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1 Introdu
tion

Des
ription Logi
s (DLs) are formalisms for representing

and reasoning about 
on
eptual knowledge. There ex-

ist several extensions of DLs for an appropriate integra-

tion of temporal knowledge [4℄. This paper investigates

the relation between the two DLs T L-ALCF [2, 3℄ and

ALCF(D) [10, 8℄. T L-ALCF is an interval-based, tem-

poral DL for reasoning about obje
ts whose properties

vary over time. ALCF(D) is a logi
 for integrated rea-

soning about 
on
eptual and so-
alled 
on
rete knowl-

edge. If instantiated with a \temporal" 
on
rete do-

main, ALCF(D) is well-suited for reasoning about tem-

poral obje
ts, i.e., obje
ts whi
h have a unique temporal

extension.

This paper is a �rst attempt to 
larify the relation-

ship between these two formalisms. It is showed that

satis�ability of T L-ALCF 
on
epts 
an be redu
ed to

satis�ability of ALCF(D) 
on
epts. This allows to use

the available ALCF(D) tableau 
al
ulus for reasoning

with T L-ALCF . Furthermore, it allows to settle the


omplexity of satis�ability of T L-ALCF 
on
epts, whi
h

was previously unknown.

The paper is organized as follows. Se
tions 2 and 3

introdu
e the syntax and semanti
s of the two temporal

DLs. In Se
tion 4, a normal form for T L-ALCF 
on
epts

is introdu
ed. Based on this normal form, the redu
tion

of satis�ability of T L-ALCF 
on
epts to satis�ability of

ALCF(D) 
on
epts is given.

2 The Logi
 T L-ALCF

The language T L-ALCF [3℄ is 
omposed of the interval-

based temporal logi
 TL and the non-temporal des
rip-

tion logi
 ALCF . The logi
 TL is able to represent

temporal 
onstraint networks based on Allen's relations,

and to relate ALCF 
on
ept expressions with time in-

tervals in these networks. T L-ALCF 
on
epts (denoted

by C;D) are built following the syntax rules in Figure 1.

Throughout this paper, we use C and D to denote tem-

poral 
on
epts, E and F for non-temporal 
on
epts, f

for non-parametri
 features, ?g for parametri
 features,

TL C;D ! E j C uD j C�X j C[Y ℄�X j 3(X)T
.C

T
 ! (X (r) Y ) j (X (r) ℄) j (℄ (r) Y )

T
 ! T
 j T
 T


r; s ! r , s j s j mi j f j : : :

X; Y ! x j y j z j : : :

X ! X j X X

ALCF E;F ! A j :E j E u F j E t F j 8R.E j 9R.E j

p : E j p#q j p"q j p "

p; q ! f j ?g j p Æ q

Figure 1: Syntax rules for T L-ALCF

p for paths, and R for roles (all possibly with index).

The ? symbol is not intended as an operator, but only

used to distinguish parametri
 from non-parametri
 fea-

tures. For the basi
 temporal interval relations, Allen's

notation [1℄ is used: before (b), meets (m), during (d),

overlaps (o), starts (s), �nishes (f), equal (=), after (a),

met-by (mi), 
ontains (di), overlapped-by (oi), started-by

(si), and �nished-by (�). Temporal variables are intro-

du
ed by the temporal existential quanti�er \3". The

spe
ial temporal variable ℄, usually 
alled NOW, is in-

tended as the referen
e interval.

T L-ALCF is provided with a Tarski-style extensional

semanti
s. A linear, unbounded, and dense temporal

stru
ture T = (P ; <) is assumed, where P is a set of time

points and < is a stri
t partial order on P . The interval

set of a stru
ture T is de�ned as the set T

?

<

of all 
losed

proper intervals [u; v℄

:

= fx 2 P j u � x � v; u 6= vg

in T . A primitive interpretation I

:

= hT

?

<

;�

I

; �

I

i 
on-

sists of a set T

?

<

(the interval set of the sele
ted temporal

stru
ture T ), a set �

I

(the domain of I), and a fun
-

tion �

I

(the primitive interpretation fun
tion of I) whi
h

gives a meaning to atomi
 
on
epts, roles, features and

parametri
 features:

A

I

� T

?

<

��

I

; R

I

� T

?

<

��

I

��

I

;

f

I

: (T

?

<

��

I

)

partial

7�! �

I

; ?g

I

: �

I

partial

7�! �

I

Parametri
 features di�er from features for being inde-

pendent from time.

The temporal interpretation fun
tion �

E

de�ned in the



(s)

E

= fh[u; v℄; [u

1

; v

1

℄i 2 T

?

<

� T

?

<

j u = u

1

^ v < v

1

g

: : : (similarly for the other Allen relations)

(r, s)

E

= r

E

[ s

E

hX;T
i

E

= fV : X 7! T

?

<

j 8(X (R) Y ) 2 T
. hV(X);V(Y )i 2 (R)

E

g

A

I

V;t;H

= fa 2 �

I

j ht; ai 2 A

I

g = A

I

t

(:C)

I

V;t;H

= �

I

n C

I

V;t;H

(C uD)

I

V;t;H

= C

I

V;t;H

\D

I

V;t;H

(8R.C)

I

V;t;H

= fa 2 �

I

j 8b.(a; b) 2 R

I

t

) b 2 C

I

V;t;H

g

(p#q)

I

V;t;H

= fa 2 dom p

I

t

\ dom q

I

t

j p

I

t

(a) = q

I

t

(a)g

(p : C)

I

V;t;H

= fa 2 dom p

I

t

j p

I

t

(a) 2 C

I

V;t;H

g

(C�X)

I

V;t;H

= C

I

V;V(X);H

(C[Y ℄�X)

I

V;t;H

= C

I

V;t;H[fY 7!V(X)g

(3(X)T
.C)

I

V;t;H

= fa 2 �

I

j

9W. W 2 hX;T
i

E

H[f℄7!tg

^ a 2 C

I

W;t;;

g

R

I

t

=

^

R

t

��

I

��

I

j 8a; b. ha; bi 2

^

R

t

$ ht; a; bi 2 R

I

f

I

t

=

^

f

t

: �

I

partial

7�! �

I

j

8a. (a 2 dom

^

f

t

$ ht; ai 2 dom f

I

) ^

^

f

t

(a)

(p Æ q)

I

t

= p

I

t

Æ q

I

t

?g

I

t

= ?g

I

Figure 2: The T L-ALCF semanti
s.

upper half of Figure 2 depends only on the temporal

stru
ture T . A labeled dire
ted graph hX;T
i, where X

is a of variables representing the nodes and T
 is a set

of temporal 
onstraints representing the ar
s, is 
alled

temporal 
onstraint network. An interpretation of a tem-

poral 
onstraint network is a set of variable assignments

that satisfy the temporal 
onstraints. A variable assign-

ment is a fun
tion V : X 7! T

?

<

asso
iating an interval to

a temporal variable. A temporal 
onstraint network is


onsistent if it admits a non empty interpretation. The

notation hX;T
i

E

fx

1

7!t

1

;x

2

7!t

2

;:::g

, used to interpret 
on-


ept expressions, denotes the subset of hX;T
i

E

where

the variable x

i

is mapped to the interval value t

i

.

An interpretation fun
tion �

I

V;t;H

for generi
 
on
epts,

based on a variable assignment V , an interval t, and a

set of 
onstraints H = fx

1

7! t

1

; : : : g over the assign-

ments of free variables, extends the primitive interpre-

tation fun
tion in su
h a way that the equations of Fig-

ure 2 are satis�ed { operators that 
an be obtained by

negation are omitted. Intuitively, the interpretation of

a 
on
ept C

I

V;t;H

is the set of elements of the domain

whi
h are of type C at the time interval t, with the as-

signment for the free temporal variables in C given by

V (
.f. the de�nition of (C�X)

I

V;t;H

) and with the 
on-

straints for the assignment of variables in the s
ope of

the outermost temporal quanti�ers given by H. The

natural interpretation fun
tion C

I

t

, being equivalent to

the interpretation fun
tion C

I

V;t;H

with any V su
h that

V(℄) = t, and H = ;, is introdu
ed as an abbreviation.

An interpretation I is a model for a 
on
ept C if, for

some t 2 T

?

<

, C

I

t

6= ;. If a 
on
ept has a model, then it

is satis�able, otherwise it is unsatis�able.

We will now informally dis
uss the intended meaning

of T L-ALCF 
on
epts. Con
ept expressions are inter-

preted over pairs of temporal intervals and individuals

hi; ai, meaning that the individual a is in the extension

of the 
on
ept at the interval i. Within a 
on
ept ex-

pression, the spe
ial \℄" variable denotes the 
urrent in-

terval of evaluation. The temporal existential quanti�er

\3" introdu
es interval variables, related to ea
h other

and possibly to the ℄ variable in a way de�ned by the

set of temporal 
onstraints. To evaluate a 
on
ept at an

interval X di�erent from the 
urrent one, we need to

temporally qualify it at X (written C�X); in this way,

every o

urren
e of ℄ in the 
on
ept expression C is inter-

preted as the X variable. Please 
onsider the following

example from the blo
ks world domain whi
h de�nes a


on
ept representing the a
tion of sta
king a blo
k on

top of another blo
k.

Basi
-Sta
k

:

= 3(x y)(x meets ℄)(℄ meets y).

((?BLOCK : OnTable)�x u (?BLOCK : OnBlo
k)�y)

Basi
-Sta
k denotes any a
tion o

urring at some in-

terval involving a ?BLOCK that was on
e OnTable and

then OnBlo
k. The ℄ interval 
ould be understood as

the o

urring time of the sta
king a
tion. The temporal


onstraints (x m ℄) and (℄ m y) state that the interval

V(x) should meet the interval V(℄) { the o

urren
e in-

terval of the a
tion type Basi
-Sta
k { and that V(℄)

should meet V(y). The parametri
 feature ?BLOCK plays

the role of formal parameter of the a
tion, mapping any

individual a
tion of type Basi
-Sta
k to the blo
k to

be sta
ked, independently from time. Whereas the ex-

isten
e and identity of the ?BLOCK of the a
tion is time

invariant, it 
an be in the extension of di�erent 
on
epts

in di�erent intervals of time, e.g., the ?BLOCK is ne
es-

sarily OnTable only during the interval V(x).

3 The Logi
 ALCF(A)

Des
ription logi
s represent knowledge on an abstra
t,

logi
al level. So-
alled 
on
rete domains provide a means

to additionally represent \
on
rete information" su
h as,

e.g., numbers or time intervals, and allow for integrated

reasoning about both kinds of knowledge. In [6℄, the

basi
 des
ription logi
 in
orporating 
on
rete domains,

ALC(D), is introdu
ed. The logi
ALCF(D) [10℄ extends

ALC(D) by agreement and disagreement on features.

Similar to ALC(D), an \admissible" 
on
rete domain D

yields de
idability of ALCF(D). Before ALCF(D) is in-

trodu
ed, the de�nition of 
on
rete domains is re
alled.

De�nition 3.1. A 
on
rete domain D is a pair

(�

D

;�

D

), where �

D

is a set 
alled the domain, and �

D

is a set of predi
ate names. Ea
h predi
ate name P in

�

D

is asso
iated with an arity n and an n-ary predi
ate

P

D

� �

n

D

. A 
on
rete domain D is 
alled admissible i�

(1) the set of its predi
ate names is 
losed under negation



and 
ontains a name >

D

for �

D

and (2) the satis�ability

problem for �nite 
onjun
tions of predi
ates is de
idable.

The syntax of ALCF(D) is obtained from the syntax

of ALCF as given in Figure 1 by adding an additional

syntax rule for the predi
ate operator:

E;F ! 9p

1

; : : : ; p

n

:P

where P 2 �

D

is an n-ary predi
ate name, and

p

1

; : : : ; p

n

are paths.

An ALCF(D) interpretation I = (�

I

; �

I

) 
onsists of

a set �

I

(the abstra
t domain) whi
h is disjoint from

�

D

and an interpretation fun
tion �

I

. The interpreta-

tion fun
tion maps ea
h 
on
ept name C to a subset C

I

of �

I

, ea
h role name R to a subset R

I

of �

I

� �

I

,

and ea
h feature name f to a partial fun
tion f

I

from

�

I

to �

D

[ �

I

. Parametri
 features are identi
al to

non-parametri
 features w.r.t their ALCF(D) interpre-

tation. If p = f

1

� � � f

k

is a feature 
hain, then p

I

is

de�ned as the 
omposition f

I

1

Æ� � �Æf

I

k

of the partial fun
-

tions f

I

1

; : : : ; f

I

k

. Ea
h 
omplex 
on
ept is interpreted as

usual (i.e., as in Figure 2 with the temporal indi
es omit-

ted) while the new predi
ate operator has the following

meaning:

(9p

1

; : : : ; p

n

:P)

I

= fa 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

:

(a; x

1

) 2 p

I

1

^ � � � ^ (a; x

n

) 2 p

I

n

^ (x

1

; : : : ; x

n

) 2 P

D

g

In this paper, we 
onsider the logi
 ALCF(A), i.e.,

ALCF(D) instantiated with the temporal 
on
rete do-

main A. The 
on
rete domain A is based on intervals

and Allen's relations (hen
e the name \A"). Formally,

A is de�ned as (�

A

;�

A

), where �

A

is the interval set

T

?

<

as de�ned in Se
tion 2, and �

A


ontains:

� the unary predi
ates >

A

;?

A

denoting �

A

and ;.

� 13 binary predi
ates b;m; d; : : : 
orresponding

to Allen's 13 basi
 relations. The extensions

b

A

;m

A

; d

A

; : : : are de�ned analogously to the in-

terpretation of Allen's relations by (�)

E

in Figure 2.

� a binary predi
ate r

1

- � � � -r

k

for ea
h disjun
tion r

1

_

� � � _ r

k

of Allen relations r

1

; : : : ; r

k

in
luding the

empty disjun
tion empty-rel. The extension of a

disjun
tive predi
ate (r

1

- � � � -r

k

)

A

is r

A

1

[ � � � [ r

A

k

;

furthermore, empty-rel

A

= ; � ;.

In [8℄, it is proved that the 
on
rete domain A is ad-

missible and that satis�ability of ALCF(A) 
on
epts is

PSpa
e-
omplete.

In the framework of ALCF(A), a basi
 sta
k a
tion

similar to the one in Se
tion 2 
an be de�ned as follows:

Basi
-Sta
k

:

= step

1

: (BLOCK : OnTable) u

step

2

: (BLOCK : OnBlo
k) u

9(step

1

Æ time); (step

℄

Æ time):m u

9(step

℄

Æ time); (step

2

Æ time):m

The 
on
ept states that any Basi
-Sta
k is related to

three obje
ts via the features step

1

; step

2

; and step

℄

.

These obje
ts des
ribe the basi
 sta
k a
tion at di�erent

time intervals { with step

℄

representing the o

urring

time of the a
tion, often 
alled the \
urrent" interval.

For ea
h step, a 
orresponding time interval is asso
i-

ated by the time feature. The relation between these

time intervals is des
ribed using the predi
ate operator

and resembles the temporal network in the T L-ALCF

de�nition of the basi
 sta
k.

Comparing the two de�nitions of Basi
-Sta
k, their

main di�eren
e 
an be 
hara
terized as follows: In the

T L-ALCF de�nition, the basi
 sta
k is represented by

a single logi
al obje
t whi
h is \temporal", i.e., whose

properties are de�ned separately for ea
h temporal inter-

val. To the 
ontrary, in ALCF(A), the basi
 sta
k is rep-

resented by a logi
al \meta-obje
t" (the Basi
-Sta
k

obje
t itself in the above 
on
ept de�nition) and a set of

additional logi
al obje
ts ea
h of whi
h has unique prop-

erties and represents the basi
 sta
k at a unique time in-

terval. A redu
tion from T L-ALCF to ALCF(A), as de-

�ned in the next Se
tion, has to bridge this dis
repan
y.

Furthermore, it has to 
apture the temporal invarian
e

of parametri
 features. The basi
 sta
k as de�ned above

is not to be intended as a translation of the T L-ALCF

Basi
-Sta
k.

4 A Tableau for SAT in T L-ALCF

The logi
 ALCF(A) is provided with a sound and 
om-

plete tableau 
al
ulus whi
h is optimal w.r.t. worst 
ase


omplexity [10℄. To obtain a tableau 
al
ulus and estab-

lish 
omplexity results for T L-ALCF , we will build on

the ALCF(A) 
al
ulus. This se
tion shows how to re-

du
e satis�ability of T L-ALCF 
on
epts to satis�ability

of ALCF(A) 
on
epts.

As a starting point for the redu
tion to be devised,

we do not 
onsider arbitrary T L-ALCF 
on
epts but

only those in a 
ertain normal form. In [3℄, it is shown

that every T L-ALCF 
on
ept 
an be redu
ed to an

equivalent 
on
ept in existential form, i.e., of the form

3(X)T
.Q

0

u Q

1

�X

1

u : : : uQ

n

�X

n

. In the existential

form, the only temporal operator that may o

urr is a

single \3" operator, while ea
h Q

i

is an ALCF 
on
ept.

The normal form for a T L-ALCF 
on
ept is obtained

by starting from its existential form, and then applying

simple form, and path expli
itation steps.

De�nition 4.1 (Normal form). Given a 
on
ept in

existential form, its Normal Form (NF) is obtained by

sequentially applying the following tranformations.

(Simple Form) Transform ea
h Q

i

into the equivalent

simple form following the rewrite rules reported in [7℄.

A 
on
ept in simple form 
ontains only 
omplements of

the form :A, where A is a primitive 
on
ept, and no



sub-
on
epts of the form p ", where p is a path with

length greater than one. This 
orresponds to a �rst order

formula in negation normal form.

(Path Expli
itation) Apply the following normaliza-

tion rules whi
h make expli
it all the possible 
hains of

features.

p : (C uD)! p : C u p : D p : (C tD)! p : C t p : D

p : (q : C)! (p Æ q) : C p : (q

1

#q

2

)! p Æ q

1

#p Æ q

2

p : (q

1

"q

2

)! p Æ q

1

"p Æ q

2

For example, the normal form of the ALCF 
on
ept

p : (q : C u :f : D) is p Æ q : C u (p : f " t p Æ f : :D).

(note that the simple form of :f : D is f " tf : :D).

Proposition 4.2 (Equivalen
e of NF). Every 
on-


ept C 
an be redu
ed into an equivalent 
on
ept in nor-

mal form.

In the following, a satis�ability preserving translation

	 from T L-ALCF 
on
epts in NF to ALCF(A) 
on-


epts is given. Let 
 denote features (parametri
 or

non-parametri
). Given a T L-ALCF 
on
ept C in nor-

mal form, i.e., 3(X)T
.Q

0

uQ

1

�X

1

u: : :uQ

n

�X

n

, 	(C)

is obtained as follows:

1. Let T
 be f(X

1

r

1

Y

1

); : : : ; (X

k

r

k

Y

k

)g and let

f

0

; : : : ; f

n

be features not used in C. The mapping �

from T L-ALCF temporal 
onstraints to ALCF(A)


on
epts is de�ned as follows:

�(X

i

r X

j

) = 9(f

i

Æ time); (f

j

Æ time).r

�(X

i

r ℄) = 9(f

i

Æ time); (f

0

Æ time).r

�(℄ r X

i

) = 9(f

0

Æ time); (f

i

Æ time).r

De�ne C

T

as �(X

1

r

1

Y

1

) u : : : u �(X

k

r

k

Y

k

).

2. Let Path be the set of paths used in the 
on
ept

C. For ea
h 0 � i � n, the mapping �

i

: Path !

Path [ ff

i

g, with f

i

as introdu
ed in Point 1, is

de�ned in Figure 3.

3. For ea
h 0 � i � n, the mapping 	

i

whi
h maps

ALCF 
on
epts in normal form to ALCF 
on
epts

in normal form is de�ned in Figure 3.

4. Let ?g

0

; : : : ; ?g

m

be the parametri
 features used in

C. De�ne C

F

as

m

u

i=0

((u

n

j=0

f

j

Æ ?g

i

") t (u

n

j=1

(f

0

Æ ?g

i

)#(f

j

Æ ?g

i

))):

5. De�ne two 
on
epts 
 and 


0

as follows:


 = f

0

: 	

0

(Q

0

) u : : : u f

n

: 	

n

(Q

n

)




0

= u

0�i<j�n

(9(f

i

Æ time); (f

j

Æ time): =)! f

i

: 	

i

(Q

j

)

where E ! F is an abbreviation for :E t F .

We are now ready to assemble the 
on
ept 	(C):

	(C) = C

F

u C

T

u 
 u 


0

�

i

(
) := 


�

i

(
 Æ ?g Æ p) := 
 Æ �

i

(?g Æ p)

�

i

(
 Æ f Æ p) := 
 Æ f

i

Æ �

i

(f Æ p)

	

i

(A) := A

	

i

(:A) := : 	

i

(A)

	

i

(?g ") := ?g "

	

i

(f ") := f "

	

i

(D u E) := 	

i

(D) u 	

i

(E)

	

i

(D t E) := 	

i

(D) t 	

i

(E)

	

i

(p : D) :=

(

�

i

(p) : 	

i

(D) if D = ?g "

�

i

(p) Æ f

i

: 	

i

(D) otherwise

	

i

(p#q) := �

i

(p)#�

i

(q)

	

i

(p " q) := �

i

(p) " �

i

(q)

	

i

(9R.D) := 9R.	

i

(D)

	

i

(8R.D) := 8R.	

i

(D)

Figure 3: De�nition of �

i

(p) and 	

i

(Q) mappings.

The main idea behind the redu
tion has already been

dis
ussed at the end of Se
tion 3: A (temporal) obje
t

o, whi
h is in the extension of a T L-ALCF 
on
ept C,

is re
e
ted by a \meta-obje
t" o

0

and a set of obje
ts

O

0

= fo

0

0

; : : : ; o

0

n

g on the ALCF(A) side, where ea
h o

0

i

represents o

0

at a di�erent time interval. The features

f

0

; : : : ; f

i

are introdu
ed during the translation in order

to relate o

0

with the obje
ts in O

0

(o

0

i

is an f

i

-�ller of

o

0

for 0 � i � n). Ea
h obje
t in O

0

has a unique time

interval asso
iated via the time feature. The obje
t o

0

0

represents o at the 
urrent time interval. The 
on
ept

C

T

ensures that the temporal relations between the asso-


iated intervals are as de�ned by the temporal 
onstraint

network hX;T
i. Additional 
are has to be taken in or-

der to deal 
orre
tly with parametri
 features. Sin
e

they are time-independent, it has to be assured that all

ALCF(A) obje
ts in O

0

have identi
al �llers of paramet-

ri
 features. This is done by the C

F


on
ept together

with the mappings 	

i

and �

i

. Furthermore, it is possi-

ble that di�erent obje
ts in O

0

are asso
iated with the

same interval. In this 
ase, they both des
ribe the obje
t

o at the same time interval, and, hen
e, should be iden-

ti
al w.r.t. 
on
ept membership. The 
on
ept 


0

ensures

this.

As an example, the translation of the Basi
-Sta
k


on
ept as introdu
ed in Se
tion 2 is given.

	(Basi
-Sta
k)

:

=

f

0

Æ ?BLOCK#f

1

Æ ?BLOCK u

f

0

Æ ?BLOCK#f

2

Æ ?BLOCK u

9(f

1

Æ time); (f

0

Æ time):m u

9(f

0

Æ time); (f

2

Æ time):m u

f

1

: ?BLOCK Æ f

1

: OnTable u



f

2

: ?BLOCK Æ f

2

: OnBlo
k u

(9(f

0

Ætime); (f

1

Ætime): =)! f

0

: ?BLOCK Æ f

1

: OnTable u

(9(f

0

Ætime); (f

2

Ætime): =)! f

0

: ?BLOCK Æ f

2

: OnBlo
k u

(9(f

1

Ætime); (f

2

Ætime): =)! f

1

: ?BLOCK Æ f

2

: OnBlo
k

The following proposition, together with the next the-

orem, shows the main result of this paper.

Proposition 4.3. The ALCF(A) 
on
ept 	(C ) is sat-

is�able if and only if the T L-ALCF 
on
ept C is satis-

�able.

A proof of this proposition 
an be found in [5℄. As al-

ready noted in Se
tion 3, satis�ability of ALCF(A) 
on-


epts is a PSpa
e-
omplete problem [8℄. Together with

the redu
tion given above, the following theorem is an

obvious 
onsequen
e.

Theorem 4.4. Satis�ability of T L-ALCF 
on
epts is

PSpa
e-
omplete.

Proof: The redu
tion given above proves that satis-

�ability of T L-ALCF 
on
epts is in PSpa
e. Sin
e

T L-ALCF 
ontains ALC as a proper fragment, it is also

PSpa
e-hard and hen
e PSpa
e-
omplete. 2

Please note that in [3℄, another PSpa
e-
ompleteness re-

sult for the satis�ability of T L-ALCF 
on
epts is given

(Proposition 7.5). It does, however, only apply to 
on-


epts in the so-
alled 
ompleted existential form. The

problem with this result is that 
onverting a T L-ALCF


on
ept to this normal form involves 
onverting it to dis-

jun
tive normal form whi
h results in the worst 
ase in

an exponential blowup in size.

5 Con
lusion

We have presented a redu
tion of the satis�ability of

T L-ALCF 
on
epts to the satis�ability of ALCF(A)


on
epts. This allows to use tableau based algorithms

for reasoning with T L-ALCF . Furthermore, it allows

to identify the satis�ability of T L-ALCF 
on
epts as a

PSpa
e-
omplete problem.

For the redu
tion, we 
onsidered plain 
on
epts with-

out referen
e to TBoxes. From the results in [9℄, it fol-

lows that satis�ability of T L-ALCF 
on
epts w.r.t. sim-

ple TBoxes is NExpTime-hard.

1

It is, however, yet to

be proven that it is also in NExpTime.

A
tually 
omputing the given redu
tion is a polyno-

mial problem. In fa
t, we 
onsider it very likely that

eÆ
ient implementations of the redu
tion 
an be found.

As future work, we plan to extend the redu
tion to the

subsumption and ABox 
onsisten
y problem. This is not

1

This refers to a
y
li
 TBoxes where the left-hand sides

are unique and 
omprised of atomi
 
on
epts, only. It also

follows from results in [9℄ that T L-ALCF extended by general

TBoxes (GCIs) yields a logi
 for whi
h 
on
ept satis�ability

is unde
idable.

a trivial task sin
e full negation is not available in the

temporal part of the logi
 T L-ALCF .
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