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1 Introdution

Desription Logis (DLs) are formalisms for representing

and reasoning about oneptual knowledge. There ex-

ist several extensions of DLs for an appropriate integra-

tion of temporal knowledge [4℄. This paper investigates

the relation between the two DLs T L-ALCF [2, 3℄ and

ALCF(D) [10, 8℄. T L-ALCF is an interval-based, tem-

poral DL for reasoning about objets whose properties

vary over time. ALCF(D) is a logi for integrated rea-

soning about oneptual and so-alled onrete knowl-

edge. If instantiated with a \temporal" onrete do-

main, ALCF(D) is well-suited for reasoning about tem-

poral objets, i.e., objets whih have a unique temporal

extension.

This paper is a �rst attempt to larify the relation-

ship between these two formalisms. It is showed that

satis�ability of T L-ALCF onepts an be redued to

satis�ability of ALCF(D) onepts. This allows to use

the available ALCF(D) tableau alulus for reasoning

with T L-ALCF . Furthermore, it allows to settle the

omplexity of satis�ability of T L-ALCF onepts, whih

was previously unknown.

The paper is organized as follows. Setions 2 and 3

introdue the syntax and semantis of the two temporal

DLs. In Setion 4, a normal form for T L-ALCF onepts

is introdued. Based on this normal form, the redution

of satis�ability of T L-ALCF onepts to satis�ability of

ALCF(D) onepts is given.

2 The Logi T L-ALCF

The language T L-ALCF [3℄ is omposed of the interval-

based temporal logi TL and the non-temporal desrip-

tion logi ALCF . The logi TL is able to represent

temporal onstraint networks based on Allen's relations,

and to relate ALCF onept expressions with time in-

tervals in these networks. T L-ALCF onepts (denoted

by C;D) are built following the syntax rules in Figure 1.

Throughout this paper, we use C and D to denote tem-

poral onepts, E and F for non-temporal onepts, f

for non-parametri features, ?g for parametri features,

TL C;D ! E j C uD j C�X j C[Y ℄�X j 3(X)T.C

T ! (X (r) Y ) j (X (r) ℄) j (℄ (r) Y )

T ! T j T T

r; s ! r , s j s j mi j f j : : :

X; Y ! x j y j z j : : :

X ! X j X X

ALCF E;F ! A j :E j E u F j E t F j 8R.E j 9R.E j

p : E j p#q j p"q j p "

p; q ! f j ?g j p Æ q

Figure 1: Syntax rules for T L-ALCF

p for paths, and R for roles (all possibly with index).

The ? symbol is not intended as an operator, but only

used to distinguish parametri from non-parametri fea-

tures. For the basi temporal interval relations, Allen's

notation [1℄ is used: before (b), meets (m), during (d),

overlaps (o), starts (s), �nishes (f), equal (=), after (a),

met-by (mi), ontains (di), overlapped-by (oi), started-by

(si), and �nished-by (�). Temporal variables are intro-

dued by the temporal existential quanti�er \3". The

speial temporal variable ℄, usually alled NOW, is in-

tended as the referene interval.

T L-ALCF is provided with a Tarski-style extensional

semantis. A linear, unbounded, and dense temporal

struture T = (P ; <) is assumed, where P is a set of time

points and < is a strit partial order on P . The interval

set of a struture T is de�ned as the set T

?

<

of all losed

proper intervals [u; v℄

:

= fx 2 P j u � x � v; u 6= vg

in T . A primitive interpretation I

:

= hT

?

<

;�

I

; �

I

i on-

sists of a set T

?

<

(the interval set of the seleted temporal

struture T ), a set �

I

(the domain of I), and a fun-

tion �

I

(the primitive interpretation funtion of I) whih

gives a meaning to atomi onepts, roles, features and

parametri features:

A
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Parametri features di�er from features for being inde-

pendent from time.

The temporal interpretation funtion �

E

de�ned in the
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: : : (similarly for the other Allen relations)
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Figure 2: The T L-ALCF semantis.

upper half of Figure 2 depends only on the temporal

struture T . A labeled direted graph hX;Ti, where X

is a of variables representing the nodes and T is a set

of temporal onstraints representing the ars, is alled

temporal onstraint network. An interpretation of a tem-

poral onstraint network is a set of variable assignments

that satisfy the temporal onstraints. A variable assign-

ment is a funtion V : X 7! T

?

<

assoiating an interval to

a temporal variable. A temporal onstraint network is

onsistent if it admits a non empty interpretation. The

notation hX;Ti

E

fx

1

7!t

1

;x

2

7!t

2

;:::g

, used to interpret on-

ept expressions, denotes the subset of hX;Ti

E

where

the variable x

i

is mapped to the interval value t

i

.

An interpretation funtion �

I

V;t;H

for generi onepts,

based on a variable assignment V , an interval t, and a

set of onstraints H = fx

1

7! t

1

; : : : g over the assign-

ments of free variables, extends the primitive interpre-

tation funtion in suh a way that the equations of Fig-

ure 2 are satis�ed { operators that an be obtained by

negation are omitted. Intuitively, the interpretation of

a onept C

I

V;t;H

is the set of elements of the domain

whih are of type C at the time interval t, with the as-

signment for the free temporal variables in C given by

V (.f. the de�nition of (C�X)

I

V;t;H

) and with the on-

straints for the assignment of variables in the sope of

the outermost temporal quanti�ers given by H. The

natural interpretation funtion C

I

t

, being equivalent to

the interpretation funtion C

I

V;t;H

with any V suh that

V(℄) = t, and H = ;, is introdued as an abbreviation.

An interpretation I is a model for a onept C if, for

some t 2 T

?

<

, C

I

t

6= ;. If a onept has a model, then it

is satis�able, otherwise it is unsatis�able.

We will now informally disuss the intended meaning

of T L-ALCF onepts. Conept expressions are inter-

preted over pairs of temporal intervals and individuals

hi; ai, meaning that the individual a is in the extension

of the onept at the interval i. Within a onept ex-

pression, the speial \℄" variable denotes the urrent in-

terval of evaluation. The temporal existential quanti�er

\3" introdues interval variables, related to eah other

and possibly to the ℄ variable in a way de�ned by the

set of temporal onstraints. To evaluate a onept at an

interval X di�erent from the urrent one, we need to

temporally qualify it at X (written C�X); in this way,

every ourrene of ℄ in the onept expression C is inter-

preted as the X variable. Please onsider the following

example from the bloks world domain whih de�nes a

onept representing the ation of staking a blok on

top of another blok.

Basi-Stak

:

= 3(x y)(x meets ℄)(℄ meets y).

((?BLOCK : OnTable)�x u (?BLOCK : OnBlok)�y)

Basi-Stak denotes any ation ourring at some in-

terval involving a ?BLOCK that was one OnTable and

then OnBlok. The ℄ interval ould be understood as

the ourring time of the staking ation. The temporal

onstraints (x m ℄) and (℄ m y) state that the interval

V(x) should meet the interval V(℄) { the ourrene in-

terval of the ation type Basi-Stak { and that V(℄)

should meet V(y). The parametri feature ?BLOCK plays

the role of formal parameter of the ation, mapping any

individual ation of type Basi-Stak to the blok to

be staked, independently from time. Whereas the ex-

istene and identity of the ?BLOCK of the ation is time

invariant, it an be in the extension of di�erent onepts

in di�erent intervals of time, e.g., the ?BLOCK is nees-

sarily OnTable only during the interval V(x).

3 The Logi ALCF(A)

Desription logis represent knowledge on an abstrat,

logial level. So-alled onrete domains provide a means

to additionally represent \onrete information" suh as,

e.g., numbers or time intervals, and allow for integrated

reasoning about both kinds of knowledge. In [6℄, the

basi desription logi inorporating onrete domains,

ALC(D), is introdued. The logiALCF(D) [10℄ extends

ALC(D) by agreement and disagreement on features.

Similar to ALC(D), an \admissible" onrete domain D

yields deidability of ALCF(D). Before ALCF(D) is in-

trodued, the de�nition of onrete domains is realled.

De�nition 3.1. A onrete domain D is a pair

(�

D

;�

D

), where �

D

is a set alled the domain, and �

D

is a set of prediate names. Eah prediate name P in

�

D

is assoiated with an arity n and an n-ary prediate

P

D

� �

n

D

. A onrete domain D is alled admissible i�

(1) the set of its prediate names is losed under negation



and ontains a name >

D

for �

D

and (2) the satis�ability

problem for �nite onjuntions of prediates is deidable.

The syntax of ALCF(D) is obtained from the syntax

of ALCF as given in Figure 1 by adding an additional

syntax rule for the prediate operator:

E;F ! 9p

1

; : : : ; p

n

:P

where P 2 �

D

is an n-ary prediate name, and

p

1

; : : : ; p

n

are paths.

An ALCF(D) interpretation I = (�

I

; �

I

) onsists of

a set �

I

(the abstrat domain) whih is disjoint from

�

D

and an interpretation funtion �

I

. The interpreta-

tion funtion maps eah onept name C to a subset C

I

of �

I

, eah role name R to a subset R

I

of �

I

� �

I

,

and eah feature name f to a partial funtion f

I

from

�

I

to �

D

[ �

I

. Parametri features are idential to

non-parametri features w.r.t their ALCF(D) interpre-

tation. If p = f

1

� � � f

k

is a feature hain, then p

I

is

de�ned as the omposition f

I

1

Æ� � �Æf

I

k

of the partial fun-

tions f

I

1

; : : : ; f

I

k

. Eah omplex onept is interpreted as

usual (i.e., as in Figure 2 with the temporal indies omit-

ted) while the new prediate operator has the following

meaning:

(9p

1

; : : : ; p

n

:P)

I

= fa 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

:

(a; x

1

) 2 p

I

1

^ � � � ^ (a; x

n

) 2 p

I

n

^ (x

1

; : : : ; x

n

) 2 P

D

g

In this paper, we onsider the logi ALCF(A), i.e.,

ALCF(D) instantiated with the temporal onrete do-

main A. The onrete domain A is based on intervals

and Allen's relations (hene the name \A"). Formally,

A is de�ned as (�

A

;�

A

), where �

A

is the interval set

T

?

<

as de�ned in Setion 2, and �

A

ontains:

� the unary prediates >

A

;?

A

denoting �

A

and ;.

� 13 binary prediates b;m; d; : : : orresponding

to Allen's 13 basi relations. The extensions

b

A

;m

A

; d

A

; : : : are de�ned analogously to the in-

terpretation of Allen's relations by (�)

E

in Figure 2.

� a binary prediate r

1

- � � � -r

k

for eah disjuntion r

1

_

� � � _ r

k

of Allen relations r

1

; : : : ; r

k

inluding the

empty disjuntion empty-rel. The extension of a

disjuntive prediate (r

1

- � � � -r

k

)

A

is r

A

1

[ � � � [ r

A

k

;

furthermore, empty-rel

A

= ; � ;.

In [8℄, it is proved that the onrete domain A is ad-

missible and that satis�ability of ALCF(A) onepts is

PSpae-omplete.

In the framework of ALCF(A), a basi stak ation

similar to the one in Setion 2 an be de�ned as follows:

Basi-Stak

:

= step

1

: (BLOCK : OnTable) u

step

2

: (BLOCK : OnBlok) u

9(step

1

Æ time); (step

℄

Æ time):m u

9(step

℄

Æ time); (step

2

Æ time):m

The onept states that any Basi-Stak is related to

three objets via the features step

1

; step

2

; and step

℄

.

These objets desribe the basi stak ation at di�erent

time intervals { with step

℄

representing the ourring

time of the ation, often alled the \urrent" interval.

For eah step, a orresponding time interval is assoi-

ated by the time feature. The relation between these

time intervals is desribed using the prediate operator

and resembles the temporal network in the T L-ALCF

de�nition of the basi stak.

Comparing the two de�nitions of Basi-Stak, their

main di�erene an be haraterized as follows: In the

T L-ALCF de�nition, the basi stak is represented by

a single logial objet whih is \temporal", i.e., whose

properties are de�ned separately for eah temporal inter-

val. To the ontrary, in ALCF(A), the basi stak is rep-

resented by a logial \meta-objet" (the Basi-Stak

objet itself in the above onept de�nition) and a set of

additional logial objets eah of whih has unique prop-

erties and represents the basi stak at a unique time in-

terval. A redution from T L-ALCF to ALCF(A), as de-

�ned in the next Setion, has to bridge this disrepany.

Furthermore, it has to apture the temporal invariane

of parametri features. The basi stak as de�ned above

is not to be intended as a translation of the T L-ALCF

Basi-Stak.

4 A Tableau for SAT in T L-ALCF

The logi ALCF(A) is provided with a sound and om-

plete tableau alulus whih is optimal w.r.t. worst ase

omplexity [10℄. To obtain a tableau alulus and estab-

lish omplexity results for T L-ALCF , we will build on

the ALCF(A) alulus. This setion shows how to re-

due satis�ability of T L-ALCF onepts to satis�ability

of ALCF(A) onepts.

As a starting point for the redution to be devised,

we do not onsider arbitrary T L-ALCF onepts but

only those in a ertain normal form. In [3℄, it is shown

that every T L-ALCF onept an be redued to an

equivalent onept in existential form, i.e., of the form

3(X)T.Q

0

u Q

1

�X

1

u : : : uQ

n

�X

n

. In the existential

form, the only temporal operator that may ourr is a

single \3" operator, while eah Q

i

is an ALCF onept.

The normal form for a T L-ALCF onept is obtained

by starting from its existential form, and then applying

simple form, and path expliitation steps.

De�nition 4.1 (Normal form). Given a onept in

existential form, its Normal Form (NF) is obtained by

sequentially applying the following tranformations.

(Simple Form) Transform eah Q

i

into the equivalent

simple form following the rewrite rules reported in [7℄.

A onept in simple form ontains only omplements of

the form :A, where A is a primitive onept, and no



sub-onepts of the form p ", where p is a path with

length greater than one. This orresponds to a �rst order

formula in negation normal form.

(Path Expliitation) Apply the following normaliza-

tion rules whih make expliit all the possible hains of

features.

p : (C uD)! p : C u p : D p : (C tD)! p : C t p : D

p : (q : C)! (p Æ q) : C p : (q

1

#q

2

)! p Æ q

1

#p Æ q

2

p : (q

1

"q

2

)! p Æ q

1

"p Æ q

2

For example, the normal form of the ALCF onept

p : (q : C u :f : D) is p Æ q : C u (p : f " t p Æ f : :D).

(note that the simple form of :f : D is f " tf : :D).

Proposition 4.2 (Equivalene of NF). Every on-

ept C an be redued into an equivalent onept in nor-

mal form.

In the following, a satis�ability preserving translation

	 from T L-ALCF onepts in NF to ALCF(A) on-

epts is given. Let  denote features (parametri or

non-parametri). Given a T L-ALCF onept C in nor-

mal form, i.e., 3(X)T.Q

0

uQ

1

�X

1

u: : :uQ

n

�X

n

, 	(C)

is obtained as follows:

1. Let T be f(X

1

r

1

Y

1

); : : : ; (X

k

r

k

Y

k

)g and let

f

0

; : : : ; f

n

be features not used in C. The mapping �

from T L-ALCF temporal onstraints to ALCF(A)

onepts is de�ned as follows:

�(X

i

r X

j

) = 9(f

i

Æ time); (f

j

Æ time).r

�(X

i

r ℄) = 9(f

i

Æ time); (f

0

Æ time).r

�(℄ r X

i

) = 9(f

0

Æ time); (f

i

Æ time).r

De�ne C

T

as �(X

1

r

1

Y

1

) u : : : u �(X

k

r

k

Y

k

).

2. Let Path be the set of paths used in the onept

C. For eah 0 � i � n, the mapping �

i

: Path !

Path [ ff

i

g, with f

i

as introdued in Point 1, is

de�ned in Figure 3.

3. For eah 0 � i � n, the mapping 	

i

whih maps

ALCF onepts in normal form to ALCF onepts

in normal form is de�ned in Figure 3.

4. Let ?g

0

; : : : ; ?g

m

be the parametri features used in

C. De�ne C

F

as

m

u

i=0

((u

n

j=0

f

j

Æ ?g

i

") t (u

n

j=1

(f

0

Æ ?g

i

)#(f

j

Æ ?g

i

))):

5. De�ne two onepts 
 and 


0

as follows:


 = f

0

: 	

0

(Q

0

) u : : : u f

n

: 	

n

(Q

n

)




0

= u

0�i<j�n

(9(f

i

Æ time); (f

j

Æ time): =)! f

i

: 	

i

(Q

j

)

where E ! F is an abbreviation for :E t F .

We are now ready to assemble the onept 	(C):

	(C) = C

F

u C

T

u 
 u 


0

�

i

() := 

�

i

( Æ ?g Æ p) :=  Æ �

i

(?g Æ p)

�

i

( Æ f Æ p) :=  Æ f

i

Æ �

i

(f Æ p)

	

i

(A) := A

	

i

(:A) := : 	

i

(A)

	

i

(?g ") := ?g "

	

i

(f ") := f "

	

i

(D u E) := 	

i

(D) u 	

i

(E)

	

i

(D t E) := 	

i

(D) t 	

i

(E)

	

i

(p : D) :=

(

�

i

(p) : 	

i

(D) if D = ?g "

�

i

(p) Æ f

i

: 	

i

(D) otherwise

	

i

(p#q) := �

i

(p)#�

i

(q)

	

i

(p " q) := �

i

(p) " �

i

(q)

	

i

(9R.D) := 9R.	

i

(D)

	

i

(8R.D) := 8R.	

i

(D)

Figure 3: De�nition of �

i

(p) and 	

i

(Q) mappings.

The main idea behind the redution has already been

disussed at the end of Setion 3: A (temporal) objet

o, whih is in the extension of a T L-ALCF onept C,

is reeted by a \meta-objet" o

0

and a set of objets

O

0

= fo

0

0

; : : : ; o

0

n

g on the ALCF(A) side, where eah o

0

i

represents o

0

at a di�erent time interval. The features

f

0

; : : : ; f

i

are introdued during the translation in order

to relate o

0

with the objets in O

0

(o

0

i

is an f

i

-�ller of

o

0

for 0 � i � n). Eah objet in O

0

has a unique time

interval assoiated via the time feature. The objet o

0

0

represents o at the urrent time interval. The onept

C

T

ensures that the temporal relations between the asso-

iated intervals are as de�ned by the temporal onstraint

network hX;Ti. Additional are has to be taken in or-

der to deal orretly with parametri features. Sine

they are time-independent, it has to be assured that all

ALCF(A) objets in O

0

have idential �llers of paramet-

ri features. This is done by the C

F

onept together

with the mappings 	

i

and �

i

. Furthermore, it is possi-

ble that di�erent objets in O

0

are assoiated with the

same interval. In this ase, they both desribe the objet

o at the same time interval, and, hene, should be iden-

tial w.r.t. onept membership. The onept 


0

ensures

this.

As an example, the translation of the Basi-Stak

onept as introdued in Setion 2 is given.

	(Basi-Stak)

:

=

f

0

Æ ?BLOCK#f

1

Æ ?BLOCK u

f

0

Æ ?BLOCK#f

2

Æ ?BLOCK u

9(f

1

Æ time); (f

0

Æ time):m u

9(f

0

Æ time); (f

2

Æ time):m u

f

1

: ?BLOCK Æ f

1

: OnTable u



f

2

: ?BLOCK Æ f

2

: OnBlok u

(9(f

0

Ætime); (f

1

Ætime): =)! f

0

: ?BLOCK Æ f

1

: OnTable u

(9(f

0

Ætime); (f

2

Ætime): =)! f

0

: ?BLOCK Æ f

2

: OnBlok u

(9(f

1

Ætime); (f

2

Ætime): =)! f

1

: ?BLOCK Æ f

2

: OnBlok

The following proposition, together with the next the-

orem, shows the main result of this paper.

Proposition 4.3. The ALCF(A) onept 	(C ) is sat-

is�able if and only if the T L-ALCF onept C is satis-

�able.

A proof of this proposition an be found in [5℄. As al-

ready noted in Setion 3, satis�ability of ALCF(A) on-

epts is a PSpae-omplete problem [8℄. Together with

the redution given above, the following theorem is an

obvious onsequene.

Theorem 4.4. Satis�ability of T L-ALCF onepts is

PSpae-omplete.

Proof: The redution given above proves that satis-

�ability of T L-ALCF onepts is in PSpae. Sine

T L-ALCF ontains ALC as a proper fragment, it is also

PSpae-hard and hene PSpae-omplete. 2

Please note that in [3℄, another PSpae-ompleteness re-

sult for the satis�ability of T L-ALCF onepts is given

(Proposition 7.5). It does, however, only apply to on-

epts in the so-alled ompleted existential form. The

problem with this result is that onverting a T L-ALCF

onept to this normal form involves onverting it to dis-

juntive normal form whih results in the worst ase in

an exponential blowup in size.

5 Conlusion

We have presented a redution of the satis�ability of

T L-ALCF onepts to the satis�ability of ALCF(A)

onepts. This allows to use tableau based algorithms

for reasoning with T L-ALCF . Furthermore, it allows

to identify the satis�ability of T L-ALCF onepts as a

PSpae-omplete problem.

For the redution, we onsidered plain onepts with-

out referene to TBoxes. From the results in [9℄, it fol-

lows that satis�ability of T L-ALCF onepts w.r.t. sim-

ple TBoxes is NExpTime-hard.

1

It is, however, yet to

be proven that it is also in NExpTime.

Atually omputing the given redution is a polyno-

mial problem. In fat, we onsider it very likely that

eÆient implementations of the redution an be found.

As future work, we plan to extend the redution to the

subsumption and ABox onsisteny problem. This is not

1

This refers to ayli TBoxes where the left-hand sides

are unique and omprised of atomi onepts, only. It also

follows from results in [9℄ that T L-ALCF extended by general

TBoxes (GCIs) yields a logi for whih onept satis�ability

is undeidable.

a trivial task sine full negation is not available in the

temporal part of the logi T L-ALCF .
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