases and lowercases). The

order is extended on nested names in a straightforward way.

These features are illustrated in the following examples.

Example 2.2 As the date of release depends functionally on the name of the �lm and the

country, it may seem more convenient to represent the information of example 2.1 by including

the date of release of a �lm within the cell contents. Since attribute names are rei�ed, the

following representation can then be used:

f boxOffice2(starWars; france) : h1; 1977i,

boxOffice2(raidersOfTheLostArk; italy) : h103; 1980i ,

boxOffice2(raidersOfTheLostArk; usa) : h1; 1979i ,

.

.

.

boxOffice2(closeEncounterOfThe3Kind; italy) : h6; 1975i g

A graphical counterpart according to the domain order is given Fig. 2. �

Example 2.3 The �lm name and its date of release can be grouped together, which gives

rise to nested row names:

f boxOffice3(starWars � 1977; france) : h1i,

boxOffice3(raidersOfTheLostArk � 1980; italy) : h103i ,

boxOffice3(raidersOfTheLostArk � 1979; usa) : h1i ,

.

.

.

boxOffice3(closeEncounterOfThe3Kind � 1975; italy) : h6i g

A graphical counterpart according to the domain order is given Fig. 3. �

It should be noted that our model distinguishes clearly a cell that doesn't exist (i.e., no

ground atom with this cell reference in the database), from an existing but empty cell (which

is represented by a ground atom of the form N(N

1

; N

2

; : : : ; N

p

) : hi).

125

3 Overview of the Rule-Based Language

In this section, we present informally the semantics of the language. We adopt the following

conventions: uppercases denote variables, and non capitalized symbols denote constants. We

start by giving the intuitive meaning of the deduction rules, and then we present some of the

restructuring capabilities of the language.

Intuitive meaning. Consider the rule p(X) q(X; Y); r(Y): The standard (Datalog)

informal meaning of this rule is if q(X,Y) holds and r(Y) holds, then p(X) holds. The basic

intuition of our language is to read such a rule in the following way: if there are two cells of

references q(X,Y) and r(Y), then there is a cell of reference p(X). We also add the handling

of cell contents, and then a typical rule will be: p(X) : hW i q(X; Y) : hW i; r(Y) : hXi:

This rule will be informally read: if there exists a cell of reference q(X,Y) containing W, and

there exists a cell of reference r(Y) containing X, then there exists a cell of reference p(X)

containing W.

Example 3.1 Consider the representation of the table boxOffice of Fig. 1. The following

deduction rule can be used to restructure this table, to obtain the representation of Fig. 2:

boxOffice2(F;C) : hY; P i boxOffice(Y; F; C) : hP i

�

We next present more complex data restructuring, using the table of Fig. 4. This table

describes the US box o�ce position of each �lm, for the �ve �rst weeks following their release.

This table also contains miscellaneous information: the �lm genre and the �lm director. We

illustrate �rst the use of nested names.

Example 3.2 The grouping of �lms of Fig. 4 along their genre can be expressed by the

program:

boxOfficeByGenre(G � F;week �W) : hP i boxOfficeWeekly(F;week �W) : hP i;

boxOfficeWeekly(F;misc) : hG;Di:

boxOfficeByGenre(G � F; director) : hDi boxOfficeWeekly(F;misc) : hG;Di:

A representation of table boxO�ceByGenre is depicted in Fig. 5. �

Other structurings can be obtained by using cell contents to build table names, in order

to restructure data in several tables.

Example 3.3 We split the table boxO�ce of Fig. 4 into two tables, according to the �lm

director:

directedBy �D(F;week �W) : hP i boxOffice(F;week �W) : hP i;

boxOffice(F;misc) : hG;Di:

directedBy �D(F; genre) : hGi boxOffice(F;misc) : hG;Di:

A representation of the corresponding tables are given Fig. 6. �

Now we show how the total order on the constant of the database can be used to manip-

ulate the relative position of cells. We suppose that this order is accessible by means of a

table succ that contains atoms of the form succ(a; b) : hi

1

. A cell succ(a; b) : hi exists if the

1

Note that all the cells of table succ contain empty tuples.

126

constant b is the successor of the constant a. In this example, we also use a built-in predicate,

noted � having its standard meaning.

Example 3.4 We want to �nd for each �lm the weeks that contain a position that is a local

minimum (i.e., top position). This can be done by the following rule:

localMinimum(F;week �W

2

) : hP

2

i boxOfficeWeekly(F;week �W

2

) : hP

2

i;

succ(W

1

;W

2

) : hi;

succ(W

2

;W

3

) : hi;

boxOfficeWeekly(F;week �W

1

) : hP

1

i;

boxOfficeWeekly(F;week �W

3

) : hP

3

i;

P

2

� P

1

;

P

2

� P

3

:

To deal with the special cases of week1 and week5, the following two rules must be added:

localMinimum(F;week �week1) : hP

1

i boxOfficeWeekly(F;week �week1) : hP

1

i;

boxOfficeWeekly(F;week � week2) : hP

2

i;

P

1

� P

2

:

localMinimum(F;week �week5) : hP

1

i boxOfficeWeekly(F;week �week5) : hP

1

i;

boxOfficeWeekly(F;week � week4) : hP

2

i;

P

1

� P

2

:

A representation of table localMinimum is depicted in Fig. 7. �

4 Syntax and Semantics

In this section, we formally present the syntax, and the declarative and operational semantics

of the language.

4.1 Syntax

Constants and variables. Let D be a decidable and totaly ordered set of constants. Let

�

D

be the total order used over D. Let V be a decidable set of variables, disjoint from D.

Rule-Based Language. We now de�ne the syntactical expressions allowed in the rule-

based language:

name := d j v j name � name

value := hname; : : : ; namei

reference := name(name; : : : ; name)

atom := reference : value

literal := atom j :atom

body := literal; : : : ; literal

head := atom

rule := head body

where d 2 D; v 2 V.

127

If n(n

1

; : : : ; n

p

) : hn

p+1

; : : : ; n

q

i is an atom, we say that n is the table name of the atom.

A positive literal is an atom. A negative literal is a negated atom. In the following, we will

note a rule by A B

1

; : : : ; B

n

.

Let var be a computable function that assigns to each syntactical expression a subset of

V, corresponding to the set of variables occuring in the expression. var is extended to sets

of expression in a straightforward manner. A ground name (resp. literal, rule) is a name n

(resp. literal l, rule r) for which var(n) = ; (resp. var(l) = ;, var(r) = ;).

Range Restricted Rule. A range restricted rule is a rule r = A B

1

; : : : ; B

n

where:

� var(A) � var(fB

1

; : : : ; B

n

g),

� let N eg be the set of negative literals occuring in the body of r, and Pos be the set of

positive literals occuring in the body of r. Then var(N eg) � var(Pos).

4.2 Semantics

In this section, we give a declarative model-theoretic semantics and an equivalent �xpoint-

based operational semantics for programs with a restricted form of negation.

4.2.1 Model-Theoretic Semantics.

Consistency and Interpretation. We note ref(A) the reference part of an atom A. A

set I of ground atoms is consistent i� 8A

1

; A

2

2 I; ref(A

1

) = ref(A

2

) =) A

1

= A

2

, where

\=" is the syntactical equality. An interpretation is a consistent set of ground atoms. This

consistency criterion is drawn from the semantics of Datalog with single-valued data functions

[2].

Remark A Standard stable model semantics and well-founded semantics for normal pro-

grams can be generalized for languages with second order syntax and �rst order semantics

like Hilog [14], and can also be used in our case. However, a restricted form of negation in

the spirit of semipositive Datalog

:

is su�cient to express every query on ordered databases

computable in polynomial time (see Section 5). Thus, for the sake of simplicity, we choose

to adopt this later form. The semantics of a program is given with respect to a �nite set of

ground atoms called the input, that represents the extensional part of the database (as for

the presentation of semipositive Datalog

:

made in [3, Chapter 15]). �

Programs and Inputs. A program P is a pair noted hR

P

; edb

P

i where R

P

is a set of

range-restricted rules, and edb

P

is a set of ground names including min, max and succ.

Intuitively, edb

P

contains the names of the tables that cannot be populated using rules, but

over which negative literals can be used. The tables min, max and succ are used to access

the order over D restricted to the constants manipulated by the program.

Let table be a function that assigns to any set of ground literals the set of table names

of these literals. An input I for a program P is a consistent �nite set of ground atoms such

that table(I) � edb

P

and I is ordered wrt P (de�ned below).

Let active

D

be the elements of D that appear in a set of ground literals I and in a program

P . Let �

active

D

be the restriction of �

D

to active

D

. Then I is said to be ordered wrt P if:

128

1. min(�) : hi 2 I () 8� 2 active

D

; � �

active

D

�

2. max(�) : hi 2 I () 8� 2 active

D

; � �

active

D

�

3. succ(�; �) : hi 2 I () � is the immediate successor of � in active

D

according to

�

active

D

.

Valuation. A valuation � is a total function from V into D. � is extended to be the identity

on D. � is also extended in a straightforward manner to names, literals and rules.

Satisfaction. Let P = hR

P

; edb

P

i be a program and r 2 R

P

. Let I be an interpretation.

I satis�es r, denoted I j= r, i� for each valuation �, with �(r) = A B

1

; : : : ; B

n

we have:

1. A 2 I , or

2. 9B

i

; i 2 [1; : : : ; n], B

i

is a positive literal, and B

i

62 I , or

3. 9B

i

; i 2 [1; : : : ; n], B

i

is a negative literal of the form :C and C 2 I , or

4. table(fAg) � edb

P

, or

5. 9B

i

; i 2 [1; : : : ; n], B

i

is a negative literal, and table(fB

i

g) * edb

P

.

The cases 1, 2 and 3 re
ect the standard semipositive Datalog

:

semantics. Informally,

case 4 garantees that nothing can be stated about cells of tables in edb

P

. Case 5 garantees

that nothing can be stated using negative literals involving tables not in edb

P

.

Model of a Program. An interpretation I is a model of a program P = hR

P

; edb

P

i,

denoted I j= P , if 8r 2 R

P

; I j= r.

Remark B It should be noticed that even simple programs may have no model, as it is the

case in other languages that allow some kind of monovaluation (e.g., Datalog with single-

valued data functions [2], COL [1]). As an example, the following program de�nes two

di�erent cell contents for the same cell reference, and thus it has no model:

a(b; c) : hei :

a(b; c) : hdi : �

Remark CWe insist on the fact that the valuations map variables of V only to constants of

D. They don't map variables of V to names constructed with \�". This guarantees that if a

program admits a model then it admits also a �nite model. Consider the following program:

a(b; c) : hei :

a(X � b; c) : hei a(X; c) : hei:

f a(b; c) : e, a(b � b; c) : e g is a �nite model of the program since no valuation can map X to

b � b. The in�nite interpretation f a(b; c) : e, a(b � b; c) : e a(b � b � b; c) : e, a(b � b � b � b; c) : e,

: : : g is also a model of this program, but not a minimal one. �

129

Semantics of a Program. For a program P and an input I for P , the semantics of P on I

is, if it exists, the unique minimal model M of P satisfyingM

jedb

P

= I , whereM

jedb

P

denotes

the restriction ofM to atoms which table name belongs to edb

P

. This model is denoted P (I).

We can easily prove:

Proposition 4.1 Let P be a program and I be an input for P . If P admits a model M

satisfying M

jedb

P

= I, then P (I) exists and is �nite.

4.2.2 Fixpoint Semantics.

Immediate Consequence Operator. Let P = hR

P

; edb

P

i be a program, and I an inter-

pretation. A ground atom A is an immediate consequence for I and P if either A 2 I , or

9r 2 R

P

and 9� with �(r) = A B

1

; : : : ; B

n

, and:

� 8i 2 [1; : : : ; n], if B

i

is a negative literal of the form :C, then table(fB

i

g) � edb

P

, and

C 62 I , and

� 8i 2 [1; : : : ; n], if B

i

is a positive literal, then B

i

2 I , and

� table(fAg) * edb

P

.

For a program P , we de�ne the immediate consequence operator T

P

to be a partial

mapping from interpretations of P to interpretations of P , such that, for an interpretation I :

T

P

(I) = fA j A is an immediate consequence for I and Pg,

if this set is consistent; otherwise, T

P

(I) is unde�ned. The following proposition can be

established:

Proposition 4.2 Let P be a program and I an input for P such that P (I) exists, then T

P

has a unique minimal �xpoint M satisfying M

jedb

P

= I, which equals P (I).

Let P be a program and I an input for P , then let

� T

0

P

(I) = I ,

� T

n+1

P

(I) = T

P

(T

n

P

(I)), if de�ned.

Using standard techniques, we can prove:

Theorem 4.3 Let P be a program and I an input for P such that P (I) exists. Then the

sequence fT

i

P

(I)g

i

reaches a �xpoint after a �nite number N of steps, with T

N

P

(I) = P (I).

Theorem 4.3 provides a straightforward naive evaluation procedure.

5 Expressive Power

In this section, we characterize the expressive power of our language. The result relies on the

fact that it is equivalent to that of semipositive Datalog

:

on ordered databases (see [3] for a

presentation).

Proposition 5.1 Semipositive Datalog

:

can be simulated within our language.

130

Crux Each semipositive Datalog

:

atom Q(X

1

; : : : ; X

n

) can be represented in our language

by an atom Q(X

1

; : : : ; X

n

) : hi. The representation of a semipositive Datalog

:

program and

input is then straightforward.

Proposition 5.2 Our language can be simulated within semipositive Datalog

:

.

We illustrate the encoding on the following example:

R

P

= fT �X(Y) : hZi T (X; Y) : hZi;:X(Z) : hY ig

edb

P

= a; b

Input I = fa(b; c) : hbi; min(a) : hi; max(c) : hi; succ(a; b) : hi; succ(b; c) : hig

First the table names belonging to edb

P

are registred by means of the following Datalog

facts:

edb table name(a).

edb table name(b).

The atoms in I or in R

P

are encoded using two special predicate names: idb and edb,

and three particular constants: nest, att and cont. For example, the atom T � X(Y) : hZi

is encoded as idb(T; nest;X; att; Y; cont;Z). The predicate name is idb since the atom is the

head of the rule. The constant nest indicates that the variable X is nested with the variable

T to obtain the table name, att indicates that Y is an attribute, and cont indicates that Z

is the cell contents. Following this principle I is encoded as:

edb(a; att; b; att; c; cont; b):

edb(min; att; a):

edb(max; att; c):

edb(succ; att; a; att; b):

edb(succ; att; b; att; c):

The encoding of rules re
ects the de�nition of the immediate consequence operator. In

this example the rule is encoded:

idb(T; nest;X; att; Y; cont; Z) edb(T; att; X; att; Y; cont; Z);

:edb(X; att; Z; cont; Y);

edb table name(X);

:edb table name(T; nest;X):

In fact the positive literals in the body of the original rule may hold either in the idb or

in the edb part of the semipositive Datalog

:

program. Thus we also need the following rule:

idb(T; nest;X; att; Y; cont; Z) idb(T; att; X; att; Y; cont;Z);

:edb(X; att; Z; cont; Y);

edb table name(X);

:edb table name(T; nest;X):

In our language some programs violate cell monovaluation and have no model. They are

encoded as semipositive Datalog

:

programs having a minimal model in which the fact panic

holds. To detect cell multivaluation in our example, we need to add the following rule:

panic idb(T; att; X; att; Y; cont; Z);

idb(T; att; X; att; Y; cont;W);

different(W;Z):

131

where different is de�ned by:

lesserThan(X; Y) edb(succ; att; X; att; Y):

lesserThan(X; Y) lesserThan(X;Z); edb(succ; att; Z; att; Y):

different(X; Y) lesserThan(X; Y):

different(X; Y) lesserThan(Y;X):

In our langage, cells can be valuated by tuples of various arities. To detect the simulta-

neous valuation of a cell with tuples of arities 0 and 1, we need to add the following rule:

panic idb(T; att; X; att; Y);

idb(T; att; X; att; Y; cont; Z):

We can now state the following result:

Theorem 5.3 Our language expresses exactly qptime.

Proof. By the two previous propositions, and since semipositive Datalog

:

expresses exactly

qptime on ordered databases with min and max [13]. �

Remark D Although our programs can be encoded as semipositive Datalog

:

programs, this

encoding is neither natural nor suggestive of speci�c evaluation technics. Our framework

gives a direct syntax and semantics for multidimensionnal table manipulation in deductive

databases, and as in the case of Hilog (that can be encoded in Prolog [6]) this direct syn-

tactical and semantical representation of speci�c concepts provides an easily understandable

formulation level and a better basis for evaluation.

�

6 Conclusion

We proposed a rule-based language devoted to multidimensional tables representations and

manipulations. Typical examples illustrated its use for restructuring ordered multidimen-

sional databases. We formally de�ned a model-theoretic semantics and an equivalent �x-

point semantics for this language. It provides a simple and declarative way to express every

restructuring operations on ordered multidimensional databases computable in polynomial

time, and its naive operational semantics can serve as a basis for the reuse of optimization

techniques proposed for deductive databases.

Because of the growing interest in multidimensional models (e.g., OLAP [7]) the corre-

sponding theoretical basis are currently investigated. Gyssens et al. [9] proposed a model of

tabular database and an algebra for querying and restructuring it. Agrawal et al. [4] de�ned

an algebra for providing multidimensional manipulations capabilities on top of relational

database systems.

To our knowledge, our work is the �rst one which proposes a formal rule-based language

dedicated to multidimensional tabular data manipulations. We described only a core lan-

guage, and various classical extensions can be made (e.g., the orthogonal combination with

a constraint language over a concrete domain [10]). Beyond multidimensional databases

132

restructuring, a very promising �eld of application for this language is its use as a data ma-

nipulation language for spreadsheet programs. This aspect is discussed in [5]. Our future

work concern the incorporation of aggregates to specify table summarization.

References

[1] S. Abiteboul and S. Grumbach. A rule-based language with functions and sets. ACM

TODS, 16(1):1{30, Mar. 1991.

[2] S. Abiteboul and R. Hull. Data functions, datalog and negation. In Proc. ACM SIGMOD,

pages 143{153, Chicago, IL, Jun. 1988.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. 1995.

[4] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. Research

report, IBM Almaden research center, 650 Harry road, San Jose, CA 95120, 1996.

[5] J.-F. Boulicaut, M.-S. Hacid, P. Marcel, and C. Rigotti. Un langage de manipulation

de donn�ees pour feuilles de calcul. Research report RR-97-01, LISI, INSA de Lyon, Jan.

1997. 24 pages, in french, submitted.

[6] W. Chen, M. Kifer, and D.S. Warren. HiLog: a foundation for higher-order logic pro-

gramming. JLP, 15(3):187{230, Feb. 1993.

[7] E. F. Codd, S. B. Codd, and C. T. Salley. Providing olap (on-line an-

alytical processing) to user-analysts: An IT mandate. White paper -

http://www.arborsoft.com/essabse/wht ppr/coddTOC.html, 1993.

[8] R. Finkelstein. Understanding the need for on-line analytical servers. White paper -

http://www.arborsoft.com/essabse/wht ppr/�nkTOC.html, 1995.

[9] M. Gyssens, L. V. S. Lakshmanan, and I. N. Subramanian. Tables as a paradigm for

querying and restructuring. In Proc. 15th ACM PODS, Montreal, PQ, Canada, Jun.

1996.

[10] M. S. Hacid, P. Marcel, and C. Rigotti. A rule based CQL for 2 dimensional tables. In

V. Gaege, A. Brodsky, O. G�unther, D. Srivastava, V. Vianu, and M. Wallace, editors,

Proc. 2nd Int. Workshop on Constraint Database Systems, volume 1191 of LNCS, pages

92{104, Delphi, Greece, Jan. 1997.

[11] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based

languages. JACM, 42(4):741{843, Jul. 1995.

[12] D. Maier and B. Vance. A call to order. In Proc. 12th ACM PODS, pages 1{16,

Washington, DC, May. 1993.

[13] C. P. Papadimitriou. A note on the expressive power of prolog. Bulletin of the EATCS,

26:21{23, 1985.

[14] K. A. Ross. On negation in hilog. JLP, 18(1):27{53, Jan. 1994.

133

usa
russia

france

1973

1975

1979

1980

starWars

1977

boxOffice

1

1 1

17

10

10

china

italy

3

25

25

2

1

103

8

1

20

1

1941
AmericanGraffity

closeEncounterOfThe3kind

raidersOfTheLostArk

Figure 1: A 3-dimensional representation of the table boxO�ce

BoxO�ce2 china france italy russia usa

1941 55,1979 100,1979 121,1979 1,1979 20,1979

americanGra�ty 327,1973 5,1973 10,1973 254,1973 17,1973

closeEncounterOfThe3kind 5,1975 6,1975 6,1975 1,1975 1,1975

raidersOfTheLostArk 2,1980 1,1980 103,1980 8,1980 1,1979

starWars 25,1980 1,1977 3,1977 10,1980 1,1977

Figure 2: A 2-dimensional representation of boxO�ce

BoxO�ce3 china france italy russia usa

1941 1979 55 100 121 1 20

americanGra�ty 1973 327 5 10 254 17

closeEncounterOfThe3kind 1975 5 6 6 1 1

1979 1

raidersOfTheLostArk

1980 2 1 103 8

1977 1 3 1

starWars

1980 25 10

Figure 3: Another 2-dimensional representation of boxO�ce

134

week

boxO�ceWeekly misc

week1 week2 week3 week4 week5

1941 comedy,spielberg 55 12 10 11 20

americanGra�ty comedy,lucas 27 5 10 25 17

closeEncounterOfThe3kind scienceFiction,spielberg 5 6 4 1 2

raidersOfTheLostArk adventures,spielberg 2 1 3 8 10

starWars scienceFiction,lucas 2 1 3 10 11

Figure 4: Box O�ce per Weeks

week

boxO�ceByGenre director

week1 week2 week3 week4 week5

adventures raidersOfTheLostArk spielberg 2 1 3 8 10

1941 spielberg 55 12 10 11 20

comedy

americanGra�ty lucas 27 5 10 25 17

closeEncounterOfThe3kind spielberg 5 6 4 1 2

scienceFiction

starWars lucas 2 1 3 10 11

Figure 5: The table boxO�ceByGenre

week

directedBy lucas genre

week1 week2 week3 week4 week5

americanGra�ty comedy 27 5 10 25 17

starWars scienceFiction 2 1 3 10 11

week

directedBy spielberg genre

week1 week2 week3 week4 week5

1941 comedy 55 12 10 11 20

closeEncounterOfThe3kind scienceFiction 5 6 4 1 2

raidersOfTheLostArk adventures 2 1 3 8 10

Figure 6: A table for each director

week

localMinimum

week1 week2 week3 week4 week5

1941 10

americanGra�ty 5 17

closeEncounterOfThe3kind 5 1

raidersOfTheLostArk 1

starWars 1

Figure 7: The table localMinimum

135

