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Abstract

Matching concepts against patterns (concepts with variables) is a relatively new operation

that has been introduced in the context of concept description languages (description log-

ics). Their original goals was to help �lter out unimportant aspects of complicated concepts

appearing in large industrial knowledge bases. We propose a new approach to performing

matching, based on a \concept-centered" normal form, rather than the more standard \struc-

tural subsumption" normal form for concepts. As a result, matching can be performed (in

polynomial time) using arbitrary concept patterns of the description language ALN , thus

removing restrictions from previous work. The paper also addresses the question of matching

problems with additional \side conditions", which were motivated by practical needs.

1 Introduction

Knowledge representation systems based on Description Logic (DL systems) can be

used to represent the knowledge of an application domain in a structured and formally

well-understood way [13, 4, 12, 37, 9]. In such systems, the important notions of the

domain can be described by concept descriptions, i.e., expressions that are built from

atomic concepts (unary predicates) and atomic roles (binary predicates) using the

concept constructors provided by the Description Logic language (DL language) of

the system. The atomic concepts and the concept descriptions represent sets of in-

dividuals, whereas roles represent binary relations between individuals. For example,
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using the atomic concept Woman and the atomic role child, the concept of all women

having only daughters (i.e., women such that all their children are again women) can

be represented by the concept description

Woman u 8child :Woman:

DL systems provide their users with various inference capabilities that allow them to

deduce implicit knowledge from the explicitly represented knowledge. For instance,

the subsumption algorithm allows one to determine subconcept-superconcept relation-

ships: C is subsumed by D (C v D) if and only if all instances of C are also instances

of D, i.e., the �rst description is always interpreted as a subset of the second descrip-

tion. For example, the concept description Woman obviously subsumes the concept

description Woman u 8child:Woman. With the help of the subsumption algorithm,

a newly introduced concept description can automatically be placed at the correct

position in the hierarchy of the already existing concept descriptions. Two concept

descriptions C;D are equivalent (C � D) if and only if they subsume each other,

i.e., if and only if they always represent the same set of individuals. For example,

the descriptions Womanu8child:Woman and (8child:Woman)uWoman are equivalent

since u is interpreted as set intersection, which is commutative.

The traditional inference problems for DL systems (like subsumption) are now

well-investigated, which means that algorithms are available for solving the subsump-

tion problem and related inference problems in a great variety of DL languages of

di�ering expressive power (see, e.g., [24, 36, 33, 22, 1, 3, 21, 14, 11, 7, 2, 8]). In addi-

tion, the computational complexity of these inference problems has been investigated

in detail [24, 32, 34, 17, 16, 19, 35, 18].

It has turned out, however, that building and maintaining large DL knowledge

bases requires additional support in the form of inferences that have not been con-

sidered in the DL literature until very recently [27]. The present paper is concerned

with one such new inference service, namely,matching of concept descriptions, which

was motivated by the problem of pruning large descriptions.

Pruning as a motivation

In industrial applications, objects and their descriptions may become too large and

complex to view in traditional ways. Simply printing (descriptions of) objects in small

applications such as con�guring stereo systems [28, 29] can easily take 10 pages, while

printing objects in industrial applications such as con�guring telecommunications

equipment [38, 30, 31] might take �ve times as much space. In addition, if explanation

facilities [26, 25] are introduced and a naive explanation is presented of all deductions,

the system can produce �ve times as much output again. It quickly becomes clear

that object descriptions need to be pruned if users are to be able to inspect objects

and not be overwhelmed with irrelevant details.

We have observed that information may not be worthy of display for many rea-

sons. Information may be obviously true because it is commonly known de�nitional

knowledge, (e.g., the age of a person must be a number), or because it is common

knowledge in the domain, (e.g., the state �eld of an address must be �lled with a

state in the US if the application is only concerned with US citizens). Information

may also not be worth presenting because it is information only relevant to an inter-

nal function, (e.g., information describing where to display an object in a graphical
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presentation), or because it is otherwise determined to be non-informative or not of

interest to typical users (e.g., healthy eaters typically do not want to see the sugar

content of particular foods). However, information that may not be of general inter-

est, can, under certain conditions, become critical (e.g., if a food is known to �ll the

\eats" role for a diabetic's meal, then the sugar content becomes signi�cant). Thus,

the context of the information becomes a critical component in determining what

should be presented.

Normally, users would need to retrieve descriptions of object portions and then

verify that they are interesting, by using functions from the application programming

interface (API) of the knowledge base management system (KBMS). For example,

they might retrieve the value restriction on an individual's age and then check to see

if it is strictly subsumed by the concept Number.

This approach, which leaves the solution outside the KBMS, is less desirable than

one in which the speci�cation of what is interesting is stored as part of the knowledge

base itself [10]. The advantage of the second alternative is that such speci�cations

can be saved, organized, and re-used (e.g., through inheritance), even by naive users.

McGuinness introduced the ability to provide \pruned views" of objects in the Clas-

sic system (version 2), under the name of \�ltering". The problem of �ltering was

viewed as a matching problem: taking a description of interesting object portions

and matching that against existing object descriptions. Matching patterns were as-

sociated with classes and then used to �lter all subclasses and instances of the class.

The patterns were de�ned once by a domain-literate person and then all users could

use them as the default pruning mechanism. The initial implementation had implicit

variables in matching patterns and also relied to some extent on a library of test

�lters. This implementation has been used in small applications [28, 29] to save 3{5

pages of output (sometimes reducing the object to 25 percent of its former size). In

larger applications [38, 30, 31] it can easily save 30 pages of output per object.

Matching as a declarative solution

Even for matching �lters attached to classes, one has a choice of using a variety of spec-

i�cation techniques. As usual in information-intensive applications (e.g., databases),

a declarative speci�cation of �lters should be preferred to a more procedural one: it is

usually more concise and elegant because it is likely to support formal analysis and

thence optimization by the KBMS.

A more declarative version of matching �lters can be provided by introducing vari-

ables into concepts, thus producing \concept patterns" [25]. The pruning mechanism

was initially described as a purely syntactic match involving concept patterns [25],

and then given a formal semantics and a provably sound syntactic implementation

[10]. Given a concept pattern D (i.e., a concept description containing variables)

and a concept description C without variables, the matching problem introduced by

Borgida and McGuinness [10] asks for a substitution � (of the variables by concept

descriptions) such that C v �(D). More precisely, one is interested in a \minimal"

solution of the matching problem, i.e., � should satisfy the property that there does

not exist a substitution � such that C v �(D) @ �(D). For example, the minimal

matcher of the pattern

D := 8research-interests:X
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against the description

C := 8pets:Catu 8research-interests:AIu 8hobbies:Gardening

assigns AI to the variable X, and thus �nds the scienti�c interests (in this case Arti�-

cial Intelligence) described in the concept. (The concept pattern can be thought of as

a \format statement", describing what information is to be displayed (or explained),

if the pattern matches successfully against a speci�c concept. If there is no match,

nothing is displayed.)

In some cases, this pruning e�ect can be improved by imposing additional side

conditions on the solutions of matching problems. For example, the information that

the research interests lie in the area of Arti�cial Intelligence may not be particularly

interesting if our knowledge base is concerned only with AI researchers. A side con-

dition stating that the solutions for the variable X must be subsumed by KR would

make sure that matching succeeds only if the research interests belong to (a sub�eld

of) Knowledge Representation. Thus, the description C from above no longer matches

the pattern D, when augmented by this side condition, whereas

C

0

:= 8pets:Catu 8research-interests:DL u 8hobbies:Gardening

would still yield a solution (provided that DL can be inferred to be subsumed by KR).

In some cases it would be useful to have a matching process which succeeds only if

the variable X is substituted for by a value that is strictly subsumed by some descrip-

tion (or pattern). The utility of such strict side-conditions be seen more clearly in an

example where the concept Person is known to have Number as restriction on the age

attribute, and we are interested in seeing the value restriction for age only if it rep-

resents some additional (i.e., stricter) constraint. Another point worth noting is that

according to the standard Description Logic semantics, every description is subsumed

by all concepts of the form 8R:>, where > denotes the universal concept. Hence the

pattern D above (concerning research interests) in fact matches every concept. Side

conditions requiring the value substituted for a variable to be strictly subsumed by

> prevent such \trivial" matches.

Matching algorithms for a DL containing most of the constructs available in Clas-

sic were introduced by McGuinness [25], and generalized in Borgida and McGuin-

ness [10] to any DL supporting a certain type of subsumption algorithms (called

\structural" subsumption algorithms). These matching algorithms are based on the

role-centered structural normal form

1

of concept descriptions usually employed by

structural subsumption algorithms. The main drawback of these algorithms is that,

in an e�ort at generality, they require the concept pattern itself to be in structural

normal form, and thus place strong restrictions on the occurrence of variables. The

reason is that it is not possible to normalize arbitrary patterns, and thus certain natu-

ral concept patterns must be disallowed. For example, since at most one variable may

occur \in the same place", the pattern in Example 23 would not be admissible. This

makes it di�cult to build composite patterns from simpler, previously de�ned ones.

In addition, these algorithms do not always �nd a matcher, even if it exists, due to an

incomplete treatment of the top (>) and the bottom (?) concepts (see Example 41).

1

We call this normal form \role-centered" since it groups sub-descriptions by role names, whereas

the concept-centered normal form used in this article groups value restrictions by concept names (see

Section 3).
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Baader and Narendran [6] consider uni�cation of concept descriptions of the lan-

guage FL

0

, which allows for conjunction (u), value restriction (8R:C), and the top

concept (>). Matching modulo equivalence, i.e., the question whether, for a given

pattern D and a description C, there exists a substitution � such that C � �(D), can

be seen as a special case of uni�cation where one of the descriptions (namely C) does

not contain variables. Since C v �(D) if and only if C � �(C uD), matching modulo

subsumption (as introduced above) is an instance of matching modulo equivalence.

The polynomial matching algorithm described by Baader and Narendran [6] does not

impose restrictions on the form of the patterns. However, it is restricted to the small

language FL

0

.

The new results

We shall show that Baader and Narendran's algorithm can be extended to treat

matching in languages allowing for inconsistent concept descriptions, namely FL

?

,

which extends FL

0

by the bottom concept (?), FL

:

, which extends FL

?

by primitive

negation (:A, where A is an atomic concept), and ALN , which extends FL

:

by

number restrictions. The reasons for starting with a detailed treatment of the small

language FL

?

, and then extending this treatment in two steps to the larger languages,

are mainly of a didactic nature. It should, however, also be noted that, for matching,

positive results (such as decidability in polynomial time) do not automatically transfer

from a given language to its sublanguages. In fact, a matching problem of the smaller

language that does not have a solution in this language may well have one in the

larger language.

2

In addition to pure matching problems, we also consider matching under additional

conditions on the variable bindings, which also arose in practical examples [28, 25]

and were responsible for about 25% of our space savings in our deployed example. In

this paper, we consider two di�erent variants of these \side conditions": subsumption

conditions and strict subsumption conditions. Subsumption conditions are of the form

X v

?

E, where X is a variable and E is a pattern (i.e., it may contain variables), and

they restrict the matchers to substitutions � satisfying �(X) v �(E). It should be

noted that such a side condition is not a matching problem since variables may occur

on both sides. We shall see, however, that in many cases matching under subsumption

conditions can be reduced to matching without subsumption conditions. It is not yet

clear whether this reduction leads to an increase of the complexity. In contrast, strict

subsumption conditions de�nitely increase the complexity of the matching problem.

Such conditions are of the form X @

?

E, where X is a variable and E is a pattern,

and they restrict the matchers to substitutions � satisfying �(X) v �(E) and �(X) 6�

�(E). We shall show that, even for the small language FL

0

, matching under strict

subsumption conditions is NP-hard.

2 Formal preliminaries

In this section, we �rst introduce the syntax and semantics of the description lan-

guages considered in this paper. Then, we formally introduce matching problems,

and state some simple results about matching problems and their solutions.

2

We will come back to this point in the conclusion.
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De�nition 1 Let C and R be disjoint �nite sets representing the set of atomic con-

cepts and the set of atomic roles. The set of all ALN -concept descriptions over C

and R is inductively de�ned as follows:

� Every element of C is a concept description (atomic concept).

� The symbols > (top concept) and ? (bottom concept) are concept descriptions.

� If A 2 C, then :A is a concept description (atomic negation).

� If C andD are concept descriptions, then CuD is a concept description (concept

conjunction).

� If C is a concept description and R 2 R is an atomic role, then 8R:C is a

concept description (value restriction).

� If R 2 R is an atomic role and n � 0 is a nonnegative integer, then (�nR) and

(� n R) are concept descriptions (number restrictions).

In the sublanguage FL

0

of ALN , number restrictions, atomic negation, and ?

may not be used, in FL

?

atomic negation and number restriction may not be used,

and in FL

:

only number restrictions are disallowed.

The following de�nition provides a model-theoretic semantics for ALN and its

sublanguages:

De�nition 2 An interpretation I consists of a nonempty set �

I

, the domain of the

interpretation, and an interpretation function �

I

that assigns to every atomic concept

A 2 C a set A

I

� �

I

, and to every atomic role R 2 R a binary relation R

I

� �

I

��

I

.

The interpretation function is extended to complex concept descriptions as follows:

>

I

:= �

I

;

?

I

:= ;;

(:A)

I

:= �

I

nA

I

;

(C uD)

I

:= C

I

\D

I

;

(8R:C)

I

:= fd 2 �

I

j 8e 2 �

I

: (d; e) 2 R

I

! e 2 C

I

g;

(� n R)

I

:= fd 2 �

I

j card(fe 2 �

I

j (d; e) 2 R

I

g) � ng;

(� n R)

I

:= fd 2 �

I

j card(fe 2 �

I

j (d; e) 2 R

I

g) � ng:

Based on this semantics, subsumption and equivalence of concept descriptions is

de�ned as follows: Let C and D be ALN -concept descriptions.

� C is subsumed by D (C v D) if and only if C

I

� D

I

for all interpretations I.

� C is equivalent to D (C � D) if and only if C

I

= D

I

for all interpretations I.

� C is strictly subsumed by D (C @ D) if and only if C v D and C 6� D.

In order to de�ne matching of concept descriptions, we must introduce the notion

of a concept pattern and of substitutions operating on patterns. For this purpose, we

introduce an additional set of symbols X (concept variables), which is disjoint from

C [ R.
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De�nition 3 The set of all ALN -concept patterns over C, R, and X is inductively

de�ned as follows:

� Every concept variable X 2 X is a pattern.

� Every ALN -concept description over C and R is a pattern.

� If C and D are concept patterns, then C uD is a concept pattern.

� If C is a concept pattern and R 2 R is an atomic role, then 8R:C is a concept

pattern.

Thus, concept variables can be used like atomic concepts, with the only di�erence

being that atomic negation may not be applied to variables. FL

0

-, FL

?

- and FL

:

-

patterns are de�ned analogously.

A substitution � is a mapping fromX into the set of allALN -concept descriptions.

This mapping is extended to concept patterns in the obvious way, i.e.,

� �(A) := A and �(:A) := :A for all A 2 C,

� �(>) := > and �(?) := ?,

� �(C uD) := �(C) u �(D),

� �(8R:C) := 8R:�(C),

� �(� n R) := (� n R), and �(� n R) := (� n R).

For example, applying the substitution � := fX 7! Au8R:A; Y 7! Bg to the pattern

X u Y u 8R:X yields the description A u (8R:A) uB u 8R:(A u 8R:A).

Obviously, the result of applying a substitution to an ALN -concept pattern is

an ALN -concept description.

3

An FL

0

-substitution maps concept variables to FL

0

-

concept descriptions, and FL

?

- and FL

:

-substitutions are de�ned analogously.

Subsumption can be extended to substitutions as follows. The substitution � is

subsumed by the substitution � (� v � ) if and only if �(X) v � (X) for all variables

X 2 X .

De�nition 4 An ALN -matching problem is of the form C �

?

D where C is an

ALN -concept description and D is an ALN -concept pattern. A solution or matcher

of this problem is a substitution � such that C � �(D).

A subsumption condition in ALN is of the form X v

?

E where X is a concept

variable and E is an ALN -concept pattern. The substitution � satis�es this condition

if and only if �(X) v �(E).

A strict subsumption condition in ALN is of the form X @

?

E where X is a

concept variable and E is an ALN -concept pattern. The substitution � satis�es this

condition if and only if �(X) @ �(E).

3

Note that this would not be the case if we had allowed the application of negation to concept

variables.
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Matching problems and (strict) subsumption conditions in FL

0

, FL

?

, and FL

:

are de�ned analogously. Note that the solutions are then also constrained to belong

to the respective sublanguage.

Instead of a single matching problem, we may also consider a �nite system fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g of such problems. The substitution � is a solution of this system

if and only if it is a solution of all the matching problems C

i

�

?

D

i

contained in the

system. However, it is easy to see that solving systems of matching problems can be

reduced (in linear time) to solving a single matching problem.

Lemma 5 Let R

1

; : : : ; R

m

be distinct atomic roles. Then � solves the system fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g if and only if it solves the single matching problem

8R

1

:C

1

u � � � u 8R

m

:C

m

�

?

8R

1

:D

1

u � � � u 8R

m

:D

m

:

Consequently, we may (without loss of generality) restrict our attention to single

matching problems with or without �nite sets of (strict) subsumption conditions.

Borgida and McGuinness [10, 25] have considered a di�erent type of matching

problems. We will refer to those problems as matching problems modulo subsump-

tion in order to distinguish them from the matching problems modulo equivalence

introduced above.

De�nition 6 A matching problem modulo subsumption is of the form C v

?

D where

C is a concept description and D is a pattern. A solution of this problem is a

substitution � satisfying C v �(D).

For any description language allowing conjunction of concepts, matching modulo

subsumption can be reduced (in linear time) to matching modulo equivalence:

Lemma 7 The substitution � solves the matching problem C v

?

D if and only if it

solves C �

?

C uD.

For ALN , and more generally for any description language in which variables in

patterns may only occur in the scope of \monotonic" operators, solvability of matching

problems modulo subsumption can be reduced to subsumption:

Lemma 8 Let C v

?

D be a matching problem modulo subsumption in ALN , and

let �

>

be the substitution that replaces each variable by >. Then C v

?

D has a

solution if and only if �

>

solves C v

?

D.

Thus, solvability of matching problems modulo subsumption in ALN and its

sublanguages is not an interesting new problem. This changes, however, if we consider

such matching problems together with additional (strict) subsumption conditions. In

fact, these conditions may exclude the trivial solution �

>

. In addition, one is usually

not interested in an arbitrary solution of the matching problem C v

?

D, but rather

in computing a \minimal" solution:

De�nition 9 Let C v

?

D be a matching problemmodulo subsumption. The solution

� of C v

?

D is called minimal if and only if there does not exist a substitution � such

that C v �(D) @ �(D).
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Lemma 10 Let C v

?

D be an ALN -matching problem modulo subsumption. If �

is the least solution of C v

?

D w.r.t. subsumption of substitutions, i.e., � v � for all

solutions �, then � is also a minimal solution.

Proof. This is an immediate consequence of the following fact, which can easily

be proved by induction on the structure of ALN -concept patterns: If � v �, then

�(D) v �(D) for any ALN -concept pattern D.

It should be noted that talking about the least solution is a slight abuse of language

since the least solution of a given matching problem is unique only up to equivalence:

if � and � are both least solutions of the same matching problem, then they subsume

each other, which means that �(X) � � (X) for all variables X 2 X .

The converse of Lemma 10 need not hold. For example, for the matching problem

8R:A v

?

8R:A u 8R:X, the substitutions � := fX 7! Ag and � := fX 7! >g are

both minimal solutions, but � obviously cannot be a least solution. This example

also demonstrates that minimal solutions of a given matching problem need not be

unique up to equivalence.

3 Matching in FL

?

The purpose of this section is to show that solvability of FL

?

-matching problems can

be decided in polynomial time. In addition, for matching problems modulo subsump-

tion we can compute a minimal solution in polynomial time. Our algorithm is based

on a \concept-centered" normal form for FL

?

-concept descriptions.

First, let us recall the concept-centered normal form for FL

0

-concept descriptions

introduced by Baader and Narendran [6]. It is easy to see that any FL

0

-concept

description can be transformed into an equivalent description that is either > or

a (nonempty) conjunction of descriptions of the form 8R

1

: � � �8R

m

:A for m � 0

(not necessarily distinct) atomic roles R

1

; : : : ; R

m

and an atomic concept A 6= >.

We abbreviate 8R

1

: � � �8R

m

:A by 8R

1

: : :R

m

:A, where R

1

: : :R

m

is considered as

a word over the alphabet � := R of all atomic roles. If m = 0, then this is the

empty word ", and thus 8":A is our \abbreviation" for A. In addition, instead of

8w

1

:Au: : :u8w

`

:A we write 8L:A where L := fw

1

; : : : ; w

`

g is a �nite set of words over

�. Using these abbreviations, any pair of FL

0

-concept descriptions C;D containing

the atomic concepts A

1

; : : : ; A

k

can be rewritten as

C � 8U

1

:A

1

u : : :u 8U

k

:A

k

and D � 8V

1

:A

1

u : : :u 8V

k

:A

k

;

where U

i

; V

i

are �nite sets of words over the alphabet of all atomic roles. By con-

vention, the term 8;:A is considered to be equivalent to >, and hence the concept >

itself can be represented by making all the coe�cients, V

i

, be empty sets. This normal

form provides us with the following characterization of equivalence of FL

0

-concept

descriptions [6]:

Lemma 11 Let C;D be FL

0

-concept descriptions with normal forms as introduced

above. Then C � D if and only if U

i

= V

i

for all i; 1 � i � k.
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This characterization can in turn be used to reduce matching of FL

0

-concept

descriptions to a certain formal language problem, which can easily be shown to be

solvable in polynomial time [6].

If we treat ? like an arbitrary atomic concept, FL

?

-concept descriptions C;D

can still be represented in the form

4

C � 8U

0

:?u 8U

1

:A

1

u : : :u 8U

k

:A

k

and D � 8V

0

:?u 8V

1

:A

1

u : : :u 8V

k

:A

k

:

However, equivalence of the descriptions no longer corresponds to equality of the

languages U

i

and V

i

. The reason is that 8R

1

: � � �8R

m

:? is subsumed by any value

restriction of the form 8R

1

: � � �8R

m

: 8R

m+1

: � � �8R

m+n

:A. This fact is taken into

account by the following characterization of equivalence of FL

?

-concept descriptions:

Lemma 12 Let C;D be FL

?

-concept descriptions with FL

0

-normal forms as intro-

duced above. Then

C � D i� U

0

��

�

= V

0

��

�

and

U

i

[ U

0

��

�

= V

i

[ V

0

��

�

for all i; 1 � i � k;

where �

�

is the set of all words over the alphabet of all atomic roles and � stands for

concatenation.

Proof. Assume that the right-hand side of the equivalence stated in the lemma

holds. It is su�cient to show that this implies C v D (since D v C then follows by

symmetry). Considering the normal form of D this means that we must show that

for all w 2 V

0

we have (1) C v 8w:?, and for all i; 1 � i � k, and all w 2 V

i

we

have (2) C v 8w:A

i

. Thus, let w 2 V

0

. By assumption, V

0

� V

0

��

�

= U

0

��

�

, which

implies that there exist a word u 2 U

0

and v 2 �

�

such that w = uv. Thus, the

normal form for C contains the conjunct 8u:?. Since 8u:? v 8uv:? for any word v

we have established that (1) holds. Property (2) can be shown similarly.

Conversely, assume that the right-hand side of the equivalence stated in the lemma

does not hold, i.e., (1) U

0

��

�

6= V

0

��

�

, or for some i; 1 � i � k, (2) U

i

[ U

0

��

�

6=

V

i

[ V

0

��

�

.

First, we assume that (1) holds. Without loss of generality we may assume that

there exists a word w := R

1

: : :R

m

2 �

�

such that w 2 U

0

��

�

and w 62 V

0

��

�

. We

claim that this implies D 6v C, and thus C 6� D.

In order to prove this claim, we construct an interpretation I as follows: the

domain �

I

:= fd

0

; : : : ; d

m

g consists of m + 1 distinct individuals; the interpretation

of atomic concepts A

i

is given by A

I

i

:= �

I

; �nally, the atomic roles are interpreted

as S

I

:= f(d

i�1

; d

i

) j S = R

i

g. It is easy to see that this interpretation satis�es

d

0

2 (8u:A

i

)

I

for all words u 2 �

�

(since A

I

i

= �

I

), and d

0

2 (8u:?)

I

for all

words u that are not a pre�x of w = R

1

: : :R

m

. Consequently, d

0

2 (8u:A

i

)

I

for

all u 2 V

i

. In addition, w 62 V

0

��

�

implies that no word in V

0

is a pre�x of w, and

thus d

0

2 (8u:?)

I

for all words u 2 V

0

. This shows that d

0

2 D

I

. However, by

construction, d

0

62 (8w:?)

I

, which implies d

0

62 C

I

.

Second, we assume that (1) does not hold, i.e., U

0

��

�

= V

0

��

�

, and that (2) holds.

Without loss of generality we may assume that there exists a word w := R

1

: : :R

m

2

4

We shall call this the FL

0

-normal form of the descriptions.

10



�

�

such that w 2 U

i

and w 62 V

i

[ V

0

��

�

. Again, we claim that this implies D 6v C,

and thus C 6� D.

In order to prove this claim, we construct an interpretation I as follows: the

domain �

I

:= fd

0

; : : : ; d

m

g consists of m + 1 distinct individuals; the interpretation

of atomic concepts A

j

for j 6= i is given by A

I

j

:= �

I

; the interpretation of A

i

is

A

I

i

:= �

I

n fd

m

g; �nally, the atomic roles are interpreted as S

I

:= f(d

i�1

; d

i

) j S =

R

i

g. By construction d

0

62 (8w:A

i

)

I

, and thus d

0

62 C

I

. On the other hand, it is easy

to show (using arguments that are similar to the ones employed in the �rst case) that

d

0

2 D

I

.

IfD is an FL

?

-pattern containing the atomic concepts A

1

: : :A

k

and the variables

X

1

; : : : ; X

`

, then its FL

0

-normal form is of the form

D � 8V

0

:?u 8V

1

:A

1

u : : :u 8V

k

:A

k

u 8W

1

:X

1

u : : :u 8W

`

:X

`

:

If we want to match D with the description C (with normal form as above), we

must solve the following \formal language" equations (where X

j;i

are interpreted as

variables for �nite sets of words):

(?) U

0

��

�

= V

0

��

�

[W

1

�X

1;0

��

�

[ : : :[W

`

�X

`;0

��

�

;

and for all i; 1 � i � k,

(A

i

) U

i

[ U

0

��

�

= V

i

[W

1

�X

1;i

[ : : :[W

`

�X

`;i

[ U

0

��

�

:

Theorem 13 Let C be an FL

?

-concept description and D an FL

?

-concept pattern

with FL

0

-normal forms as introduced above. Then the matching problem C �

?

D

has a solution if and only if the formal language equations (?) and (A

1

); : : : ; (A

k

) are

each solvable.

Proof. Let

� := fX

1

7! 8L

1;0

:?u

k

u

i=1

8L

1;i

:A

i

; : : : ; X

`

7! 8L

`;0

:?u

k

u

i=1

8L

`;i

:A

i

g

be a substitution.

5

By employing elementary equivalences between concept descrip-

tions we can show that the FL

0

-normal form of �(D) is

�(D) � 8 (V

0

[W

1

�L

1;0

[ � � � [W

`

�L

`;0

) :?u

k

u

i=1

8 (V

i

[W

1

�L

1;i

[ � � � [W

`

�L

`;i

) :A

i

:

Lemma 12 implies that C � �(D) if and only if

U

0

��

�

= (V

0

[W

1

�L

1;0

[ � � � [W

`

�L

`;0

)��

�

; (1)

and for all i; 1 � i � k,

U

i

[ U

0

��

�

= V

i

[W

1

�L

1;i

[ � � � [W

`

�L

`;i

[

(V

0

[W

1

�L

1;0

[ � � � [W

`

�L

`;0

)��

�

: (2)

5

Without loss of generality we restrict our attention to the images of variables occurring in D,

and assume that � introduces only atomic concepts occurring in C or D.

11



Since concatenation distributes over union, (1) corresponds to the fact that the as-

signment X

1;0

:= L

1;0

; : : : ; X

`;0

:= L

`;0

solves equation (?). In addition, if we al-

ready know that (1) holds, then (2) corresponds to the fact that the assignment

X

1;i

:= L

1;i

; : : : ; X

`;i

:= L

`;i

solves equation (A

i

).

This shows how a solution � of the matching problem C �

?

D yields solutions

of the equations (?), (A

1

), ..., (A

k

), and conversely how solutions of these equations

can be used to construct a matcher �.

Example 14 As a running example, we will consider the problem of matching the

pattern

D := X

1

u (8R:X

1

) u (8S:X

2

)

against the description

C := 8R:((8S:A

1

) u (8R:?))u 8S:8S:?:

The FL

?

-normal forms of C and D are

C � 8fRR;SSg:?u 8fRSg:A

1

and D � 8;:?u 8;:A

1

u 8f";Rg:X

1

u 8fSg:X

2

:

Thus, the matching problem C �

?

D is translated into the following two equations:

(?) fRR;SSg��

�

= ;��

�

[ f";Rg�X

1;0

��

�

[ fSg�X

2;0

��

�

;

(A

1

) fRSg [ fRR;SSg��

�

= ; [ f";Rg�X

1;1

[ fSg�X

2;1

[ fRR;SSg��

�

:

If we want to utilize Theorem 13 for deciding matching problems in FL

?

, we must

show how solvability of the equations (?), (A

1

), ..., (A

k

) can be tested. First, we

address the problem of solving equation (?).

Lemma 15 Equation (?) has a solution if and only if replacing X

j;0

��

�

by the sets

b

L

j;0

:=

\

w2W

j

w

�1

�(U

0

��

�

)

solves equation (?).

6

Proof. To show the only-if direction, we assume that the assignmentX

1;0

:=M

1;0

; : : : ;

X

`;0

:=M

`;0

solves equation (?).

First, we prove that M

j;0

��

�

�

T

w2W

j

w

�1

�(U

0

��

�

) holds for all j; 1 � j � `.

Thus, let v 2 M

j;0

��

�

and w 2 W

j

. Since W

j

�M

j;0

��

�

� U

0

��

�

, we know that

wv 2 U

0

��

�

, and thus v 2 w

�1

�(U

0

��

�

). This shows that M

j;0

��

�

� w

�1

�(U

0

��

�

) for

all w 2 W

j

, and thus M

j;0

��

�

�

T

w2W

j

w

�1

�(U

0

��

�

).

As an immediate consequence, we obtain

U

0

��

�

= V

0

��

�

[W

1

�M

1;0

��

�

[ : : :[W

`

�M

`;0

��

�

� V

0

��

�

[W

1

�

\

w2W

1

w

�1

�(U

0

��

�

) [ : : :[W

`

�

\

w2W

`

w

�1

�(U

0

��

�

):

6

For a word w and a set of words L we have w

�1

�L := fu j wu 2 Lg. This language is called a

left quotient of L.

12



It remains to be shown that the inclusion in the other direction holds as well. Obvi-

ously, we have V

0

��

�

� U

0

��

�

since there exists a solution of (?). To conclude the

proof of the only-if direction, assume that u 2 W

j

and v 2

T

w2W

j

w

�1

�(U

0

��

�

). We

must show that uv 2 U

0

��

�

. Obviously, u 2 W

j

implies v 2 u

�1

�(U

0

��

�

), and thus

uv 2 U

0

��

�

.

To prove the if direction, it is su�cient to show that there exist �nite sets of words

L

j;0

(j = 1; : : : ; `) such that L

j;0

��

�

=

T

w2W

j

w

�1

�(U

0

��

�

). This is an immediate

consequence of the fact that languages of the form L��

�

for �nite L are closed under

(binary) intersection and left quotients (see (1) and (2) of Lemma 16 below).

The following lemma shows that languages of the form L��

�

for �nite L are closed

under left quotients, intersection, union, and left concatenation with �nite languages.

Lemma 16 Let U; V be �nite languages and w a word.

1. There exists a �nite language L

1

such that L

1

��

�

= w

�1

�(U ��

�

).

2. There exists a �nite language L

2

such that L

2

��

�

= U ��

�

\ V ��

�

.

3. U ��

�

[ V ��

�

= (U [ V )��

�

and U �(V ��

�

) = (U �V )��

�

.

Proof. (1) Since (uv)

�1

L = v

�1

�(u

�1

�L) for all languages L, it is su�cient to con-

sider the case where w has length 1, i.e., w 2 �. We distinguish two cases:

� If the empty word " belongs to U , then U ��

�

= �

�

= w

�1

��

�

, and thus we can

take L

1

:= f"g.

� If " 62 U , then our assumption that w 2 � implies that w

�1

�(U ��

�

) = (w

�1

�U ) �

�

�

, and thus we can take L

1

:= w

�1

�U , which is �nite since U is �nite.

(2) It is easy to see that we can take L

2

:= (U \ V ��

�

) [ (V \ U ��

�

).

(3) is trivial.

For the matching problem of Example 14, we replace X

1

��

�

by

R

�1

�(fRR;SSg��

�

) \ "

�1

�(fRR;SSg��

�

) = fRg��

�

\ fRR;SSg��

�

= fRRg��

�

and X

2

��

�

by

S

�1

�(fRR;SSg��

�

) = fSg��

�

:

It is easy to see that this replacement solves equation (?). The �nite languages L

j;0

are de�ned as L

1;0

:= fRRg and L

2;0

:= fSg:

Now, let us consider the equations (A

i

) for 1 � i � k.

Lemma 17 Equation (A

i

) has a solution if and only if replacing the variables X

j;i

by the sets

b

L

j;i

:=

T

w2W

j

w

�1

�(U

i

[ U

0

��

�

) yields a solution of (A

i

).

Proof. The proof of the only-if direction is very similar to the proof of this di-

rection for Lemma 15. In particular, one can show that any assignment X

1;i

:=

M

1;i

; : : : ; X

`;i

:=M

`;i

that solves (A

i

) satis�es M

j;i

�

b

L

j;i

.

To prove the if direction, it is su�cient to show that there exist �nite sets of words

L

j;i

such that W

j

�L

j;i

[ U

0

��

�

= W

j

�

b

L

j;i

[ U

0

��

�

.

13



We have

b

L

j;i

=

T

w2W

j

(w

�1

�U

i

[ w

�1

�(U

0

��

�

)). By applying distributivity of

intersection over union, this intersection of unions can be transformed into a union

of intersections. Except for the intersection

T

w2W

j

w

�1

�(U

0

��

�

), all the intersection

expressions in this union contain at least one language w

�1

U

i

for a word w 2 W

j

.

Since U

i

is �nite, this shows that

T

w2W

j

w

�1

�(U

0

��

�

) is the only (possibly) in�nite

language in the union. Consequently, if we de�ne L

j;i

:=

b

L

j;i

n

T

w2W

j

w

�1

�(U

0

��

�

),

then L

j;i

is a �nite language.

In order to prove that W

j

�

b

L

j;i

[ U

0

��

�

= W

j

�L

j;i

[ U

0

��

�

, it is su�cient to show

that u 2 W

j

and v 2

b

L

j;i

n L

j;i

implies uv 2 U

0

��

�

. By de�nition of L

j;i

, we know

that v 2

T

w2W

j

w

�1

�(U

0

��

�

), and thus u 2W

j

implies uv 2 U

0

��

�

.

For the matching problem of Example 14, we have

b

L

1;1

= R

�1

�(fRSg [ fRR;SSg��

�

) \ "

�1

�(fRSg [ fRR;SSg��

�

)

= (fSg [ fRg��

�

) \ (fRSg [ fRR;SSg��

�

)

= fRSg [ fRRg��

�

;

b

L

2;1

= S

�1

�(fRSg [ fRR;SSg��

�

)

= fSg��

�

:

Again, it is easy to see that replacing the variables X

j;1

by

b

L

j;1

yields a solution of

equation (A

1

). The �nite languages L

j;1

are de�ned as L

1;1

:= fRSg and L

2;1

:= ;.

Lemma 15 and 17 provide us with a polynomial algorithm for deciding solvability

of matching problems in FL

?

.

Theorem 18 Solvability of matching problems in FL

?

can be decided in polynomial

time.

Proof. Obviously, Lemma 15 and 17 provide us with an e�ective method for testing

matching problems in FL

?

for solvability. It remains to be shown that this test can be

realized in polynomial time. First, note that the combined size

7

of the �nite languages

U

i

and V

i

is linear in the size of the concept description and the pattern. Thus, the

size of the equations (?) and (A

i

) is polynomial in the size of the original matching

problem. Both for equation (?) and for equation (A

i

) we compute a \candidate" for

a solution and then test whether it really is a solution.

First, let us consider equation (?). Given the �nite language U

0

, we can construct

(in polynomial time) a deterministic �nite automaton that accepts the left-hand side

U

0

��

�

of equation (?), and whose size is linear in the size of U

0

.

Regarding the right-hand side of equation (?), it is easy to see that computing

the candidate and inserting it into the right-hand side can be done in polynomial

time. To be more precise, we can compute (in polynomial time) a deterministic

�nite automaton accepting the (regular) language obtained by inserting the candidate

solution into the right-hand side of equation (?), and the size of this automaton is

polynomial in the size of the equation. In fact, in order to construct this automaton,

we start with very simple �nite deterministic automata for U

0

��

�

and V

0

��

�

. In

principle, these automata have the form of a tree (representing the �nite language U

0

7

As size of a �nite language we take the sum of the length of the words occurring in the language.
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Figure 1: Tree-like automata for the languages fRR; SR; SSg�fR; Sg

�

and fR;SRg [

fRR; SSg�fR; Sg

�

. The root of the tree is the initial state and the �nal states are marked

by exiting arrows without destination.

or V

0

) with loops at the leaves (representing the �

�

at the end), where the root is the

initial state and the leaves are the �nal states (see the left-hand side of Fig. 1 for an

example). It is easy to see that computing the left quotient and the intersection of

languages represented by such tree-like automata can be realized as linear operations

on tree-like automata. Thus, computing the languages

b

L

j;0

, and thus the candidate

solution, is polynomial. Inserting the candidate solution into the right-hand side of

the equation is also polynomial since the concatenation W

j

�

b

L

j;0

can be realized by a

quadratic operation: W

j

�

b

L

j;0

can be represented as union of the languages fwg�

b

L

j;0

where w 2W

j

. Now, computing a tree-like automaton corresponding to fwg�

b

L

j;0

is a

linear operation. In addition, union can be realized as a linear operation on tree-like

automata as well.

Since equivalence of regular languages given by deterministic �nite automata can

be decided in time polynomial in the size of the automata,

8

this shows that solvability

of equation (?) can be tested in polynomial time.

The equations (A

i

) can be treated similarly. We just have to extend our argu-

ment regarding closure properties of tree-like automata from automata representing

languages of the form L��

�

for �nite L to languages of the form L [ L

0

��

�

for �nite

L;L

0

(see the right-hand side of Fig. 1 for an example of such an extended tree-like

automaton).

The proofs of Lemma 15 and 17 also show how to compute a matcher of a given

solvable FL

?

-matching problem. In fact, if the matching problem is solvable, then

the following substitution � is a matcher:

� := fX

1

7! 8L

1;0

:?u

k

u

i=1

8L

1;i

:A

i

; : : : ; X

`

7! 8L

`;0

:?u

k

u

i=1

8L

`;i

:A

i

g;

where the languages L

j;0

(1 � j � `) are de�ned as in the proof of Lemma 15, and

the languages L

j;i

(1 � j � `, 1 � i � k) are de�ned as in the proof of Lemma 17.

Lemma 19 The substitution � de�ned above can be computed in polynomial time.

8

Note that this would not be the case for nondeterministic �nite automata.
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Figure 2: The complement tree-like automata for the automata in Fig. 1.

Proof. It is su�cient to show that the languages L

j;i

can be computed in polynomial

time. For i = 0 this has already been shown in the proof of Theorem 18 since L

j;0

can

easily be read o� the tree-like automata for

b

L

j;0

. For i > 0 we have L

j;i

=

b

L

j;i

n

b

L

j;0

.

We know that both for

b

L

j;i

and for

b

L

j;0

we can compute tree-like automata in poly-

nomial time. Since intersection is a linear operation on tree-like automata, it remains

to be shown that the complement of the language accepted by a tree-like automaton

can also be accepted by a tree-like automaton, and that this complement automaton

can be computed in polynomial time. This can be achieved by �rst completing the

tree-like automaton by additional sink states; then iteratively removing all leaves that

are �nal states; and �nally exchanging �nal and non-�nal states (see Fig. 2 for two

examples).

For the matching problem of Example 14, we thus obtain the matcher

fX

1

7! (8R:8R:?)u (8R:8S:A

1

); X

2

7! 8S:?g:

Lemma 20 Assume that the givenFL

?

-matching problemC �

?

D is solvable. Then

the substitution � de�ned above is the least solution of C �

?

D.

Proof. Assume that

� := fX

1

7! 8M

1;0

:?u

k

u

i=1

8M

1;i

:A

i

; : : : ; X

`

7! 8M

`;0

:?u

k

u

i=1

8M

`;i

:A

i

g

is another solution of C �

?

D. Consequently, the assignment X

1;0

:= M

1;0

; : : : ;

X

`;0

:= M

`;0

solves equation (?), and the assignment X

1;i

:= M

1;i

; : : : ; X

`;i

:= M

`;i

solves (A

i

). As shown in the proofs of Lemma 15 and 17, this implies that M

j;0

��

�

�

L

j;0

��

�

(1 � j � `) and M

j;i

�

b

L

j;i

(1 � j � `, 1 � i � k).

As in the proof of Lemma 12, we can infer �(X

j

) v �(X

j

) fromM

j;0

��

�

� L

j;0

��

�

and M

j;i

[M

j;0

��

�

� L

j;i

[ L

j;0

��

�

. We already know that the �rst inclusion holds.

For the second inclusion, it remains to be shown that M

j;i

� L

j;i

[ L

j;0

��

�

. This is

an immediate consequence of M

j;i

�

b

L

j;i

since

b

L

j;i

= L

j;i

[

T

w2W

j

w

�1

�(U

0

��

�

) and

L

j;0

��

�

=

T

w2W

j

w

�1

�(U

0

��

�

).

This lemma, together with Lemma 10, immediately implies the following theorem:
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Theorem 21 Let C v

?

D be a solvable matching problem modulo subsumption.

Then the least solution of C �

?

C u D is a minimal solution of C v

?

D, and this

solution can be computed in polynomial time.

4 Extension to larger languages

In this section, we show that our approach for solving matching problems in FL

?

can be extended to the larger languages FL

:

and ALN .

4.1 Matching in FL

:

In order to extend the results for matching in FL

?

to the larger language FL

:

, we

treat negated atomic concepts like new atomic concepts. The fact that A u :A is

inconsistent (i.e., equivalent to ?) is taken care of by extending the language in the

value restriction for the concept ? appropriately.

To be more precise, let C;D be FL

:

-concept descriptions, and A

1

; : : : ; A

k

the

atomic concepts occurring in C;D. By treating the negated atomic concepts :A

i

like

new atomic concepts, we can transform C and D into their FL

0

-normal forms:

C � 8U

0

:?u8U

1

:A

1

u : : :u 8U

k

:A

k

u 8U

k+1

::A

1

u : : :u 8U

2k

::A

k

;

D � 8V

0

:?u 8V

1

:A

1

u : : :u 8V

k

:A

k

u 8V

k+1

::A

1

u : : :u 8V

2k

::A

k

:

If we de�ne

b

U

0

:= U

0

[

k

[

i=1

(U

i

\ U

k+i

) and

b

V

0

:= V

0

[

k

[

i=1

(V

i

\ V

k+i

);

then Lemma 12 can be generalized to FL

:

as follows:

Lemma 22 Let C;D be FL

:

-concept descriptions with FL

0

-normal forms as intro-

duced above. Then

C � D i�

b

U

0

��

�

=

b

V

0

��

�

and

U

i

[

b

U

0

��

�

= V

i

[

b

V

0

��

�

for all i; 1 � i � 2k:

Since the formulation of this lemma is just a syntactic variant of the one of

Lemma 12 (where k is replaced by 2k and the sets U

0

; V

0

by

b

U

0

;

b

V

0

), one might

conjecture that Theorem 13 can be generalized accordingly. Unfortunately, this is

not the case, as demonstrated by the following example.

Example 23 Let R;S; T be three distinct atomic roles. We consider the problem of

matching the pattern

(8R:(X

1

uX

2

)) u (8S:X

1

) u (8T:X

2

)

against the description

(8R:?)u (8S:A

1

) u (8T::A

1

):

17



Obviously, this matching problem can be solved by simply replacing X

1

by A

1

and

X

2

by :A

1

. However, if we construct the equations (?), (A

1

), and (:A

1

) according

to the way it is done in Section 3, with the only di�erence that U

0

; V

0

are replaced

by

b

U

0

;

b

V

0

,

9

then we obtain

(?) fRg��

�

= fR;Sg�X

1;0

��

�

[ fR; Tg�X

2;0

��

�

;

(A

1

) fSg [ fRg��

�

= fR;Sg�X

1;1

[ fR; Tg�X

2;1

[ fRg��

�

;

(:A

1

) fTg [ fRg��

�

= fR;Sg�X

1;2

[ fR; Tg�X

2;2

[ fRg��

�

:

Obviously, the equation (A

1

) can be solved by X

1;1

:= f"g and X

2;1

:= ;, and the

equation (:A

1

) by X

1;2

:= ; and X

2;2

:= f"g. However, the equation (?) is not

solvable.

The reason for the problem exhibited by this example is that the value restriction

8R:? required by the description cannot directly be generated from the pattern by

insertion of?, but instead by an interaction ofA

1

and :A

1

in the instantiated pattern.

In fact, the solutions of the equations (A

1

) and (:A

1

) de�ned above satisfy

R 2 (fR;Sg�f"g [ fR; Tg�;) \ (fR;Sg�; [ fR; Tg�f"g) ;

which provides us with the word R (and thus the language R��

�

) missing on the

right-hand side of (?).

In order to formulate this solution to the problem in the general case, we consider

the generic FL

:

-matching problem C �

?

D, where the FL

0

-normal forms of C;D

are

C � 8U

0

:?u 8U

1

:A

1

u : : :u 8U

k

:A

k

u 8U

k+1

::A

1

u : : :u 8U

2k

::A

k

;

D � 8V

0

:?u 8V

1

:A

1

u : : :u 8V

k

:A

k

u 8V

k+1

::A

1

u : : :u 8V

2k

::A

k

u

8W

1

:X

1

u : : :u 8W

`

:X

`

:

The sets

b

U

0

;

b

V

0

are assumed to be de�ned as above Lemma 22. If we want to matchD

with the description C, then we must solve the following formal language equations:

(?)

b

U

0

��

�

= V

0

��

�

[W

1

�X

1;0

��

�

[ : : :[W

`

�X

`;0

��

�

[

k

[

i=1

Int(A

i

;:A

i

)��

�

;

where

Int(A

i

;:A

i

) := (V

i

[W

1

�X

1;i

[ : : :[W

`

�X

`;i

) \

(V

k+i

[W

1

�X

1;k+i

[ : : :[W

`

�X

`;k+i

) ;

and for all i; 1 � i � k,

(A

i

) U

i

[

b

U

0

��

�

= V

i

[W

1

�X

1;i

[ : : :[W

`

�X

`;i

[

b

U

0

��

�

and

(:A

i

) U

k+i

[

b

U

0

��

�

= V

k+i

[W

1

�X

1;k+i

[ : : :[W

`

�X

`;k+i

[

b

U

0

��

�

:

9

Note that for this particular matching problem, U

0

=

b

U

0

and V

0

=

b

V

0

.

18



Theorem 24 Let C be an FL

:

-concept description and D an FL

:

-concept pattern

with FL

0

-normal forms as introduced above. Then the matching problem C �

?

D has a solution if and only if the system of formal language equations (?) and

(A

1

); : : : ; (A

k

), (:A

1

); : : : ; (:A

k

) is solvable.

Proof. Let

� := fX

1

7! 8L

1;0

:?u

k

u

i=1

8L

1;i

:A

i

u

k

u

i=1

8L

1;k+i

::A

i

;

.

.

.

X

`

7! 8L

`;0

:?u

k

u

i=1

8L

`;i

:A

i

u

k

u

i=1

8L

`;k+i

::A

i

g

be a substitution.

10

Again, by employing elementary equivalences between concept

descriptions we can show that the FL

0

-normal form of �(D) is

�(D) � 8 (V

0

[W

1

�L

1;0

[ � � � [W

`

�L

`;0

) :?u

k

u

i=1

8 (V

i

[W

1

�L

1;i

[ � � � [W

`

�L

`;i

) :A

i

u

k

u

i=1

8 (V

k+i

[W

1

�L

1;k+i

[ � � � [W

`

�L

`;k+i

) :A

k+i

:

Thus, Lemma 22 implies that � satis�es C � �(D) if and only if the assignment

X

j;i

:= L

j;i

(j = 1; : : : ; `; i = 1; : : : ; 2k) solves the system of formal language equations

(?); (A

1

); : : : ; (A

k

); (:A

1

); : : : ; (:A

k

).

It remains to be shown how solvability of the system (?); (A

1

); : : : ; (A

k

); (:A

1

); : : : ;

(:A

k

) can be tested. In contrast to the formal language equations considered for

matching in FL

?

, the equations of this system cannot be solved separately since (?)

contains variables also occurring in the other equations. Nevertheless, the approach

employed in the previous section for solving the equations separately also applies to

the system to be considered here.

Lemma 25 The system of equations (?); (A

1

); : : : ; (A

k

); (:A

1

); : : : ; (:A

k

) has a so-

lution if and only if

1. replacing the variables X

j;i

by the sets

b

L

j;i

:=

T

w2W

j

w

�1

�(U

i

[

b

U

0

��

�

) yields

a solution of (A

i

) for i = 1; : : : ; k,

2. replacing the variables X

j;k+i

by the sets

b

L

j;k+i

:=

T

w2W

j

w

�1

�(U

k+i

[

b

U

0

��

�

)

yields a solution of (:A

i

) for i = 1; : : : ; k, and

3. replacing X

j;0

��

�

by the sets

b

L

j;0

:=

T

w2W

j

w

�1

�(

b

U

0

��

�

) together with the

assignments considered in 1. and 2. solves equation (?).

10

Without loss of generality we may assume that � introduces only atomic concepts occurring in

C or D. In fact, additional atomic concepts or negated atomic concepts introduced by a solution of

the matching problem can simply be replaced by ? (see the proof of Proposition 35).
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Proof. To show the only-if direction, assume that the assignment X

j;i

:= M

j;i

(j = 1; : : : ; `, i = 0; : : : ; 2k) solves the system (?); (A

1

); : : : ; (A

k

); (:A

1

); : : : ; (:A

k

).

As in the proof of Lemma 17 we can show thatM

j;i

�

b

L

j;i

holds for all j = 1; : : : ; `

and i = 1; : : : ; 2k, and that replacing the variables X

j;i

(resp. X

j;k+i

) by the sets

b

L

j;i

(resp.

b

L

j;k+i

) solves equation (A

i

) (resp. (:A

i

)).

As in the proof of Lemma 15 we can show that M

j;0

��

�

�

b

L

j;0

holds for all

j = 1; : : : ; `. Together with the inclusions M

j;i

�

b

L

j;i

for j = 1; : : : ; ` and i =

1; : : : ; 2k, this implies that the left-hand side

b

U

0

��

�

of equation (?) is contained in

the set obtained by replacing in the right-hand side of (?) the variables X

j;i

by

b

L

j;i

(j = 1; : : : ; `; i = 1; : : : ; 2k) and X

j;0

��

�

by

b

L

j;0

(j = 1; : : : ; `).

To conclude the proof of the only-if direction, it remains to be shown that the

inclusion in the other direction holds as well. Obviously, V

0

��

�

�

b

U

0

��

�

andW

j

�

b

L

j;0

�

b

U

0

��

�

can be shown as in the proof of Lemma 15. Thus, assume that

w 2

�

V

i

[W

1

�

b

L

1;i

[ : : :[W

`

�

b

L

`;i

�

\

�

V

k+i

[W

1

�

b

L

1;k+i

[ : : :[W

`

�

b

L

`;k+i

�

:

Since we already know that the equations (A

i

) and (:A

i

) are solved by the assignment

X

j;i

:=

b

L

j;i

, this implies that w 2 (U

i

[

b

U

0

��

�

)\ (U

k+i

[

b

U

0

��

�

). By de�nition of

b

U

0

,

we have U

i

\U

k+i

�

b

U

0

, and thus w 2

b

U

0

��

�

.

In the proofs of the if direction of Lemma 15 and Lemma 17 we have shown how

to construct �nite languages L

j;i

(j = 1; : : : ; `, i = 0; : : : ; 2k) such that

� L

j;0

��

�

=

b

L

j;0

for all j = 1; : : : ; `, and

� L

j;i

[ L

j;0

��

�

=

b

L

j;i

for all j = 1; : : : ; ` and i = 1; ; : : : ; 2k

(see the proof of Lemma 20).

To proof the if direction of the present lemma, it remains to be shown that the

assignment X

j;i

:= L

j;i

solves the system (?); (A

1

); : : : ; (A

k

); (:A

1

); : : : ; (:A

k

).

For the equations (A

i

) (resp. (:A

i

)), this is an immediate consequence of the

following facts:

� the assignment X

j;i

:=

b

L

j;i

(resp. X

j;k+i

:=

b

L

j;k+i

) solves (A

i

) (resp. (:A

i

)),

�

b

L

j;i

= L

j;i

[ L

j;0

��

�

, and

� W

j

�L

j;0

��

�

= W

j

�

b

L

j;0

�

b

U

0

��

�

.

For the equation (?), let L

i

be the language obtained by instantiating Int(A

i

;:A

i

)

with the languages L

j;i

, and

b

L

i

the language obtained by instantiating Int(A

i

;:A

i

)

with the languages

b

L

j;i

. Since L

j;0

��

�

=

b

L

j;0

, it remains to be shown that any word

w in

b

L

i

n L

i

belongs to W

1

�L

1;0

��

�

[ : : : [ W

`

�L

`;0

��

�

. This is, however, an easy

consequence of the fact that

b

L

j;i

= L

j;i

[ L

j;0

��

�

, which implies that such a word w

must belong to W

j

�L

j;0

��

�

for some j; 1 � j � `.

As in the proof of Theorem 18 we can show that this lemma provides us with

a polynomial algorithm for deciding solvability of matching problems in FL

:

. In

addition, as in the proof of Lemma 20 we can show that the solution � obtained from

the sets L

j;i

is the least solution of the matching problem, and that this solution can

be computed in polynomial time.
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Theorem 26 Let C �

?

D be an FL

:

-matching problem. Solvability of C �

?

D can

be tested in polynomial time. If C �

?

D is solvable, then a least solution of C �

?

D

can be computed in polynomial time.

Corollary 27 Let C v

?

D be a solvable FL

:

-matching problem modulo subsump-

tion. Then a minimal solution of C v

?

D can be computed in polynomial time.

4.2 Matching in ALN

Let C, D be ALN -concept descriptions, C the set of atomic concepts occurring in

C and D, N

�

the set of at-least restrictions in C and D, and N

�

the set of at-

most restrictions in C and D. Without loss of generality we assume that N

�

does

not contain at-least restrictions of the form (� 0 R) since these restrictions can be

replaced by >.

By treating negated atomic concepts and number restrictions like atomic concepts,

we can transform C and D into their FL

0

-normal forms

C � 8U

?

:? u u

A2C

8U

A

:A u u

A2C

8U

:A

::A u (3)

u

(� n R)2N

�

8U

�nR

:(� n R) u u

(� n R)2N

�

8U

�nR

:(� n R);

D � 8V

?

:? u u

A2C

8V

A

:A u u

A2C

8V

:A

::A u (4)

u

(� n R)2N

�

8V

�nR

:(� n R) u u

(� n R)2N

�

8V

�nR

:(� n R):

In the following, we will also use the notation U

�nR

(resp. U

�nR

, U

A

, U

:A

) for at-least

restrictions (resp. at-most restrictions, atomic concepts and negated atomic concepts)

not contained in N

�

(resp. N

�

, C). In this case, these sets are assumed to be empty.

The same holds for V in place of U .

If C is an FL

:

-concept description, then the set

b

U

0

��

�

(as de�ned in Section 4.1)

is equal to the set fw 2 �

�

jC v 8w:?g of so-called C-excluding words. The following

de�nition generalizes this notion to ALN -concept descriptions:

De�nition 28 For an ALN -concept description C, we de�ne E

C

:= fw 2 �

�

jC v

8w:?g, and call this set the set of C-excluding words.

In order to provide a syntactic description of E

C

we need one more notation.

De�nition 29 A word w = R

1

� � �R

n

2 �

�

is required by the ALN -concept descrip-

tion C (with FL

0

-normal form as in (3)) starting from v = R

1

� � �R

m

, m � n, if and

only if for all i, m � i < n, there are numbers k

i+1

� 1 such that vR

m+1

� � �R

i

2

U

�k

i+1

R

i+1

.

Note that both n and m in this de�nition may be 0. Thus, the empty word " is

required (starting from ") by any ALN -concept description. The intuition underlying

the notion of required words is clari�ed in the next lemma.

Lemma 30 Assume thatw = R

1

� � �R

n

is required byC starting from v = R

1

� � �R

m

,

m � n, and that I is an interpretation such that d 2 C

I

and (d; e) 2 R

I

1

� : : : � R

I

m

.

Then e has an (R

m+1

� � �R

n

)-successor in I, i.e., there is an individual f such that

(e; f) 2 R

I

m+1

� : : : �R

I

n

.
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Example 31 Let us illustrate the above de�nition using the following ALN -concept

descriptions:

C := 8fRS;Rg:(� 2 S) u 8fRSg:(� 1 S) u 8fSg:A

1

;

D := 8fRg:(� 2 S) u 8fRg:(� 1 S) u 8fRRS; Sg:A

1

u (� 1R):

It is easy to see that both RS and RSS are required by C starting from R. The

concept D also requires RS starting from R, but it does not require RSS.

Using the notion of required words, exclusion can be characterized as follows [23]:

Theorem 32 For an ALN -concept description C (with FL

0

-normal form as in (3))

it holds that w 2 E

C

if and only if

1. there exists a pre�x v 2 �

�

of w and a word v

0

2 �

�

such that vv

0

is required

by C starting from v and

(a) vv

0

2 U

?

, or

(b) there is an atomic concept A with vv

0

2 U

A

\ U

:A

, or

(c) there are number restrictions (� ` R) and (� r R) such that ` > r and

vv

0

2 U

�`R

\ U

�rR

; or

2. there exists a pre�x vR of w (with v 2 �

�

, R 2 �) such that v 2 U

�0R

.

Furthermore, it can be shown [5]:

Proposition 33 For an ALN -concept description C one can compute (in polynomial

time) a �nite set of words U such that E

C

= U ��

�

.

Using Theorem 32 (1c), it is not hard to verify that, for the concept description C

and D of Example 31, the sets of excluding words are E

C

= E

D

= RfR;Sg

�

. Thus,

in both cases we can take U := fRg in the above proposition.

Again, equivalence

11

of ALN -concept descriptions can be characterized in terms

of certain regular languages [23]:

Theorem 34 Let C, D be ALN -concept descriptions with FL

0

-normal forms as

introduced in (3) and (4), respectively. Then C � D if and only if for all A 2 C,

(� n R) 2 N

�

, and (� n R) 2 N

�

we have

E

C

= E

D

,

U

A

[E

C

= V

A

[E

D

,

U

:A

[E

C

= V

:A

[E

D

,

S

m�n

U

�mR

[E

C

=

S

m�n

V

�mR

[E

D

, and

S

m�n

U

�mR

[E

C

�R

�1

=

S

m�n

V

�mR

[E

D

�R

�1

,

where, for L � �

�

, we de�ne L�R

�1

:= fw 2 �

�

jwR 2 Lg.

11

For subsumption, it can be shown that C v D if and only if set inclusion \�" instead of equality

\=" holds between the languages.
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The intuition underlying these equations is that the languages on the left- and

right-hand sides represent all value-restrictions satis�ed by C and D, respectively.

For example, C v 8w:A i� w 2 U

A

[E

C

. The set of excluding words E

C

is necessary

in this characterization because of 8w:? v 8w:A. For at-most restrictions we must

use E

C

�R

�1

instead of E

C

since 8wR:? v 8w:(� n R) for any n � 0.

Let us illustrate Theorem 34 using the concept descriptions C;D introduced in

Example 31. According to the de�nition of C and D and the sets of excluding words

we have already computed for them, Theorem 34 says that C � D holds if and only

if the following identities are true:

(?) RfR;Sg

�

= RfR;Sg

�

(A

1

) fSg [RfR;Sg

�

= fRRS; Sg [RfR;Sg

�

(� 2 S) fRS;Rg [RfR;Sg

�

= fRg [RfR;Sg

�

(� 1 S) fRSg [RfR;Sg

�

�S

�1

= fRg [RfR;Sg

�

�S

�1

(� 1R) ; [RfR;Sg

�

�R

�1

= f"g [RfR;Sg

�

�R

�1

It is easy to see that these identities are indeed true, and thus we can conclude

that C and D are equivalent. The identity for (� 1 R) shows that we really must

use E

C

�R

�1

instead of E

C

and E

D

�R

�1

instead of E

D

. In fact, ; [ RfR;Sg

�

6=

f"g[RfR;Sg

�

, and thus, using E

C

; E

D

in place of E

C

�R

�1

; E

D

�R

�1

, we would have

concluded (incorrectly) that C and D are not equivalent.

The characterization of equivalence provided by Theorem 34 can again be used

to reduce a given ALN -matching problem C �

?

D to a system of formal language

equations. In the sequel, we assume that the FL

0

-normal form of C is given as in (3)

and the one for the ALN -concept pattern D is

D � 8V

?

:? u u

A2C

8V

A

:A u u

A2C

8V

:A

::A u (5)

u

(� n R)2N

�

8V

�nR

:(� n R) u u

(� n R)2N

�

8V

�nR

:(� n R) u

`

u

i=1

8W

i

:X

i

:

Proposition 35 The matching problem C �

?

D has a solution � i� it has a solution

b� that does not introduce new atomic concepts or number restrictions.

Proof. The if direction is trivial. For the only-if direction, we distinguish two cases,

depending on whether the new concept is atomic or a number restriction.

(1) First, assume that � introduces exactly one new atomic concept B 62 C. Thus,

the FL

0

-normal form of �(D) has the form

�(D) � 8V

0

?

:? u u

A2C

8V

0

A

:A u u

A2C

8V

0

:A

::A u (6)

u

(� n R)2N

�

8V

0

�nR

:(� n R) u u

(� n R)2N

�

8V

0

�nR

:(� n R) u

8V

0

B

:B u 8V

0

:B

::B:

We obtain b� by replacing every occurrence of B and :B in � by ?. Then, it is easy

to see that

b�(D) � 8(V

0

?

[ V

0

B

[ V

0

:B

):? u u

A2C

8V

0

A

:A u u

A2C

8V

0

:A

::A u (7)

u

(� n R)2N

�

8V

0

�nR

:(� n R) u u

(� n R)2N

�

8V

0

�nR

:(� n R):
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Since ? v B and ? v :B it follows that b�(D) v �(D).

Conversely, since B is a concept name not occurring in C;D, we know that U

B

=

U

:B

= ;. By Theorem 34, we can conclude from C � �(D) that U

B

[ E

C

=

V

0

B

[ E

C

as well as U

:B

[ E

C

= V

0

:B

[ E

C

. This implies V

0

B

[ V

0

:B

� E

C

= E

�(D)

,

and thus �(D) v 8(V

0

B

[ V

0

:B

):?. Let D

0

be the concept description obtained from

�(D) by removing the conjunct 8V

0

B

:B u 8V

0

:B

::B. Obviously, �(D) v D

0

and

b�(D) = D

0

u 8(V

0

B

[ V

0

:B

):?. This, together with �(D) v 8(V

0

B

[ V

0

:B

):?, implies

�(D) v b�(D).

If � introduces more than one new atomic concept, then we simply iterate this

argument.

(2) In the second case, we assume that � introduces exactly one new at-least

restriction (� k S) 62 N

�

. Thus, the FL

0

-normal form of �(D) has the form:

�(D) � 8V

0

?

:? u u

A2C

8V

0

A

:A u u

A2C

8V

0

:A

::A u (8)

u

(� n R)2N

�

8V

0

�nR

:(� n R) u u

(� n R)2N

�

8V

0

�nR

:(� n R) u

8V

0

�kS

:(� k S)

We distinguish two sub-cases:

(a) There is an at-least restriction (� h S) 2 N

�

with h > k and there is no h

0

< h

with this property, i.e., we choose the \least" at-least restriction on S in N

�

that is \`greater" than (�kS) (in the sense that the number h occurring in this

restriction is larger than k). We obtain b� by replacing (� k S) in � by (� h S).

Thus,

b�(D) � 8V

0

?

:? u u

A2C

8V

0

A

:A u u

A2C

8V

0

:A

::A u (9)

u

(� n R)2N

�

nf(� h S)g

8V

0

�nR

:(� n R) u

u

(� n R)2N

�

8V

0

�nR

:(� n R) u 8(V

0

�hS

[ V

0

�kS

):(� h S):

Since (� h S) v (� k S) we know that b�(D) v �(D).

Because C � �(D), Theorem 34 yields V

0

�kS

�

S

m�k

U

�mS

[ E

C

. Fur-

thermore,

S

h�1

m=k

U

�mS

= ; by de�nition of (� h S). Consequently, V

0

�kS

�

S

m�h

U

�mS

[E

C

. Therefore, using the characterization of subsumption it can

be veri�ed that C v 8V

0

�kS

:(� h S), and thus �(D) v 8V

0

�kS

:(� h S). Let

D

0

be the concept description obtained from �(D) by removing the conjunct

8V

0

�kS

:(� k S). Obviously, �(D) v D

0

and b�(D) = D

0

u 8V

0

�kS

:(� h S). This,

together with �(D) v 8V

0

�kS

:(� h S), implies �(D) v b�(D).

(b) If there is no greater at-least restriction (� h S) 2 N

�

for (� k S), then b� is

obtained from � by replacing all occurrences of (� k S) in � by ?. Theorem 34

for C and �(D) yields V

0

�kS

� E

C

, and thus one can show �(D) � b�(D) as in

the �rst part of the proof.

If more than one new at-least restriction is introduced by �, then the argument

presented above can again be iterated.
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For at-most restrictions one chooses the greatest at-most restriction in N

�

that is

less than (� k S). If there is no such at-most restriction, again, (� k S) is replaced

by ?. The proof for at-most restrictions is very similar to the proof for at-least

restrictions.

Matching of the pattern D onto the description C can again be reduced to solving

a system of formal language equations. First, we organize the variables occurring in

the system of equations by de�ning certain tuples of variables:

X

?

:= (X

1;?

; : : : ; X

`;?

);

X

C

:= (X

i;A

j1 � i � `; A 2 C);

X

:

:= (X

i;:A

j1 � i � `; A 2 C);

X

�

:= (X

i;�nR

j1 � i � `; (� n R) 2 N

�

);

X

�

:= (X

i;�nR

j1 � i � `; (� n R) 2 N

�

):

An assignment of �nite languages L

i;?

to X

i;?

, L

i;A

to X

i;A

, L

i;:A

to X

i;:A

, L

i;�nR

to X

i;�nR

, and L

i;�nR

to X

i;�nR

de�nes the following substitution �:

�(X

i

) := 8L

i;?

:? u u

A2C

8L

i;A

:A u u

A2C

8L

i;:A

::A u (10)

u

(� n R)2N

�

8L

i;�nR

:(� n R) u u

(� n R)2N

�

8L

i;�nR

:(� n R)

for i = 1; : : : ; `.

For a given assignment, the operator E

D

(X

?

; X

C

; X

:

; X

�

; X

�

) yields the set

E

�(D)

of �(D)-excluding words, where � is the substitution de�ned by the assign-

ment.

The following equations correspond to the matching problem C �

?

D:

(?) E

C

= E

D

(X

?

; X

C

; X

:

; X

�

; X

�

);

for all A 2 C

(A) U

A

[E

C

= V

A

[W

1

�X

1;A

[ � � � [W

`

�X

`;A

[E

C

;

(:A) U

:A

[E

C

= V

:A

[W

1

�X

1;:A

[ � � � [W

`

�X

`;:A

[E

C

;

for all (� n R) 2 N

�

(� n R)

S

m�n

U

�mR

[E

C

=

S

m�n

V

�mR

[

W

1

�X

1;�nR

[ � � � [W

`

�X

`;�nR

[E

C

;

and for all (� n R) 2 N

�

(� n R)

S

m�n

U

�mR

[E

C

�R

�1

=

S

m�n

V

�mR

[

W

1

�X

1;�nR

[ � � � [W

`

�X

`;�nR

[E

C

�R

�1

:

Theorem 36 Let C be anALN -concept description andD an ALN -concept pattern

with FL

0

-normal forms as introduced in (3) and (5). Then the matching problem

C �

?

D has a solution if and only if the system of formal language equations (?), (A),

(:A), (�nR), and (�nR) is solvable, where A 2 C, (�nR) 2 N

�

, and (�nR) 2 N

�

.
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Proof. By Proposition 35 we can restrict our attention to substitutions that do not

introduce new atomic concepts or number restrictions. Thus, let � be a substitution

of the form shown in (10). Then,

�(D) � 8V

0

?

:? u u

A2C

8V

0

A

:A u u

A2C

8V

0

:A

::A u (11)

u

(� n R)2N

�

8V

0

�nR

:(� n R) u u

(� n R)2N

�

8V

0

�nR

:(� n R);

where

V

0

?

:= V

?

[W

1

�L

1;?

[ � � � [W

`

�L

`;?

;

V

0

A

:= V

A

[W

1

�L

1;A

[ � � � [W

`

�L

`;A

;

V

0

:A

:= V

:A

[W

1

�L

1;:A

[ � � � [W

`

�L

`;:A

;

V

0

�nR

:= V

�nR

[W

1

�L

1;�nR

[ � � � [W

`

�L

`;�nR

;

V

0

�nR

:= V

�nR

[W

1

�L

1;�nR

[ � � � [W

`

�L

`;�nR

:

Since for n � m we have (�nR) v (�mR), we can without loss of generality assume

that L

i;�mR

� L

i;�nR

for all n � m and 1 � i � `. Analogously, we may assume

that L

i;�mR

� L

i;�nR

for all n � m and 1 � i � `. Consequently, we have

[

m�n

V

0

�mR

=

[

m�n

V

�mR

[W

1

�

[

m�n

L

1;�mR

[ � � � [W

`

�

[

m�n

L

`;�mR

=

[

m�n

V

�mR

[W

1

�L

1;�nR

[ � � � [W

`

�L

`;�nR

:

An analogous identity holds for at-most restrictions. These identities, together with

Theorem 34, imply that C � �(D) if and only if

(?)

0

E

C

= E

�(D)

;

(A)

0

U

A

[E

C

= V

A

[W

1

�L

1;A

[ � � � [W

`

�L

`;A

[E

C

;

(:A)

0

U

:A

[E

C

= V

:A

[W

1

�L

1;:A

[ � � � [W

`

�L

`;:A

[E

C

;

(� n R)

0

S

m�n

U

�mR

[E

C

=

S

m�n

V

�mR

[

W

1

�L

1;�nR

[ � � � [W

`

�L

`;�nR

[E

C

;

(� n R)

0

S

m�n

U

�mR

[E

C

�R

�1

=

S

m�n

V

�mR

[

W

1

�L

1;�nR

[ � � � [W

`

�L

`;�nR

[E

C

�R

�1

:

We are now ready to proof the statement of the theorem.

First, assume that the substitution � solves C �

?

D. Without loss of generality, we

may assume that � is of the form shown in (10), and that it satis�es L

i;�mR

� L

i;�nR

for all n � m and 1 � i � `, and L

i;�mR

� L

i;�nR

for all n � m and 1 � i � `.

Because of C � �(D) we know that the identities (?)

0

, (A)

0

, (:A)

0

, (� n R)

0

, and

(�nR)

0

are satis�ed, which shows that the system of formal language equations (?),

(A), (:A), (� n R), and (� n R) for A 2 C, (� n R) 2 N

�

, and (� n R) 2 N

�

is

solvable.
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Conversely, assume that the system (?), (A), (:A), (� n R), and (� n R) is

solved by the languages L

i;?

, L

i;A

, L

i;:A

, L

i;�nR

, L

i;�nR

. Because of the union on

the left-hand side of the equations for number restrictions, it is easy to see that we

can assume without loss of generality that the following inclusion relationships hold:

L

i;�mR

� L

i;�nR

for all n � m and 1 � i � `, and L

i;�mR

� L

i;�nR

for all n � m

and 1 � i � `. If the substitution � is de�ned as in (10) using the languages of the

solution of (?), (A), (:A), (� n R), and (� n R), then it follows that the identities

(?)

0

, (A)

0

, (:A)

0

, (� n R)

0

, and (� n R)

0

are satis�ed, and thus C � �(D).

In order to compute candidate solutions of the system of equations corresponding

to C �

?

D, we generalize the de�nitions of the languages

b

L

j;i

introduced in Lemma25:

b

L

i;?

:=

\

w2W

i

w

�1

E

C

b

L

i;A

:=

\

w2W

i

w

�1

(U

A

[E

C

);

b

L

i;:A

:=

\

w2W

i

w

�1

(U

:A

[E

C

);

b

L

i;�nR

:=

\

w2W

i

w

�1

(

[

m�n

U

�mR

[E

C

);

b

L

i;�nR

:=

\

w2W

i

w

�1

(

[

m�n

U

�mR

[E

C

�R

�1

)

for all 1 � i � `, A 2 C, (� n R) 2 N

�

, and (� n R) 2 N

�

. Using these (possi-

bly in�nite) languages we de�ne �nite languages that are a solution of the system

of equations corresponding to C �

?

D, provided that there exists a solution (see

Lemma 37).

By Proposition 33 we know that E

C

is of the form U ��

�

. Therefore, as a con-

sequence of Lemma 16, for all 1 � i � `, there exists a language L

i;?

such that,

L

i;?

��

�

=

b

L

i;?

. Furthermore, we de�ne

L

i;A

:=

b

L

i;A

n

b

L

i;?

;

L

i;:A

:=

b

L

i;:A

n

b

L

i;?

;

L

i;�nR

:=

b

L

i;�nR

n

b

L

i;?

;

L

i;�nR

:=

b

L

i;�nR

n

b

L

i;?

;

for all 1 � i � `, A 2 C, (� n R) 2 N

�

, and (� n R) 2 N

�

. Applying the fact that

E

C

is of the form U ��

�

, it is easy to see that E

C

�R

�1

= U ��

�

[ U �R

�1

. Similar to

the proof of Lemma 17 one can now show that the languages L

�;�

introduced above

are �nite.

These languages can be used to determine whether the system of equations corre-

sponding to C �

?

D has a solution or not.

Lemma 37 The system of equations (?), (A), (:A), (� n R), and (� n R), where

A 2 C, (� n R) 2 N

�

, and (� n R) 2 N

�

, has a solution if and only if
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1. replacing the variables X

i;A

, 1 � i � `, by the sets L

i;A

yields a solution of

equation (A) for all A 2 C,

2. replacing the variables X

i;:A

, 1 � i � `, by the sets L

i;:A

yields a solution of

equation (:A) for all A 2 C,

3. replacing the variables X

i;�nR

, 1 � i � `, by the sets L

i;�nR

yields a solution

of equation (� n R) for all at-least restrictions (� n R) 2 N

�

,

4. replacing the variables X

i;�nR

, 1 � i � `, by the sets L

i;�nR

yields a solution

of equation (� n R) for all at-most restrictions (� n R) 2 N

�

,

5. replacing the variables X

i;?

, 1 � i � `, by the sets L

i;?

together with the

assignments considered in 1.{4. solves equation (?).

Proof. The if direction of this lemma is trivial. To show the only-if direction, let

M

i;?

, M

i;A

, M

i;:A

, M

i;�nR

, and M

i;�nR

denote the languages assigned by a solution

of the equation system, and let �

M

be the substitution de�ned by this solution.

Claim 1 : M

i;?

�

b

L

i;?

, M

i;A

�

b

L

i;A

, M

i;:A

�

b

L

i;:A

, M

i;�nR

�

b

L

i;�nR

, and

M

i;�nR

�

b

L

i;�nR

.

Proof of the claim. For A, :A, (� n R), and (� n R) this can be shown as in the

proof of Lemma 15. Obviously, we have W

i

�M

i;?

� E

�

M

(D)

� E

C

. Thus, w 2 W

i

and v 2M

i;?

imply v 2 w

�1

�E

C

. Since this holds for all w 2 W

i

, we have v 2

b

L

i;?

,

and therefore, M

i;?

�

b

L

i;?

, which completes the proof of Claim 1. �

Let �

?

be the substitution de�ned by using the languages L

i;?

in place of M

i;?

,

and the languages M

i;A

, M

i;:A

, M

i;�nR

, M

i;�nR

.

Claim 2 : �

?

v �

M

and �

?

(D) � �

M

(D) � C.

Proof of the claim. Claim 1 yields M

i;?

�

b

L

i;?

. Since

b

L

i;?

= L

i;?

��

�

, this implies

8L

i;?

:? v 8M

i;?

:?. As an easy consequence, we obtain �

?

v �

M

.

Now, 8L

i;?

:? v 8M

i;?

:?, together with the de�nition of the substitution �

?

,

yields �

?

(D) � �

M

(D) u u

`

i=1

8W

i

�L

i;?

:?. By de�nition of L

i;?

, we know that

W

i

�L

i;?

� E

C

� E

�

M

(D)

. This yields �

?

(D) � �

M

(D), and thus completes the proof

of Claim 2. �

Let �

0

be the substitution de�ned by the languages M

0

i;?

:= L

i;?

, M

0

i;A

:=M

i;A

n

b

L

i;?

, M

0

i;:A

:=M

i;:A

n

b

L

i;?

,M

0

i;�nR

:=M

i;�nR

n

b

L

i;?

, and M

0

i;�nR

:= M

i;�nR

n

b

L

i;?

.

Claim 3: �

0

v �

?

and �

?

v �

0

, i.e., �

0

and �

?

are equivalent.

Proof of the claim. If w 2M

i;A

\

b

L

i;?

, then (by de�nition of L

i;?

) there is a word

v 2 L

i;?

and v

0

2 �

�

such that w = vv

0

. Furthermore, 8w:A u 8v:? � 8v:?. This

also holds for :A, (� nR) and (� nR) in place of A. As an easy consequence of this

observation we obtain that �

0

and �

?

are equivalent. �

Claims 2 and 3 imply that the languagesM

0

i;?

,M

0

i;A

,M

0

i;:A

,M

0

i;�nR

,M

0

i;�nR

also

yield a solution of the equation system. Moreover, by Claim 1 and the de�nition of

the languages M

0

�;�

and L

�;�

it follows that M

0

i;?

� L

i;?

, M

0

i;A

� L

i;A

, M

0

i;:A

� L

i;:A

,

M

0

i;�nR

� L

i;�nR

, andM

0

i;�nR

� L

i;�nR

. Thus, for the languages L

�;�

, the �-direction

of the equations (A), (:A), (� n R), and (� n R) holds.
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As in the proof of Lemma 15 it can be shown that for the languages

b

L

�;�

the

inclusion in the other direction holds as well. Consequently, this is also the case for

the languages L

�;�

�

b

L

�;�

. To sum up, we have shown that, for the languages L

�;�

, the

equations (A), (:A), (� nR), and (� nR) are satis�ed. It remains to be shown that

(?) is also satis�ed for these languages.

Let � be the substitution de�ned by the languages L

i;?

, L

i;A

, L

i;:A

, L

i;�nR

,

L

i;�nR

, and let �(D) be of the form shown in (11). Obviously, � v �

0

since M

0

i;?

�

L

i;?

, M

0

i;A

� L

i;A

, M

0

i;:A

� L

i;:A

, M

0

i;�nR

� L

i;�nR

, and M

0

i;�nR

� L

i;�nR

. Thus,

�(D) v �

0

(D) � C. This implies E

�(D)

� E

C

. To show E

�(D)

� E

C

, we assume that

w 2 E

�(D)

. According to Theorem 32 we must distinguish two cases:

(1) There is a pre�x v of w and a word v

0

= R

1

� � �R

n

2 �

�

such that vv

0

is

required by �(D) starting from v, i.e., there are at-least restrictions (�m

i+1

R

i+1

),

m

i+1

� 1 such that vR

1

� � �R

i

2 V

0

�m

i+1

R

i+1

, 0 � i < n. Furthermore, vv

0

2 V

0

?

, or

there is an A 2 C with vv

0

2 V

0

A

\ V

0

:A

, or there are number restrictions (� k R),

(� r R), k > r, with vv

0

2 V

0

�kR

\ V

0

�rR

.

Because the respective equations are satis�ed, we already know that

V

0

�m

i+1

R

i+1

�

[

m�m

i+1

U

�mR

i+1

[E

C

;

V

0

A

� U

A

[E

C

;

V

0

:A

� U

:A

[E

C

;

V

0

�kR

�

[

m�k

U

�mR

[E

C

; and

V

0

�rR

�

[

m�r

U

�mR

[E

C

�R

�1

:

Moreover, by de�nition of L

i;?

, the inclusion V

0

?

� E

C

holds. To conclude that

w 2 E

C

we must distinguish two cases:

(a) If there is no proper pre�x v

00

of v

0

such that vv

00

2 E

C

, then vv

0

is required by

C starting from v. Furthermore, it holds that vv

0

2 E

C

, or vv

0

2 (U

A

[ E

C

) \

(U

:A

[ E

C

), or vv

0

2 (

S

m�k

U

�mR

[ E

C

) \ (

S

m�r

U

�mR

[ E

C

�R

�1

). In all

three cases it follows that vv

0

2 E

C

. By Lemma 30 this implies v 2 E

C

. Since

8v:? v 8w:? we know w 2 E

C

.

(b) If v

00

is the shortest pre�x of v

0

such that vv

00

2 E

C

, then vv

00

is required by C

starting from v. Again, by Lemma 30 it follows that v 2 E

C

, and thus w 2 E

C

.

(2) There exists a pre�x vR of w (where v 2 �

�

and R 2 �) such that v 2 V

0

�0R

.

Because the equation (� 0 R) is satis�ed, it follows that V

0

�0R

� U

�0R

[E

C

�R

�1

. If

v 2 U

�0R

, then Theorem 32 yields w 2 E

C

. If v 2 E

C

�R

�1

, then C v 8v:(� 0 R).

Obviously, this also implies w 2 E

C

.

By Proposition 33 we know that E

C

is of the form U ��

�

for a �nite language U

of polynomial size, and we have already observed that E

C

�R

�1

= (U [ U �R

�1

)��

�

.

Consequently, using Proposition 33, we can compute a �nite set V � �

�

in time

polynomial in the size of C such that E

C

�R

�1

= V ��

�

. Thus, as shown in Lemma 19,

the languages L

�;�

can be computed in time polynomial in the size of the matching
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problem C �

?

D. Furthermore, as in the proof of Theorem 18 we can show that

inserting these candidate solutions into the equations (A), (:A), (�nR), and (�nR),

and testing whether they solve these equations can be realized in polynomial time.

Finally, because �(D) (where � is de�ned as in the proof of Lemma 37) can be

computed in time polynomial in the size of C and D, this also holds for the language

V with V ��

�

= E

�(D)

. This shows that the problem E

C

= E

�(D)

is decidable in time

polynomial in the size of C and D.

Theorem 38 Solvability of matching problems inALN can be decided in polynomial

time.

In the proof of Proposition 35 we have shown that, for an arbitrary solution �

0

M

of C �

?

D, there is a solution �

M

that does not introduce new atomic concepts

or number restrictions. More precisely, the proof of Proposition 35 shows that new

atomic concepts can be replaced by ?, at-least restrictions can be replaced by greater

at-least restrictions or by ?, and at-most restrictions can be replaced by smaller at-

most restrictions or by ?. Thus, �

M

v �

0

M

. Furthermore, in the proof of Lemma 37

we have veri�ed that �

M

satis�es �

M

w �

?

� �

0

w �. Consequently, we can again

compute the least solution of the matching problem.

Lemma 39 Assume that the given ALN -matching problem C �

?

D is solvable.

Then the substitution � de�ned above is the least solution of C �

?

D.

This lemma, together with Lemma 10, immediately implies the following theorem:

Theorem 40 Let C v

?

D be a solvable ALN -matching problem modulo subsump-

tion. Then the least solution of C �

?

C u D is a minimal solution of C v

?

D, and

this solution can be computed in polynomial time.

We conclude this section with an example that illustrates the matching algorithm

for ALN described above.

Example 41 Let C be an ALN -concept description (describing a class of rather

unhappy persons) and D an ALN -concept pattern having the following FL

0

-normal

forms:

C � 8friends:?u 8enemies:Rich;

D � 8ffriendsg:(� 2 enemies) u

8ffriends friends; enemiesg:X

1

u 8ffriends enemiesg:X

2

:

It is easy to see that E

C

= ffriendsg��

�

where � = ffriends; enemiesg. Thus, the

equations (Rich) and (� 2 enemies) have the following form:

(Rich) fenemiesg [ ffriendsg��

�

= ; [ ffriendsg��

�

[

ffriends friends; enemiesg�X

1;Rich

[

ffriends enemiesg�X

2;Rich

;

(� 2 enemies) ; [ ffriendsg��

�

= ffriendsg [ ffriendsg��

�

[

ffriends friends; enemiesg�X

1;�2enemies

[

ffriends enemiesg�X

2;�2enemies

:
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It is easy to see that the approach for �nding candidate solutions of these equations

described above yields L

1;Rich

= f"g, L

2;Rich

= ;, L

1;�2enemies

= ;, and L

2;�2enemies

= ;,

which indeed solve (Rich) and (� 2 enemies). In addition,

b

L

1;?

= ; and

b

L

2;?

= �

�

,

and thus L

1;?

= ; and L

2;?

= f"g.

The substitution � induced by these �nite languages replaces X

1

by Rich and X

2

by ?. It remains to be shown that the equation (?) is satis�ed by this substitution,

i.e., that E

C

= E

�(D)

holds. We have

�(D) � 8ffriendsg:(� 2 enemies) u

8ffriends friends; enemiesg:Rich u 8ffriends enemiesg:?:

Because the word friends enemies is required by �(D) starting from friends and �(D)

contains the value restriction 8ffriends enemiesg:?, we know that friends is an element

of E

�(D)

by Theorem 32. Consequently, every word that starts with the letter friends

is in E

�(D)

. In addition, it is easy to see that enemies and the empty word " do not

belong to E

�(D)

. To sum up, we have E

�(D)

= ffriendsg��

�

= E

C

.

This shows that � is indeed a solution of the matching problem. It should be

noted that the matching algorithm introduced by Borgida and McGuinness [10] does

not �nd this solution.

5 Matching under side conditions

In the following, we will show that strict subsumption conditions increase the com-

putational complexity of matching. Non-strict subsumption conditions can often be

eliminated, but it is not yet clear whether this elimination leads to an increase in

the complexity of the problem. For strict subsumption conditions we obtain a poly-

nomiality result if the right-hand sides of the conditions are restricted to concept

descriptions rather than patterns.

5.1 Strict subsumption conditions

Recall that a strict subsumption condition is of the form X @

?

E where X is a

concept variable and E is a concept pattern. If the concept patterns of a set of strict

subsumption conditions do not contain variables (i.e., the expressions E on the right-

hand sides of the strict subsumption conditions are concept descriptions), then it is

su�cient to compute a least solution of the matching problem, and then test whether

this solution also solves the strict subsumption conditions.

Theorem 42 Let C �

?

D be an ALN -matching problem, and X

1

@

?

E

1

; : : : ; X

n

@

?

E

n

strict subsumption conditions such that E

1

; : : : ; E

n

are ALN -concept descriptions.

Then solvability of C �

?

D under these conditions is decidable in polynomial time.

The same holds for the smaller languages FL

0

, FL

?

, and FL

:

.

If the right-hand sides of strict subsumption conditions may contain variables,

then solvability becomes NP-hard, even for the language FL

0

. It should be noted

that this does not automatically imply NP-hardness for the larger languages FL

?

,

FL

:

, and ALN , though we strongly conjecture that the hardness result also holds

for them.
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The hardness result for FL

0

will be shown by reducing 3SAT [20] to the matching

problem under strict subsumption conditions. Recall that matchingmodulo subsump-

tion can be reduced to matching modulo equivalence, and that a system of matching

problems can be coded into a single matching problem. For this reason, we may,

without loss of generality, construct a problem that consists of matching problems

modulo subsumption, matching problems modulo equivalence, and strict subsump-

tion conditions.

Theorem 43 Matching under strict subsumption conditions is NP-hard, even for the

small language FL

0

.

Proof. Let A be an arbitrary concept name. For every propositional variable p

occurring in the 3SAT problem, we introduce three concept variables, namely X

p

,

X

p

, and Z

p

, and two roles R

p

and R

p

. Using these concept variables and roles, we

construct the matching statement

8R

p

:A u 8R

p

:A v Z

p

; (12)

and the strict subsumption condition

Z

p

@ 8R

p

:X

p

u 8R

p

:X

p

: (13)

It is easy to see that the subsumption relationship between 8R

p

:A u 8R

p

:A and

8R

p

:X

p

u 8R

p

:X

p

enforced by (12) and (13) implies that any solution � of (12) and

(13) satis�es:

(�(X

p

) � A _ �(X

p

) � >)^ (�(X

p

) � A _ �(X

p

) � >):

In addition, the fact that this subsumption relationship must be strict implies

�(X

p

) � >_ �(X

p

) � >:

Finally, if this solution also satis�es the matching statement

A � X

p

uX

p

; (14)

then we know that not both variables can be replaced by >, i.e.,

�(X

p

) � A _ �(X

p

) � A:

This shows that, if we take > as the truth value 1 and A as the truth value 0, then

any solution assigns either 0 or 1 to X

p

, and the opposite truth value to X

p

.

It remains to be shown that 3-clauses and the corresponding truth conditions

can be encoded. We introduce a concept variable Z

c

and three roles R

c;1

; R

c;2

; R

c;3

for every 3-clause c in our 3SAT problem, and represent the clause by a matching

problem together with a strict subsumption condition. For example, assume that

c := p _ :q _ r. Then c is represented by the matching statement

8R

c;1

:A u 8R

c;2

:A u 8R

c;3

:A v Z

c

;

and the strict subsumption condition

Z

c

@ 8R

c;1

:X

p

u 8R

c;2

:X

q

u 8R

c;3

:X

r

:
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Obviously, the strict inclusion implied by these two statements can only be satis�ed

by a substitution � if it assigns > to at least one of the variables X

p

, X

q

, and X

r

.

This completes our reduction.

Note that (14) is a matching problem modulo equivalence that cannot be repre-

sented by a matching problem modulo subsumption. Thus, it is still open whether

the NP-hardness result also holds for matching modulo subsumption under strict

subsumption conditions.

Theorem 43 only provides a hardness result for matching under strict subsumption

conditions. Thus, another open question is how to extend the matching algorithm for

FL

0

(or one of the larger languages considered in this paper) to an algorithm that

can also handle strict subsumption conditions.

5.2 Subsumption conditions

Recall that a subsumption condition is of the form X v

?

E where X is a concept

variable and E is a concept pattern. If the subsumption conditions do not introduce

cyclic variable dependencies, then a matching problem with subsumption conditions

can be reduced to an ordinary matching problem.

De�nition 44 The sequence of subsumption conditions X

1

v

?

E

1

; : : : ; X

n

v

?

E

n

is

acyclic if and only if for all i; 1 � i � n, the pattern E

i

does not contain the variables

X

i

; : : : ; X

n

.

A set of subsumption conditions is called acyclic if and only if the subsumption

conditions can be arranged in an acyclic sequence.

Note that we may (without loss of generality) assume that X

1

; : : : ; X

n

are all

the variables occurring in the patterns D;E

1

; : : : ; E

n

since, for an additional variable

Z occurring in one of the patterns, we can simply add the subsumption condition

Z v

?

> to the beginning of the sequence.

Given such an acyclic sequence of subsumption conditions, we can de�ne a substitution

12

� inductively as follows:

�(X

1

) := Y

1

uE

1

and �(X

i

) := Y

i

u �(E

i

) (1 < i � n);

where the Y

i

are new variables.

Proposition 45 The matching problem C �

?

D is solvable under the acyclic sub-

sumption conditions X

1

v

?

E

1

; : : : ; X

n

v

?

E

n

if and only if C �

?

�(D) is solvable

without subsumption conditions.

Proof. To show the if direction, we assume that �

0

is a solution of the matching

problem C �

?

�(D). We construct a new substitution � by induction on i:

� (X

1

) := �

0

(Y

1

) uE

1

and � (X

i

) := �

0

(Y

i

) u � (E

i

) (1 < i � n):

12

Strictly speaking, this is not a substitution as introduced in Section 2 since variables are mapped

to patterns, and not just to descriptions. It should be clear, however, that the notion of a substitution

can be extended appropriately.
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Since the sequence of subsumption conditions X

1

v

?

E

1

; : : : ; X

n

v

?

E

n

is acyclic, E

1

does not contain variables, and E

i

may only contain the variablesX

1

; : : : ; X

i�1

. Thus,

we have E

1

= � (E

1

) and � (E

i

) is well-de�ned by induction. It remains to be shown

that � solves C �

?

D under the subsumption conditions X

1

v

?

E

1

; : : : ; X

n

v

?

E

n

.

Since � (X

i

) = �

0

(Y

i

)u � (E

i

) v � (E

i

), the subsumption conditions are satis�ed by

de�nition of � and the fact that E

1

= � (E

1

).

By induction on i, it is easy to show that � (X

i

) = �

0

(�(X

i

)) holds for all i; 1 �

i � n. Since we have assumed that the patterns do not contain variables other than

X

1

; : : : ; X

n

, this implies � (D) = �

0

(�(D)). Finally, �

0

(�(D)) � C since �

0

solves

C �

?

�(D).

To show the only-if direction, we assume that � is a solution of the matching

problem C �

?

D that satis�es the subsumption conditions X

1

v

?

E

1

; : : : ; X

n

v

?

E

n

.

The new substitution �

0

is de�ned by �

0

(Y

i

) := � (X

i

). First, we show (by induction

on i) that � (X

i

) � �

0

(�(X

i

)) holds for all i; 1 � i � n.

For i = 1 we have

�

0

(�(X

1

)) = �

0

(Y

1

uE

1

) = �

0

(Y

1

) u �

0

(E

1

) = � (X

1

) uE

1

= � (X

1

) u � (E

1

) � � (X

1

):

The last equivalence holds since � (X

1

) v � (E

1

) by the assumption that � satis�es the

subsumption conditions. In the induction step, we have

�

0

(�(X

i

)) = �

0

(Y

i

u �(E

i

)) = �

0

(Y

i

) u �

0

(�(E

i

)) � � (X

i

) u � (E

i

) � � (X

i

):

Thus, �

0

(�(D)) � � (D) � C, which shows that �

0

solves the matching problem

C �

?

�(D).

Unfortunately, the new pattern �(D) may be exponentially larger than the original

matching problem with subsumption conditions.

Example 46 Let R;S be distinct atomic roles and A an atomic concept. We consider

the acyclic subsumption conditions

X

1

v

?

A; X

2

v

?

8R:X

1

u 8S:X

1

; : : : ; X

n

v

?

8R:X

n�1

u 8S:X

n�1

:

Let the substitution � be de�ned as described above. It is easy to see that the size of

�(X

n

) is exponential in n. In fact, the FL

0

-normal form of �(X

n

) is

�(X

n

) � Y

n

u 8L

1

:Y

n�1

u 8L

2

:Y

n�2

u : : :u 8L

n�1

:Y

1

u 8L

n�1

:A;

where L

i

denotes the set of all words of length i over the alphabet � := fR;Sg. The

set L

n�1

alone already contains 2

n�1

di�erent words.

This example also suggests the use of a compact representation of (the FL

0

-

normal form of) the pattern �(D). In the example, we can represent L

i

as the i-fold

concatenation of L

1

. This yields a polynomial representation of the exponentially

large languages L

i

. It is easy to see that such a compact representation of �(D)

is always possible. However, it is not yet clear whether the computations required

by our solvability test for matching problems are still polynomial in the size of this

compact representation, though we strongly conjecture that this is the case.

The reduction described in Lemma 45 is independent of the DL used for con-

structing the patterns and descriptions. For FL

0

, we can go one step further: cyclic

subsumption conditions can here be reduced to acyclic ones.
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Proposition 47 For every FL

0

-matching problemwith subsumption conditions there

exists an equivalent

13

FL

0

-matching problem with acyclic subsumption conditions

whose size is polynomial in the size of the original problem.

Proof. Let C �

?

D be an FL

0

-matching problem and � := fX

1

v

?

E

1

; : : : ; X

n

v

?

E

n

g a set of FL

0

-subsumption conditions. The set � de�nes a dependency graph G

�

,

whose nodes are the variables X

1

; : : : ; X

n

, and whose edges are de�ned as follows:

there is an edge from X

i

to X

j

with label W if and only if E

i

contains a value

restriction of the form 8W:X

j

(where W is a word over the set of role names). For

example, the condition X

2

v 8R:8S:X

1

uX

3

induces an edge with label RS from X

2

to X

1

, and an edge with label " from X

2

to X

3

. Obviously, the set � is acyclic if and

only if the graph G

�

is acyclic. We distinguish between two di�erent types of cycles

in G

�

, and show how they can be eliminated.

First, assume that there is a path fromX

i

toX

i

whose label (i.e., the concatenation

of the labels of its edges) is a nonempty word W . Then any substitution � satisfying

� also satis�es the subsumption relation �(X

i

) v 8W:�(X

i

). Since W is nonempty

and �(X

i

) must be an FL

0

-concept description, this is only possible if �(X

i

) = >.

Let � be the substitution that replaces X

i

by >. We eliminateX

i

by applying � both

to � and to the matching problem C �

?

D. It should be noted that this transforms

the subsumption condition X

i

v E

i

into the matching problem > v � (E

i

), which is

equivalent to > �

?

� (E

i

). However, as shown in Lemma 5, the two matching problems

C �

?

� (D) and > �

?

� (E

i

) can be transformed into a single matching problem.

Second, assume that there is a path from X

i

to X

i

with label ". If this path has

length 1, then E

i

is of the form X

i

uE

0

i

. Since a substitution satis�es X

i

v X

i

uE

0

i

if

and only if it satis�es X

i

v E

0

i

, such a cycle can easily be eliminated. Finally, if the

cyclic path involves also another variable, say X

j

, then any substitution � satisfying

� also satis�es �(X

i

) � �(X

j

), and thus we can eliminateX

i

by replacing it by X

j

.

6 Future Work

Our goal is to extend the results on matching to cover languages at least as expressive

as Classic. This requires extending the language to include range constructors (min

and max), an individual set constructor (one-of), and a �lls constructor. We believe

that this should be an easy extension of the results presented in this paper. In fact,

min, max, and one-of mainly require an appropriate treatment of disjointness, which

we have already achieved by our treatment of atomic negation. The �lls construct is

similar to number restrictions in that it states the existence of a certain role successor.

The work on strict and non-strict subsumption conditions will be continued. One

way of showing decidability of matching under strict subsumption conditions could

be to extend the results on uni�cation of concept terms [6] to disuni�cation, i.e.,

problems that may contain both equations and negated equations [15]. For non-strict

subsumption conditions we will try to show that a compact representation of the

pattern �(D) can be used to obtain a polynomiality result.

Another motivation for investigating matching modulo equivalence may be found

in merging heterogeneous databases. Consider a situation where there is a master

13

Equivalent means that the problems have the same set of solutions.
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ontology along with new database schemas that need to be integrated into the master

ontology. In this situation, the integrator would like to know how the new schemas

may be mapped onto the master ontology. Our idea is to represent the ontology and

the schemas in an appropriate DL, and to view the problem of �nding such a mapping

as a matching problem of the concepts of the new schema onto the concepts of the

master ontology.

7 Conclusion

We have been motivated by the need to prune complicated structures in order to

provide manageable object presentations and explanations. The pruning problem can

be viewed as a matching problem where there is a comparison between a pattern

describing the interesting portions of the object and the larger object itself. Only

those portions of the object that match the pattern of interest should be presented.

We began with the �ltering work introduced in Classic and the theoretical work on

the uni�cation of concept terms and generated a formal treatment of matching in the

description logic languages FL

?

, FL

:

, and ALN . We presented results concerning

the solvability of the problem including polynomial decidability and (for solvable

problems) polynomial computability of a least solution.

We have mentioned in the introduction that positive results for matching (such as

decidability in polynomial time) do not automatically transfer from a given language

to its sublanguages since a matching problem of the smaller language that does not

have a solution in this languagemay well have one in the larger language. For example,

in the sublanguage of FL

0

that does not allow for the top concept >, the matching

problem A �

?

Au8R:X obviously does not have a solution, whereas it is solvable by

fX 7! >g in FL

0

. As an easy consequence of the results presented in this paper, one

can show, however, that this phenomenon cannot occur between the languages FL

0

,

FL

?

, FL

:

, and ALN (see, in particular, the proof of Proposition 35).

We also extended the work to include matching under additional side constraints

on the variables in the matching patterns. We showed that matching modulo equiv-

alence with strict subsumption conditions is NP-hard for the small language FL

0

. It

should be noted that the phenomenon mentioned above does occur between FL

0

and

FL

?

if subsumption conditions are allowed. For example, the set of subsumption

conditions fX v

?

8R:X; X v

?

Ag is not satis�able in FL

0

, but it can be satis�ed by

the FL

?

-substitution fX 7! ?g. Thus, the NP-hardness result for matching mod-

ulo equivalence with strict subsumption conditions in FL

0

does not imply hardness

of this problem for the larger languages FL

?

, FL

:

, and ALN , though we strongly

conjecture that the hardness result also holds for them.
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