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Abstract. We extend different Description Logics by concrete do-
mains (such as integers and reals) and by aggregation functions over
these domains (such asmin;max; count; sum), which are usually
available in database systems. On the one hand, we show that this
extension may lead to undecidability of the basic inferenceprob-
lems satisfiability and subsumption. This is true even for a very small
Description Logic and very simple aggregation functions, provided
that universal value restrictions are present. On the otherhand, dis-
allowing universal value restrictions yields decidability of satisfia-
bility, provided that the concrete domain is not too expressive. An
example of such a concrete domain is the set of (nonnegative)inte-
gers with comparisons (=,�,�

n

, ...) and the aggregation functions
min;max; count.

1 Motivation

Unlike many other expressive representation formalisms, such as
database schema and query languages, basic Description Logic for-
malisms (e.g.,ALC [12]) do not allow for built-in predicates (like
comparisons of numbers) and for aggregation functions (like sum,
min, max, average, count). The first deficit was overcome in[3],
where a generic extension ofALC by aconcrete domainD was pro-
posed. In this extended Description Logic, calledALC(D), abstract
individuals (which are described usingALC) can be related to values
in theconcrete domainD (e.g., the integers, strings, ...) via so-called
features, i.e., functional roles. This allows one to describe, for exam-
ple, managers that spend more money than they earn by

Manager u (less(income; expenses)):

In our extension ofALC(D), aggregation is viewed as a means to
define new features. Figure 1 describes a situation where thein-
come and expenses of a person,Josie, are given per month. In some
months, she spends more money than she earns, and in others less. If
we want to know the difference between income and expenses over a
whole year, we must be able to build the sum over all months. Then
we can state that, or ask whether,Josie is an instance of

Human u (9year:less( sum(month�income);

sum(month�expenses)));

where the complex featuresum(month � income) relates an indi-
vidual to the sum over all values reachable overmonth followed by
income.

In Section 2, we present a generic extension ofALC(D) by ag-
gregation that is based on the idea mentioned above of introducing
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Figure 1. Example for aggregation

new “aggregated features”. Unfortunately, it turns out that, given a
concrete domain together with aggregation functions satisfying some
rather weak conditions, this extension has an undecidable satisfia-
bility and subsumption problem. Moreover, this result can even be
tightened: extendingFL

0

, a very weak Description Logic allowing
for conjunction anduniversalvalue restrictions only, by aggregation
already causes undecidability; see Section 3.

To obtain decidable Description Logics with aggregation,
CQ(D

agg

), a restriction ofALC(D
agg

) obtained by disallowing uni-
versal value restrictions and restricting negation to concept names,
is defined. In Section 4, we present a tableau-based algorithm that
decides satisfiability ofCQ(D

agg

)-concepts, provided that satisfia-
bility of finite conjunctions of predicates involving aggregations on
multiset variables in the concrete domainD can be decided. An ex-
ample of such a concrete domain is the set of (nonnegative) inte-
gers with comparisons (=,�,�

n

, ...) and the aggregation functions
min;max; count.

Full proofs of all results presented can be found in[1; 2].

2 Syntax and semantics ofALC(D
agg

)

The Description LogicALC(D
agg

), which will be introduced in this
section, is based onALC(D) [3], which extends the well-known De-
scription LogicALC [12] by a so-calledconcrete domain. In prin-
ciple, a concrete domain consist of a set (e.g., of numbers) together
with predicates on this set. In our Description LogicALC(D

agg

), we
additionally assume that the concrete domain is equipped with aggre-
gation functions. In order to define aggregation functions appropri-
ately, we must introduce the notion of amultiset: in contrast to sim-
ple sets, in a multiset an individual may occur more than once; for
example, the multisetff1gg is different from the multisetff1; 1gg.
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Multisets are necessary to ensure, e.g., thatJosie’s income is also
calculated correctly if she earns the same amount of money inmore
than one month.

Definition 1 Let S be a set. AmultisetM overS is a mappingM :

S ! IN, whereM(s) denotes the number of occurrences ofs in M .
The set of all multisets overS is denoted byMS(S). We writes 2M

for M(s) � 1, andM � M

0 for M(s) � M

0

(s) for all s 2 S. A
multisetM is said to be finite ifffs j M(s) 6= 0g is a finite set. To
enumerate the membersa

i

of a finite multiset, we use the notation
ffa

1

; : : : ; a

n

gg to distinguish multisets from sets.

Since the aggregation functions strongly depend on the specific
concrete domains, they are directly included in the definition of a
concrete domain.

Definition 2 A concrete domainD consists of

� a setdom(D) (the domain),
� a set of predicate symbolspred(D), and
� a set of aggregation functionsagg(D).

Each predicate symbolP 2 pred(D) is associated with an arityn
and ann-ary relationPD

� dom(D)

n, and each aggregation func-
tion

�

2 agg(D) is associated with a partial function
�

D from the
set of multisets overdom(D) into dom(D).

In [3], concrete domains do not contain aggregation functions, and
they are restricted to so-calledadmissibleconcrete domains in or-
der to keep the inference problems ofALC(D) decidable. We recall
that, roughly spoken, a concrete domainD is calledadmissibleiff
(1) pred(D) is closed under negation and contains a unary predicate
name> for dom(D), and (2) satisfiability of finite conjunctions over
pred(D) is decidable. Since no aggregation functions are involved,
these conjunctions contain only concrete predicates applied to vari-
ables standing forindividualsin dom(D).

Aggregation functions are used to buildconcrete featuresout of
roles and features. The syntax of these concrete features and of
ALC(D

agg

)-concepts is defined as follows:

Definition 3 LetN
C

, N
R

, N
F

be disjoint sets ofconcept, role, and
feature names, let f; f

1

; f

2

: : : 2 N

F

, R 2 N

R

, and
�

2 agg(D).
The set ofconcrete featuresis defined as follows:

� A feature chainf
1

: : : f

n

is a concrete feature, and
� an aggregated featuref

1

: : : f

n
�

(R�f) is a concrete feature.

The set ofALC(D
agg

)-conceptsis the smallest set such that

� every concept name is a concept,
� if C,D are concepts,R is a role or a feature name,P 2 pred(D)

is an n-ary predicate name, andu
1

; : : : ; u

n

are concrete fea-
tures, then(C u D), (C t D), (:C), (8R:C), (9R:C), and
P (u

1

; : : : ; u

n

) are concepts.

In order to fix the exact meaning of these expressions, their seman-
tics is defined in the usual model-theoretic way.

Definition 4 An interpretationI = (�

I

; �

I

) consists of a set�I

disjoint from dom(D), called thedomainof I, and a function�I

that maps every concept to a subset of�

I , every role to a subset
of �I

��

I , and every feature namef 2 N

F

to a partial function
f

I

: �

I

! �

I

[ dom(D). To define the semantics of aggregated

features, we introduce the mappingM (R�f)

I

a

: dom(D)! IN[f1g:

M

(R�f)

I

a

(z) := #fb 2 �

I

j (a; b) 2 R

I andfI(b) = zg:

Thus, M (R�f)

I

a

is a multiset iff M (R�f)

I

a

(z) 2 IN for all z 2

dom(D), i.e., the cardinalities of the considered sets are always fi-
nite.

The interpretationI is now extended to concepts and concrete
features as follows:

(C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

;:C

I

= �

I

n C

I

;

(9R:C)

I

= fd 2 �

I

j 9e 2 �

I

: (d; e) 2 R

I

^ e 2 C

I

g;

(8R:C)

I

= fd 2 �

I

j 8e 2 �

I

: (d; e) 2 R

I

) e 2 C

I

g;

P (u

1

; : : : ; u

n

)

I

= fx 2 �

I

j (u

I

1

(x); : : : ; u

I

n

(x)) 2 P

D

g;

(f

1

: : : f

m

)

I

(x)= f

I

m

(f

I

m�1

(: : : (f

I

1

(x) : : :);

(

�

(R�f))

I

(a)=

(

�

D

(M

(R�f)

I

a

) if M (R�f)

I

a

is a multiset,
undefined otherwise.

(u

�

(R�f))

I

(x)=

�

(R�f)

I

(u

I

(x))

A conceptC is calledsatisfiableiff there is some interpretationI
such thatCI

6= ;. Such an interpretation is called amodelof C. A
conceptD subsumesa conceptC (writtenC v D) iff CI

� D

I

holds for each interpretationI. An individual x 2 C

I is called an
instanceof a conceptC.

We point out three consequences of the above definition, which
might not be obvious at first sight:

(a) By definition, an instance of the conceptP (u

1

; : : : ; u

n

) has an
u

I

i

-successor indom(D) for eachi; 1 � i � n.
(b) If (R�f)I(a) contains individuals in�I , then these individuals

have no influence onM (R�f)

I

a

: this mapping is defined such that it
counts only theRI -successors ofa that have anfI -successor in the
concrete domaindom(D).

(c) There are two reasons for(
�

(R � f))

I

(a) to be undefined.

On the one hand,M (R�f)

I

a

need not be a multiset due to the ex-
istence of infinitely manyR-successors ofa that coincide on their
f -successors. On the other hand, the aggregation function

�

may be

undefined onM (R�f)

I

a

. For example, the sum of infinitely many pos-
itive integers is not defined.

3 The undecidability results

The results presented in[3] imply that subsumption and satisfiability
are decidable forALC(D)-concepts, provided thatD is admissible.
ForALC(D

agg

), admissibility of the concrete domain does no longer
guarantee decidability of these inference problems:

Theorem 1 For a concrete domainD where

� dom(D) includes the nonnegative integers,
� pred(D) contains a (unary) predicateP

=1

that tests for equality
with 1, and a (binary) equalityP

=

,
� agg(D) containsmin;max; sum,2

satisfiability and subsumption ofALC(D
agg

)-concepts are undecid-
able.

This undecidability result is rather strong for the following rea-
sons: (a) It does not require thatdom(D) is the set of nonnegative
integers, but only that itcontainsthe nonnegative integers. This is an
important generalisation since, for example, the real numbers have
better computational properties than the nonnegative integers: the
first-order theory of+; �;� is undecidable over the nonnegative in-
tegers, whereas it is decidable over the reals.

2 Restricted to the nonnegative integers, these aggregationfunctions are as-
sumed to be defined as usual.
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(b) The aggregation functionsmin;max; sum are among the sim-
plest normally considered as built-in functions in databases (see, e.g.,
[7; 9; 8; 13]). In addition, to test whether a certain value equals 1 or
whether two values are equal is possible in all database systems with
built-in predicates.

(c) There are admissible concrete domains (in the sense of[3])
that satisfy the preconditions of Theorem 1. Examples are the (non-
negative) integers, reals, and rationals together with thepredicates
P

=1

; P

=

; P

6=

; P

6=

1

.
Sketch of the proof of Theorem 1:The proof is by reduction of

Hilbert’s 10th problem[5] to satisfiability of concepts, i.e., for given
polynomialsP;Q 2 IN[x

1

; : : : ; x

m

], we construct anALC(D
agg

)-
conceptC

P;Q

that is satisfiable iff the polynomial equation

P (x

1

; : : : ; x

m

) = Q(x

1

; : : : ; x

m

) (1)

has a solution inINm. Undecidability of subsumption follows be-
causeC is satisfiable iffC is not subsumed by?, where? denotes
an arbitrary trivially unsatisfiable concept.

The idea underlying the reduction is to represent the (sub)term
structure of the polynomialP (resp.Q) as a tree, which is related to
an instancea of C

P;Q

via the featureP (resp.Q). To this purpose,
for each variablex

i

, a featurex
i

is introduced. Then we simulate
the calculations in both subterm trees using aggregation functions.
To enforce a solution of Equation 1, we enforce that the valueof
P (x

1

; : : : ; x

m

) (which is represented as theP � s-successor ofa)
equals the value ofQ(x

1

; : : : ; x

m

) (represented asQ�s-successor of
a).

Since a complete description of the reduction concept is toocom-
plex to be presented here, we just highlight two of the problems that
we had to overcome when defining the reduction:

(a) Hilbert’s 10th problem asks for a solution inINm, whereas
dom(D) is only required tocontain IN. To enforce that thex

i

-
successors (which stand for the values assigned to the variablesx

i

)
are nonnegative integers, we use the concept

E

R

x

i

:= (8R:(P

=1

(f))) u P

=

(sum(R�f); x

i

):

An instance ofER

x

i

has as itsx
i

-successor the number of itsR-
successors. Note that our definition of the semantics of predicate re-
strictions implies that thex

i

-successor is defined, and that the defini-
tion of the semantics of aggregated features requires that this number
is finite, i.e., an element ofIN.

(b) The featuresx
i

occur at various positions in the trees repre-
senting the polynomials. To ensure that all individuals in both trees
have the samex

i

-successors (i.e., the variablex
i

is evaluated by the
same number everywhere), we make strong use of the conceptInv:

Inv := u

1�i�m

(8R:>(x

i

)uP

=

(min(R�x

i

);max(R�x

i

)) u

P

=

(x

i

;max(R�x

i

)));

where>(x
i

) is an abbreviation forP
=

(x

i

; x

i

), which simply en-
sures that there exists anx

i

-successor.Inv is defined such that all
R-successors of an instancea of Inv have the samex

i

-successor,
which coincides with thex

i

-successor ofa. It is used to propagate
the value ofx

i

to all parts of the trees.
The necessary calculations (addition, multiplication, and exponen-

tiation) are realised by first expressing addition using theaggregation
function sum, and by reducing multiplication and exponentiation to
addition.

A closer investigation of the conceptC
P;Q

used for the reduc-
tion reveals that it does not require the full expressive power of
ALC(D

agg

). In the full paper[1] it is shown that one can dispense

with negation, existential value restrictions(9R:C), and disjunction
in the definition of the reduction concept, provided that theconcrete
domain satisfies a slightly stronger property. To be more precise, let
FL

0

denote the set of concepts that can be built using conjunction
and universal value restriction(8R:C) only, and letFL

0

(D

agg

) de-
note the extension of this Description Logic by a concrete domain
with aggregation.

Theorem 2 For a concrete domainD where
� dom(D) includes the nonnegative integersIN,
� pred(D) contains, for all nonnegative integersn, (unary) predi-

catesP
=n

that test for equality withn, the (binary) equality pred-
icateP

=

, and the (binary) inequality predicateP
6=

,
� agg(D) containsmin;max; sum,
satisfiability and subsumption ofFL

0

(D

agg

)-concepts is undecid-
able.

4 The decidability result

The undecidability results presented above strongly depend on the
presence of universal value restrictions. In order to obtain a decid-
able Description Logic with aggregation, we remove universal value
restrictions from the set of constructors. Since negation together
with existential value restrictions would re-introduce universal re-
strictions, we must also restrict the use of negation. To be more pre-
cise, the Description LogicCQ(D

agg

) is obtained fromALC(D
agg

)

by disallowing universal value restrictions and by allowing negation
to occur only in front of concept names. Due to these restrictions,
we can design a tableau-based algorithm that decides satisfiability of
CQ(D

agg

)-concepts, provided that the concrete domain satisfies some
additional restrictions. Given an input conceptC, it tries to construct
a model ofC by breaking downC, thus making explicit all con-
straints imposed byC. In a first phase, it checks for “abstract” con-
sistency, whereas the second phase checks the satisfiability of all con-
crete predicates imposed on individuals in this model. One difference
to the algorithm in[3] is that these predicates may involve aggregated
multiset variables besides variables for individuals indom(�

I

). The
data structure this algorithm works on are constraints.

Definition 5 Let � = �

A

[ �

D

= fa; b; c; : : :g [ fx; y; z; : : :g be
an infinite set of abstract and concrete individual variables, and let
� = fX; Y; Z; : : :g be an infinite set of multiset variables. The set of
aggregated variables,f

�

(X) j

�

2 agg(D) andX 2 �g, will be
denoted byagg(D)(�). Constraints are of the form:

a :C for a 2 �

A

; C anCQ(D
agg

)-concept;
(a; b) :R for a; b 2 �

A

; R 2 N

R

;

(a; `) : f for a 2 �

A

; ` 2 �; f 2 N

F

;

(a; Y ) :(R�f) for a 2 �

A

; R 2 N

R

; f 2 N

F

; Y 2 �;

P (�

1

; : : : ; �

n

) for �

i

2 �

D

[ agg(D)(�); and
x :Y for x 2 �

D

; Y 2 �:

A constraint systemis a set of constraints. A variablè
is said to be anR-successor (resp. anf

1

: : : f

n

-successor)
of a in a constraint systemS iff (a; `) :R 2 S (resp.
(a; y

1

) : f

1

; (y

1

; y

2

) : f

2

; : : : ; (y

n�1

; `) : f

n

2 S). An aggregated
variable

�

(Y ) is said to be anf
1

: : : f

n
�

(R�f) of a in S iff there
is anf

1

: : : f

n

-successorb of a in S and(b; Y ) :(R�f) 2 S.

Definition 6 We consider interpretationsI that, additionally, map
individual variables to individuals of the concrete or the abstract do-
main, and multiset variables to multisets over the concretedomain:

a

I

2 �

I

for a 2 �

A

;

x

I

2 dom(D) for x 2 �

D

;

X

I

2 MS(dom(D)) for X 2 �:
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An interpretationI satisfies a constraint of the form

a :C i� x

I

2 C

I

;

(a; b) :R i� (a

I

; b

I

) 2 R

I

;

(a; `) : f i� f

I

(a

I

) = `

I

;

(a; Y ) :(R�f) i� M

(R�f)

I

a

I

= Y

I

;

P (�

1

; : : : ; �

n

) i� P

D

(�

I

1

; : : : ; �

I

n

);

x :Y i� x

I

2 Y

I

;

where for�
i

=

�

(X) we have
�

(X)

I

:=

�

D

(X

I

).
A constraint systemS is satisfiableiff there exists an interpreta-

tion satisfying all constraints inS. Such an interpretation is called a
model ofS. A constraint systemS isD-consistentiff the conjunction

^

P (�

1

;:::;�

n

)2S

P (�

1

; : : : ; �

n

) ^

^

Y occurs inS

ffx

i

j x

i

:Y 2 Sgg � Y

is satisfiable inD, wherex 2 �

D

are variables for elements in
dom(D) andY 2 � variables for multisets overdom(D), and in-
clusion is interpreted as multiset inclusion. A constraintsystemS

contains aclashiff

� fa :C; a ::Cg � S for some conceptC, or
� f(a; x) : f; (a; b) : fg � S for x 2 �

D

andb 2 �

A

.

A constraint systemS contains afork iff for a 2 �

A

and a feature
namef 2 N

F

we have

� f(a; `) : f; (a; `

0

) : fg 2 S for two distinct variables̀ ; `0 2 �

A

or
`; `

0

2 �

D

, or
� f(a; Y ) :(R�f); (a; Z) :(R�f)g 2 S for two distinct variables
Y; Z 2 �.

If a constraint systemS contains a forkf(x; `) : f; (x; `0) : fg (resp.
f(a; Y ) :(R�f); (a;Z) :(R�f)g), then we say thatS0 is obtained by
fork eliminationfrom S if S0 is obtained fromS by replacing each
occurrence of̀ by `0 (resp.Y byZ).

Note that a fork f(x; `) : f; (x; `0) : fg (resp. f(a; Y ) :(R �

f); (a;Z) :(R�f)g) implies`I = `

0I (resp.Y I

= Z

I ) for all mod-
elsI of S. This is made explicit by fork elimination. Ifx has both a
concrete and an abstractf -successor, then this is an obvious incon-
sistency because the concrete domain is disjoint from the abstract
one and leads therefor to a clash.

The tableau-basedcompletion algorithmfor deciding satisfiability
of CQ(D

agg

)-concepts appliescompletion rulesgiven in Figure 2 to
constraint systems. The completion algorithm works on a tree where
each node is labelled with a constraint system. It starts with the tree
consisting of a single leaf, the root, labelled withS = fx

0

:C

0

g,
whereC

0

is theCQ(D

agg

)-concept to be tested for satisfiability. A
rule can only be applied to a leaf labelled with a clash-free constraint
system. Applying a ruleS ! S

i

, for 1 � i � n, to such a leaf leads
to the creation ofn new successors of this node, each labelled with
one of the constraint systemsS

i

. The algorithm terminates if none of
the rules can be applied to any of the leaves.

A constraint systemS is completeif none of the completion rules
can be applied toS. The completion algorithm answers “C is sat-
isfiable” iff after its termination one of the leaves is labelled with a
complete, clash-free, andD-consistent constraint system.

A remark concerning Rule 3.b. is in order. In contrast to rules
dealing with existential restrictions employed by other tableau-based
algorithms, which always introduce a new individual, this rule
considers different alternatives: either a new individualis introduced
or an already existingR-successor is re-used. This nondetermin-
istic variant is necessary for the correct treatment of aggregation
functions whose value depends on the multiplicity of elements: this

1. Conjunction: If a :(C
1

u C

2

) 2 S anda :C
1

62 S or
a :C

2

62 S, then
S ! S [ fa :C

1

; a :C

2

g.
2. Disjunction: if a :(C

1

t C

2

) 2 S anda :C
1

62 S and
a :C

2

62 S, then
S ! S

1

= S [ fa :C

1

g;

S ! S

2

= S [ fa :C

2

g:

3.a. Existential feature restriction: If a :(9f:C) 2 S

for a feature namef and if there is anf -successorb of a with
b : C 62 S, then
S ! S [ fb : Cg:

Otherwise, ifa has nof -successor, then
S ! S [ f(a; b) : f; b : Cg.

for a new variableb 2 �

A

.
3.b. Existential role restriction: If a :(9R:C) 2 S

for a role nameR, fb
1

; : : : ; b

n

g are allR-successors ofa, and for
all i, 1 � i � n, b

i

:C 62 S, then
S ! S

i

= S [ fb

i

: Cg;

S ! S

n+1

= S [ f(a; b) :R; b : Cg;

for a new variableb 2 �

A

.
4. Concrete predicates:If a :P (u

1

; : : : ; u

n

) 2 S anda
does not haveu

i

-successors�
i

with P (�

1

; : : : ; �

n

) 2 S, then,
for eachu

i

let

S

i

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

f(a; b

i1

) : f

i1

; (b

i1

; b

i2

) : f

i2

; : : : ; (b

im

i
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i1

) : f
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for new variablesb
ij

2 �

A

; y

im

i

2 �

D

, Y
i

2 �. Let �
i

be the
u

i

-successor ofa in S
i

. Then
S ! S [ fP (�

1

; : : : ; �

n

)g [

S

1�i�n

S

i

:

If forks were created, then eliminate these forks.
5. Element assertions:If f(a; b) :R; (b; z) : f;
(a; Y ) :(R�f)g � S for z 2 �

D

andz :Y 62 S then
S ! S [ fz :Y g:

Figure 2. The completion rules forCQ(D

agg

).

is, e.g., the case forcount and sum, but not formin andmax. If
new R-successors were generated for each existential restriction,
satisfiability of the following concept would not be detected because
it would always lead to constraint systems that are notD-consistent
(since the multiset of allR�f -successors would be too large).

(9R:�

2

(f)) u (9R:=

2

(f)) u �

1

(count(R�f)) (�)

If the concrete domain is restricted to aggregation functions whose
outcome does not depend on the multiplicity of elements in the input
multiset, then Rule 3.b. can be substituted by a deterministic one that
generates, for each existential restriction, a newR-successor.

As a consequence of the nondeterministic Rule 3.b., we may re-
strict our attention to modelsI of the constraint system in which
different role successors in the system are interpreted by distinct in-
dividuals in the model.

Definition 7 An m-modelI of a CQ(D

agg

)-constraint systemS
is a model that satisfiesbI 6= c

I for all b; c 2 �

A

with
f(a; b) :R; (a; c) :Rg � S for somea 2 �

A

andR 2 N

R

.

Lemma 1 below implies that decidability of satisfiability of
CQ(D

agg

)-concepts is reduced by the completion algorithm to de-
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cidability ofD-consistency. In the spirit of[3], concrete domainsD
whereD-consistency is decidable are calledm-admissible. Examples
of m-admissible concrete domains withmin, max, andcount as ag-
gregation functions will be presented below.

Lemma 1 LetC
0

be aCQ(D
agg

)-concept and letS be a constraint
system obtained by applying the completion rules tofx

0

:C

0

g. Then

� if C
0

is satisfiable, thenfx
0

:C

0

g has an m-model.
� for each completion ruleR that can be applied toS, and for each

interpretationI we have thatI is an m-model ofS iff I is an
m-model of one of the systemsS

i

obtained by applyingR.
� if S is a complete,D-consistent, and clash-free constraint system,

thenS has an m-model.
� if S contains a clash or is notD-consistent, thenS does not have

an m-model.
� the completion algorithm terminates when applied tofx

0

:C

0

g.

It should be noted that the fourth part of the lemma would not hold
if “m-model” were replaced by “model”. It is easy to see that the con-
cept(�) yields an example: the case where two distinctR-successors
are generated leads to a constraint system which has a model and is
notD-consistent. The third part of the lemma is the point where the
absence of universal value restrictions becomes important.

Theorem 3 If D is an m-admissible concrete domain, then satisfia-
bility of CQ(D

agg

)-concepts is decidable.

Indeed, after the completion algorithm has terminated, it has gen-
erated a finite tree whose leaves are all labelled with complete con-
straint systems. As an immediate consequence of Lemma 1, theinput
conceptC

0

is satisfiable iff one of these complete systems is clash-
free andD-consistent.

The following lemma provides examples of nontrivial m-
admissible concrete domains.

Lemma 2 The following conditions imply m-admissibility of the
concrete domainD:

� dom(D) is the set of nonnegative integers, integers, rational
numbers or reals,

� pred(D) = f<;�; >;�;=; g [

S

n2dom(D)

f<

n

;�

n

; >

n

;�

n

;=

n

g,

where the equalities and inequalities are interpreted in the usual
way, andf<

n

;�

n

; >

n

;�

n

;=

n

g are unary predicates testing for
being less thann, less or equaln, etc., and

� agg(D) = fmin;max; countg.

The proof of this lemma applies the techniques intro-
duced in [11]: aggregated multiset variables of the form
max(Y );min(Y ); count(Y ) are replaced by new individual vari-
ablesy

max

; y

min

; y

count

. In addition, one must add formulae that ap-
propriately axiomatise the behaviour of the aggregation functions.
For example,y

min

� y

max

must hold, and if we know thatz belongs
toY (because the constraint system containsz : Y ), theny

min

� z �

y

max

must hold as well. Similarly,y
count

must be at least as large
as the number of individual variables known to belong toY (plus
possibly1 or 2, depending on whether the the minimum/maximum
coincides with one of these variables or not). This reduction yields
a formula built from equalities and inequalities between individual
variables, which can easily be tested for satisfiability.

5 Related and future work

We have presented an expressive Description Logic that can also ex-
press properties involving aggregated data. The results ofthis pa-
per are thus not only of interest for knowledge representation, but

also for database research, for example, in the context of intensional
reasoning in the presence of aggregation, as considered in[11; 7;
9; 8; 13]. The undecidability results are orthogonal to those pre-
sented in[9] since our prerequisites are weaker and no recursion
mechanisms are used. Neither are they implied by the undecid-
ability results in[11]: the results presented there concern aggrega-
tion constraints involving addition as well as rather complex ag-
gregation functions likeaverage and count. The decidability re-
sults are also orthogonal to the decidability results[10] for contain-
ment of conjunctive queries with aggregation functions in the query
head: we have fewer aggregation functions, but allow to use them
in a more complex way. The exact connection between our decid-
able Description LogicCQ(D

agg

) and conjunctive queries with ag-
gregation functions is a topic for future research. Finally, the ex-
tensions of Description Logics with aggregation presentedin [4;
6] cannot be compared to those introduced here because their in-
ference algorithms do not take into account concrete predicates or
aggregation functions.

The decision procedure forCQ(D

agg

) is parameterised by a deci-
sion procedure forD-consistency of the concrete domain with aggre-
gation functions. Thus, it is important to find additional concrete do-
mains with aggregation functions for whichD-consistency is decid-
able. For example, what happens if the aggregation functioncount in
Lemma 2 is replaced bysum? It should be noted thataddingsum to
the concrete domain considered in the lemma makesD-consistency
undecidable. This is as an easy consequence of one of the undecid-
ability result in[11].
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