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Abstract. We extend different Description Logics by concrete do-
mains (such as integers and reals) and by aggregation dasativer
these domains (such asin, max, count, sum), which are usually
available in database systems. On the one hand, we showhibat t
extension may lead to undecidability of the basic inferepizeb-
lems satisfiability and subsumption. This is true even faery emall
Description Logic and very simple aggregation functiomsyvjued
that universal value restrictions are present. On the dthed, dis-
allowing universal value restrictions yields decidapildf satisfia-
bility, provided that the concrete domain is not too expressAn
example of such a concrete domain is the set of (nonnegartites)
gers with comparisons<, <, <,, ...) and the aggregation functions
min, max, count.

1 Motivation

Unlike many other expressive representation formalisrash sas
database schema and query languages, basic Descriptitmfbnog
malisms (e.g.,ACC [12]) do not allow for built-in predicates (like
comparisons of numbers) and for aggregation functiong @ik,
min, max, average, count). The first deficit was overcome i8],
where a generic extension @fC by aconcrete domairD was pro-
posed. In this extended Description Logic, calléd’ (D), abstract
individuals (which are described usiptC) can be related to values
in theconcrete domairD (e.g., the integers, strings, ...) via so-called
featuresi.e., functional roles. This allows one to describe, faarax
ple, managers that spend more money than they earn by

Manager 1 (less(income, expenses)).

In our extension ofA(C (D), aggregation is viewed as a means to
define new features. Figure 1 describes a situation wherénthe
come and expenses of a persdssie, are given per month. In some
months, she spends more money than she earns, and in otgii$ le
we want to know the difference between income and expensgsaov
whole year, we must be able to build the sum over all monthenTh
we can state that, or ask wheth&ssie is an instance of

Human M (Jyear.less( sum(monthoincome),
sum(monthoexpenses))),

where the complex featur@im(month o income) relates an indi-
vidual to the sum over all values reachable avetith followed by
income.

In Section 2, we present a generic extensiondsf (D) by ag-
gregation that is based on the idea mentioned above of untiog
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Figure 1. Example for aggregation

new “aggregated features”. Unfortunately, it turns out,tigtven a
concrete domain together with aggregation functionsfyaig some
rather weak conditions, this extension has an undecidattisfia-
bility and subsumption problem. Moreover, this result caarebe
tightened: extendingtL,, a very weak Description Logic allowing
for conjunction andiniversalvalue restrictions only, by aggregation
already causes undecidability; see Section 3.

To obtain decidable Description Logics with aggregation,
CO(Dagg), a restriction of ALC(D,g) Obtained by disallowing uni-
versal value restrictions and restricting negation to ephcames,
is defined. In Section 4, we present a tableau-based algothhat
decides satisfiability o€Q(Da.gg)-concepts, provided that satisfia-
bility of finite conjunctions of predicates involving aggagions on
multiset variables in the concrete domédncan be decided. An ex-
ample of such a concrete domain is the set of (nonnegatite) in
gers with comparisons<, <, <,, ...) and the aggregation functions
min, max, count.

Full proofs of all results presented can be founfllin2].

2 Syntax and semantics ofALC(Dagg)

The Description LogicALC (Dagg ), Which will be introduced in this
section, is based aALC (D) [3], which extends the well-known De-
scription Logic AZC [12] by a so-callecconcrete domainin prin-
ciple, a concrete domain consist of a set (e.g., of numbegsther
with predicates on this set. In our Description LOgiC (Dagg ), We
additionally assume that the concrete domain is equipptdaggre-
gation functions. In order to define aggregation functiopgrapri-
ately, we must introduce the notion ofaultiset in contrast to sim-
ple sets, in a multiset an individual may occur more than pfare
example, the multisef{1}} is different from the multise{{1, 1}}.



Multisets are necessary to ensure, e.g., fleatie’s income is also
calculated correctly if she earns the same amount of monmpoie
than one month.

Definition 1 Let S be a set. AnultisetM over.S is a mappingV/ :

S — IN, whereM (s) denotes the number of occurrences @i M.
The set of all multisets ove§ is denoted bWIS(S). We writes € M
for M(s) > 1,andM C M’ for M(s) < M'(s)foralls € S. A
multiset M is said to be finite iff{s | M (s) # 0} is a finite set. To
enumerate the membeds of a finite multiset, we use the notation
{a., ..., an}} to distinguish multisets from sets.

Since the aggregation functions strongly depend on theifgpec
concrete domains, they are directly included in the defininf a
concrete domain.

Definition 2 A concrete domairD consists of

e asetdom(D) (the domain),
e aset of predicate symbotsed(D), and
e a set of aggregation functiongg(D)

Each predicate symbd? € pred(D) is associated with an arity
and ann-ary relationP” C dom(D)", and each aggregation func-
tion © € agg(D) is associated with a partial functiob® from the
set of multisets ovedom (D) into dom(D).

In [3], concrete domains do not contain aggregation functiores, an

they are restricted to so-calletimissibleconcrete domains in or-
der to keep the inference problems4£C (D) decidable. We recall
that, roughly spoken, a concrete domdmis calledadmissibleiff

(1) pred(D) is closed under negation and contains a unary predicate

nameT for dom(D), and (2) satisfiability of finite conjunctions over

Thus, M{®P” is a multiset iff M) (2) € N forall z €
dom(D), i.e., the cardinalities of the considered sets are always fi
nite.

The interpretatioriZ is now extended to concepts and concrete
features as follows:

(cnbD)f =c*nD* (CuDbD)t =c*uDt -C* =A%\ C%,
(BR.C)E={d e AT|Fec AT :(d,e) € RE Ae € CT},
(VR.C)E={d € AT |VYe € AT :(d,e) € RT = ¢ € C*},

P(ut,...,un)t ={x € AT | (uf(2),...,uI(x)) € PP},

(fr e ) (@) = FEFE (. (FE(2) ),

I, \_ 2D(M¢§R°f>z) it MPD7 is a multiset,

(2(Ref))™(a)= undefined otherwise.
(uS(Rof))” (z) =S(Ro )" (u” ()
A conceptC is calledsatisfiableiff there is some interpretatioft
such thatCT # §. Such an interpretation is callechaodelof C. A
conceptD subsumes conceptC' (written C' C D) iff C* € D*
holds for each interpretatiah. An individual z € C7 is called an
instanceof a concepC.

We point out three consequences of the above definition,hwhic
might not be obvious at first sight:

(a) By definition, an instance of the concéptus, . . .
ur-successor idom (D) for eachi, 1 < i < n.

(b) If (Rof ) () contains individuals il\”, then these individuals
have no influence oM(ERDf)I: this mapping is defined such that it
counts only theR”-successors af that have arf”-successor in the
concrete domaidom (D).

(c) There are two reasons foE(R o f))*(a) to be undefined.

On the one hemdMéRDf)I need not be a multiset due to the ex-

,Un) has an

pred(D) is decidable. Since no aggregation functions are involvedjstence of infinitely manyR-successors af that coincide on their

these conjunctions contain only concrete predicates eghpd vari-
ables standing fandividualsin dom(D).

Aggregation functions are used to buddncrete featuresut of
roles and features. The syntax of these concrete featuofan
ALC(Dagg)-concepts is defined as follows:

Definition 3 Let N¢, Nr, Nr be disjoint sets ofoncept role, and
feature namedet f, fi, f2... € Nr, R € Ng, andx € agg(D).
The set ofconcrete features defined as follows:

o A feature chainf; ... f, is a concrete feature, and
e an aggregated featue . . . f, Z(Rof) is a concrete feature.

The set ofALC(Dagg )-conceptss the smallest set such that

e every concept name is a concept,

e if C, D are conceptsR is a role or a feature namé, € pred(D)
is ann-ary predicate name, and,,...,u, are concrete fea-
tures, then(C N D), (C U D), (=C), (VR.C), (3R.C), and
P(u1,...,u,) are concepts.

In order to fix the exact meaning of these expressions, tagiag-
tics is defined in the usual model-theoretic way.

Definition 4 An interpretationZ = (A%, .T) consists of a seA”
disjoint from dom(D), called thedomainof Z, and a function®
that maps every concept to a subset/of, every role to a subset
of AT x AT, and every feature namg € N to a partial function

f-successors. On the other hand, the aggregation fungtimay be

undefined orMéR"f)I. For example, the sum of infinitely many pos-
itive integers is not defined.

3 The undecidability results

The results presented B8] imply that subsumption and satisfiability
are decidable fordCC(D)-concepts, provided thd® is admissible.
For ALC (Dagg ), admissibility of the concrete domain does no longer
guarantee decidability of these inference problems:

Theorem 1 For a concrete domai® where

e dom(D) includes the nonnegative integers,

e pred(D) contains a (unary) predicat®-; that tests for equality
with 1, and a (binary) equalityP—,

e agg(D) containsmin, max, sum,?

satisfiability and subsumption of(C(D,g)-concepts are undecid-
able.

This undecidability result is rather strong for the follogirea-
sons: (a) It does not require thddm (D) is the set of nonnegative
integers, but only that itontainsthe nonnegative integers. This is an
important generalisation since, for example, the real rermbave
better computational properties than the nonnegativegénte the

#7 - AT — AT U dom(D). To define the semantics of aggregated first-order theory oft-, -, < is undecidable over the nonnegative in-

features, we introduce the mappimgﬁR"f)I: dom(D) —» NU{co}:

MIPDT (2) = #{b € A | (a,b) € R andfZ (b) = z}.
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tegers, whereas it is decidable over the reals.

2 Restricted to the nonnegative integers, these aggreghtianions are as-
sumed to be defined as usual.

F. Baader and U. Sattler



(b) The aggregation functionsin, max, sum are among the sim-
plest normally considered as built-in functions in data&lsgsee, e.g.,

with negation, existential value restrictio(iR.C'), and disjunction
in the definition of the reduction concept, provided thatd¢bacrete

[7; 9; 8; 13). In addition, to test whether a certain value equals 1 ordomain satisfies a slightly stronger property. To be moreigeg let

whether two values are equal is possible in all databasersgatith
built-in predicates.

(c) There are admissible concrete domains (in the sen$8])of
that satisfy the preconditions of Theorem 1. Examples adribn-
negative) integers, reals, and rationals together withptieelicates
P_y,P_,Px,Py,.

Sketch of the proof of Theorem 1:The proof is by reduction of
Hilbert's 10th probleni5] to satisfiability of concepts, i.e., for given
polynomialsP, @ € N[zi,...,zn], we construct andlC(Dag)-
conceptCp,q that is satisfiable iff the polynomial equation

yTm) = Q(z1,. .. )

has a solution ifN™. Undecidability of subsumption follows be-
causeC is satisfiable iffC' is not subsumed by, where L denotes
an arbitrary trivially unsatisfiable concept.

The idea underlying the reduction is to represent the (suf)t
structure of the polynomiaP (resp.Q) as a tree, which is related to
an instancex of Cp ¢ via the featureP (resp.Q). To this purpose,
for each variabler;, a featurex; is introduced. Then we simulate
the calculations in both subterm trees using aggregationtifans.
To enforce a solution of Equation 1, we enforce that the value

P(Il,... ,rm)

P(z1,...,zm) (Which is represented as theo s-successor ofi)
equals the value @)(z1, . ..,z ) (represented aQos-successor of
a).

Since a complete description of the reduction concept istoo-
plex to be presented here, we just highlight two of the proisi¢éhat
we had to overcome when defining the reduction:

(a) Hilbert’s 10th problem asks for a solution IN*, whereas
dom(D) is only required tocontain IN. To enforce that thex;-
successors (which stand for the values assigned to theblesia)
are nonnegative integers, we use the concept

Ef := (YR.(P=1(f))) N P—(sum(Rof), x;).

An instance of Ef has as itsk;-successor the number of if8-
successors. Note that our definition of the semantics ofigataire-
strictions implies that the;-successor is defined, and that the defini-
tion of the semantics of aggregated features requirestisattimber

is finite, i.e., an element dN.

(b) The features; occur at various positions in the trees repre-
senting the polynomials. To ensure that all individuals dthbtrees
have the same;-successors (i.e., the variahieis evaluated by the
same number everywhere), we make strong use of the colmgept

=

1<i<m

Inv :=

(VR.T (x;)N1 P=(min(Rox;), max(Rox;)) N
P_(x;, max(Rox;))),

where T (x;) is an abbreviation forP~(x;,x;), which simply en-

sures that there exists af-successorlnv is defined such that all
R-successors of an instaneeof Inv have the same;-successor,
which coincides with thex;-successor ofi. It is used to propagate
the value ofr; to all parts of the trees.

The necessary calculations (addition, multiplicatiord exponen-
tiation) are realised by first expressing addition usinggiipgregation
functionsum, and by reducing multiplication and exponentiation to
addition.

A closer investigation of the conceptp,o used for the reduc-
tion reveals that it does not require the full expressive groof
ALC(Dagg)- In the full paper[1] it is shown that one can dispense
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FLo denote the set of concepts that can be built using conjunctio
and universal value restrictiqivR.C'") only, and letFLq(Dagg) de-
note the extension of this Description Logic by a concretmaia
with aggregation.

Theorem 2 For a concrete domai® where

dom(D) includes the nonnegative integdys

e pred(D) contains, for all nonnegative integers (unary) predi-
catesP—, that test for equality witm, the (binary) equality pred-
icate P—, and the (binary) inequality predicatB,,

agg(D) containsmin, max, sum,

satisfiability and subsumption ofLq(Dagg)-concepts is undecid-
able.

4 The decidability result

The undecidability results presented above strongly dimpenthe
presence of universal value restrictions. In order to ob&adecid-
able Description Logic with aggregation, we remove unigevalue
restrictions from the set of constructors. Since negatagether
with existential value restrictions would re-introduceivensal re-
strictions, we must also restrict the use of negation. To beemre-
cise, the Description Logi€Q(Dagg) is obtained fromALL (Dagg)

by disallowing universal value restrictions and by allogvimegation

to occur only in front of concept names. Due to these regirist

we can design a tableau-based algorithm that decides abilisfi of
CQ(Dagg)-concepts, provided that the concrete domain satisfies some
additional restrictions. Given an input concéftit tries to construct

a model ofC by breaking downC, thus making explicit all con-
straints imposed by’ In a first phase, it checks for “abstract” con-
sistency, whereas the second phase checks the satisfiabilit con-
crete predicates imposed on individuals in this model. Offierdnce

to the algorithm ir{3] is that these predicates may involve aggregated
multiset variables besides variables for individualdam(A%). The
data structure this algorithm works on are constraints.

Definition5 Lett = 74 Ump = {a,b,c,...} U{z,y,2,...} be

an infinite set of abstract and concrete individual varigbénd let

o ={X,Y, Z,...} be aninfinite set of multiset variables. The set of
aggregated variable$x(X) | © € agg(D) and X € o}, will be
denoted byagg(D) (o). Constraints are of the form:

a:C for a € T4, C anCQ(Dagg)-concept
(a,b): Rfor a,b € Ta, R € Ng,
(a,f): ffora € Ta,L € T,f € Nr,
(a,Y):(Rof)fora € Ta,R€ Ng, f € Np,Y € 0,
P(ay,...,an) for a; € 7p U agg(D)(o), and
rz:Yforx € 7p,Y € 0.
A constraint systemis a set of constraints. A variablé
is said to be anR-successor (resp. arfi...f,-successor)
of a in a constraint systemS iff (a,f):R € S (resp.
(ayy1): f1, (Y1, 92): fo, .oy (Yn—=1,€): fn € S). An aggregated
variablex(Y') is said to be arf; ... f, ©(Ro f) of a in S iff there
isanfi ... fn-successob of a in Sand(b,Y):(Rof) € S.

Definition 6 We consider interpretatiorig that, additionally, map
individual variables to individuals of the concrete or thst@act do-
main, and multiset variables to multisets over the conaietaain:

al e AT fora € Ta,
z% € dom(D) for z € Tp,
XT € MS(dom(D)) for X € 0.

F. Baader and U. Sattler



An interpretatiorZ satisfies a constraint of the form
a:Ciff 2T € C7T,
(a,b): Riff (a™,bT) € RT,
(a,0): fiff f*(a™) = ¢7,
(a,Y):(Rof) iff MPN" —y7,
P(ai,...,an)iff PP(af, ..., al),
z:Yiff 2T e Y7,
where fora; = 3(X) we havex(X)* .= 2P (X7).
A constraint systen$' is satisfiableiff there exists an interpreta-

tion satisfying all constraints i§. Such an interpretation is called a
model ofS. A constraint systen§ is D-consistentff the conjunction

/\ P(Ozl,...

----- an)€S

an) AN\ Hzi |z Y e S CY

Y occursins

is satisfiable inD, wherexz € rp are variables for elements in
dom(D) andY € o variables for multisets ovefom(D), and in-
clusion is interpreted as multiset inclusion. A constraystemsS
contains &lashiff

e {a:C,a:~C} C S for some concepf’, or
e {(a,z): f,(a,b): f} C Sforz € rp andb € 74.
A constraint systen$' contains gork iff for a € 74 and a feature
namef € Ny we have
o {(a,0): f,(a,€): f} € S for two distinct variable€, ¢’ € 74 or
0,0 € p,or
e {(a,Y):(Rof),(a,
Y. Z€o.
If a constraint systen$' contains a fork (z, ¢) : f, (z,£'): f} (resp.
{(a,Y):(Rof), (a,Z):(Rof)}), then we say tha$’ is obtained by
fork eliminationfrom S if S’ is obtained fromS by replacing each
occurrence of by ¢' (resp.Y by Z).

Z):(Rof)} € S for two distinct variables

Note that a fork {(z,£): f,(z,¢'): f} (resp. {(a,Y):(R o
1), (a, Z) :(Rof)}) impliest® = ¢'F (resp.Y”* = Z%) for all mod-
elsZ of S. This is made explicit by fork elimination. lf has both a
concrete and an abstragtsuccessor, then this is an obvious incon-
sistency because the concrete domain is disjoint from tis&rasdi
one and leads therefor to a clash.

The tableau-basezbmpletion algorithnior deciding satisfiability
of CQ(D,gg)-concepts appliesompletion rulegyiven in Figure 2 to
constraint systems. The completion algorithm works oneavreere
each node is labelled with a constraint system. It starts thi¢ tree
consisting of a single leaf, the root, labelled wgh= {z,:Co},
whereCj is the CQ(Dagg)-concept to be tested for satisfiability. A
rule can only be applied to a leaf labelled with a clash-fiaastraint
system. Applying a rul§ — S;, for 1 < i < n, to such a leaf leads

1. Conjunction: If a:(C1 M C3) € Sanda:Cy & S or
a:Cy ¢ S, then
S— SU{a:Ci,a:Cs}.
2. Disjunction: if a:(C1 U Cs) € Sanda:C; ¢ S and
a:Cy ¢ S, then
S — Sl :SU{azcl},
S— S SU{a:CQ}.
3.a. Existential feature restriction: If a:(3f.C') € S
for a feature nam¢ and if there is anf-successob of a with
b:C ¢S, then
S = Suf{p:C}.
Otherwise, ifa has nof-successor, then
S —= SU{(a,b):f,b:C}.
for a new variablé € 74.
3.b. Existential role restriction: If o :(3R.C) € S
for arole nameR, {b1, ..., b, } are allR-successors af, and for
alli,1<i<mn,b;:C ¢S5, then
S — Si:SU{bi:C},
S— Shy1=SU{(a,b):R,b:C},
for a new variablé € T4.
4. Concrete predicatesif a: P(u1,...,u,) € S anda
does not have;-successors; with P(aq,...,a,) € S, then,
for eachu; let
{(a,bir): fir, (bir, biz) « fiz, ..y (bim; =1, Yim; ) ¢ fim; }
if ui = firfiz-.. fim;
{(a,bir) : fir, (bir, bi2) : fi, -, (bim; 1, bim;) : fim,,
(bim;, Yi) :(Rio fi)}
if wui = firfiz-.. fim; Si(Riofi)
for new variablesh;; € Ta,yim; € T™0,Y; € 0. Leta; be the
u;-successor of in S;. Then
S— SU{P(oa,...,an)} U, cicp Si-
If forks were created, then eliminate these forks.
5. Element assertionsif {(a,b): R, (b, 2): f,
(a,Y):(Rof)} C Sforz € rp andz:Y ¢ S then
S— SuU{z:Y}

Si:

Figure 2. The completion rules fofQ (Dagg ).

is, e.g., the case fatount andsum, but not formin and max. If
new R-successors were generated for each existential restricti
satisfiability of the following concept would not be detettecause
it would always lead to constraint systems that areatonsistent
(since the multiset of alR o f-successors would be too large).

(BR. 2>(f)) M (3R. =2(f)) N <1(count(Ro f)) (*)

to the creation ofr new successors of this node, each labelled withlf the concrete domain is restricted to aggregation fumstizwhose

one of the constraint systen§s. The algorithm terminates if none of
the rules can be applied to any of the leaves.

A constraint systen$' is completef none of the completion rules
can be applied t&. The completion algorithm answer€'is sat-
isfiable” iff after its termination one of the leaves is ldbdlwith a
complete, clash-free, arfd-consistent constraint system.

A remark concerning Rule 3.b. is in order. In contrast to sule
dealing with existential restrictions employed by othé&l¢au-based
algorithms, which always introduce a new individual, thider
considers different alternatives: either a new individgdhtroduced
or an already existingR-successor is re-used. This nondetermin-
istic variant is necessary for the correct treatment of eggfion
functions whose value depends on the multiplicity of eletsettis
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outcome does not depend on the multiplicity of elementseriribut
multiset, then Rule 3.b. can be substituted by a deterndrose that
generates, for each existential restriction, a f&successor.

As a consequence of the nondeterministic Rule 3.b., we may re
strict our attention to model§ of the constraint system in which
different role successors in the system are interpretedgbinct in-
dividuals in the model.

Definition 7 An m-modelZ of a CQ(Dag)-constraint systenms
is a model that satisfied” # % for all b,c € 74 with
{(a,b): R, (a,c): R} C S forsomea € 74 andR € Ng.

Lemma 1 below implies that decidability of satisfiability of
CQ(D.gg)-concepts is reduced by the completion algorithm to de-

F. Baader and U. Sattler



cidability of D-consistency. In the spirit df3], concrete domain®
whereD-consistency is decidable are callegadmissibleExamples
of m-admissible concrete domains wittin, max, andcount as ag-
gregation functions will be presented below.

Lemma 1 LetCy be aCQ(Dag)-concept and leS be a constraint
system obtained by applying the completion rulegute: Co }. Then

if Cy is satisfiable, thedz, : Co} has an m-model.

for each completion rul® that can be applied t&, and for each
interpretationZ we have thatZ is an m-model ofS iff Z is an
m-model of one of the systeifisobtained by applyingR.

also for database research, for example, in the contexterisional
reasoning in the presence of aggregation, as considergtljr7;
9; 8; 13. The undecidability results are orthogonal to those pre-
sented in[9] since our prerequisites are weaker and no recursion
mechanisms are used. Neither are they implied by the undecid
ability results in[11]: the results presented there concern aggrega-
tion constraints involving addition as well as rather coexphg-
gregation functions likeaverage and count. The decidability re-
sults are also orthogonal to the decidability res[d for contain-
ment of conjunctive queries with aggregation functionshie query
head: we have fewer aggregation functions, but allow to heent

if S'is a completeD-consistent, and clash-free constraint system,in a more complex way. The exact connection between our decid

thenS has an m-model.

if S contains a clash or is ndP-consistent, thes does not have

an m-model.
the completion algorithm terminates when applied 1o : Co }.

It should be noted that the fourth part of the lemma would wtd h

if “m-model” were replaced by “model”. It is easy to see ttad ton-

cept(x) yields an example: the case where two distiResuccessors

able Description Logi€Q(D.g) and conjunctive queries with ag-
gregation functions is a topic for future research. Finathe ex-
tensions of Description Logics with aggregation preserited4;
6] cannot be compared to those introduced here because their in
ference algorithms do not take into account concrete paésscor
aggregation functions.

The decision procedure f6iQ (D.g;) is parameterised by a deci-

are generated leads to a constraint system which has a nmtied a Sion procedure foP-consistency of the concrete domain with aggre-
not D-consistent. The third part of the lemma is the point wheee th 9ation functions. Thus, it is important to find additionahceete do-

absence of universal value restrictions becomes important

mains with aggregation functions for whi@-consistency is decid-

able. For example, what happens if the aggregation functiont in
Theorem 3 If D is an m-admissible concrete domain, then satisfia-| emma 2 is replaced byum? It should be noted thaiddingsum to

bility of CQ(D.gg )-concepts is decidable.

Indeed, after the completion algorithm has terminateda gen-
erated a finite tree whose leaves are all labelled with comglen-
straint systems. As an immediate consequence of Lemma ibphie

the concrete domain considered in the lemma médke®nsistency
undecidable. This is as an easy consequence of one of theidnde
ability result in[11].

conceptCy is satisfiable iff one of these complete systems is clashREFERENCES

free andD-consistent.
The following lemma provides examples of nontrivial m-
admissible concrete domains.
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