A Correspondence between Temporal Description Logics

Alessandro Artale
ITC-IRST
Povo (TN), I
artale@irst.itc.it

1 Introduction

Description Logics (DLs) are formalisms for representing
and reasoning about conceptual knowledge. There ex-
ist several extensions of DLs for an appropriate integra-
tion of temporal knowledge [4]. This paper investigates
the relation between the two DLs TL-ALCF [2, 3] and
ALCF(D) [10, 8]. TL-ALCF is an interval-based, tem-
poral DL for reasoning about objects whose properties
vary over time. ALCF (D) is a logic for integrated rea-
soning about conceptual and so-called concrete knowl-
edge. If instantiated with a “temporal” concrete do-
main, ALCF(D) is well-suited for reasoning about tem-
poral objects, i.e., objects which have a unique temporal
extension.

This paper is a first attempt to clarify the relation-
ship between these two formalisms. It is showed that
satisfiability of 7 L-ALCF concepts can be reduced to
satisfiability of ALCF (D) concepts. This allows to use
the available ALCF(D) tableau calculus for reasoning
with TL-ALCF. Furthermore, it allows to settle the
complexity of satisfiability of T £L-ALCF concepts, which
was previously unknown.

The paper is organized as follows. Sections 2 and 3
introduce the syntax and semantics of the two temporal
DLs. In Section 4, a normal form for 7 £-ALCF concepts
is introduced. Based on this normal form, the reduction
of satisfiability of 7 L-ALCF concepts to satisfiability of
ALCF (D) concepts is given.

2 The Logic TL-ALCF

The language 7 L-ALCF [3] is composed of the interval-
based temporal logic 7L and the non-temporal descrip-
tion logic ALCF. The logic TL is able to represent
temporal constraint networks based on Allen’s relations,
and to relate ALCF concept expressions with time in-
tervals in these networks. TL-ALCF concepts (denoted
by C, D) are built following the syntax rules in Figure 1.
Throughout this paper, we use C' and D to denote tem-
poral concepts, E and F' for non-temporal concepts, f
for non-parametric features, xg for parametric features,

Carsten Lutz
LuFG Theoretical Computer Science
RWTH Aachen, DE

clu@cantor.informatik.rwth-aachen.de

7L C,D — E|CnND|CexX |c[y]ax | oX)E.C
T = (XM Y)[(X()H|E@r)Y)
T —» T|RT
rs — r g s|s|mi|f]|...
XY — x|ylz]|...
X - X|XX
ALCF E,F — A|-E|ENF|EUF|VYR.E|3R.E|
p:E|plg|ptg|pt
p,a =  flxglpog

Figure 1: Syntax rules for 7 L-ALCF

p for paths, and R for roles (all possibly with index).
The x symbol is not intended as an operator, but only
used to distinguish parametric from non-parametric fea-
tures. For the basic temporal interval relations, Allen’s
notation [1] is used: before (b), meets (m), during (d),
overlaps (0), starts (s), finishes (f), equal (=), after (a),
met-by (mi), contains (di), overlapped-by (oi), started-by
(si), and finished-by (fi). Temporal variables are intro-
duced by the temporal existential quantifier “&”. The
special temporal variable §, usually called NOW, is in-
tended as the reference interval.

TL-ALCF is provided with a Tarski-style extensional
semantics. A linear, unbounded, and dense temporal
structure 7 = (P, <) is assumed, where P is a set of time
points and < is a strict partial order on P. The interval
set of a structure 7 is defined as the set 7 of all closed
proper intervals [u,v] = {x € P | u < z < v,u # v}
in 7. A primitive interpretation T = (T*,Az,-%) con-
sists of a set T (the interval set of the selected temporal
structure T), a set Az (the domain of 7), and a func-
tion -Z (the primitive interpretation function of T) which
gives a meaning to atomic concepts, roles, features and
parametric features:

AT CT: xAz; RT C T2 x Az x Ag;
FP(T2 x An) "S5 Az wg” Az PES AL
Parametric features differ from features for being inde-

pendent from time.
The temporal interpretation function - defined in the



(s)g = {([u,v],[ur,n1]) ETE X T2 |u=u1 Av < v}
... (similarly for the other Allen relations)
(ry ) =rfust
(X, B ={V:X =T | V(X (R)Y)ET. (V(X),V(Y)) € (R}

AL ={a €Az (t,a) e AT} = AT
(_'O)\IJ,t,H = AT \ C\I).t.'H
(cn D)\Ij,t,H =Cy,unN D\I;,t,H
(VR.C) ;.3 = {a € Az | Vb.(a,b) € Rf = b€ECT, 5}
(pd0)3 s, = {a € dompf N domg} | p} (a) = g¢f ()}
(p:C)%,u = {a €domp] | pf(a) € CF, 5}
(COX)T 1 = C%vix)n

(CB/]L@X)\I“,H =% muiyovix)
(O(X)VEC)T 5 = {a € Az |
- = i
IVW € (XY, g0y A0 E Coyeol
RT = RiCAzxAz | VYa,b. (a,b) € Ry ¢ (t,a,b) € RT
FE = Az PR AL
Va. (a € dom f; < (t,a) € dom fT) A fi(a)
(poa)y =pioaf

*gp = *g”

Figure 2: The T £L-ALCF semantics.

upper half of Figure 2 depends only on the temporal
structure 7. A labeled directed graph (X,7¢), where X
is a of variables representing the nodes and T is a set
of temporal constraints representing the arcs, is called
temporal constraint network. An interpretation of a tem-
poral constraint network is a set of variable assignments
that satisfy the temporal constraints. A variable assign-
ment is a function V : X = T* associating an interval to
a temporal variable. A temporal constraint network is
consistent if it admits a non empty interpretation. The

notation (X, )7, ./, zyests,.y» used to interpret con-

cept expressions, denotes the subset of (X,7¢)¢ where
the variable x; is mapped to the interval value ¢;.

An interpretation function WIJ,LH for generic concepts,
based on a variable assignment V, an interval ¢, and a
set of constraints H = {x1 — ti,...} over the assign-
ments of free variables, extends the primitive interpre-
tation function in such a way that the equations of Fig-
ure 2 are satisfied — operators that can be obtained by
negation are omitted. Intuitively, the interpretation of
a concept O%,t,H is the set of elements of the domain
which are of type C at the time interval ¢, with the as-
signment for the free temporal variables in C' given by
V (c.f. the definition of (C@X); , ,,) and with the con-
straints for the assignment of variables in the scope of
the outermost temporal quantifiers given by 7. The
natural interpretation function CF, being equivalent to
the interpretation function 01%71:,7{ with any V such that
V() =t, and H = 0, is introduced as an abbreviation.
An interpretation 7 is a model for a concept C' if, for
some t € T, CI # 0. If a concept has a model, then it
is satisfiable, otherwise it is unsatisfiable.

We will now informally discuss the intended meaning
of TL-ALCF concepts. Concept expressions are inter-
preted over pairs of temporal intervals and individuals
(i,a), meaning that the individual @ is in the extension
of the concept at the interval ;. Within a concept ex-
pression, the special “f” variable denotes the current in-
terval of evaluation. The temporal existential quantifier
“O” introduces interval variables, related to each other
and possibly to the f variable in a way defined by the
set of temporal constraints. To evaluate a concept at an
interval X different from the current one, we need to
temporally qualify it at X (written CQX); in this way,
every occurrence of § in the concept expression C'is inter-
preted as the X variable. Please consider the following
example from the blocks world domain which defines a
concept representing the action of stacking a block on
top of another block.

Basic-Stack = O(z y)(x meets £)(f meets y).
((*BLOCK : OnTable)@x M (xBLOCK : OnBlock)@Qy)

Basic-Stack denotes any action occurring at some in-
terval involving a *BLOCK that was once OnTable and
then OnBlock. The { interval could be understood as
the occurring time of the stacking action. The temporal
constraints (z m f) and (§ m y) state that the interval
V(z) should meet the interval V(f) — the occurrence in-
terval of the action type Basic-Stack — and that V(i)
should meet V(y). The parametric feature xBLOCK plays
the role of formal parameter of the action, mapping any
individual action of type Basic-Stack to the block to
be stacked, independently from time. Whereas the ex-
istence and identity of the *xBLOCK of the action is time
invariant, it can be in the extension of different concepts
in different intervals of time, e.g., the xBLOCK is neces-
sarily OnTable only during the interval V(z).

3 The Logic ALCF(A)

Description logics represent knowledge on an abstract,
logical level. So-called concrete domains provide a means
to additionally represent “concrete information” such as,
e.g., numbers or time intervals, and allow for integrated
reasoning about both kinds of knowledge. In [6], the
basic description logic incorporating concrete domains,
ALC(D), is introduced. The logic ALCF (D) [10] extends
ALC(D) by agreement and disagreement on features.
Similar to ALC(D), an “admissible” concrete domain D
yields decidability of ALCF (D). Before ALCF(D) is in-
troduced, the definition of concrete domains is recalled.

Definition 3.1. A concrete domain D is a pair
(Ap,®p), where Ap is a set called the domain, and ®p
is a set of predicate names. Each predicate name P in
®p is associated with an arity n and an n-ary predicate
PP C A%. A concrete domain D is called admissible iff
(1) the set of its predicate names is closed under negation



and contains a name Tp for Ap and (2) the satisfiability
problem for finite conjunctions of predicates is decidable.

The syntax of ALCF(D) is obtained from the syntax
of ALCF as given in Figure 1 by adding an additional
syntax rule for the predicate operator:

E,F — dp1,...,pn.P

where P € ®p is an n-ary predicate name, and
Pi1,--- ,Pp are paths.

An ALCF(D) interpretation T = (Az,-L) consists of
a set Az (the abstract domain) which is disjoint from
Ap and an interpretation function -Z. The interpreta-
tion function maps each concept name C to a subset C'7
of Az, each role name R to a subset RT of Az x Az,
and each feature name f to a partial function fZ from
A7 to Ap U Az. Parametric features are identical to
non-parametric features w.r.t their ACLCF (D) interpre-
tation. If p = fy---f1 is a feature chain, then p? is
defined as the composition f7o---of7 of the partial func-
tions f7,... ,f%. Each complex concept is interpreted as
usual (i.e., as in Figure 2 with the temporal indices omit-
ted) while the new predicate operator has the following
meaning:
(Ap1,.. ., pn-P)E ={a € Az | 3z1,...,2, € Ap:

(a,z1) € pT A--- A(a,zn) € PEA (z1,...,2,) € PP}

In this paper, we consider the logic ALCF(A), i.e.,
ALCF (D) instantiated with the temporal concrete do-
main A. The concrete domain A is based on intervals
and Allen’s relations (hence the name “A”). Formally,
A is defined as (A4, P4), where A4 is the interval set
T2 as defined in Section 2, and ®4 contains:

e the unary predicates T 4, L4 denoting A4 and 0.

e 13 binary predicates b,m,d,... corresponding
to Allen’s 13 basic relations. The extensions
b4, m4, d4,... are defined analogously to the in-
terpretation of Allen’s relations by (-)¢ in Figure 2.

e a binary predicate ry----- ri, for each disjunction ry V
-+ V rp of Allen relations ry,...,r; including the
empty disjunction empty-rel. The extension of a
disjunctive predicate (ri----- ) is it U U
furthermore, empty-rel* = § x 0.

In [8], it is proved that the concrete domain A is ad-
missible and that satisfiability of ALCF(A) concepts is
PSPACE-complete.

In the framework of ALCF(A), a basic stack action
similar to the one in Section 2 can be defined as follows:

Basic-Stack = step, : (BLOCK : OnTable) M
step, : (BLOCK : OnBlock) N
I(step; o time), (stepﬁ o time).m Il
El(stepﬁ otime), (stepy o time).m

The concept states that any Basic-Stack is related to
three objects via the features step,,step,,and stepy.
These objects describe the basic stack action at different
time intervals — with stepy representing the occurring
time of the action, often called the “current” interval.
For each step, a corresponding time interval is associ-
ated by the time feature. The relation between these
time intervals is described using the predicate operator
and resembles the temporal network in the 7L-ALCF
definition of the basic stack.

Comparing the two definitions of Basic-Stack, their
main difference can be characterized as follows: In the
TL-ALCF definition, the basic stack is represented by
a single logical object which is “temporal”, i.e., whose
properties are defined separately for each temporal inter-
val. To the contrary, in ALCF(A), the basic stack is rep-
resented by a logical “meta-object” (the Basic-Stack
object itself in the above concept definition) and a set of
additional logical objects each of which has unique prop-
erties and represents the basic stack at a unique time in-
terval. A reduction from 7L-ALCF to ALCF(A), as de-
fined in the next Section, has to bridge this discrepancy.
Furthermore, it has to capture the temporal invariance
of parametric features. The basic stack as defined above
is not to be intended as a translation of the TL-ALCF
Basic-Stack.

4 A Tableau for SAT in T L-ALCF

The logic ALCF(A) is provided with a sound and com-
plete tableau calculus which is optimal w.r.t. worst case
complexity [10]. To obtain a tableau calculus and estab-
lish complexity results for 7L-ALCF, we will build on
the ALCF(A) calculus. This section shows how to re-
duce satisfiability of 7 L-ALCF concepts to satisfiability
of ACCF(A) concepts.

As a starting point for the reduction to be devised,
we do not consider arbitrary 7 L-ALCF concepts but
only those in a certain normal form. In [3], it is shown
that every TL-ALCF concept can be reduced to an
equivalent concept in ezistential form, i.e., of the form
O(X)1.Qo M Q@XM ...MQ,QX,. In the existential
form, the only temporal operator that may occurr is a
single “O” operator, while each Q; is an ALCF concept.
The normal form for a 7L-ALCF concept is obtained
by starting from its existential form, and then applying
simple form, and path explicitation steps.

Definition 4.1 (Normal form). Given a concept in
existential form, its Normal Form (NF') is obtained by
sequentially applying the following tranformations.
(Simple Form) Transform each @); into the equivalent
simple form following the rewrite rules reported in [7].
A concept in simple form contains only complements of
the form —A, where A is a primitive concept, and no



sub-concepts of the form p 1, where p is a path with
length greater than one. This corresponds to a first order
formula in negation normal form.

(Path Explicitation) Apply the following normaliza-
tion rules which make explicit all the possible chains of
features.

p:(CND)—p:CNp:D p:(CUD)—>p:CUp:D

p:(q:C)—=(pogq):C p:(qilg2) > pogilpog

p:(nte) 2 poqtpog

For example, the normal form of the ALCF concept
p:(q:CN=f:D)ispoqg:CMN(p:fTUpof:=D).
(note that the simple form of —f : D is f 1 Uf : =D).

Proposition 4.2 (Equivalence of NF). Fvery con-
cept C can be reduced into an equivalent concept in nor-
mal form.

In the following, a satisfiability preserving translation
U from TL-ALCF concepts in NF to ALCF(A) con-
cepts is given. Let 7 denote features (parametric or
non-parametric). Given a 7L-ALCF concept C in nor-
mal form, i.e., O(X)7.QoMNQ1 QX M...NQ,QX,, ¥(C)
is obtained as follows:

1. Let TC be {(Xl 1 Yl),...,(Xk Tk Yk)} and let
fo,- .-, fn befeatures not used in C'. The mapping «
from TL-ALCF temporal constraints to ALCF(A)
concepts is defined as follows:

a(X; r X;) = 3(f; o time), (f; o time).r

a(X; r i) = 3(fi otime), (fo o time).r

a(fr X;) = 3(fo o time), (fi o time).r
Define Cr as a(X1 r1 Y1) M ... Ma(Xy g V).

2. Let Path be the set of paths used in the concept
C. For each 0 < i < n, the mapping ®; : Path —
Path U {f;}, with f; as introduced in Point 1, is
defined in Figure 3.

3. For each 0 < ¢ < n, the mapping ¥; which maps
ALCF concepts in normal form to ALCF concepts
in normal form is defined in Figure 3.

4. Let *gg, - .., *gm be the parametric features used in
C. Define CF as

FT (M50 5 0590 1) U (M (fo 0 %00) L(Fy 0 %90)).

5. Define two concepts Q and Q' as follows:

Q=1fo:T0(Qo)M...M fn: T, (Qn)
Q'= [ 3(fi o time), (f; o time). =) — fi : Wi(Q;)

0<i<j<n

where E — F is an abbreviation for —F U F.
We are now ready to assemble the concept ¥(C'):

U(C)=CrpnCrnQng

(7)==
®;(yoxgop):=vyo®;(xgop)
®i(yo fop):=~ofiodi(fop)

T;(A):=A
U;(~A) := -~ T;(4)
Pi(xg 1) :=xg 1
Ti(f1) =11
U, (DN E) :=%¥;(D) N ¥;(E)
;(DUE) :=¥;(D) U ¥;(E)
Vi(p: D) ::{ if(p):‘l’i@)_ if D =g
i(p)o fi : ¥;(D) otherwise
U;(plq) :i= ®i(p)l ®i(q)
Ti(p1q) == ®i(p) T Pi(q)
¥;(3R.D) := IR.V,(D)
U;(YR.D) := YR.¥;(D)

Figure 3: Definition of ®;(p) and ¥;(Q)) mappings.

The main idea behind the reduction has already been
discussed at the end of Section 3: A (temporal) object
o, which is in the extension of a T L-ALCF concept C,
is reflected by a “meta-object” o' and a set of objects
O ={og,...,0,} on the ALCF(A) side, where each o}
represents o' at a different time interval. The features
fo,---, fi are introduced during the translation in order
to relate o' with the objects in O’ (o} is an f;-filler of
o' for 0 < i < n). Each object in O’ has a unique time
interval associated via the time feature. The object o]
represents o at the current time interval. The concept
C'r ensures that the temporal relations between the asso-
ciated intervals are as defined by the temporal constraint
network (X,7¢). Additional care has to be taken in or-
der to deal correctly with parametric features. Since
they are time-independent, it has to be assured that all
ALCF(A) objects in O" have identical fillers of paramet-
ric features. This is done by the Cr concept together
with the mappings ¥; and ®;. Furthermore, it is possi-
ble that different objects in O’ are associated with the
same interval. In this case, they both describe the object
o at the same time interval, and, hence, should be iden-
tical w.r.t. concept membership. The concept €2’ ensures
this.

As an example, the translation of the Basic-Stack
concept as introduced in Section 2 is given.

¥ (Basic-Stack) =
fo o *BLOCK| f1 o xBLOCK I
fo o *BLOCK| f> o xBLOCK I
3A(f1 o time), (fo © time).m 1
A(fo o time), (f2 o time).m 1
f1 : xBLOCK o f; : OnTable I



f2 : *BLOCK o f5 : OnBlock I

(footime), (fiotime). =) — fo : xBLOCK o fi : OnTable I
(footime), (footime). =) — fo : xBLOCK o f> : OnBlock I
A(frotime), (footime). =) — f1 : xBLOCK o f> : OnBlock

L L

(
(
(

The following proposition, together with the next the-
orem, shows the main result of this paper.

Proposition 4.3. The ALCF (A) concept ¥(C) is sat-
isfiable if and only if the TL-ALCF concept C is satis-
fiable.

A proof of this proposition can be found in [5]. As al-
ready noted in Section 3, satisfiability of ALCF(A) con-
cepts is a PSPACE-complete problem [8]. Together with
the reduction given above, the following theorem is an
obvious consequence.

Theorem 4.4. Satisfiability of TL-ALCF concepts is
PSPACE-complete.

Proof: The reduction given above proves that satis-
fiability of TL-ALCF concepts is in PSPACE. Since
T L-ALCF contains ALC as a proper fragment, it is also
PSpace-hard and hence PSPACE-complete. O

Please note that in [3], another PSPACE-completeness re-
sult for the satisfiability of T L-ALCF concepts is given
(Proposition 7.5). It does, however, only apply to con-
cepts in the so-called completed existential form. The
problem with this result is that converting a 7 £L-ALCF
concept to this normal form involves converting it to dis-
junctive normal form which results in the worst case in
an exponential blowup in size.

5 Conclusion

We have presented a reduction of the satisfiability of
TL-ALCF concepts to the satisfiability of ALCF(A)
concepts. This allows to use tableau based algorithms
for reasoning with 7£-ALCF. Furthermore, it allows
to identify the satisfiability of TL-ALCF concepts as a
PSPACE-complete problem.

For the reduction, we considered plain concepts with-
out reference to TBoxes. From the results in [9], it fol-
lows that satisfiability of 7 £-ALCF concepts w.r.t. sim-
ple TBoxes is NEXPTIME-hard.! It is, however, yet to
be proven that it is also in NEXPTIME.

Actually computing the given reduction is a polyno-
mial problem. In fact, we consider it very likely that
efficient implementations of the reduction can be found.
As future work, we plan to extend the reduction to the
subsumption and ABox consistency problem. This is not

!This refers to acyclic TBoxes where the left-hand sides
are unique and comprised of atomic concepts, only. It also
follows from results in [9] that 7 £- ALCF extended by general
TBoxes (GCIs) yields a logic for which concept satisfiability
is undecidable.

a trivial task since full negation is not available in the
temporal part of the logic T L-ALCF.

Acknowledgements The work presented in this pa-
per was partially supported by the “Foundations of
Data Warehouse Quality” (DWQ) European ESPRIT
IV Long Term Research (LTR) Project 22469.

References

[1] J.F. Allen. Temporal reasoning and planning. In
James F. Allen, Henry A. Kautz, Richard N. Pelavin,
and Josh D. Tenenberg, editors, Reasoning about
Plans, chapter 1, pages 2—68. Morgan Kaufmann,
San Mateo, California, 1991.

[2] A. Artale and E. Franconi. A computational account
for a description logic of time and action. In J.Doyle,
E.Sandewall, and P.Torasso, editors, Proc. of the 4 t"
KR, pages 3—14, Bonn, Germany, May 1994. Morgan
Kaufmann.

[3] A. Artale and E. Franconi. A temporal description
logic for reasoning about actions and plans. Journal
of Artificial Intelligence Research, 9:463-506, 1998.

[4] A. Artale and E. Franconi. Temporal description log-
ics. In L. Vila, P. van Beek, M. Boddy, M. Fisher,
D. M. Gabbay, A. Galton, and R. Morris, editors,
Handbook of Time and Temporal Reasoning in Arti-
ficial Intelligence. MIT Press, To appear.

[5] A. Artale and C. Lutz. A correspondence be-
tween temporal description logics. LTCS-Report 99-
10, LuFG Theoretical Computer Science, RWTH
Aachen, Germany, 1999.

[6] F.Baader and P. Hanschke. A scheme for integrating
concrete domains into concept languages. In Proc. of
the 12" IJCAI, pages 452-457, Sidney, Australia,
1991.

[7] B. Hollunder and W. Nutt. Subsumption algorithms
for concept languages. Technical Report RR-90-04,
DFKI, Saarbrucken, Germany, April 1990.

[8] C. Lutz. The complexity of reasoning with concrete
domains. LTCS-Report 99-01, LuFG Theoretical
Computer Science, RWTH Aachen, Germany, 1999.

[9] C. Lutz. On the complexity of terminological rea-
soning. LTCS-Report 99-04, LuFG Theoretical Com-
puter Science, RWTH Aachen, Germany, 1999.

[10] C. Lutz. Reasoning with concrete domains. In Proc.
of the 16" IJCAI, Stockholm, Sweden, July 31 —
August 6, 1999.

[11] P. van Beek and D.W. Manchak. The design and
experimental analysis of algorithms for temporal rea-

soning. Journal of Artificial Intelligence Research,
4:1-18, January 1996.



