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Abstract

The representation of terminological knowledge

may naturally lead to terminological cycles. In

addition to descriptive semantics, the meaning

of cyclic terminologies can also be captured by

�xed-point semantics. To gain a more profound

understanding of these semantics and to ob-

tain inference algorithms for inconsistency, sub-

sumption, and related inference tasks, this pa-

per provides automata theoretic characteriza-

tions of these semantics. The already existing

results for the language FL

0

are extended to

ALN , which additionally allows for primitive

negation and number-restrictions. Moreover,

this work considers the relationship between

certain schemas and ALN -terminologies.

1 Introduction

Fixed-point semantics were �rst introduced by B. Nebel

[Neb91] to capture the meaning of cyclic terminologies.

In [Baa96], these semantics have been analyzed with the

help of �nite automata for the very small language FL

0

,

which allows for concept conjunction and (universal)

value-restriction. This automata theoretic characteriza-

tion helps to decide which semantic to prefer in a speci�c

representation task. In addition, it yields decision pro-

cedures and complexity results for subsumption. Since

FL

0

is not expressive enough for most practical repre-

sentation problems, this paper

1

extends FL

0

to ALN by

adding primitive negation and number-restrictions. Ter-

minological cycles in much more expressive extensions

of FL

0

have already been investigated in [Sch94] and

[GL94]. K. Schild has extended the language ALC by

the �xed-point operators of the �-calculus to �ALC, and

has shown|among other results|that �ALC is more ex-

pressive than cyclic ALC-terminologies

2

. Moreover, the

1

and in more detail [K�us97], which also provides detailed

proofs of all the results

2

To ensure the existence of least and greatest �xed-point

models, recursively de�ned concepts must occur in their def-

language �ALC has been extended in [GL94] by (quali-

�ed) number-restrictions toALCN�. Thus, the language

ALCN� contains ALN . Consistency as well as sub-

sumption for ALCN�-concepts is EXPTIME-complete,

whereas these problems are merely in PSPACE forALN ,

which justi�es considering this restricted case separately.

For both ALCN� and ALN , the important inference

problems can be decided with the help of �nite au-

tomata. However, the automata for ALCN� are of ex-

ponential size and they are tree automata that reect

certain semantic structures, whereas the automata for

ALN are �nite automata that are merely syntactic vari-

ants of ALN -terminologies.

In addition to the characterizations of cyclic ALN -

terminologies, this paper analyzes the relationship be-

tween ALN -terminologies and SL

dis

-schemas, which

have been introduced in [BDNS97]. It turns out

that SL

dis

-schemas can be seen|w.r.t. inconsis-

tency, validity, and subsumption|as special ALN -

terminologies. Consequently, inference problems involv-

ing these schemas can be reduced to inference problems

of the corresponding terminologies.

2 Preliminaries

A terminology is called cyclic if there exists at least

one concept which (directly or indirectly) occurs in its

own de�nition. The following is an example (taken from

[Neb91]) of a cyclic ALN -terminology consisting only of

one concept de�nition, where Human denotes a de�ned

concept, Mammal a primitive concept, and parents a role:

T : Human = Mammal u 9

�2

parents u 9

�2

parents u

8parents.Human

This terminology de�nes human beings as those mam-

mals having exactly two parents all of whom are human

beings. In the presence of cyclic terminologies, the inter-

pretation of primitive concepts and roles (Mammal resp.

parents in the example) cannot always be extended to a

inition positively.



unique model of the considered terminology, i.e., there

may be several possibilities of interpreting the de�ned

concepts (Human in the example) to obtain a model of

the whole terminology. In addition to descriptive seman-

tics, which allows all models of the terminology as admis-

sible models, B. Nebel introduced greatest �xed-point se-

mantics (gfp-semantics) and least �xed-point semantics

(lfp-semantics), which allows (w.r.t. set inclusion) only

the greatest (least) extensions of the de�ned concepts as

admissible models. To characterize these semantics, we

associate a (non-deterministic) semi-automaton

3

A

T

to

a terminology T as follows:

First, T must be normalized such that the right-hand

side of every concept de�nition is a conjunction of

concept terms of the form 8R

1

:8R

2

� � � 8R

n

:C (short:

8W:C for W = R

1

� � �R

n

) for role names R

1

; : : : ; R

n

and a concept, a primitive negation, or a number-

restriction C. For a normalized terminology T , the

concepts, primitive negation, and number-restrictions of

T are the states of A

T

; the alphabet of A

T

consists

of the role names occurring in T ; a concept de�nition

A = 8W

1

.A

1

u � � � u 8W

k

.A

k

gives rise to k transitions,

where the transition from A to A

i

is labeled by the word

W

i

(for details see [Baa96, K�us97]).

For the terminology of the example, we obtain the au-

tomaton A

T

shown in �gure 1. In the following, the

M

H

9

�2

p

p

9

�2

p

"" "

Abbreviations:

H =

=

Human

M Mammal

p = parent

= empty word"

Figure 1: The semi-automaton A

T

regular language L

A

T

(A;C) for a concept A and a con-

cept, a primitive negation, or a number restriction C

denotes the set of words (over the role names in T ) that

are accepted by the �nite automaton (A

T

, A, C), where

A denotes the initial state and C the �nal state of A

T

.

Furthermore, dom(I) denotes the domain of the inter-

pretation I , and for a word W = R

1

� � �R

n

we use W

I

to denote the composition R

I

1

� � � � � R

I

n

of the relations

R

I

i

, 1 � i � n.

Since ALN allows for number-restrictions, primitive

negation can be dispensed with: The terms :P and P

in a terminology can respectively be replaced by 9

�0

R

P

and 9

�1

R

P

for a new role name R

P

. The language FLN

denotes the language ALN without primitive negation.

3

A semi-automaton consists of a �nite set of states, a �nite

alphabet and a �nite set of transitions between the states

labeled with words over the given alphabet.

Without loss of generality, we consider FLN instead of

ALN in the following.

In order to characterize inconsistency and subsump-

tion, the notion of \requiring" is useful. Due to number-

restrictions, concepts can \require" chains of role succes-

sors which have to start from every instance of such a

concept.

De�nition 1 (require).

Let T be an FLN -terminology, let A

T

be the corre-

sponding semi-automaton and let A be a concept in

T . Furthermore, W = R

1

� � �R

n

denotes a �nite word

and V = R

1

� � �R

m

a pre�x of W , i.e. m � n. The

word W is required by A starting from V i� for all i,

m � i < n, there are numbers m

i+1

� 1 such that

V R

m+1

� � �R

i

2 L(A; 9

�m

i+1

R

i+1

). In the case of V = "

we say \W is required by A" instead of \W is required

by A starting from "". 3

Because of parents

j

2 L

A

T

(Human; 9

�2

parents) for all

j � 0 in the example, every word parents

j

is required

by Human. Consequently, there has to exist an in�nite

chain of ancestors for every instance of Human.

In the following, we need two more de�nitions. For a

semi-automaton A

T

, a set F of A

T

-states, and a role R

we de�ne the sets:

"-closure(F ) := fq

0

; there is a state q in F and an

"-path from q to q

0

in A

T

g,

next

"

(F;R) := "-closure(fq

0

; there is a state q

in "-closure(F ) and a transition

from q to q

0

with label R inA

T

g).

Before characterizing inconsistency and subsumption, a

closer look at the semantics themselves is needed.

3 Characterizing the semantics

The automata theoretic characterizations of the three

semantics for FLN are easy extensions of the results for

FL

0

. The characterization for gfp-semantics is as follows

(for lfp- and descriptive semantics see [Baa96, K�us97]):

Theorem 2 (gfp-semantics).

Let T be an FLN -terminology, and let A

T

be the cor-

responding semi-automaton. Let I be a gfp-model of T ,

and let A be a concept name occurring in T . For every

d 2 dom(I) we have d 2 A

I

i� the following property

holds:

For all C that are either a primitive concept or

a number-restriction, all words W 2 L

A

T

(A;C),

and all individuals e 2 dom(I), (d; e) 2 W

I

im-

plies e 2 C

I

.

2

This theorem leads to a more profound understanding

of (gfp-)semantics and enables us to characterize and

decide inconsistency as well as subsumption.



4 Characterizing inconsistency

In FL

0

, inconsistent concepts only occur for lfp-

semantics. Due to conicting number restrictions, in-

consistent FLN -concepts may occur also for gfp- and

descriptive semantics. The characterization of inconsis-

tency for the gfp-semantics is|as the characterization

of the gfp-semantics itself|easier than for the other two

semantics. In this paper, we consider only gfp-semantics;

for lfp- and descriptive semantics see [K�us97].

Before formulating the characterization of inconsis-

tency w.r.t. gfp-semantics, we introduce the notion of

"exclusion sets", which allows to construct decision al-

gorithms for both inconsistency and subsumption. In-

tuitively, an exclusion set describes a set of A

T

-states

which require words leading to conicting number-

restrictions.

De�nition 3 (exclusion set).

Let T be an FLN -terminology and A

T

= (�; Q;E)

be the corresponding semi-automaton without word-

transitions

4

. The set F

0

� Q is called exclusion set

w.r.t. A

T

i� there is a word R

1

� � �R

n

2 �

�

, and for

all i, 1 � i � n, numbers m

i

� 1 as well as conict-

ing number-restrictions 9

�l

R and 9

�r

R, l > r, such

that for F

i

:= next

"

(F

i�1

; R

i

), 1 � i � n, we have:

9

�m

i

R

i

2 F

i�1

for all 1 � i � n and 9

�l

R; 9

�r

R 2 F

n

.

3

Now we are able to formulate

Theorem 4 (inconsistency w.r.t. gfp-semantics).

Let T be an FLN -terminology, let A

T

be the cor-

responding semi-automaton (without word-transitions),

and let A be a concept in T . Then the following state-

ments are equivalent:

1. A is T -inconsistent w.r.t. gfp-semantics.

2. There is a word W 2 �

�

required by A and there

are conicting number-restrictions 9

�l

R and 9

�r

R,

l > r, with W 2 L(A; 9

�l

R) \ L(A; 9

�r

R).

3. "-closure(fAg) is an exclusion set.

2

For a given set of states, it is in general a non-trivial

problem to decide whether this set is an exclusion set.

The complexity of this problem results from the fact that

role successors can be required. Since it can be shown

that the property of being an exclusion set is decidable

using polynomial space, we have a PSPACE-algorithm

for inconsistency w.r.t. gfp-semantics. Inconsistency for

lfp- and descriptive semantics can also be decided by a

4

A semi-automaton without word-transitions allows only

for transitions labeled with letters or the empty word. Word-

transitions can be eliminated by replacing each of them with

new introduced transitions (labeled with letters or the empty

word) using new states.

PSPACE-algorithm using exclusion sets. For this pur-

pose, the de�nition of exclusion sets has to be extended

appropriately. In addition to these PSPACE-results, one

can prove the NP-hardness of inconsistency for all three

semantics by reducing schema problems to problems of

terminologies (see section 6), and using existing complex-

ity results for schemas [BDNS97]. For so-called \weak-

acyclic"

5

ALN -terminologies the complexity of these

problems can be shown to be NP-complete.

5 Characterizing subsumption

For the language FL

0

, subsumption has been character-

ized in [Baa96] by inclusion of regular languages. With

respect to gfp-semantics the characterization is as fol-

lows:

A v

gfp;T

B i� L

A

T

(B;P ) � L

A

T

(A;P )

for all primitive concepts P .

(1)

Due to conicting number restrictions, the right-hand

side of this equivalence is not necessary for the subsump-

tion of A and B w.r.t. FLN -terminologies: The concept

A may be \excluded" by a word that is contained in

L

A

T

(B;P ) but not in L

A

T

(A;P ). To simplify the for-

mal de�nition of the notion \exclusion" we can (with-

out loss of generality) assume that an FLN -terminology

contains no minimum-restrictions of the form 9

�0

R since

such a term can be substituted by 8R.?

6

. In the follow-

ing we consider only terminologies without 9

�0

R, which

we call FLN

r

-terminologies.

De�nition 5 (exclusion).

Let T be an FLN

r

-terminology, let A

T

= (�; Q;E) be

the corresponding semi-automaton, and let A be a con-

cept in T . The word W 2 �

�

excludes A i� there exists

a pre�x V 2 �

�

of W , a word V

0

2 �

�

as well as con-

icting number-restrictions 9

�l

R, 9

�r

R, l > r, such that

V V

0

2 L(A; 9

�l

R) \L(A; 9

�r

R) and V V

0

is required by

A starting from V . 3

It is easy to see that if a word W excludes a concept A,

every individual that has a W -successor cannot be an

instance of A. In the following example, the concept A

is excluded by the word RS, and we will formally show

that no instance of A has RS-successors:

Let T be an FLN

r

-terminology and A

T

the correspond-

ing automaton given in �gure 2. Furthermore, let I

be a gfp-model of T , and let d be an individual with

d 2 A

I

. Assume d(RS)

I

e. Since RS 2 L

A

T

(A; 9

�1

Q),

there has to be a Q-successor f of e. Further, since

RSQ 2 L

A

T

(A; 9

�3

S) \ L

A

T

(A; 9

�2

S), the character-

ization of the semantics yields the contradiction: f 2

5

A terminology is weak-acyclic if W =2 L

A

T

(A;A) for all

non-empty �nite words W and all concepts A of T .

6

The symbol ? denotes the empty concept, which can be

described by 9

�2

R u 9

�1

R.
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Figure 2: The terminology T given by A

T

(9

�3

S)

I

and f 2 (9

�2

S)

I

. Thus, d cannot have an RS-

successor.

This proves that no instance of A has RS-successors.

Thus, for every d 2 A

I

(I gfp-model of T ) we have:

d 2 (8RS.P )

I

, and hence d 2 B

I

. So the sub-

sumption relation A v

gfp;T

B holds. Together with

L

A

T

(B;P ) 6� L

A

T

(A;P ) (since fRSg = L

A

T

(B;P ) and

RS =2L

A

T

(A;P )) the example shows that because of ex-

cluding words (RS in the example) the right-hand side

of (1) is not necessary for subsumption w.r.t. ALN .

With the help of E

A

, which denotes the set of all A-

excluding words, we are able to characterize subsump-

tion in FLN

r

(ALN ) w.r.t. gfp-semantics as follows:

Theorem 6 (subsumption w.r.t. gfp-semantics).

Let T be an FLN

r

-terminology, let A

T

be the cor-

responding semi-automaton, and let A, B be concept

names occurring in T . Then we have: A v

gfp;T

B i�

1. L(B;P ) � L(A;P ) [ E

A

for all primitive concepts

P in T ; and

2. L(B; 9

�l

R) � (

S

r�l

L(A; 9

�r

R) [ E

A

) for all

maximum-restrictions of the form 9

�l

R in T with

l > 0; and

3. L(B; 9

�l

R) �R � (((

S

r�l

L(A; 9

�r

R)) �R)[E

A

) for

all minimum-restrictions of the form 9

�l

R in T .

7

2

Similar to the characterization of subsumption w.r.t. lfp-

and descriptive semantics for FL

0

, this characterization

of gfp-semantics for FLN

r

can be extended to lfp- and

descriptive semantics as well. Again, the set E

A

plays

an important role in these characterizations whereby the

de�nition of E

A

has to be modi�ed according to the

considered semantics. Characterizing E

A

by exclusion

sets, we are able to formulate a PSPACE-algorithm for

subsumption. Furthermore, together with the results in

[Baa96], this yields PSPACE-completeness for subsump-

tion w.r.t. gfp- and lfp-semantics in FLN

r

(ALN ).

7

For L � �

�

and R 2 �

�

the set L �R is de�ned as fw �R;

w 2 Lg where "�" denotes concatenation of words.

6 ALN -schemas as special

ALN -terminologies

In [BDNS97], a terminology has been divided into a

schema and a view part|following (object-oriented)

databases. The schema merely restricts the number of

admissible models of the terminology so that the mean-

ing of schemas is captured by descriptive semantics. In

the view part of the terminology, concepts are de�ned

with the help of schema concepts. For this reason, �xed-

point semantics is used for the view part.

Knowledge engineers are interested in validity of

schemas as well as subsumption w.r.t. schemas. In

[BDNS97] SL

dis

-schemas have been introduced and

a special PSPACE-decision algorithm has been devel-

oped for deciding (local) validity of these schemas. In

[K�us97], it is shown that ALN -schemas (and there-

fore SL

dis

-schemas) are|w.r.t. inconsistency, validity,

and subsumption|special ALN -terminologies. Conse-

quently, inference problems for schemas can be reduced

to those of terminologies. In addition, it is possible|as

already mentioned|to prove the co-NP-hardness of the

consistency problem for ALN -terminologies using this

reduction and complexity results from [BDNS97].

In the following we have a closer look at this reduction

by constructing a terminology T

S

from a schema S and

considering the relationship between T

S

and S w.r.t. in-

consistency and subsumption. But �rst of all, we have

to introduce schemas formally.

An ALN -schema S consists of a �nite set of concept

inclusions, which de�ne necessary conditions for con-

cepts, and role inclusions, which de�ne (simple) neces-

sary conditions for roles. Concept inclusions are of the

form A v D where A denotes a concept name and D

an ALN -concept term. Role inclusions are of the form

R v A�B for the role name R and the (primitive or

de�ned) concept names A and B. An interpretation I is

a model of S if all concept inclusions A v B and all role

inclusions R v A�B of S are satis�ed, i.e., A

I

� B

I

and R

I

� A

I

� B

I

. A concept A is consistent w.r.t. S

if there is a model I of S with A

I

6= ;. A schema S is

locally valid if every concept in S is consistent. We call

a schema S valid if there is a model I with A

I

6= ; for

every concept A in S. The following fact will allow us to

reduce validity of schemas to consistency of terminolo-

gies:

An (SL

dis

-)ALN -schema is valid i� it is lo-

cally valid (see [BDNS97, K�us97]).

(2)

In [K�us97], consistency, (local) validity and subsump-

tion of ALN -schemas are reduced to the corresponding

problems of SLN -schemas. These schemas allow for role

inclusions but restrict the right-hand side of concept in-

clusions to concept names, primitive negation, number



restrictions and (universal) value restriction of the form

8R.B for a role name R and a concept name B. The

SL

dis

-schemas introduced in [BDNS97] coincide with

SLN -schemas apart from the fact that they only allow

for number restrictions of the form 9

�1

R and 9

�1

R. On

the other hand, SL

dis

-schemas allow for arbitrary nega-

tion. Since it can be shown that negation can also be

expressed by primitive negation, SLN -schemas extend

SL

dis

-schemas with arbitrary number-restrictions.

Now, we construct an ALN -terminology T

S

from an

SLN -schema S such that T

S

behaves like S w.r.t. con-

sistency, (local) validity and subsumption. Before de�n-

ing T

S

, we transform S into a schema S

0

that does not

contain role inclusions. Role inclusions only have to be

taken into account if role successors are required, oth-

erwise they can be neglected. The de�nition of S

0

is as

follows:

The schema S

0

contains all concept inclusions from

S of the form A v B, A v :B, A v 8R.B and

A v 9

�n

R. In addition, S

0

contains a concept in-

clusion A v 9

�n

R, n � 1, from S if there is no

role inclusion in S belonging to R, i.e., a role inclu-

sion of the form R v C

1

� C

2

in S. For every pair

of inclusions A v 9

�n

R, n � 1, and R v C

1

� C

2

in S, the schema S

0

contains the concept inclusion

A v 9

�n

R u 8R.C

2

u C

1

. The schema S

0

contains no

other inclusions than these, especially no role inclusions.

De�nition 7 (the terminology T

S

).

Let S be an SLN -schema and S

0

de�ned as above. For

every de�ned concept A in S an axiom for A in T

S

is

constructed as follows:

Let A v C

1

; : : : ; A v C

n

be all concept inclusions be-

longing to the de�ned concept A in S

0

. Let A be a new

(primitive) concept. The axiom for A in T

S

is of the

form A = A u C

1

u � � � u C

n

. 3

Obviously, we can construct T

S

from S in time linear in

the size of S. Since T

S

takes role inclusions into account

if role successors are required (A v 9

�n

R, n � 1), the

following theorem holds:

Theorem 8.

Let S be an SLN -schema, and let T

S

be the correspond-

ing ALN -terminology as de�ned above. For all concepts

A and B in S we have:

� A is S-consistent i� A is T

S

-consistent w.r.t. de-

scriptive semantics (i� A is T

S

-consistent w.r.t. gfp-

semantics).

� A v

S

B i� A v

T

S

B (i� A v

gfp;T

S

B).

2

This shows that consistency|and with (2) also (lo-

cal) validity|of (ALN -)SLN -schemas is decidable

using polynomial space by deciding the problem

\"-closure(fAg) is an exclusion set". The algorithm pre-

sented in [BDNS97] for deciding consistency of SL

dis

-

schemas is quite similar to this algorithm. Both traverse

a graph searching for a conict node.

Furthermore, as an immediate consequence of the

theorem, subsumption for SLN -schemas (and there-

fore SL

dis

-schemas) is in PSPACE. In [BDNS97], this

PSPACE-result has been shown for SL

dis

-schemas. The

complexity of subsumption for schemas is only due to

testing consistency of concepts. After testing the con-

sistency of the left-hand side of the subsumption prob-

lem, testing subsumption for SL

dis

- (SLN - and ALN -)

schemas is a simple (i.e. polynomial) syntactical test.

Hence, disallowing concept forming operators that en-

able de�nition of inconsistent concepts (number restric-

tions and primitive negation) makes reasoning tractable:

In fact, for FL

0

-schemas, subsumption is in P . However,

subsumption for FL

0

-terminologies w.r.t. gfp-semantics

is still PSPACE-hard.
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