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Abstract. After a short analysis of the requirements that a knowledge

representation language must satisfy, we introduce Description Logics,

Modal Logics, and Nonmonotonic Logics as formalisms for representing

terminological knowledge, time-dependent or subjective knowledge, and

incomplete knowledge respectively. At the end of each section, we briey

comment on the connection to Logic Programming.

1 Introduction

This section is concerned with the question under which conditions one may

rightfully claim to have represented knowledge about an application domain,

and not just stored data occurring in this domain.
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In the early days of Arti�cial

Intelligence and Knowledge Representation, there was a heated discussion on

whether logic can at all be used as a formalism for Knowledge Representation (see

e.g. [135, 91, 92]). One aspect of the requirements on knowledge representation

formalisms that can be derived from the considerations in this section is very well

satis�ed by logical formalisms. We shall see, however, that some other aspects

are not treated satisfactorily, at least not by classical �rst-order predicate logic.

The main purpose of this article is to demonstrate that these de�ciencies can

be overcome with the help of other logic-based formalisms, namely Description

Logics, Modal Logics, and Nonmonotonic Logics. More recently, it has been

argued (see e.g. [110, 23]) that Logic Programming can serve as a convenient

and universal formalism for Knowledge Representation. However, as indicated

by their name, Logic Programming languages are programming languages, and

thus not necessarily appropriate as representation languages.

In a nut-shell (and somewhat exaggerated), the di�erence between knowledge-

based programming (which processes knowledge) and classical programming

(which processes data) can be formulated as follows. In classical programming,

one designs specialized programs that are tailored to a speci�c application prob-

lem. The knowledge about the problem description and the application domain is

implicitly represented in the structure of the program, and must thus be acquired

by the programmer. In knowledge-based programming, the knowledge about the

?
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The division between knowledge and data is, of course, not strict, and this article

will not give a de�nitive answer to the problem of distinguishing between both.



application domain is represented explicitly (in an appropriate representation

formalism); ideally, the processing can be done with the help of general (i.e.,

application-independent) problem solving methods. Thus, the knowledge can be

acquired and represented by an application domain expert, who need not be well-

acquainted with details of the implementation. As a simple example, let us con-

sider the task of �nding out whether two nodes in a directed graph (which may

represent the hierarchical organization of a company) are connected (whether

one employee is the boss of another one). A �rst solution, which is very far away

from being knowledge-based, might be a program that encodes the structure of

the speci�c graph in its control structure. A second, more reasonable, solution

might explicitly represent the graph in an appropriate data structure (which

list the nodes that are directly connected), and then code the meaning of \con-

nected" in a program that is independent of the speci�c graph. This program

must be able to compute the connected nodes from the given information about

the directly connected nodes. Finally, an even more knowledge-based solution

could be one in which the knowledge about the meaning of \connected" is also

represented in an explicit way, for example, by the following Horn clauses:

directly-connected(x; y)! connected(x; y);

directly-connected(x; z) ^ connected(z; y)! connected(x; y):

A general problem solving component, which is able to handle such clauses (e.g.,

the interpreter of a Logic Programming language), could now use these formulae

together with the explicit information on the directly connected nodes to infer

the connected nodes.

A knowledge representation (KR) formalism should allow for the symbolic

representation of all the knowledge relevant in a given application domain. From

what we have said so far about the use of knowledge in knowledge-based pro-

gramming, we can derive two requirements that such a formalism must satisfy.

On the one hand, it must be equipped with a declarative semantics , that is, the

meaning of the entries in a knowledge base (KB) must be de�ned independently

of the programs that operate on the KB (no purely procedural semantics). Oth-

erwise, the knowledge cannot be acquired by a domain expert without detailed

knowledge of the implementation of these programs. Usually, such a declarative

semantics is given by mapping the symbolic expressions into (an abstraction of)

the relevant segment of the \world." In addition, one needs a notion of \truth,"

which makes it possible to determine which of the symbolic statements hold in

the current \world."

On the other hand, one needs an \intelligent" retrieval mechanism, which

is able to realize the above-mentioned general problem solving component. This

mechanism should allow to retrieve knowledge that is only implicitly present in

the KB, that is, it should be able to deduce implicitly represented knowledge from

the explicit knowledge. In our above example, the information that two nodes

are connected is implicit knowledge, which must be deduced from the explicit

knowledge (i.e., the information about directly connected nodes and the Horn

clauses specifying the meaning of \connected") with the help of an appropriate



inference engine. The behaviour of this deductive component should depend

only on the semantics of the representation language, and not on the syntactic

form of the entries in the KB, i.e., semantically equivalent entries should lead to

the same results. If we use �rst-order predicate logic as semantics for the Horn

clauses in our above example, then the usual Prolog interpreters do not ful�ll

this requirement. According to the semantics, the order of the clauses and of the

conjuncts is irrelevant. Any Prolog programmer will know, however, that such a

re-ordering may drastically change the behaviour of the program.

Another requirement that is usually imposed on KR formalisms is that of

allowing for a structured representation of the knowledge. One aspect of a struc-

tured representation is that semantically related information (for example, all the

knowledge about knowledge representation based on Description Logics) should

also syntactically be grouped together. This requirement is, on the one hand,

justi�ed by cognitive adequacy.
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On the other hand, there are purely pragmatic

reasons, since a structured representation allows for faster retrieval.

Critics of a logic-based approach to KR often (implicitly) equate logic with

�rst-order predicate logic. If we consider in how far �rst-order predicate logic sat-

is�es the requirements introduced above, it shows in fact some strong de�cits.

The Tarskian semantics of predicate logic is the prototype of a declarative se-

mantics; however, it does not allow for an adequate treatment of incomplete

and contradictory knowledge, or of subjective and time-dependent knowledge.

Later on, we shall see that this de�cit can be overcome by considering Nonmono-

tonic Logics and Modal Logics. The usual syntax of �rst-order predicate logic

does not support a structured representation of knowledge. Since all the relevant

inference problems are undecidable, it is also not possible to provide for seman-

tically adequate inference procedures. In the following section, we shall describe

so-called Description Logics,
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which are an attempt to overcome both of the

last-mentioned problems by using a non-standard syntax and by restricting the

expressive power.

According to what was said until now, Logic Programming languages qual-

ify as representation languages only if they are equipped with an appropriate

declarative semantics. This is not the case for Prolog, as illustrated by the ex-

ample. It should be noted that I do not claim that it is not possible to solve a

speci�c representation problem with the help of a Prolog program: since Prolog

is computationally complete, this is always possible. However, this is a program-

ming approach in which the knowledge is not encoded independently of the way

in which it is processed. Exactly because of Prolog being computationally com-

plete, all the responsibility (e.g., for termination of the inference process) lies

in the hands of programmer, and cannot automatically be guaranteed. In a KR

system, the intelligent retrieval mechanisms should (ideally) be able to handle

all the knowledge that is represented in a syntactically correct way, which means

that one must restrict oneself to a sublanguage (such as Datalog) if one wants to

2

In the human brain, correlated information is also not stored in unrelated parts.
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Other names used in the literature are \terminological logics," \concept languages,"

and \KL-ONE-like KR languages."



use a Logic Programming approach for KR. Overviews on the topic of extended

Logic Programs with declarative semantics and their application to representing

knowledge can be found in [53, 134, 23, 4].

2 Description Logics

The attempt to provide for a structured representation of information was one

of the main motivations for introducing early KR formalisms such as Semantic

Networks and Frames. Description Logics

4

are logic-based formalisms that are

based on the same ideas as Semantic Networks and Frames, but avoid the formal

de�ciencies that made the use of these precursor formalisms as KR formalisms

problematic.

Precursors. Frames have been introduced by Minsky [135] as record-like data

structures for representing prototypical situations and objects. The key idea

was to collect all the information necessary for treating a situation in one place

(the frame for this situation). In [135], Minsky combined his introduction of

the frame idea with a general rejection of logic as a KR formalism. Hayes [91,

92] criticized that Frames lack a formal semantics, and showed that with an

appropriate formalization (of their monotonic, non-procedural aspects), Frames

can be seen as a syntactic variant of �rst-order predicate logic.

Semantic Networks , which we shall consider in somewhat more detail, have

been developed by Quillian [155] for representing the semantics of natural lan-

guage (this explains their name). They allow to represent concepts and objects

as nodes in a graph (see Figure 1). Such a graph has two di�erent types of edges:

property edges assign properties (like colour) to concepts (e.g., frog) and objects

(e.g., Kermit), whereas IS-A-edges introduce hierarchical relationships among

concepts and instance relationships between objects and concepts.

Properties are inherited along IS-A-edges. For example, tree frogs, and thus

also Kermit, inherit the colour green from frogs. In many systems, inheritance is

only by default, that is, grass frogs do not inherit the property green, since this

would be in contradiction with the explicit property edge saying that grass frogs

are brown. The missing formal semantics of Semantic Networks was criticized

by Woods [176] and Brachman [31]. The meaning of a given Semantic Network

was left to the intuition of the users and the programmers who implemented the

programs processing the networks. Consequently, identical networks could lead

to very di�erent results, depending on which of the systems was used to process

it. As an illustration of this problem, we point out the possible ambiguities in the

interpretation of property edges. In Figure 1, the property edge \colour" from

\Frog" to \Green" may, on the one hand, mean that green is the only possible

colour for frogs (value restriction). On the other hand, it could mean that any

frog has at least the colour green, but may have other colours too (it might be

4
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Fig. 1. A semantic network.

green with red stripes). A partial reconstruction of the semantics of Semantic

Networks within �rst-order predicate logic was presented in [167].

Description Logics (DL) make the quanti�er that is implicitly present in

property edges (universal in the reading as value restrictions, and existential for

the other option) explicit (see below).

Systems and applications. Description Logics are descended from so-called

\structured inheritance networks" [31, 32], which were �rst realized in the system

kl-one [34]. Their main idea is to start with atomic concepts (unary predicates)

and roles (binary predicates), and use a (rather small) set of epistemologically

adequate constructors to build complex concepts and roles. This idea has been

further developed both from the theoretical and the practical point of view. In

particular, there is a great variety of successor systems (e.g., Back [143, 149,

96], Classic [29, 33], Crack [36], DLP [148], FaCT [98], Flex [152], K-Rep

[127, 128], Kris [14], Loom [122, 121], Sb-one [106]), which have been used in

di�erent application domains such as natural language processing [154], con�gu-

ration of technical systems [178, 42, 158, 133], software information systems [50],

optimizing queries to databases [41, 25, 24], or planning [107].

Syntax and semantics. Figure 2 introduces syntax and semantics of some of

the concept constructors employed in systems or investigated in the literature.

Most of the systems do not provide for all of these constructors, and vice versa,

they may use additional constructors not introduced here. An extensive list of

(most of) the constructors considered until now can be found in [9]. The �rst

column of the �gure shows the (Lisp-like) concrete syntax that is used in most
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Fig. 2. Syntax and semantics of concept and role terms.

of the systems, whereas the second column introduces the abstract syntax that

is usually employed in theoretical work on Description Logics. Starting with

atomic concepts and roles, one can use these constructors to build complex

concept terms and (in the last row) role terms . Using the abstract syntax, the

concept \Frog," which has been introduced in the Semantic Network of Figure 1,

can be described by the concept term Animal u 8colour:Green, where Animal

and Green are atomic concepts (concept names), and colour is an atomic role

(role name). The universal quanti�er makes clear that we have interpreted the

property edge as a value restriction.

In order to de�ne the semantics of concept terms, one considers interpreta-

tions I, which consist of a non-empty set �

I

(the domain of the interpretation)

and an interpretation function that assigns to every atomic concept A a set

A

I

� �

I

and to every atomic role R a binary relation R

I

� �

I

��

I

. The third

column in Figure 2 shows how this interpretation function is extended to concept

and role terms. An alternative way of de�ning the semantics of concept and role

terms is to give a translation into formulae of �rst-order predicate logic: concept

terms are translated into formulae with one free variable and role terms into for-

mulae with two free variables. The exact de�nition of this translation is an easy

consequence of the third column of Figure 2. For example, the above concept

term for the concept \Frog" yields the following formula with free variable x:

Animal(x) ^ 8y:(colour(x; y)! Green(y)):

Concept de�nitions can be used to assign names (abbreviations) to large terms.

For example, the de�nition Frog

:

= Animal u 8colour:Green assigns the name

Frog to the term Animalu8colour:Green, which can then be used as an abbre-

viation for this term when constructing new concept terms.

A terminology (TBox) consists of a �nite set of concept and role de�nitions

of the form A

:

= C and P

:

= R, where A is a concept name, P is a role name,

C is a concept term, and R is a role term. Usually, one imposes the additional

requirement that the de�nitions are unique (i.e., any name may occur at most

once as a left-hand side of a de�nition) and acyclic (i.e., the de�nition of a

name must not, directly or indirectly, refer to this name). As a consequence,

de�nitions can be seen as macros, which can simply be expanded (see [141],

Section 3.2.5, and [142]). An interpretation I is a model of a TBox i� it satis�es



all the de�nitions A

:

= C and P

:

= R contained in the TBox, i.e., if A

I

= C

I

and P

I

= R

I

holds for these de�nitions.

In addition to this terminological component, the knowledge base of a DL

system also has an assertional component , in which one can introduce individuals

(by giving them names), and assert properties of these individuals. If a; b are

names for individuals, C is a concept term, and R a role term, then C(a) and

R(a; b) are assertions . A �nite set of such assertions is called an ABox . An

interpretation I (which also assigns elements a

I

2 �

I

to individual names a)

is a model of these assertions i� a

I

2 C

I

and (a

I

; b

I

) 2 R

I

. For example,

Frog(KERMIT) is a concept assertion and colour(KERMIT; Colour07) is a role

assertion. A knowledge base (KB) consist of a TBox T and an ABox A.

Inference problems. As mentioned in the introduction, one is not just in-

terested in retrieving the knowledge that is explicitly stored in such a KB: one

should also like to have access to the knowledge represented implicitly. To make

this possible, one must be able to draw inferences from the explicit knowledge.

As examples of two typical inference problems in Description Logics, we shall

consider the subsumption and the instance problem. Subsumption is concerned

with the question whether one concept is a subconcept of another one. Formally,

we de�ne for given concept terms C and D and a TBox T : C is subsumed by D

w.r.t. T (C v

T

D) i� C

I

� D

I

holds in all models I of T . DL systems usually

o�er the computation of the subsumption hierarchy of the concepts de�ned in a

TBox as a system service (classi�cation). When de�ning the instance problem,

one considers a TBox T and an ABox A. The individual a is an instance of the

concept term C w.r.t. T and A i� a

I

2 C

I

holds in all interpretations I that are

models of both T and A. For example, if the TBox contains the above de�nition

of the concept Frog, and the ABox contains the above assertions for KERMIT,

then COLOUR07 is an instance of Green with respect to this TBox and ABox.

Inference algorithms. Many DL systems (for example, Back, Classic, K-

Rep, Loom) employ inference procedures that only partially satisfy the require-

ment that the result should depend only on the semantics of the representation

language, and not on the syntactic form of the entries in the KB. These systems

use so-called structural algorithms (see, e.g., [141], Chapter 4), which are based

on a point of view derived from Semantic Networks: the knowledge base is viewed

as a directed graph. Structural subsumption algorithms usually proceed in two

phases: �rst, the graphs corresponding to the concepts to be tested for subsump-

tion are normalized, and then one tries to detect similarities in the normalized

graphs. They have the advantage that they are usually very e�cient (polyno-

mial). An important disadvantage is that they are only sound, but not complete

for reasonably expressive representation languages. If an incomplete subsump-

tion algorithm answers a subsumption query with \yes," then this answer is

correct (soundness). If it answers with \no," then this does not mean anything:

because of the incompleteness, the subsumption relationship might nevertheless

hold. Thus, the behaviour of the algorithm does not depend only on the se-



mantics, but also on other factors that are not transparent to the user. As a

way to overcome this problem without giving up the e�ciency of the structural

subsumption approach, the use of non-standard semantics has been proposed.

In [146], a four-valued semantics characterizing the behaviour of a structural

subsumption algorithm is introduced. The system Classic [29, 33] employs an

\almost" complete structural subsumption algorithm [30]. Its only incomplete-

ness stems from the treatment of individuals inside concept terms, which can,

however, again be characterized with the help of a non-standard semantics.

Since 1988, a new type of algorithms, so-called tableau-based algorithms , for

reasoning in description logics has been developed. Here, the logical point of view

is not only used to de�ne the semantics, but also for the design of algorithms,

that is, the inference problems are considered as deduction problems in logics. In

principle, these algorithms are methods for generating �nite models. They can

be seen as specializations of the tableau calculus for �rst-order predicate logic

[26, 170]. The non-standard syntax of DL and the restricted expressiveness of

these logics allows to design terminating procedures, i.e., for many description

languages one obtains decision procedures for the relevant inference problems

(see [15] for an introductory exposition of tableau-based inference methods in

DL). The �rst tableau-based subsumption algorithm was developed in [166] for

the language ALC, which allows for the �rst �ve constructors of Figure 2. Since

then, this approach for designing subsumption algorithms was extended to the

instance problem [93, 15] and to various description languages extending ALC

(see, e.g., [95, 94, 20, 21, 8] for languages with number restrictions; [6] for tran-

sitive closure of roles and [159, 99, 101] for transitive roles; [12, 89, 87, 22] for

constructs that allow to refer to concrete domains such as numbers; and [10, 40,

8] for the treatment of general axioms of the form C

:

= D, where C;D may both

be complex concept terms).

Undecidability and complexity results. Other important research contri-

butions for DL are concerned with the decidability and the complexity of the

subsumption problem in di�erent DL languages. It has turned out that the lan-

guages used in early DL systems were too expressive, which led to undecidability

of the subsumption problem [165, 147]. More recent undecidability results for ex-

tensions of ALC can be found in [13, 89, 20, 21, 87, 22].

The �rst complexity results [115, 139] showed that, even for very small lan-

guages, there cannot exist subsumption algorithms that are both complete and

polynomial. In the meantime, the worst-case complexity of the subsumption

problem in a large class of DL languages, the so-called AL-family, has (almost

completely) been determined [59, 58, 57]. With the exception of a few polyno-

mially decidable languages, the complexity results range between NP or coNP

and PSPACE. Whereas these results are given with respect to an empty TBox

(i.e., they consider subsumption of concept terms with respect to all interpre-

tations), Nebel [142] has shown that the expansion of TBox de�nitions may

lead to an exponential blow-up, which may result in a larger complexity (coNP

instead of polynomial) for certain languages. In the presence of cyclic TBox



de�nitions, so-called terminological cycles, the subsumption problem becomes

PSPACE-complete even for these small languages [140, 5, 7, 112]. The use of gen-

eral inclusion axioms (in ALC) even causes the subsumption problem to become

ExpTime-complete [163]. It has also been shown that for certain languages the

instance problem can be harder than the subsumption problem [160, 61].

Optimizations. Considering these complexity results, one may ask whether in-

complete, but polynomial algorithms should be preferred over the complete ones,

which are necessarily of high worst-case complexity. First experiences [11, 36, 98]

with implemented systems using complete algorithms show, however, that on

realistic KBs the run time is comparable to that of Classic and Loom (i.e., ma-

ture systems using incomplete algorithms). These positive results depend on the

use of sophisticated optimization techniques. Whereas [11] concentrated mostly

on reducing the number of subsumption tests during classi�cation, more recent

work in this direction is concerned with optimizing the subsumption algorithm

itself [83, 97, 98, 82, 100, 104].

Connections with other logical formalisms. Before we turn to the con-

nection between DL and Logic Programming, we should like to mention several

interesting connections between DL and more traditional areas of logics.

Schild [161] was the �rst to observe that the languageALC is a syntactic vari-

ant of the propositional multi-modal logic K

n

(see next section), and that the

extension of ALC by transitive closure of roles [6] corresponds to propositional

dynamic logic (PDL) [67, 145]. In particular, the algorithms used in modal logics

for deciding satis�ability are very similar to the tableau-based algorithms newly

developed for DL languages. This connection between DL and modal logics has

been used to transfer techniques and results from modal logics and proposi-

tional dynamic logic to DL [162, 163, 77{79,47]. Instead of using tableau-based

algorithms, decidability of certain propositional modal logics (and thus of the

corresponding DL), can also be shown by establishing the �nite model property

(see, e.g., [68], Section 1.14) of the logic (i.e., showing that a formula/concept

is satis�able i� it is satis�able in a �nite interpretation) or by employing tree

automata (see, e.g, [174]). It should be noted, however, that some of the very

expressive DL languages considered in this context (e.g., the language CIQ intro-

duced in [79]) no longer satisfy the �nite model property. For these languages,

reasoning with respect to �nite models (which is, for example, of interest for

database applications) di�ers from reasoning with respect to all models [43].

Given the translation of DL into �rst-order predicate logic mentioned above,

one might ask whether general �rst-order theorem provers can be employed for

reasoning in DL. In general, this approach will only yield semidecision proce-

dures for DL inference problems such as subsumption. By employing appropri-

ate translation techniques and resolution strategies, general purpose resolution

provers can, however, be used to obtain decision procedures for subsumption in

the language ALC [65, 103, 164].



Decidability of the inference problems for ALC can also be obtained as a

consequence of the known decidability result for the two variable fragment of

�rst-order predicate logic. The language L

2

consists of all formulae of �rst-

order predicate logic that can be built with the help of predicate symbols (in-

cluding equality) and constant symbols (but without function symbols) using

only the variables x; y. Decidability of L

2

has been shown in [137]. More pre-

cisely, satis�ability of L

2

-formulae is a NEXPTIME-complete problem [85]. It

is easy to see that, by appropriately re-using variable names, any concept term

of the language ALC can be translated into an L

2

-formula with one free vari-

able. A direct translation of the concept term 8R:(9R:A) yields the formula

8y:(R(x; y) ! (9z:(R(y; z) ^ A(z)))). Since the subformula 9z:(R(y; z) ^ A(z))

does not contain x, this variable can be re-used: renaming the bound variable z

into x yields the equivalent formula 8y:(R(x; y)! (9x:(R(y; x)^A(x)))), which

uses only two variables (see [28] for details). This connection between ALC and

L

2

shows that any extension of ALC by constructors that can be expressed

with the help of only two variables yields a decidable DL. Number restrictions

and composition of roles are examples of constructors that cannot be expressed

within L

2

. Number restrictions can, however, be expressed in C

2

, the extension

of L

2

by counting quanti�ers, which has recently been shown to be decidable

[86, 144].

Another distinguishing features of the formulae obtained by translatingALC-

concept terms into �rst-order predicate logic is that quanti�ers are used only in

a very restricted way: the quanti�ed variables are always \guarded" by role

expression. For example, in the formula 8y:(R(x; y)! C(y)), which is obtained

as translation of the concept term 8R:C, the quanti�ed variable y is guarded by

R(x; y). For this reason, the formulae obtained as translations of ALC-concept

terms belong to the so-called guarded fragment GF of �rst-order predicate logic

[2], which has the following inductive de�nition:

{ Every atomic formula belongs to GF.

{ GF is closed under the Boolean connectives.

{ If x;y are tuples of variables, R is a predicate symbol, and  is a formula of

GF such that every free variable in  occurs in x;y, then the formulae

� 8y:(R(x;y)!  )

� 9y:(R(x;y) ^  )

also belong to GF.

It should be noted that there is no restriction to unary and binary predicate

symbols, and that the free variables of the formula  in the third item above

are not restricted to the quanti�ed variables y. Thus, GF is considerably more

expressive than the fragment obtained by translating ALC-concept terms into

�rst-order predicate logic. In [2] it is shown that GF nevertheless has the �nite

model property, which implies that satis�ability of formulae in GF is decidable.

More precisely, the satis�ability problem for GF is complete for double exponen-

tial time [84]. Decidability of GF can also be shown with the help of resolution

methods [48].



Connection with Logic Programming Since Logic Programming languages

are computationally complete and DL languages are usually decidable, one may

say that DL languages have less expressive power. If we consider Logic Pro-

gramming languages as representation languages rather than as programming

languages, then one observes that several of the DL constructors cannot be ex-

pressed. In fact, disjunction and existential restrictions allow for incompletely

speci�ed knowledge. For example, the term

(9pet:(Dog t Cat))(BILL)

leaves it open which ABox individual is Bill's pet, and whether it is a cat or

a dog. Such an \under-speci�cation" is not possible with the Horn clauses of

traditional Logic Programming languages. To overcome this de�cit, extensions of

Logic Programming languages by disjunction and classical negation (in contrast

to \negation as failure") have been introduced [76, 151, 119, 23, 35]. However,

these extensions treat only some aspects of these constructors: for example, the

\classical negation" in these approaches only represents the aspect that a set and

its complement are disjoint; the fact that the union of a set with its complement

is the whole universe is not taken into account. The integration of Description

Logics with a rule calculus that is able to express Horn rules has been investigated

in [90]. Other work in this direction can, for example, be found in [117, 116].

3 Modal Logics

This is an area of logics that has been investigated for quite a while, and for which

a great variety of methods and results are available. In the following, we give a

very short introduction, which emphasizes the connection between Description

Logics and Modal Logics. For more detailed introductions and overviews of the

area we refer the reader to [44, 102, 88, 68].

The propositional multi-modal logic K

n

extends propositional logic by n

pairs of unary operators, which are called box and diamond operators. The

K stands for the basic modal logic on which most modal logics are build (see

below), and \multi-modal" means that one considers more than one pair of box

and diamond operators. Depending on the intended application, these operators

may have di�erent intuitive meanings. For example, if we want to represent

time-dependent knowledge, then we can use the diamond operator hfuturei and

the box operator [future], where the intended meaning of a formula hfuturei�

is \Sometime in the future, � holds," whereas [future]� is meant to express

\Always in the future, � holds." If we want to represent knowledge about the

beliefs of intelligent agents, then we can use the operators hrobi1i and [robi1],

where [robi1]� should be interpreted as \Robot 1 believes that � holds," and

hrobi1i� as \Robot 1 believes that � is possible." The di�erent meanings of

the operators are taken into account by using additional axioms or by imposing

additional restrictions on the semantic structures (see below).



Syntax and semantics. First, we consider the base logic K

n

in a bit more

detail. Formulae of this logic are built from atomic propositions p and n di�er-

ent modal parameters m using the Boolean connectives ^;_;:

5

and the modal

operators [m] and hmi. For example,

[robi1]hfuturei(p ^ hrobi2i:p)

is a formula of K

n

, which could be interpreted as saying \Robot 1 believes that,

sometime in the future, p will hold, while at the same time Robot 2 will believe

that :p is possible." Here robi1, robi2, and future are modal parameters, and p

is an atomic proposition.

In order to de�ne the semantics of K

n

, we consider so-called Kripke struc-

tures K = (W ;R), which consist of a set of possible worlds W and a set R of

transition relations. Each possible world I 2 W corresponds to an interpretation

of propositional logic, i.e., it assigns a truth value p

I

2 f0; 1g to every atomic

proposition p. The set R contains for every modal parameter m a transition

relation R

m

� W �W . Validity of a K

n

-formula � in the world I of a Kripke

structure K is de�ned by induction on the structure of K

n

-formulae:

{ K; I j= p i� p

I

= 1 (for atomic propositions p).

{ K; I j= � ^  i� K; I j= � and K; I j=  . (The semantics of the other

Boolean operators is also de�ned in the usual way.)

{ K; I j= [m]� i� K; J j= � holds for all J such that (I; J) 2 R

m

.

{ K; I j= hmi� i� K; J j= � holds for some J with (I; J) 2 R

m

.

The K

n

-formula � is valid i� K; I j= � holds for all Kripke structures K and all

worlds I in K.

Connection with Description Logics. This de�nition of the semantics for

K

n

looks very similar to the semantics for DL languages. Concept terms C of

ALC can directly be translated into formulae �

C

of K

n

by interpreting concept

names as atomic propositions and role names as modal parameters. The Boolean

connectives of ALC are simply replaced by the corresponding Boolean connec-

tives of K

n

. Universal role restrictions (value restrictions) are replaced by the

corresponding box operator, and existential role restrictions are replaced by the

corresponding diamond operator. For example, the concept term 8R:Au 9S::A

yields the K

n

-formula [R]A ^ hSi:A.

There is an obvious 1{1 correspondence between Kripke structures K and

interpretations I of ALC: the domain �

I

of I corresponds to the set of possible

worldsW , the interpretation S

I

of the role name S corresponds to the transition

relation R

S

, and the interpretation A

I

of the concept name A corresponds to the

set of worlds in which A has truth value 1. It is easy to show (by induction on

the structure of concept terms) that this correspondence also holds for complex

5

Additional Boolean connectives like implication can, as usual, be introduced as ab-

breviations.



concept terms C: if I is an interpretation of ALC and K is the corresponding

Kripke structure, then C

I

= fI j K; I j= �

C

g.

In particular, this implies that C v

;

D i� �

C

! �

D

is valid. This shows that

decision procedures for validity in K

n

can be used to decide the subsumption

problem in ALC. One should note, however, that this observation does not yield

decision procedures for ABox reasoning, or for reasoning in DL languages with

number restrictions. More recent work on modal logics with \graded modali-

ties" [66, 64, 172] (which correspond to number restrictions) and \nominals" [72]

(which correspond to ABox individuals) did not focus on decidability issues.

The extension of results from propositional modal and dynamic logic to logics

allowing for number restrictions and individuals was addressed in [77, 46, 79].

Axiomatizations. If one wants to assign the modal operators with a speci�c

meaning (like \knowledge of an intelligent agent" or \in the future"), then using

the basic modal logic K

n

is not su�cient since it does not model the speci�c

properties that modal operators with this interpretation should satisfy. In or-

der to describe these properties, one can use an axiomatic approach. Figure 3

All propositional tautologies Taut

[m](�!  )! ([m]�! [m] ) K

[m]�! � T

[m]�! [m][m]� 4

:[m]�! [m]:[m]� 5

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

axiom schemata

�!  and � yield  modus ponens

� yields [m]� necessitation

�

inference rules

Fig. 3. Axiom schemata and inference rules for modal logics.

introduces some axiom schemata and the corresponding inference rules modus

ponens and necessitation. These are axiom schemata rather than axioms since

� and  may be substituted by arbitrary modal formulae.

The basic modal logic K

n

is characterized by the axiom schemata Taut and

K in the following sense: a formula � of K

n

is valid (i.e., holds in all worlds

of all Kripke structures) i� it can be derived from instances of Taut and K

using modus ponens and necessitation (see [88] for a proof). The other three

schemata describe possible properties of modal operators that express \knowl-

edge of intelligent agents," i.e., in this interpretation [m]� should be read as

\agent m knows �." Thus, T can intuitively be read as \An intelligent agent

does not have incorrect knowledge," or more precisely: \If agent m knows � in a

situation, then � holds in this situation." This property distinguishes knowledge

from belief: an agent may very well believe in incorrect facts, but it cannot know



them. The axiom schema 4 describes positive introspection, i.e., \An intelligent

agent knows what it knows," whereas axiom schema 5 describes negative intro-

spection, i.e., \An intelligent agent knows what it does not know." While T and

4 are generally accepted as reasonable axioms for knowledge, 5 is disputable:

negative introspection implies that the agent can asses its own competence in

the sense that it knows when its own knowledge is not su�cient to solve a certain

task. Consequently, there are two di�erent modal logics that model knowledge

of intelligent agents. The logic S4 dispenses with negative introspection, i.e., it

uses only the schemata Taut, K, T, 4, whereas S5 additionally allows for 5.

Properties of transition relations. As an alternative to this axiomatic ap-

proach for de�ning S4 and S5, one can also characterize these logics in a semantic

way by restricting the admissible transition relations in Kripke structures [88].

The logic S4 corresponds to the restriction to reexive and transitive transition

relations, i.e., the formula � holds in all worlds of all Kripke structures with

reexive and transitive transition relations i� it can be derived from instances of

Taut, K, T and 4 using modus ponens and necessitation. Analogously, S5 cor-

responds to the restriction to transition relations that are equivalence relations .

These correspondences can be used to design tableau algorithms for S4 and

S5 by integrating the special properties of the transition relations into the rules

of the tableau calculus. It should be noted that a naive integration of a tableau

rule for transitivity would lead to a nonterminating procedure. This problem can,

however, be overcome by testing for cyclic computations. This yields a PSPACE-

algorithm for S4. For a single S5-modality, the satis�ability problem is \only"

NP-complete, whereas the problem becomes PSPACE-complete if more than

one such modality is available (see [88] for detailed proofs of these and other

complexity results).

The properties of modal operators that model time-dependent knowledge

have also been investigated in detail (see, e.g., [63, 171] for overview articles on

this topic).

Integration with Description Logics. In order to represent time-dependent

and subjective knowledge in Description Logics, one can integrate modal op-

erators into DL languages. Because of the above mentioned close connection

between DL and modal logics, such an integrations appeared to be rather sim-

ple. It has turned out, however, that it is more complex than expected, both from

the semantic and the algorithmic point of view [113, 19, 18, 162, 175]. It should

be noted that some of these combined languages [18, 175] are �rst-order modal

logics rather than propositional modal logics.

Connection with Logic Programming. We close this section by mentioning

some work that is concerned with the connection between modal logics and logic

programming. Gelfond [73] extends Disjunctive Logic Programs to Epistemic

Logic Programs by introducing modal operators K and M: for a literal L, the



expression KL should be read as \L is known" and ML should be read as

\L may be assumed." Giordano and Martelli [81] use modal logic to obtain a

uniform representation of di�erent approaches for structuring Logic Programs

with the help of blocks and modules. In [49, 138, 1, 70], modal or temporal Logic

Programming languages are introduced.

4 Nonmonotonic Logics

This research area has also created a huge number of approaches and results,

which we cannot describe in detail here. The following is a brief introduction

into the existing approaches and the problems treated by these approaches.

Overviews of this research area can, for example, be found in [71, 38]. In ad-

dition, there are several monographs on the topic [37, 120, 126, 3]. An annotated

collection of inuential papers in the area can be found in [80].

Motivation. Knowledge representation languages based on classical logics (e.g.,

�rst-order predicate logic) are monotonic in the following sense: if a statement

� can be derived from a knowledge base, then � can also be derived from any

larger knowledge base. This property has the advantage that inferences once

drawn need not be revised when additional information comes in. However, this

leads to the disadvantage that adding information contradicting one of the drawn

inferences leads to an inconsistency, and thus makes the knowledge base useless.

In many applications, the knowledge about the world (the application domain)

is represented in an incomplete way. Nevertheless, one wants to draw plausible

conclusions from the available knowledge, that is, inferences that are not justi�ed

by reasoning in classical logic, but are plausible considering the available knowl-

edge. In this situation, newly acquired information may show that some of these

plausible conclusions were wrong. This should not lead to inconsistency of the

knowledge base, but rather to a withdrawal of some of the plausible conclusions.

Let us start with three simple examples that illustrate the situations in which

nonmonotonic inference methods are desirable. Default rules apply to most in-

dividuals (resp. typical or normal individuals), but not to all. As an example, we

may consider property edges in Semantic Networks. In the network of Figure 1

we had the default rule \Frogs are normally green." This rule should be applied

whenever there is no information contradicting it. As long as we only know that

Kermit is a frog, we deduce that Kermit is green. The rule is not applied to grass

frogs, of which it is known that they are not green (since they are brown).

The Closed World Assumption (CWA) [156] assumes by default that the

available information is complete. If an assertion cannot be derived (using clas-

sical inference methods) from the knowledge base, then CWA deduces its nega-

tion. This assumption is, for example, employed in relational databases and in

Logic Programming languages with \Negation as Failure" [45, 168]. As an ex-

ample, we may consider train connections in a timetable: if a connection is not

contained in the timetable, we conclude that it does not exist. If we learn later



on that there is such a connection (which was not contained in the timetable),

then we must withdraw this conclusion.

The Frame problem [130, 39] comes from the domain of modelling actions. In

this context, it is important to describe which properties are changed and which

remain unchanged by an application of the action. Usually, the application of

an action changes very few aspects of the world. For example, by sending a

manuscript of this article to a publisher, I have changed its location, but (hope-

fully) not its content. The so-called \frame axioms" describe which properties

remain unchanged by the application of an action. Since there usually is a very

large number of these axioms, one should try to avoid having to state them

explicitly. A possible solution to this problem is to employ a nonmonotonic in-

ference rule, which says that (normally) all aspects of the world that are not

explicitly changed by the action remain invariant under its application.

Four approaches to nonmonotonic reasoning. In the literature, a great

variety of di�erent approaches to nonmonotonic reasoning has been introduced,

of which none seems to be \the best" approach. A very positive development

is the fact that recently several results clarifying the connection between dif-

ferent approaches have been obtained (see, e.g., [105, 108, 109, 118, 111]). In the

following, we briey introduce the four most important types of approaches.

Consistency-based approaches , of which Reiter's Default Logic [157] is a typ-

ical example, consider nonmonotonic rules of the form \A normally implies B."

Such a rule can be applied (i.e., B is inserted into the knowledge base), if A

holds, and inserting B does not destroy consistency of the knowledge base. As

an example, we may again use the default rule \Frogs are normally green." Let

us �rst assume that the knowledge base contains the information: \Grass frogs

are brown. An individual cannot be both brown and green. Grass frogs are frogs.

Kermit is a frog. Scooter is a grass frog." In this case, the default rule can be ap-

plied to Kermit, but not to Scooter. The major problem that a consistency-based

approach must solve is the question of how to resolve conicts between di�erent

rules: applying default rules in di�erent order may lead to di�erent results. To

illustrate this problem, let us assume that the strict information \Grass frogs

are brown" is replaced by the defeasible information \Grass frogs are normally

brown," whereas all the other information remains the same. Now, both default

rules are applicable to Scooter. As soon as one of them is applied, the other one is

no longer applicable. Thus, one must decide which of the possible results should

be preferred, or, if the conict cannot be resolved due to priorities among rules,

how much information can still be deduced from such an unresolved situation.

For example, the conclusions concerning Kermit should not be inuenced by the

conict for Scooter.

A modal nonmonotonic logic was, for example, proposed by McDermott and

Doyle [132, 131]. This logic allows for a diamond operator, which is written asM,

whereM� should intuitively be read as \� is consistent." The default rule \Frogs

are normally green" can then be written as the implication Frog ^MGreen!

Green. In order to treat this implication correctly, the logic needs an additional



inference rule, which is able to derive formulae of the form M� according to

their intended semantics. In principle, this inference rule allows us to deduce

M�, if :� cannot be deduced. This is not as simple as it may sound since

we are faced with the following cyclic dependency: which formulae of the form

:� are deducible already depends on the inference rule to be de�ned. Doyle

and McDermott solve this problem by introducing an appropriated �xed-point

semantics. Another representative of the class of modal nonmonotonic logics is

the well-known autoepistemic logic [136].

In classical predicate logic, the notion of logical consequence is de�ned with

respect to all models of a set of formulae. Preferential semantics [169] takes

as logical consequences all the formulae that hold in all preferred models . The

preferred models are usually de�ned as the minimal models with respect to a

given preference relation on interpretations. To illustrate this idea, we consider

a simple example from propositional logic. If we assume that there are only two

propositional variables p; q, then we have four di�erent interpretations: I

:p;:q

,

in which p and q are false, I

p;:q

, in which p is true and q is false, I

:p;q

, in which

p is false and q is true, and I

p;q

, in which p and q are true. Assume that the

preference relation < is given by

I

:p;:q

< I

p;q

; I

:p;:q

< I

:p;q

; I

p;q

< I

p;:q

; and I

:p;q

< I

p;:q

;

where the smaller interpretation is preferred over the larger one. The empty set

of formulae ; has all interpretations as model, which means that I

:p;:q

is the

only minimal model. In particular, :p is a consequence of ; with respect to

this preferential semantics. The set fqg excludes the two interpretations I

p;:q

and I

:p;:q

. The remaining models, I

p;q

; I

:p;q

are incomparable w.r.t. <, and are

thus both minimal models. Since :p does not hold in both, it can no longer be

deduced. This shows that preferential semantics yields a nonmonotonic formal-

ism. An important example for preferential semantics for the case of predicate

logic is circumscription [129]. Here, the goal is to minimize the extension of a

given predicate P , i.e., an interpretation I is preferred over an interpretation

J , if P

I

� P

J

holds. Default rules like \Frogs are normally green" can then be

expressed with the help of an \abnormality predicate," which is minimized:

Frog(x) ^ :Ab(x)! Green(x):

Exceptions to this rule can now be introduced by implications like Brown(x) !

Ab(x). The fact that Ab is minimized makes sure that the default rule is applied

to an individual unless it is a known exception.

Properties that a \reasonable" nonmonotonic inference relation j� should

satisfy were, on the one hand, introduced for the purpose of comparing and eval-

uating di�erent approaches to nonmonotonic reasoning [69, 124]. On the other

hand, these properties can also be interpreted as inference rules (like modus

ponens), which can be used to generate new nonmonotonic consequences [114].

Figure 4 gives several examples of such reasonable properties. It has also turned

out that there is a close connection between preferential semantics and inferences

relations satisfying certain properties [123, 111].



� j�� Reexivity

If � j� and � equivalent to �

0

then �

0

j� Left equivalence

If � j� and  implies  

0

then � j� 

0

Right weakening

If � ^ �

0

j� and � j��

0

then � j� Cut

If � j��

0

and � j� then � ^ �

0

j� Cautious monotony

Fig. 4. Properties of nonmonotonic inference relations.

Connection with Logic Programming A similar approach for evaluating

and comparing the semantics for Logic Programs was used in [51, 52]. As men-

tioned above, the \Closed World Assumption" in Logic Programs, and the cor-

responding treatment of negation as \Negation as Failure," leads to a nonmono-

tonic behaviour of Logic Programs. Thus, it is not surprising that there is a

close connection between approaches for de�ning declarative semantics for (ex-

tended) logic programs (e.g., [74, 75, 27, 173]) and formalisms for nonmonotonic

reasoning. In principle, these semantics depend on a preference relation between

models. Their development was strongly inuenced by the semantics for au-

toepistemic logic and for default logic. A �rst overview of these connections is

given in [150]. More recent work in this direction can be found in the proceedings

of the conferences \Non-Monotonic Extensions of Logic Programming" [55, 56]

and \Logic Programming and Nonmonotonic Reasoning" [125, 54].

Connection with Description Logics The integration of default rules into

Description Logics was investigated in [153, 16, 17]. In [60], an epistemic operator

K is added to the DL ALC. This operator is similar to the modal operators

employed in modal nonmonotonic logic, and it can, for example, be used to

impose a \local" closed world assumption.
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