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Abstract

Computing least common subsumers (lcs) and

most speci�c concepts (msc) are inference tasks

that can be used to support the \bottom up"

construction of knowledge bases for KR sys-

tems based on description logic. For the de-

scription logic ALN , the msc need not always

exist if one restricts the attention to acyclic

concept descriptions. In this paper, we extend

the notions lcs and msc to cyclic descriptions,

and show how they can be computed. Our ap-

proach is based on the automata-theoretic char-

acterizations of �xed-point semantics for cyclic

terminologies developed in previous papers.

1 Introduction

Traditionally, the knowledge base of a DL system is built

by �rst formalizing the relevant concepts of the domain

(its terminology, stored in the so-called TBox) by concept

descriptions. In a second step, the concept descriptions

are used to specify properties of objects and individuals

occurring in the domain (the world description, stored

in the so-called ABox). DL systems provide their users

with inference services that support both steps: classi-

�cation of concepts (subsumption) and individuals (in-

stance) and testing for consistency.

This traditional \top down" approach for constructing

a DL knowledge base is not always adequate, though. On

the one hand, it need not be clear from the outset which

are the relevant concepts in a particular application. On

the other hand, even if it is clear which (intuitive) con-

cepts should be introduced, it is in general not easy to

come up with formal de�nitions of these concepts within

the available description language. For example, in one

of our applications in chemical process engineering [3],

the process engineers prefer to construct the knowledge

base (which consists of descriptions of standard building

blocks of process models, such as reactors) in the follow-

ing \bottom up" fashion: �rst, they introduce several

\typical" examples of the standard building block as in-

dividuals in the ABox, and then they generalize (the

descriptions of) these individuals into a concept descrip-

tion that (a) has all the individuals as instances, and (b)

is the most speci�c description satisfying property (a).

The present paper is concerned with developing in-

ference services that can support this \bottom up" ap-

proach of building knowledge bases. We split the task of

computing descriptions satisfying (a) and (b) from above

into two subtasks: computing the most speci�c concept

of a single ABox individual, and computing the least

common subsumer of two concepts. The most speci�c

concept (msc) of an individual b (the least common sub-

sumer (lcs) of two concept descriptions A;B) is the most

speci�c concept description C (expressible in the given

description language) that has b as an instance (that sub-

sumes both A and B). For sub-languages of the DL used

by the system classic [4], both tasks have already been

considered in the literature [5, 7, 6]. However, the algo-

rithms described in these papers only compute approxi-

mations of the msc of an individual. In fact, for ABoxes

with cyclic dependencies between individuals, the msc

of a given individual need not exist, unless one allows

for cyclic concept descriptions (i.e., concepts de�ned by

cyclic TBoxes, interpreted with greatest �xed-point se-

mantics). Once one allows for cyclic concept descrip-

tions, the algorithm for computing the lcs must also be

able to deal with these descriptions.

As a �rst solution to these problems, we consider cyclic

concept descriptions in the language ALN (which allows

for conjunctions, value restrictions, number restrictions,

and atomic negations), and show how (1) the lcs of two

such descriptions and (2) the msc of an ABox individual

can be computed. In (2) we allow for cyclic descriptions

in the ABox, and the msc may also be a cyclic descrip-

tion. Our approach is based on the known automata-

theoretic characterizations of subsumption w.r.t. cyclic

terminologies with greatest �xed-point semantics [1, 8].

All technical details as well as complete proofs can be

found in [2].



2 De�nitions and notations

In this section, we introduce the notions msc and lcs

more formally, and show how they can be generalized to

cyclic ALN -concept descriptions.

ALN -concept descriptions allow for concept conjunc-

tions (C u D), value restrictions (8R.C), number restric-

tions ((� m R), (� n R)), and atomic negations (:A).

The semantics of these operators as well as subsump-

tion of ALN -concept descriptions (C v D) is de�ned as

usual. In order to simplify the presentation of our results

we assume m � 1. Furthermore, since atomic negation

can be simulated within FLN , by using (� 0 R

A

) in

place of A and (� 1 R

A

) in place of :A, where R

A

is

a new role name only used for this purpose, we restrict

our attention to the sub-language FLN of ALN , which

disallows atomic negation. In the following, we use ? to

denote a concept description that is always interpreted

by the empty set, such as (� 2 R) u (� 1 R).

De�nition 1 (lcs). Let C;D;E be FLN -concept de-

scriptions. The concept E is a least common subsumer

(lcs) of C;D i� it satis�es

� C v E and D v E, and

� E is the least FLN -concept description with this

property, i.e., if E

0

is an FLN -concept description

satisfying C v E

0

and D v E

0

, then E v E

0

.

As shown in [5], the lcs of two FLN -concept descrip-

tions always exists, and it can be computed in polyno-

mial time. Things become less rosy, however, if we con-

sider the most speci�c concept of ABox individuals.

De�nition 2 (FLN -ABoxes). An FLN -ABox A is

a �nite set of assertions of the form R(a; b) (role asser-

tion) or C(a) (concept assertion), where a; b are individ-

ual names, R is a role name, and C is an FLN -concept

description.

The semantics of ABoxes as well as the instance prob-

lem (a 2

A

C) are de�ned in the usual way. In partic-

ular, individuals are interpreted under the unique name

assumption.

De�nition 3 (msc). Let A be an FLN -ABox, a an

individual name in A, and C an FLN -concept descrip-

tion. C is the most speci�c concept for a in A i� a 2

A

C

and C is the least concept with this property, i.e., if C

0

is an FLN -concept description satisfying a 2

A

C

0

, then

C v C

0

.

The following example demonstrates that the msc

need not exist if the ABox contains cyclic role assertions:

in the ABox A := fR(a; a); (� 1 R)(a)g, the individual a

does not have a most speci�c concept. In fact, it is easy

to see that a is an instance of 8R: � � � 8R:((� 1 R) u (�

1 R)) for chains of value restrictions of arbitrary length.

Consequently, the msc cannot be expressed by a �nite

FLN -concept description. However, the msc of a can

be described by a concept A de�ned in a cyclic FLN -

TBox: A

:

= (� 1 R) u (� 1 R) u 8R:A, provided that

this cyclic TBox is interpreted with greatest �xed-point

semantics.

For a cyclic FLN -TBox T , an interpretation I of the

primitive concepts and roles (primitive interpretation)

can be extended in several ways to an interpretation

of the de�ned concepts. The gfp-semantics chooses the

greatest of these possible extensions as the gfp-extension

of the de�ned concepts induced by I . Because this exten-

sion to a gfp-model of T is uniquely determined by the

primitive interpretation I and the terminology T , the

following de�nition of cyclic FLN -concept descriptions

and their semantics makes sense.

De�nition 4 (cyclic FLN -concept description).

Assume that sets of primitive concept names N

P

and

of role names N

R

are �xed. A cyclic FLN -concept de-

scription C = (A; T ) is given by a de�ned concept A in

a (possibly cyclic) FLN -TBox T such that all the prim-

itive concepts in T are elements of N

P

and none of the

de�ned concepts in T belongs to N

P

.

In this context, an interpretation I assigns subsets

of dom(I) to elements of N

P

and binary relations on

dom(I) to elements of N

R

. For a given cyclic concept

description C = (A; T ), the interpretation C

I

of C in I

is the set assigned to A by the unique extension of I to a

gfp-model of T . This shows that, from a semantic point

of view, cyclic concept descriptions C behave just like or-

dinary concept descriptions, i.e., a given interpretation I

assigns a unique set C

I

� dom(I) to C. For this reason,

the de�nition of subsumption and of the least common

subsumer can be generalized to cyclic concept descrip-

tions in the obvious way: just replace \FLN -concept de-

scription" by \cyclic FLN -concept description" in De�-

nition 1. The same is true for the de�nitions of ABoxes,

the instance relationship, and the most speci�c concept.

3 Computing the lcs of cyclic

FLN -concept descriptions

Both subsumption and the lcs of cyclic FLN -concept

descriptions can be computed using automata-theoretic

characterizations of so-called value-restriction sets. For

convenience, we abbreviate the concept description

8R

1

:8R

2

� � � 8R

n

:C (n � 0) by 8R

1

� � �R

n

.C, where

R

1

: : : R

n

is a word over the alphabet N

R

of all role

names (i.e., R

1

: : : R

n

2 N

�

R

). For an interpretation I

and a wordW = R

1

: : : R

n

, we de�neW

I

:= R

I

1

�� � ��R

I

n

,

where � denotes the composition of binary relations.

De�nition 5. Let C be a cyclic FLN -concept descrip-

tion and P a primitive concept name or a number restric-
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tion. Then the set V

C

(P ) := fW 2 N

�

R

j C v 8W:Pg is

called the value-restriction set of C for P .

Even for acyclic descriptions, these value-restriction

sets may be in�nite. For example, for the (acyclic) de-

scription ? := (� 2 R) u (� 1 R) and an arbitrary prim-

itive concept name P we have V

?

(P ) = N

�

R

. The value-

restriction sets can, however, be represented by regular

languages over the alphabet N

R

. To obtain these lan-

guages, the TBox of a given cyclic FLN -concept de-

scription C is translated into a �nite automaton: the

concept names and the number restrictions occurring

in the TBox are the states of the automaton, and the

transitions of the automaton are induced by the value

restrictions in the TBox (see [1, 8] for details). For ex-

ample, the TBoxes T

A

and T

B

de�ning the descriptions

C

A

:= (A; T

A

) and C

B

:= (B; T

B

)

T

A

: A

:

= 8R:D u 8R:(� 1S)

D

:

= 8S:D u 8S:(� 2S) u 8S:(� 1S)

T

B

: B

:

= (� 1R) u 8R:P u 8S:Q

give rise to the automata of Fig. 1. For a cyclic FLN -

concept description C = (A; T ) and a primitive concept

or number restriction P , the language L

C

(P ) is the set of

all words labeling paths in the corresponding automaton

from A to P . By de�nition, these languages are regular.

In the example, we have, e.g., L

C

A

(� 2 S) = RS

�

S and

L

C

B

(P ) = fRg.

It is easy to see that the inclusion L

C

(P ) � V

C

(P )

always holds. However, since conicting number restric-

tions can create inconsistencies (i.e., unsatis�able sub-

concepts), the inclusion in the other direction need not

hold. Additionally, the set V

C

(P ) may contain so-called

C-excluding words:

De�nition 6. Let C be a cyclic FLN -concept de-

scription. Then the set E

C

:= fW 2 N

�

R

j C v 8W:?g

is called the set of C-excluding words.

Obviously, ifW 2 L

C

(� m R)\L

C

(� n R) form < n,

thenW must belong to E

C

. Also, since (� 0 R) is equiv-

alent to 8R:?, we know that W 2 L

C

(� 0 R) implies

WR 2 E

C

. In addition, if W belongs to E

C

, then

WU 2 E

C

for all words U . Finally, for W 2 E

C

, at-

least restrictions can also force pre�xes of W to belong

to E

C

. In our example (see Fig. 1), the word R belongs

to E

C

A

since RS 2 E

C

A

and R 2 L

C

A

(� 1 S). Con-

sequently, E

C

A

= RfR;Sg

�

and it is easy to see that

E

C

B

= ;

A more formal characterization of E

C

, which also

shows that E

C

is a regular language, can be found in

[8]. To be more precise, a �nite automaton that accepts

E

C

and is exponential in the size of the automaton corre-

sponding to C can be constructed. The following charac-

terization of value-restriction sets is an easy consequence

of the results in [8]:

Theorem 7. Let C be a cyclic FLN -concept descrip-

tion. Then

1. V

C

(P ) = L

C

(P ) [E

C

for all primitive concepts P ;

2. V

C

(� m R) =

S

`�m

L

C

(� ` R)[E

C

for all at-least

restrictions (� m R);

3. V

C

(� n R) =

S

`�n

L

C

(� ` R) [ E

C

R

�1

for all at-

most restrictions (� n R).

1

Consequently, these sets are regular, and �nite au-

tomata accepting them can be constructed in time ex-

ponential in the size of the automaton corresponding to

C.

Using the notion of value-restriction sets, the

automata-theoretic characterization of subsumption of

cyclic FLN -concept descriptions provided in [8] can be

formulated as follows: C v D i� L

D

(P ) � V

C

(P ) for all

primitive concept names or number restrictions P . As

an easy consequence, we obtain the following character-

ization of the lcs of such descriptions:

Corollary 8. Let C;D be cyclic FLN -concept de-

scriptions. Then the cyclic FLN -concept description E

is the lcs of C and D if L

E

(P ) = V

C

(P )\V

D

(P ) for all

primitive concept names or number restrictions P .

Given automata for the (non-empty) value-restriction

sets V

C

(P ) and V

D

(P ), it is easy to construct a cyclic

FLN -concept description E that satis�es this property

(by simply translating the automata back into TBoxes).

This shows that the lcs of two cyclic FLN -concept de-

scriptions can be computed in exponential time, and its

size is at most exponential in the size of the input de-

scriptions.

If we apply the characterization of Corollary 8 to our

example, we see that a cyclic description E is an lcs of

the cyclic FLN -concept descriptions C

A

, C

B

if it sat-

is�es L

E

(P ) = RfR;Sg

�

\ fRg = fRg, L

E

(� 1 R) =

(RfR;Sg

�

)R

�1

\ f"g = f"g, and all other languages of

1

For a language L and a letter R, we de�ne LR

�1

:= fW j

WR 2 Lg.



E are empty. Hence, the lcs of C

A

and C

B

in our exam-

ple is the (acyclic) description E := 8R.P u (� 1 R).

4 Computing the msc in FLN -ABoxes

with cyclic descriptions

In the following, we let A be an arbitrary but �xed

FLN -ABox with cyclic concept descriptions. In addi-

tion, we assume that A is consistent,

2

since for inconsis-

tent ABoxes the msc is always the bottom concept ?. In

order to decide the instance problem and to compute the

msc of an individual in A, we again try to characterize

value-restriction sets with the help of regular languages.

De�nition 9. Let a be an individual name in A and P

a primitive concept name or a number restriction. Then

the set V

a

(P ) := fW 2 N

�

R

j a 2

A

8W:Pg is called the

value-restriction set of a for P .

In addition to the automata corresponding to the

cyclic concept descriptions in A, we need an automa-

ton corresponding to A: the states of this automaton are

the individual names occurring in A, and the transitions

are just the role assertions of A, i.e., there is a transition

with label R from a to b i� R(a; b) 2 A. For individual

names a; b occurring in A, the (regular) language L

a

(b)

is the set of all words labeling paths from a to b in this

automaton.

In the previous section, the value-restriction sets

V

C

(P ) for cyclic concept descriptions C could be char-

acterized using the languages L

C

(P ) and E

C

. In order

to characterize value-restriction sets for individuals, we

�rst de�ne a regular language whose rôle is similar to

the one played by L

C

(P ):

De�nition 10. Let a be an individual name in A

and P a primitive concept name or a number restriction.

Then the set

L

a

(P ) := fW 2 N

�

R

j 9 a concept assertion

C(b) 2 A and U 2 L

b

(a) such that

UW 2 L

C

(P )g

is called the predecessor restriction set of a for P .

It is easy to see that L

a

(P ) � V

a

(P ). Similar to the

corresponding inclusion stated in the previous section,

this inclusion relationship may be strict, however. In

a �rst attempt to overcome this problem, we introduce

sets E

a

corresponding to the sets E

C

from the previous

section. For this purpose, we adapt the syntactic de�-

nition of E

C

(see the paragraph below De�nition 6) by

simply replacing the languages L

C

(�) by L

a

(�). Thus, if

W 2 L

a

(� m R) \ L

a

(� n R) for m < n, then W must

2

An ABox is consistent i� it has a model. Note that test-

ing FLN -ABoxes with cyclic descriptions for consistency is

a PSPACE-complete problem [2].

belong to E

a

; if W 2 L

a

(� 0 R), then WR 2 E

a

; etc.

Unfortunately, this syntactic de�nition of E

a

does not

completely capture the semantic de�nition of the set of

a-excluding words, i.e., the set of words E

a

obtained this

way may be smaller than fW 2 N

�

R

j a 2

A

8W:?g.

It turns out that this problem is a special case of the

following more general problem: the de�nition of the lan-

guages L

a

(P ) only takes into account value restrictions

that come from predecessors of a. At-most restrictions

in the ABox can, however, also require the propagation

of value restrictions from successors of a back to a.

Let us �rst illustrate this phenomenon by a simple

example. Assume that the ABox A consists of the fol-

lowing assertions: R(a; b), (� 1 R)(a), (8S:P )(b). It is

easy to see that RS 62 L

a

(P )[E

a

. However, (� 1 R)(a)

makes sure that, in any model I of A, b

I

is the only R

I

-

successor of a

I

. Consequently, all (RS)

I

-successors of a

I

are S

I

-successors of b

I

, and thus b

I

2 (8S:P )

I

implies

a

I

2 (8RS:P )

I

. This shows that RS 2 V

a

(P ).

More generally, this problem occurs if concept asser-

tions involving at-most restrictions in the ABox force

role chains to use role assertions explicitly present in the

ABox. In the example, we were forced to use the asser-

tion R(a; b) when going from a

I

to an (RS)

I

-successor

of a

I

.

Unfortunately, it is not yet clear how to give a direct

characterization (as a regular language) of V

a

(P ) that

is based on an appropriate characterization of the set

of words in V

a

(P ) n (L

a

(P ) [ E

a

) that come from this

\backward propagation." Instead, we will describe the

complement of V

a

(P ) as a regular language. Since the

class of regular languages is closed under complement,

this also shows that V

a

(P ) is regular. In the following,

we restrict our attention to the case where P is a prim-

itive concept name. Number restrictions can be treated

similarly.

Before we can give the characterization of V

a

(P ), we

need to de�ne one more set of words. Let R

A

(a) := fb j

R(a; b) 2 Ag denote the set of explicit R-successors of a

in A, and let jR

A

(a)j denote the cardinality of this set.

In addition, let c

�R

a

:= minfn j " 2 L

a

(� n R)g denote

the minimal number occurring in an at-most restriction

that must hold for a. Then we de�ne

N

a

:= f"g [

[

fR �N

�

R

j R 2 N

R

and jR

A

(a)j < c

�R

a

g:

Intuitively, a word of the form RU belongs to N

a

if

at-most restrictions in the ABox do not force all R-

successors of a to be reached using role assertions explic-

itly present in the ABox. The empty word is contained

in N

a

for technical reasons.

Using the languageN

a

as well as the languages L

a

(P ),

L

b

(a), and E

a

, the complement V

b

(P ) of the value-



restriction set of b for P can be described as follows:

V

b

(P ) =

[

a2I

A

L

b

(a) � (N

a

\ L

a

(P ) [ E

a

) (1)

where I

A

denotes the set of all individual names occur-

ring in A.

The syntactic description of value-restriction sets for

number-restrictions requires modi�cations of (1) that are

similar to the di�erences between 1., 2., and 3. in The-

orem 7, i.e., L

a

(P ) is replaced by a union of languages

L

a

(� l R) and L

a

(� l R), respectively. In addition, for

at-most restrictions (� n R), the setE

a

must be replaced

by E

a

R

�1

. A precise description of the syntactic char-

acterization of value-restriction sets is given in [2].

Since the languagesN

a

, L

a

(P ), L

b

(a), and E

a

involved

in this characterization are regular and �nite automata

accepting them can e�ectively be computed, this also

holds for value-restriction sets:

Theorem 11. Value-restriction sets are regular and

�nite automata accepting them can e�ectively be com-

puted.

Using these sets, the instance problem can now be de-

cided as follows:

Theorem 12. Let A be a consistent FLN -ABox with

cyclic concept descriptions, C be a cyclic FLN -concept

description, and b an individual occurring in A. Then

b 2

A

C i� for all primitive concept names or number

restrictions P we have L

C

(P ) � V

b

(P ).

As an easy consequence of this theorem, we obtain the

following characterization of the msc:

Corollary 13. Let A be a consistent FLN -ABox with

cyclic concept descriptions, C be a cyclic FLN -concept

description, and b an individual occurring in A. Then

C is the msc of b in A if for all primitive concept names

or number restrictions P we have L

C

(P ) = V

b

(P ).

Given automata for the sets V

b

(P ) it is again easy

to construct a cyclic FLN -concept description C that

satis�es this property. This shows that the msc can ef-

fectively be computed.

5 Related and future work

An important topic for future work is to determine the

exact worst-case complexities for computing the lcs and

the msc, and for deciding the instance problem for FLN -

ABoxes with cyclic concept descriptions. Our algorithm

for computing the lcs of two cyclic FLN -concept de-

scriptions is exponential, and we conjecture that this

complexity cannot be avoided, i.e., there is no polyno-

mial algorithm for computing the lcs in this case.

A naive analysis of the algorithms for deciding the

instance problem and for computing the msc derived

from our characterization of value-restriction sets would

yield a triply exponential upper bound (due to repeated

application of powerset construction). We conjecture,

however, that the instance problem can be decided in

PSPACE, and that the msc can be computed in expo-

nential time.

To the best of our knowledge, all the existing work

on computing the lcs of description logic concepts [5,

7, 6] can only handle acyclic concept descriptions. In

addition, the approach for computing the msc proposed

by Cohen and Hirsh [7] yields only an approximation of

the msc. In fact, since they allow for acyclic descriptions

only, they cannot always derive an exact description for

the msc. The pragmatic solution proposed in [7] is to

restrict the length of value restriction chains occurring

in the computed description by some arbitrary but �xed

number. This way, one obtains an acyclic description,

which may, however, be less speci�c than the real msc.
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