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1 Motivation and then to recognise thaérebellumMtumorous is sub-

As widely argued[Horrocks & Gough,1997; Sattler,19p6 Sumed byjis_component.tumorous.brain.
transitive roles play an important role in the adequate rep- Furthermore ACCHT .+ allows for the internalisation of
resentation of aggregated objects: they allow these objec8€neral inclusion axiomiHorrocks & Gough,1997

to be described by referring to their parts without specifying 't could be argued that, instead of defining yet another

a level of decomposition. IfHorrocks & Gough,1997the DL, one could make use of the results presentngB
Description Logic (DL)ALCH z+ is presented, which ex- Giacomo & Lenzerini,1996and used£C extended with role

tends.ALC with transitive roles and a role hierarchy. It is expressions which include transitive closure and inverse op-
argued in[Sattler,1998that ACCH p+ is well-suited to the ~€rators. The reason for not proceeding like this is the fact
representation of aggregated objects in applications that rdhat transl_twe roles can be implemented more efficiently than
quire various part-whole relations to be distinguished, somdhe transitive closure of roles (sgorrocks & Gough, 199,

of which are transitive. For example, a medical knowledge?!though they lead to the same complexity classHEIME-
base could contain the following entries defining two differ-nard) when added, together with role hierarchiesA€C.
ent parts of the brain, namely the gyrus and the Cerebe"un{furthermore, it is still an open _que_st|on whether the trz_inS|-
In contrast to a gyrus, a cerebellum is an integral organ andive closure of roles together with inverse roI_es necessitates
furthermore, a functional component of the brain. Hence thdh€ use of theut rule[De Giacomo & Massacci, 199 rule

role is_component (which is a non-transitive sub-role of which leads to an algorithm with very bad behaviour. We

is_part) is used to describe the relation between the braifVill Presentan algorithm fod LCHT .+ without such a rule,
and the cerebellum: which, from the experiences made with an implementation of

ALCH r+ [Horrocks & Gough,1997 should behave well in

is_component C is_part practice?
gyrus 1=

(Vconsists.brain mass) M (Jis_part.brain) 2 Blocking
cerebellum :=

The algorithms which we will present use the tableaux
method, in which the satisfiability of a conceptis tested

However,ALCH g+ does not allow the simultaneous descrip-PY T¥ing to construct a model ab. The model is repre-
tion of parts by means of the whole to which they belong andented by a tree in which nodes correspond to |nd!V|duaIs and
of wholes by means of their constituent parts: one or othefd9es correspond to roles. Each nede labelled with a set

is possible, but not both. To overcome this limitation, we©f cOnceptst(z) which the individual must satisfy and each
present the DLALCHT p+ which extendsALCH e with — ©€d9€ is labelled with a role name.

inverse (converse) roles, allowing, for example, the use of AN algorithm starts with a single node labell¢d}, and
has_part as well asis_part.! Using ACCHZp+, We can proceeds by repeatedly applying a seteaxpansion rules
define a tumorous brain as: which recursively decompose the concepts in node labels;

new edges and nodes are added as required in order to sat-
tumorous_brain:= isfy AR.C concepts. The construction terminates either when
brain M (tumorous LI (Fhas_part.tumorous)) none of the rules can be applied in a way which extends the

e — _ ) _ tree, or when the discovery of obvious contradictions demon-
Part of this work was carried out while being a guest at IRST.¢trates thaD has no model.

organ N (Jis_component.brain)

Trento. _
This work was supported by the Esprit Project 22469 —DWQ.  2Details that have been omitted in the interests of brevityl
"Note thathas_part is taken to be the inverse o part. found in[Horrocks & Sattler,1998
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Figure 1: A tableau where dynamic blocking is crucial.

In order to prove that such an algorithm is a sound andhe cyclical model is an easy consequence of the fact that
complete decision procedure for concept satisfiability in ahe 3R.C' concept whichy must satisfy must also be satis-
given logic, it is necessary to demonstrate that the models fied by x, because:’s label is a superset afs. Termination
constructs are valid with respect to the semantics, that it wilis guaranteed by the fact that all concepts in node labels are
always find a model if one exists and that it always terminatesultimately derived from the decomposition B, so all node
The first two points can usually be dealt with by proving thatlabels must be a subset of the subconcept®pand a cy-
the expansion rules preserve satisfiability, and that in the casgde must therefore occur within a finite number of expansion
of non-deterministic expansion (e.qg., of disjunctions) all pos-steps.
sibilities are exhaustively searched. For logics sucidl 4€, Blocking is, however, more problematical when inverse
termination is mainly due to the fact that the expansion rulesoles are added to the logic, and a key feature of the algo-
can only add new concepts which are strictly smaller than theithms presented here is the introduction afysamic block-
decomposed concept, so the model must stabilise when dhg strategy using label equality instead of subset. With in-
concepts have been fully decomposed. verse roles, the blocking condition must be equality of node

Termination is not, however, guaranteed for logics whichlabels, because roles are now bi-directional and additional
include transitive roles, as the expansion rules can introduceoncepts ine's label could invalidate the model with respect
new concepts which are the same size as the decompostxy’s predecessor. Taking the above example of a node la-

concept. In particulaty R.C' concepts, where? is a tran-

belled{C,3R.C,VR.(3R.C)}, if the successor of this node

sitive role, are dealt with by propagating the whole conceptvere blocked by a node whose label additionally included

acrossk labelled edges. For example, given a leaf nodz-
belled{C,3R.C,VR.(3R.C)}, whereR is a transitive role,
the combination of theé R.C' andvR.(3R.C) concepts would
cause a new nodgto be added to the tree with an identical

VR~ .—C, then the cyclical model would clearly be invalid.
Another difficulty introduced by inverse roles is the fact
that it is no longer possible to establish a block on a once and
for all basis when a new node is added to the tree, because

label toz. The expansion process could then be repeated irfurther expansion in other parts of the tree could lead to the

definitely.

This problem can be dealt with bylocking halting the
expansion process when a cycle is detedalader,1991;
Buchheitet al,1993. For logics without inverse roles, the
general procedure is to check the label of each new pode
and if it is asubse{Baaderet al, 1994 of the label of an ex-
isting nodez, then no further expansion gfis performedz
is said to blocky. The resulting tree corresponds to a cycli-
cal model in whichy is identified withz.® The validity of

3For logics with a transitive closure operator it is necegsar
to check the validity of the cyclical model created by block-
ing [Baader,19911 but for logics which only support transitive roles

labels of the blocking and/or blocked nodes being extended
and the block being invalidated. For example, consider the
example sketched in Figure 1. It shows parts of a tableau that
was generated for the concept

AN3S(VPAR.TNVPYR.CNVPIPT .
JR. T NAP.T NVR.CN)

ForC as givenin Figure 1, this concept is not satisfiakle:
has to be an instance 6f, which implies that: is an instance

of =A—which is inconsistent with: being an instance of.

the cyclical model is always valiiSattler, 1995



As P is atransitive role, all universal value restrictions overinterpretationZ, an individualz € A is called aninstance

P are propagated from to z, hencel(y) = L(z) andz is
blocked byy. Now, if the blocking ofz would not be bro-
ken whenvP~.VS~.=A is added tol(y) from C € L(v),

of a concepC iff = € C7.

In order to make the following considerations easier, we

then—A would be never added () and the inconsistency  introduce two functions on roles:

would not be detected.

Moreover, it is necessary to continue with some expan-
sion of blocked nodes, becausB.C concepts in their labels
could effect other parts on the tree: Again, let us consider
the example in Figure 1: After the blocking efwas bro-
ken andvP~.¥S~.—A added to bothl(y) andL(z), z is
again blocked by. However, the universal value restriction
VP~ .¥S~.—~A € L(z) has to be expanded in order to detect
the inconsistency.

This problem is overcome by using dynamic blocking: al-
lowing blocks to be dynamically established and broken as
the expansion progresses, and continuing to expaRd’
concepts in the labels of blocked nodes.

3 Syntax and Semantics ofALCT g+

1. The inverse relation on roles is symmetric, and to avoid
considering roles such a8~ —, we define a function
Inv which returns the inverse of a role. More precisely,
Inv(R) = R~ if Ris arole name, anthv(R) = S if
R=5".

Obviously, a roleR is transitive if and only iflnv(R)

is transitive. However, this may be established by ei-
ther R or Inv(R) being inR. We therefore define a
function Trans which returnstrue iff R is a transitive
role—regardless of whether it is a role name or the in-
verse of a role name. More precis€lyans(R) = true

iff R ¢ R+ Oran(R) S R+.

2.

4 A Tableaux Algorithm for ALCZ p+

For ease of understanding, we start by introducing the Detike other tableaux algorithms, théCCTZ i+ algorithm tries
scription Logic ALCI R+, which is the extension of the to prove the satisfiability of a concept by constructing a

well-known DL ALC [Schmidt-SchauR & Smolka,19B8ith

model of D. The model is represented by a so-cakan-

transitively closed roleandinverse(converse) roles. The set pletion treg a tree some of whose nodes correspond to in-
of transitive role nameR ., is a subset of the set of role names dividuals in the model, each node being labelled with a set
R. Interpretations map role names to binary relations on thef ALCT g+-concepts. When testing the satisfiability of an

interpretation domain, and transitive role names to transitived LCZ g+-conceptD, these sets are restricted to subsets of

relations. In addition, for any rol® € R, the roleR™ is
interpreted as the inverse &f

sul(D), wheresul{ D) is the set of subconcepts bf.
For ease of construction, we assume all concepts to be in

In the next section, we describe a tableaux algorithm fomegation normal form(NNF), that is, negation occurs only

testing the satisfiability 0fALCZ g+ concepts and present a

in front of concept names. AnylLCZr+-concept can eas-

proof of its soundness and completeness. The extension @f be transformed to an equivalent one in NNF by pushing

ALCT g+ by role hierarchiesALCHT g+, together with the

negations inwards.

extended tableaux algorithm and corresponding proofs is then The soundness and completeness of the algorithm will be

described in Section 5.

Definition 1 Let N be a set otoncept nameand letR be
a set ofrole nameswith transitive role nameR; C R. The
set of ACCZp+-rolesis RU{R~ | R € R}. The set of
ALCT p+-conceptss the smallest set such that

1. every concept name is a concept and

2. if C'andD are concepts anR is anALCZ p+-role, then
(CnD), (CuD),(=C), (VYR.C),and(3R.C) are con-
cepts.

An interpretationZ = (AZ, -7) consists of a seh”?, called
thedomainof Z, and a function” which maps every concept
to a subset ofA” and every role to a subset df’ x A7
such that, for all concepts, D, the properties in Figure 2 are
satisfied.

A conceptC' is calledsatisfiableff there is some interpre-
tation Z such thatC? # (. Such an interpretation is called
amodel ofC. A conceptD subsumes conceptC' (written
C C D)iff T C D holds for each interpretaticgh For an

proved by showing that it creategableaufor D. We have
chosen to take the (not so) long way round tableaux for prov-
ing properties of tableaux algorithms because—once tableaux
are defined and Lemma 1 is proven—the remaining proofs are
considerable easier.

Definition 2 If D isanALCTr+-conceptin NNF an® p is
the set of roles occurring iP, together with their inverses, a
tableaur for D is defined to be a tripl€S, £, £) such thatS

is a set of individuals(, : S — 25U8P) maps each individual
to a set of concepts which is a subsesof(D), € : Rp —
25%S maps each role iR p to a set of pairs of individuals,
and there is some individuale S such thatD € L(s). For
allseS,C,E € sub(D), andR € Rp, it holds that:

1. if C € L(s), then—C ¢ L(s),

if CNE € L(s), thenC € L(s) andE € L(s),

if CUE € L(s),thenC € L(s) or E € L(s),

if VR.C € L(s) and(s,t) € E(R), thenC € L(t),

w



_|ch — AI \ CI,
{z € AT | There existy € AT with (z,y) € ST andy € C*},
{d e AT | Forally € AT, if (z,y) € ST, theny € C*},

(cnD) =c*TnDI (CuD) =c*tuD?,
3s.0) =
(vS.0)T =
ForSeR: (z,y) € STiff (y,2) € S, and
ForRe R, : if (z,y) € RT and(y, z) € R, then(z,z) € R”.

Figure 2: Semantics ol LCZ p+-concepts

5. if 3R.C’ € L(s), then there is some € S such that
(s,t) € E(R) andC € L(t),

6. if VR.C € L(s), (s,t) € E(R) and Trans(R), then
VR.C € L(t), and

7. (z,y) € E(R) iff (y,z) € E(Inv(R)).

Lemma 1 An ALCT p+-conceptD is satisfiable iff there ex-

ists a tableau forD.

Proof: For theif direction, if T = (S, L, €) is a tableau
for D with D € L(so), a modelZ = (AZ,.T) of D can be
defined as:

AT =8
for all concept names A isul(D):
AT = {s|AeL(s)}
BT - { E(R)* if Trans(R)
E(R)  otherwise

where€(R)* denotes the transitive closure®&fR). DT # 0

because, € DZ. Transitive roles are obviously interpreted

For the converse, if = (A”,.7) is a model ofD, then a
tableaul’ = (S, L, €) for D can be defined as:

S = A7
&[R) = R*
L(s) = {CesulD)|seC?}

It only remains to demonstrate tHAtis a tableau foD:

1. T satisfies properties 1-5 in Definition 2 as a direct con-
sequence of the semanticsAfLCZ g+ concepts.

2. Ifd € (VR.C)?, (d,e) € RT andTrans(R), thene €
(VR.C)? unless there is somgsuch thatle, f) € R
andf ¢ CZ. However, if(d,e) € RZ, (e, f) € Rt
andR € R4, then(d, f) € R andd ¢ (VR.C)L. T
therefore satisfies Property 6 in Definition 2.

3. T satisfies Property 7 in Definition 2 as a direct conse-
quence of the semantics of inverse relations. ]

4.1 Constructing an ALCZ p+ Tableau

as transitive relations. By induction on the structure of conFrom Lemma 1, an algorithm which constructs a tableau for

cepts, we show that, iZ € L(s), thens € EZ. Let
E € L(s).

1. If E is a concept name, thenc E7 by definition.

2. If E = =C, thenC ¢ L(s) (due to Property 1 in Defi-
nition 2), sos € AT\ C% = ET.

3. IfE= (Cl |_|C2), thenC; € L(S) andC, € L(S), SO by
inductions € C7 ands € CZ. Hences € (C; N Cy)~.

4. The cas&’ = (C, U C») is analogous to 3.

5. If E = (35.C), then there is some € S such that
(s,t) € &(S) andC € L(t). By definition, (s, ) € ST
and by inductiort € CZ. HenceS € (35.C)~.

6. If E = (VS.C) and(s,t) € SZ, then either
(@) (s,t)y € £(S) andC € L(t), or
(b) (s,t) & E(S5), then there exists a path of length>

1 such that(s, s1), (s1,82),..., (sn,t) € &(S).
Due to Property 6 in Definition 2yS.C' € L(s;)
forall1 <14 < n,and we hav& € L(t).

In both cases, we have by inductiore C7, hences €
(vS.C)T.

an ALCT p+-conceptD can be used as a decision procedure
for the satisfiability of D. Such an algorithm will now be
described in detail.

The tableaux algorithm works azompletion trees This
is a tree where each nodeof the tree is labelled with a set
L(xz) C sul D) and each edgér, y) is labelledl ({(z, y)) =
R for some (possibly inverse) rolg occurring insub(D).
Edges are added when expandi®@.C' and3R~.C terms;

they correspond to relationships between pairs of individuals
and are always directed from the root node to the leaf nodes.

The algorithm expands the tree either by extendifg) for
some node: or by adding new leaf nodes.

For a noder, L(x) is said to contain &lashif, for some
concept’, {C,-C} C L(z).

If nodesz andy are connected by an edge, y), theny
is called asuccessoof x andz is called apredecessoof y;
ancestoltis the transitive closure gfredecessor

A nodey is called anR-neighbourof a nodez if eithery
is a successor af andL((z,y)) = R ory is a predecessor
of z andL((y, z)) = Inv(R).

A nodez is blockedif for some ancestoy, y is blocked
or L(z) = L(y). A blocked noder is indirectly blocked



if its predecessor is blocked, otherwise idisectly blocked

If = is directly blocked, it has a unique ancesjosuch that
L(z) = L(y): if there existed another ancestosuch that
L(x) L(z) then eithery or z must be blocked. I

is directly blocked and; is the unique ancestor such that
L(z) = L(y), we will say thaty blocksz.

The algorithm initialises a tre® to contain a single node
xo, called theroot node, withL(z) = {D}, whereD is the
concept to be tested for satisfiabilit¥. is then expanded by
repeatedly applying the rules from Figure 3.

The completion tree isompletewhen for some node,
L(z) contains a clash or when none of the rules is applica- 2.
ble. If, for an input concepD, the expansion rules can be
applied in such a way that they yield a complete, clash-free 3
completion tree, then the algorithm returrs is satisfiablé,
and “D is unsatisfiabl&otherwise.

1.

4.
4.2 Soundness and Completeness

The soundness and completeness of the algorithm will be
demonstrated by proving that, for ahZC7Z +-conceptD,

it always terminates and that it retursatisfiableif and only

if D is satisfiable.

Lemma 2 For eachALCZ r+-conceptD, the tableaux algo-
rithm terminates.

Proof: Letm = |sul(D)|. Obviously,m is linear in the
length of D. Termination is a consequence of the following
properties of the expansion rules:

1. The expansion rules never remove nodes from the tree
or concepts from node labels.

. Successors are only generated for existential value re-
strictions (concepts of the forehR.C), and for any node
each of these restrictions triggers the generation of at
most one successor. Sinsel(D) contains at mostn
existential value restrictions, the out-degree of the tree 6.
is bounded byn.

Nodes are labelled with nonempty subsetsuf( D).

If a pathp is of length at leasR™, then there are 2

nodesz,y on p, with L(z) = L(y), and blocking oc-

curs. Since a path on which nodes are blocked cannot

become longer, paths are of length at ni23%t ]
Together with Lemma 1, the following lemma implies

soundness of the tableaux algorithm.

7.

Lemma 3 If the expansion rules can be applied to an
ALCT r+-conceptD such that they yield a complete and
clash-free completion tree, thén has a tableau.

Proof: Let T be the complete and clash-free tree con-
structed by the tableaux algorithm fé&r. A tableauT =

(S, L, &) can be defined with:

S ={« | z is anode ifT that is not blocke},
E(R)={(z,y) €S xS |
1.y is anR-neighbour ofz or
2.L({z,z)) = R andy blocksz or
3.L({y,z)) = Inv(R) andz blocksz},

and it can be shown thdt is a tableau foD:

D € L(z) for the rootz, of T and, asty has no pre-
decessors, it cannot be blocked. Hedees L(s) for
somes € S.

Property 1 of Definition 2 is satisfied becaddes clash-
free.

. Properties 2 and 3 of Definition 2 are satisfied because

neither then-rule nor the l-rule apply to any: € S.

Property 4 in Definition 2 is satisfied because for:adl

S, if YVR.C € L(z) and(z,y) € E(R) then either:

(a) x is anR-neighbour ofy,

(b) L({z,2)) = R, y blocksz, from theV-rule C' €
L(z), L(y) = L(z), or

(c) L({y,2)) = Inv(R), z blocksz, L(z) = L(z), so
from theV-ruleC € L(y).

In all 3 cases, th¥-rule ensures that' € L(y).

. Property 5 in Definition 2 is satisfied because foradl

S, if 3R.C € L(x), then thed-rule ensures that there is
either:

(a) a predecessagrsuch thatl((y,z)) = Inv(R) and
C € L(y). Becausey is a predecessor af it can-
not be blocked, sg € S and(y, z) € E(R).

(b) a successoy such thatl({z,y)) = R andC €
L(y). If y is not blocked, theny € S and(z,y) €

E(R). Otherwise,y is blocked by some: with
L(z) = L(y). HenceC € L(z), z € S and
(z,2) € E(R).

Property 6 in Definition 2 is satisfied because for:adl

S, if VR.C € L(z), (z,y) € E(R), andTrans(R), then

either:

(a) x is anR-neighbour ofy,

(b) L((z,2)) = R,y blocksz, andL(y) = L(z), or

() Ly, z)) = Inv(R), = blocks z, hencel(z)
L(z) andVR.C € L(z).

In all 3 cases, th¥ -rule ensures thatR.C' € L(y).

Property 7 in Definition 2 is satisfied because for each

(z,y) € E(R), either:

(&) =z is an R-neighbour ofy, soy is an Inv(R)-
neighbour ofr and(y, z) € E(Inv(R)).

(b) L({z,2)) = R andy blocks z, so L((z,z})
Inv(Inv(R)) and(y, z) € E(Inv(R)).

() L({y,2)) = Inv(R) andz blocks z, so (y,z)
E(Inv(R)).

m



then, for some&' € {Cy,Cs}, L(z) — L(z)U{C}

then create a new nodewith L((z,y)) = S andL(y) = {C}

MN-rule: if1. Gy NCy € L(z), z is not indirectly blocked, and
2. {01,02} z L(Q)’)
U-rule: if1. Cy U Cy € L(z), z is not indirectly blocked, and
2. {01,02} N L(.’E) = @
J-rule: if1. 3S.C € L(z), = is not blocked, and
2. z has naoS-neighboury with C' € L(y):
V-rule: if 1. VS.C € L(x), z is not indirectly blocked, and
2. there s arb-neighboury of z with C' ¢ L(y)
Vi-rule: if 1. VS.C € L(x), Trans(S), z is not indirectly blocked, and
2. there s arb-neighboury of 2 with VS.C ¢ L(y)

then L(z) — L(z) U {Cy,Cs}

then L(y) — L(y) U {C}

then L(y) — L(y) U{VS.C}

Figure 3: Tableaux expansion rules f4LCZ p+

Lemma 4 If D has a tableau, then the expansion rules can

It is easy to see that, if a tréE was generated using the

be applied in such a way that the tableaux algorithm yields amodified expansion rules, then the expansion rules can be ap-

complete and clash-free completion tree for

Proof: LetT = (S, L, &) be a tableau foD. UsingT, we

plied in such a way that they yield. Hence Lemma 3 and
Lemma 2 still apply, and thus using th&-rule instead of the
L-rule preserves soundness and termination.

trigger the application of the expansion rules such that they We will now show by induction that, if. (z) C L(7(z))

yield a completion treél that is both complete and clash-
free. We start withl' consisting of a single node, the root,
with L(zo) = {D}.

T is atableau, hence there is sospec S with D € L(s9).
When applying the expansion rulesTy the application of
the non-deterministicl-rule is driven by the labelling in the
tableau7". To this purpose, we define a mappingwvhich
maps the nodes & to elements 08, and we steer the appli-
cation of thell-rule such thal(z) C L(n(z)) holds for all
nodesr of the completion tree.

More precisely, we define inductively as follows:

e 7(xo) = sp.

o If w(x;) = s; is already defined, and a succesgaf
x; was generated fatR.C' € L(z;), thenr(y) = ¢ for
somet € Swith C € L(t) and(s;,t) € E(R).

To make sure that we havg(z;) C L(r(z;)), we use the
LI'-rule given in Figure 4 instead of therule.

W'-rule:if 1.C; U Cy € L(x),
x is not indirectly blocked, and
2. {Cl, 02} N L(%) = 0
thenL(z) — L(z) U {C} for some
C e {C,C}NL(r(x))

Figure 4: The'-rule

The expansion rules given in Figure 3 with therule re-
placed by the I'-rule are callednodifiedexpansion rules in
the following.

holds for all nodesz in T, then the application of an ex-
pansion rule preserves this subset-relation. To start with, we
clearly have{D} = L(xo) C L(so).

If the M-rule can be appliedtoin TwithC =C, M Cs €
L(z), thenCy, C; are added tdl(z). SinceT is a tableau,
{C1,C5} C L(w(x)), and hence the-rule preserve& (z) C
L(n(z)).

If the L'-rule can be applied te in T with C = C; U
Cy € L(z), thenC € {C,Cs} is in L(w(x)), andC is
added toL(z) by thel/'-rule. Hence thel'-rule preserves
L(x) C L(n(x)).

If the 3-rule can be applied to in T with C' = 3AR.C; €
L(x), thenC € L(w(x)) and there is some € S with
(m(z),ty € ER) andC; € L(t). The 3I-rule creates a
new successoy of z for which 7(y) = t for somet with
C, € L(t). Hence we havé (y) = {C1} C L(n(y)).

If the V-rule can be applied to in T with C' = VR.C; €
L(z) andy is an R-neighbour ofz, then (n(z),n(y)) €
E(R), and thusCy € L(w(y)). TheV-rule addsC to L(y)
and thus preserves(z) C L(m(z)).

If the V_-rule can be applied to in T with C' = VR.C} €
L(z), Trans(R) and y being anR-neighbour ofz, then
(m(z),7(y)) € E(R), and thusvR.Cy € L(n(y)). TheV,-
rule add<”; to L(y) and thus preserves(y) C L(n(y)).

Summing up, the tableau-construction triggeredibter-
minates with a complete tree, and singér) C L(n(z))
holds for all nodeg in T, T is clash-free due to Property 1

of Definition 2. n

Theorem 1 The tableaux algorithm is a decision procedure
for the satisfiability and subsumption dfLC7 r+-concepts.



Theorem 1is animmediate consequence of the Lemmata Definition 5 Given a completion tree, a nodeis called an
2, 3, and 4. Moreover, sincdLCZ g+ is closed under nega- R-neighbourof a nodez if either y is a successor of and
tion, subsumptior C D can be reduced to unsatisfiability £((z,y)) = S or y is a predecessor af andL({y,z)) =
of C M =D. Inv(S) for someS with S E R.

5 ALCZx+ Extended by Role Hierarchies In the following, the tableaux algorithm resulting from
these modifications will be called thmodified tableaux al-

We will now extend the tableaux algorithm presented ingorithm Due to this definition and the reflexivity ok, the
Section 4.1 to deal withiole hierarchiesin a similar way V. -rule extends th¥, -rule.

to the algorithm for ALCHp+ presented inHorrocks & To prove that the modified tableaux algorithm is indeed
Gough,199%.  ALCHTp+ extendsALCTx+ by allowing, 5 decision procedure for the satisfiability GECCHT -
additionally, for inclusion axioms on roles. These axioms carsoncepts, all 4 technical lemmata used in Section 4.2 to prove
involve transitive as well as non-transitive roles, and inversgnis fact for the A LCT p+ tableaux algorithm have to be re-
roles as well as role names. For example, to express thatigoven forALCHT g+ . In the following, we will restrict our
role B is symmetric, we add the two axion#s C ™ and  attention to cases that differ from those already considered for
R™LCR. ALCT e .

Definition 3 A role inclusion axioms of the form Lemma 5 An ALCHT n+-conceptD is satisfiable iff there

exists a tableau fob.
RCS,
¢ iblv i | q Proof: For theif direction, the construction of a model of
or two (possibly mver.se) ro e an S. N D from a tableau foD is similar to the one presented in the
For a set of role inclusion axiom®&, R* := (R U pro0f of Lemma 1. IfT = (S,L, &) is a tableau foD with

{Inv(R) C Inv(S) | RC S € R}, &) is called arole hier- D € L(so), amodelZ = (AZ,.T) of D can be defined as
archy, where [ is the transitive-reflexive closure af over

follows:

R U{Inv(R)CInv(S) | RC S € R}.

ALCHI p+ is the extension ofALCT p+ obtained by al- AT =8
lowing, additionally, for a role hierarchig *. for all concept named in sul(D)

As well as being correct forALCZr+ concepts, an AT = {s|AeL(s)}
ALCHZ R+ interpretation has to satisfy, for all rolgs, S E(R)* if Trans(R)
with R £ S, the additional condition RT = E(R)U U P otherwise

P ER,P#R

(z,y) € RT implies(z,y) € S7. ) ) N ) o
The interpretation of non-transitive roles is recursive in or-
The tableaux algorithm given in the preceding section carfler to correctly interpret those non-transitive roles that have
easily be modified to decide satisfiability ofCCHZp+- @ transitive sub-role.. From the defmmon & and Prop-
concepts by extending the definitions of bathneighbours €ty 8 of a tableau it follows that ifz,y) € S7, then ei-
and thev.,-rule to include the notion of role hierarchies. To ther(z,y) € £(S) or there exists a patfs, s1), (s1,52), .. .,

prove the soundness and correctness of the extended algid: 1) € E(I2) for someR with Trans(R) andf ES.
rithm, the definition of a tableau is also extended. Property 8 of a tableau ensures tiit C S* holds for all

roles withR £ S, including those cases whefgis a transi-
tive role. Again, it can be shown by induction on the structure
of concepts that is a correct interpretation. We restrict our
attention to the only case that is different from the ones in the
proof of Lemma 1. LeE € sul(D).

Definition 4 As well as satisfying Definition 2 (i.e., being
a valid ALCT g+ tableau), a tableal’ = (S,4,¢&) for an
ALCHT r+-conceptD must also satisfy:

6. if VS.C € L(s) and(s,t) € E(R) for someR & S with 7 )
Trans(R), thenVR.C € L(1), 6. If E = (VS.C)and(s,t) € S*, then either

8. if (z,y) € &(R) andR ES, then(z, 1) € £(S), (@) (s,t) € £(S) andC’ € L(?), or

(b) (s,t) & E(9), then there exists a path of length>
1such that(s, s1), (s1, s2), ..., {(sn,t) € E(R) for
someR with Trans(R) and R £S. Due to Prop-

! . .
For theALCHT r+ algorithm, thev . -rule is replaced with E;tyfd WZC; € L(si) forall 1 < i < n, and we
theV’_-rule (see Figure 5) and the definitionBfneighbours veC € L(1).
is extended as follows: In both cases, we havec C7.

where Property 6extends and supersedes Property 6 from
Definition 2.



V' -rule: if 1.

VS.C € L(z), z is notindirectly blocked, and
2. thereis somé& with Trans(R) andR £ S,
3. thereis amR-neighboury of x with VR.C ¢ L(y)

thenl(y) — L(y) U{VR.C}

Figure 5: The new -rule for ACCHZ g +.

For the converse, if = (A”,.7) is a model ofD, then a
tableaul’ = (S, L, &) for D is defined like the one defined in
the proof of Lemma 1.

It remains to demonstrate thAtis a tableau foD:

1. T satisfies properties 1-5 in Definition 2 as a direct con-

sequence of the semantics4dLCHZ r+-concepts.

2. Ifd € (vS.0)T and(d,e) € RT for R with Trans(R)
andRES, thene € (VR.C)T unless there is somg
such that(e, f) € RT andf ¢ CZ. In this case, if
(d,e) € RT, (e, f) € RT andTrans(R), then(d, f) €
RT. Hence(d, f) € ST andd ¢ (V¥S.C)T—in con-
tradiction of the assumptiorT. therefore satisfies Prop-
erty 6 in Definition 4.

3. SinceT is a model ofD, (z,y) € RT implies(z,y) €
ST for all roles R, S with R £S. HenceT satisfies
Property 8 in Definition 4. ]

Lemma 6 For each ALCHZr+-conceptD, the modified
tableaux algorithm terminates.

Proof: Identical to the one given for Lemma 2.

Lemma 7 If the expansion rules can be applied to an Lemma 8 If ACCHT
ALCHT r+-conceptD such that they yield a complete and ALCHT g+

clash-free completion tree, thén has a tableau.

(a) x is anS-neighbour ofy,
(b) for some role withR = S, either
i. L({(z,z)) = R,y blocksz, hence from th&-rule
C € L(z),andL(y) = L(z), or
i. L((y,2)) = Inv(R), z blocksz, hencel(z) =
L(z) and therefolk/S.C € L(z).
In all cases, th&-rule ensure€’ € L(y).

4. Property 6’ in Definition 4 is satisfied because for all
xz € S,ifVS.C € L(z), (x,y) € E(R) for someR with
Trans(R) andR E S, then either:

(a) y is anR-neighbour ofz, or
(b) there is some rol&' with R' C R and
i. L((z,z)) = R, yblocksz andL(y) = L(z), or
i. L((y,2)) = Inv(R), = blocksz andL(z) =
L(z), hence&vS.C € L(z).

In all three casesyR.C' € L(y) follows from theV’, -
rule.

5. Property 8 in Definition 4 follows immediately from the
definition of €. ]

-conceptD has a tableau, then the
expansion rules can be applied in such a way that the tab-
leaux algorithm yields a complete and clash-free completion

Proof: The definition of a tableau from a complete and €€ forD.

clash-free completion tree, as presented in the proof of

Lemma 3, has to be slightly modified. A tabledu =
(S, L, &) is now defined with:

S = {z | z is a node inT that is not blockel
£(S) = {(z,y) €S x S|
1. y is anS-neighbour ofr  or
2. There exists a rol® with R = S and
a. L((z,z)) = R andy blocksz or
b. L({y, z)) = Inv(R) andz blocksz}

and, again, it is shown thdt is a tableau foiD:

1. Since the expansion rules were started viifx,) =
{D}, D € L(zo) for somez, € S.

The proof of Lemma 8 is identical to the one presented
for Lemma 4. Again, summing up, we have the following
theorem.

Theorem 2 The modified tableaux algorithm is a deci-
sion procedure for the satisfiability and subsumption of
ALCHT p+-concepts.

5.1 General Concept Inclusion Axioms

In [Baader,1991; Schild,1991; Baadet al, 1993, the in-
ternalisationof terminological axioms is introduced. This
technique is used to reduce reasoning with respect to a (pos-
sibly cyclic) terminologyto satisfiability of concepts. In
[Horrocks & Gough,1997 we saw how role hierarchies can

2. Properties 1-3, 5 and 7 in Definition 2 are identical t0pq iseq to reduce satisfiability and subsumption with respect

the proof of Lemma 3.

3. Property 4 in Definition 2 is satisfied because forradl
S, if VS.C € L(z) and(z,y) € E(S) then either:

to a terminology to concept satisfiability and subsumption. In
the presence of inverse roles, this reduction must be slightly
modified.



Definition 6 A terminology7 is a finite set of general con- Theorem 3 The modified tableaux algorithm is a decision
cept inclusion axioms, procedure for satisfiability and subsumptionLCHZ z+-
concepts with respect to terminologies.
T={C, CDy,...,C,CD,},

whereC;, D; are arbitraryd LCHT r+-concepts. An inter-
pretationZ is said to be a model of iff CZ C DI holdsfor ~ We intend to extend the logic with functional roles. Func-
all C; T D; € T. C is satisfiable with respect tp iff there  tional roles are useful, not only for the representation of ag-
is a modelZ of 7 with CT # (. Finally, D subsumes§’ with gregated objects, but also in general because they provide a
respect to7 (C T+ D) iff for each modelZ of 7 we have  weak form of number restrictions.
ct c DT, The combination of a role hierarchy with transitive, con-
verse and functional roles adds a further level of complexity
The following lemma shows how general concept inclu-pecause satisfiable concepts are no longer guaranteed to have

sion axioms can b&ternalisedusing a “universal” rold/.  (nossibly cyclical) finite modelgSchild,1991. An example
This roleU is a transitive super-role of all relevant roles and of such a concept is:

their respective inverses. Hence, for each interpretafion

each individuak reachable via some role path from another -CnN3iF .CNvYR .3F".C)

individual s is anU”-successor of. All general concept in-

clusion axioms”; C D; in T are propagated along all role whereF' is functional,R is transitive andF’ is a sub-role of

paths using the value restricti®f/.—C' U D. R. Any model of this concept must have an infinite sequence
of F'~ successors, each satisfyiGgand3F—.C, thedF—.C

Lemma 9 Let 7 be terminology and”, D be ALCHI +- term being propagated along the sequence by the transitive

6 Future work

concepts and let super-roleR. Attempting to terminate the sequence in a cy-
cle causes the model to collapse into a single node due the

Cr = -C; U D;. functionality of 7, and this leads to an obvious contradiction

CiLDieT as the node label will contain bot and—C.
LetU be a transitive role withR C U, Inv(R) C U for each This problem can be overcome by “unravelling” cyclical
role R that occurs in7,C, or D. models to generate infinite models in which blocked nodes

ThenC is satisfiable with respect tp iff are replaced by copies of the blocking node and its sub-tree.
However, to guarantee that local correctness is preserved by
CnCrnyU.Cr the copying process, both the predecessor of a blocked node

) o ) and the role which connects it to its predecessor, must be the
is satisfiable.D subsume€’ with respect to7 (C' E7 D) same as those of the blocking node. If this is not the case,
then concepts in the label of the blocking node which were
satisfied by its predecessor may no longer be satisfied when it
Cn-Dncrnvu.Cr is copied onto the blocked node. To ensure that this condition
is met, a further enhancementto the blocking strategy must be
introduced. Instead of considering single nodes, the enhanced
Remark: Instead of defining/ as a transitive super-role of strategy, called pair-wise blocking, considers pairs of nodes
all roles and their respective inverses, one could have definethd the role which connects them, only establishing a block
U as a transitive super-role of all roles and, additionally, awhen a matching node-role-node pattern is found.
symmetric role by adding C U~ andU~ C U. The complexity of satisfiability and subsumption of these
The proof of Lemma 9 is similar to the ones that can benew extensions aflLCH r+ is another open problem. From
found in[Schild,1991; Baader,19900ne point to show is results in[Sattler,199§ it follows that these problems are
that, if an ALCHT r+-concep( is satisfiable with respectto ExpTime-hard for ACCHZ r+ and PSpace-complete for
a terminology7, thenC, T have aconnectednodel, namely ALCgr+. Whether these problems are still RSpace for
one whose individuals are all related to each other by somelLCZ g+ is an open question.
role path. This follows from the definition of the semantics of ~ Although ALCHT g+ and ALC with the transitive closure
ALCHT r+-concepts. The other point to proof is thatyifs ~ and inverse roles are boixpTime-hard, there are two hints
reachable fromx: via a role path (possibly involving inverse why ALCHZ g+ should have better computational proper-
roles), thenz,y) € UZ, which is an easy consequence of theties thanA£C with the transitive closure and inverse roles:
definition of U. First, the tableaux algorithm fadLCHZ p+ does not have
Decidability of satisfiability and subsumption with respectan equivalent of the cut rule—a rule which is strongly re-
to a terminology is an immediate consequence of Lemma 8ponsible for the bad computational behaviourddiC with
and Theorem 2. the transitive closure and inverse roles. Intuitively, when a

iff

is unsatisfiable.
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