Matching in Description Logics

Franz Baader* and Ralf Kisters
Theoretical Computer Science
RWTH Aachen
52074 Aachen, Germany

e-mail: {baader, kuesters}@informatik.rwth-aachen.de

Alex Borgidal Deborah L. McGuinness?*
Dept. of Computer Science Department of Computer Science
Rutgers University Stanford University
New Brunswick, NJ, USA Gates Building
e-mail: borgida@cs.rutgers.edu Stanford University, Ca. 94305

e-mail: dlm@ksl.stanford.edu

Abstract

Matching concepts against patterns (concepts with variables) is a relatively new operation
that has been introduced in the context of concept description languages (description log-
ics). Their original goals was to help filter out unimportant aspects of complicated concepts
appearing in large industrial knowledge bases. We propose a new approach to performing
matching, based on a “concept-centered” normal form, rather than the more standard “struc-
tural subsumption” normal form for concepts. As a result, matching can be performed (in
polynomial time) using arbitrary concept patterns of the description language ALN, thus
removing restrictions from previous work. The paper also addresses the question of matching
problems with additional “side conditions”, which were motivated by practical needs.

1 Introduction

Knowledge representation systems based on Description Logic (DL systems) can be
used to represent the knowledge of an application domain in a structured and formally
well-understood way [13, 4, 12, 37, 9]. In such systems, the important notions of the
domain can be described by concept descriptions, 1.e., expressions that are built from
atomic concepts (unary predicates) and atomic roles (binary predicates) using the
concept constructors provided by the Description Logic language (DL language) of
the system. The atomic concepts and the concept descriptions represent sets of in-
dividuals, whereas roles represent binary relations between individuals. For example,

*Partially supported by the EC Working Group CCL II.
TPartially supported by NSF Grant IRI 9619979.
Work was done while the author was at AT&T Labs — Research.

using the atomic concept Woman and the atomic role child, the concept of all women
having only daughters (i.e., women such that all their children are again women) can
be represented by the concept description

Woman M Vchild.Woman.

DL systems provide their users with various inference capabilities that allow them to
deduce implicit knowledge from the explicitly represented knowledge. For instance,
the subsumption algorithm allows one to determine subconcept-superconcept relation-
ships: C' is subsumed by D (C C D) if and only if all instances of C' are also instances
of D, i.e., the first description is always interpreted as a subset of the second descrip-
tion. For example, the concept description Woman obviously subsumes the concept
description Woman M Vchild.Woman. With the help of the subsumption algorithm,
a newly introduced concept description can automatically be placed at the correct
position in the hierarchy of the already existing concept descriptions. Two concept
descriptions C, D are equivalent (C = D) if and only if they subsume each other,
l.e., if and only if they always represent the same set of individuals. For example,
the descriptions Woman M Vchild.Woman and (Vchild.Woman) M Woman are equivalent
since M is interpreted as set intersection, which is commutative.

The traditional inference problems for DL systems (like subsumption) are now
well-investigated, which means that algorithms are available for solving the subsump-
tion problem and related inference problems in a great variety of DL languages of
differing expressive power (see, e.g., [24, 36, 33, 22, 1, 3, 21, 14, 11, 7, 2, 8]). In addi-
tion, the computational complexity of these inference problems has been investigated
in detail [24, 32, 34, 17, 16, 19, 35, 18].

It has turned out, however, that building and maintaining large DL knowledge
bases requires additional support in the form of inferences that have not been con-
sidered in the DL literature until very recently [27]. The present paper is concerned
with one such new inference service, namely, matching of concept descriptions, which
was motivated by the problem of pruning large descriptions.

Pruning as a motivation

In industrial applications, objects and their descriptions may become too large and
complex to view in traditional ways. Simply printing (descriptions of) objects in small
applications such as configuring stereo systems [28, 29] can easily take 10 pages, while
printing objects in industrial applications such as configuring telecommunications
equipment [38, 30, 31] might take five times as much space. In addition, if explanation
facilities [26, 25] are introduced and a naive explanation is presented of all deductions,
the system can produce five times as much output again. It quickly becomes clear
that object descriptions need to be pruned if users are to be able to inspect objects
and not be overwhelmed with irrelevant details.

We have observed that information may not be worthy of display for many rea-
sons. Information may be obviously true because it is commonly known definitional
knowledge, (e.g., the age of a person must be a number), or because it is common
knowledge in the domain, (e.g., the state field of an address must be filled with a
state in the US if the application is only concerned with US citizens). Information
may also not be worth presenting because it is information only relevant to an inter-
nal function, (e.g., information describing where to display an object in a graphical

presentation), or because it is otherwise determined to be non-informative or not of
interest to typical users (e.g., healthy eaters typically do not want to see the sugar
content of particular foods). However, information that may not be of general inter-
est, can, under certain conditions, become critical (e.g., if a food is known to fill the
“eats” role for a diabetic’s meal, then the sugar content becomes significant). Thus,
the context of the information becomes a critical component in determining what
should be presented.

Normally, users would need to retrieve descriptions of object portions and then
verify that they are interesting, by using functions from the application programming
interface (API) of the knowledge base management system (KBMS). For example,
they might retrieve the value restriction on an individual’s age and then check to see
if it is strictly subsumed by the concept Number.

This approach, which leaves the solution outside the KBMS, is less desirable than
one in which the specification of what is interesting is stored as part of the knowledge
base itself [10]. The advantage of the second alternative is that such specifications
can be saved, organized, and re-used (e.g., through inheritance), even by naive users.
McGuinness introduced the ability to provide “pruned views” of objects in the CLAS-
sIc system (version 2), under the name of “filtering”. The problem of filtering was
viewed as a matching problem: taking a description of interesting object portions
and matching that against existing object descriptions. Matching patterns were as-
sociated with classes and then used to filter all subclasses and instances of the class.
The patterns were defined once by a domain-literate person and then all users could
use them as the default pruning mechanism. The initial implementation had implicit
variables in matching patterns and also relied to some extent on a library of test
filters. This implementation has been used in small applications [28, 29] to save 3-5
pages of output (sometimes reducing the object to 25 percent of its former size). In
larger applications [38, 30, 31] it can easily save 30 pages of output per object.

Matching as a declarative solution

Even for matching filters attached to classes, one has a choice of using a variety of spec-
ification techniques. As usual in information-intensive applications (e.g., databases),
a declarative specification of filters should be preferred to a more procedural one: it is
usually more concise and elegant because it is likely to support formal analysis and
thence optimization by the KBMS.

A more declarative version of matching filters can be provided by introducing vari-
ables into concepts, thus producing “concept patterns” [25]. The pruning mechanism
was initially described as a purely syntactic maich involving concept patterns [25],
and then given a formal semantics and a provably sound syntactic implementation
[10]. Given a concept pattern D (i.e., a concept description containing variables)
and a concept description C without variables, the matching problem introduced by
Borgida and McGuinness [10] asks for a substitution o (of the variables by concept
descriptions) such that C C o(D). More precisely, one is interested in a “minimal”
solution of the matching problem, i.e., o should satisfy the property that there does
not exist a substitution § such that ¢ C §(D) C o(D). For example, the minimal
matcher of the pattern

D := Vresearch-interests. X

against the description
C := Vpets.Cat I Vresearch-interests. Al 1 Yhobbies.Gardening

assigns Al to the variable X, and thus finds the scientific interests (in this case Artifi-
cial Intelligence) described in the concept. (The concept pattern can be thought of as
a “format statement”, describing what information is to be displayed (or explained),
if the pattern matches successfully against a specific concept. If there is no match,
nothing is displayed.)

In some cases, this pruning effect can be improved by imposing additional side
conditions on the solutions of matching problems. For example, the information that
the research interests lie in the area of Artificial Intelligence may not be particularly
interesting if our knowledge base is concerned only with Al researchers. A side con-
dition stating that the solutions for the variable X must be subsumed by KR would
make sure that matching succeeds only if the research interests belong to (a subfield
of) Knowledge Representation. Thus, the description C' from above no longer matches
the pattern D, when augmented by this side condition, whereas

C' := Vpets.Cat I Vresearch-interests.DL 1 Vhobbies.Gardening

would still yield a solution (provided that DL can be inferred to be subsumed by KR).

In some cases it would be useful to have a matching process which succeeds only if
the variable X is substituted for by a value that is strictly subsumed by some descrip-
tion (or pattern). The utility of such strict side-conditions be seen more clearly in an
example where the concept Person is known to have Number as restriction on the age
attribute, and we are interested in seeing the value restriction for age only if it rep-
resents some additional (i.e., stricter) constraint. Another point worth noting is that
according to the standard Description Logic semantics, every description is subsumed
by all concepts of the form VR.T, where T denotes the universal concept. Hence the
pattern D above (concerning research interests) in fact matches every concept. Side
conditions requiring the value substituted for a variable to be strictly subsumed by
T prevent such “trivial” matches.

Matching algorithms for a DL containing most of the constructs available in CLAS-
sic were introduced by McGuinness [25], and generalized in Borgida and McGuin-
ness [10] to any DL supporting a certain type of subsumption algorithms (called
“structural” subsumption algorithms). These matching algorithms are based on the
role-centered structural normal form! of concept descriptions usually employed by
structural subsumption algorithms. The main drawback of these algorithms is that,
in an effort at generality, they require the concept pattern itself to be in structural
normal form, and thus place strong restrictions on the occurrence of variables. The
reason is that it is not possible to normalize arbitrary patterns, and thus certain natu-
ral concept patterns must be disallowed. For example, since at most one variable may
occur “in the same place”, the pattern in Example 23 would not be admissible. This
makes it difficult to build composite patterns from simpler, previously defined ones.
In addition, these algorithms do not always find a matcher, even if it exists, due to an
incomplete treatment of the top (T) and the bottom (L) concepts (see Example 41).

I'We call this normal form “role-centered” since it groups sub-descriptions by role names, whereas
the concept-centered normal form used in this article groups value restrictions by concept names (see
Section 3).

Baader and Narendran [6] consider unification of concept descriptions of the lan-
guage F Lo, which allows for conjunction (M), value restriction (VR.C), and the top
concept (T). Matching modulo equivalence, i.e., the question whether, for a given
pattern D and a description C, there exists a substitution o such that C' = o(D), can
be seen as a special case of unification where one of the descriptions (namely C) does
not contain variables. Since C' C o (D) if and only if C' = o(C' 1 D), matching modulo
subsumption (as introduced above) is an instance of matching modulo equivalence.
The polynomial matching algorithm described by Baader and Narendran [6] does not
impose restrictions on the form of the patterns. However, it is restricted to the small
language FLo.

The new results

We shall show that Baader and Narendran’s algorithm can be extended to treat
matching in languages allowing for inconsistent concept descriptions, namely FL| |
which extends FLg by the bottom concept (L), FL-, which extends FL by primitive
negation (—A, where A is an atomic concept), and ALN, which extends FL_ by
number restrictions. The reasons for starting with a detailed treatment of the small
language F L , and then extending this treatment in two steps to the larger languages,
are mainly of a didactic nature. It should, however, also be noted that, for matching,
positive results (such as decidability in polynomial time) do not automatically transfer
from a given language to its sublanguages. In fact, a matching problem of the smaller
language that does not have a solution in this language may well have one in the
larger language.?

In addition to pure matching problems, we also consider matching under additional
conditions on the variable bindings, which also arose in practical examples [28, 25]
and were responsible for about 25% of our space savings in our deployed example. In
this paper, we consider two different variants of these “side conditions”: subsumption
conditions and strict subsumption conditions. Subsumption conditions are of the form
X C" E, where X is a variable and E is a pattern (i.e., it may contain variables), and
they restrict the matchers to substitutions o satisfying o(X) C o(E). It should be
noted that such a side condition is not a matching problem since variables may occur
on both sides. We shall see, however, that in many cases matching under subsumption
conditions can be reduced to matching without subsumption conditions. It is not yet
clear whether this reduction leads to an increase of the complexity. In contrast, strict
subsumption conditions definitely increase the complexity of the matching problem.
Such conditions are of the form X —° E, where X is a variable and E is a pattern,
and they restrict the matchers to substitutions o satisfying o(X) C o(E) and o(X) #
o(E). We shall show that, even for the small language F Lo, matching under strict
subsumption conditions is NP-hard.

2 Formal preliminaries

In this section, we first introduce the syntax and semantics of the description lan-
guages considered in this paper. Then, we formally introduce matching problems,
and state some simple results about matching problems and their solutions.

2We will come back to this point in the conclusion.

Definition 1 Let C and R be disjoint finite sets representing the set of atomic con-
cepts and the set of atomic roles. The set of all ALN -concept descriptions over C
and R is inductively defined as follows:

e Every element of C is a concept description (atomic concept).
e The symbols T (top concept) and L (bottom concept) are concept descriptions.
o If A €C, then =4 is a concept description (atomic negation).

e If C'and D are concept descriptions, then CM.D is a concept description (concept
conjunction).

e If C is a concept description and R € R is an atomic role, then YR.C' is a
concept description (value restriction).

e If R € R is an atomic role and n > 0 is a nonnegative integer, then (<n R) and
(> n R) are concept descriptions (number restrictions).

In the sublanguage FLy of ALN, number restrictions, atomic negation, and L
may not be used, in FL; atomic negation and number restriction may not be used,
and in FL_, only number restrictions are disallowed.

The following definition provides a model-theoretic semantics for ALA and its
sublanguages:

Definition 2 An interpretation I consists of a nonempty set Al, the domain of the
interpretation, and an interpretation function ! that assigns to every atomic concept
A € Caset AT C A, and to every atomic role R € R a binary relation R C AT x AT,
The interpretation function is extended to complex concept descriptions as follows:

T = Al
17 = 0,
(—4)f = af\Al
(cnbpy = c¢'nD,
(VR.C)! := {deAl|Veec Al: (d,e) € R - e e},
(<nR)Y := {deAl|card({e € AT|(d,e) € R}) < n},
(>nR)Y := {deAl|card({e € AT |(d,e) € R}) > n}.

Based on this semantics, subsumption and equivalence of concept descriptions is
defined as follows: Let C' and D be ALAN -concept descriptions.

e C is subsumed by D (C C D) if and only if C? C D for all interpretations I.
e C is equivalent to D (C = D) if and only if CT = D! for all interpretations I.
o C is strictly subsumed by D (C C D) if and only if C C D and C # D.

In order to define matching of concept descriptions, we must introduce the notion
of a concept pattern and of substitutions operating on patterns. For this purpose, we
introduce an additional set of symbols X' (concept variables), which is disjoint from

CUR.

Definition 8 The set of all ACAN -concept patterns over C, R, and X is inductively
defined as follows:

e Every concept variable X € X is a pattern.
o Every ALN -concept description over C and R is a pattern.
e If C' and D are concept patterns, then C'M D is a concept pattern.

e If C is a concept pattern and R € R is an atomic role, then YR.C is a concept
pattern.

Thus, concept variables can be used like atomic concepts, with the only difference
being that atomic negation may not be applied to variables. FLg-, FL - and FL_-
patterns are defined analogously.

A substitution o is a mapping from X into the set of all ALA -concept descriptions.
This mapping is extended to concept patterns in the obvious way, i.e.,

e 0(A):= A and o(—4) :=—-Aforall 4 €C,
e o(T):=T and o(L) :=
)Na(D),

(4
(
o o(CMD):=0(C
¢ o(VR.C) := YR.0(C),
(

e o(>nR):=(>nR),and o(<n R):=(<nR).

For example, applying the substitution o := {X — ANVR.A, Y — B} to the pattern
X NY NVR.X yields the description AN (VR.A)MBMNYR.(ANVR.A).

Obviously, the result of applying a substitution to an ALA -concept pattern is
an ALN-concept description.® An FLg-substitution maps concept variables to FLo-
concept descriptions, and FL, - and FL_-substitutions are defined analogously.

Subsumption can be extended to substitutions as follows. The substitution o is
subsumed by the substitution 7 (o C) if and only if o(X) C 7(X) for all variables
X ed.

Definition 4 An ALN -matching problem is of the form C =* D where C is an
ALN -concept description and D is an ALN-concept pattern. A solution or matcher
of this problem is a substitution o such that C' = o(D).

A subsumption condition in ALN is of the form X C° E where X is a concept
variable and E is an ALN -concept pattern. The substitution o satisfies this condition
if and only if o(X) C o(E).

A strict subsumption condition in ALN is of the form X =% E where X is a
concept variable and E is an ALAMN -concept pattern. The substitution o satisfies this
condition if and only if o(X) C o(E).

3Note that this would not be the case if we had allowed the application of negation to concept
variables.

Matching problems and (strict) subsumption conditions in FLo, FL,, and FL,
are defined analogously. Note that the solutions are then also constrained to belong
to the respective sublanguage.

Instead of a single matching problem, we may also consider a finite system {C; =*
Di,...,Cn =° D,,} of such problems. The substitution ¢ is a solution of this system
if and only if it is a solution of all the matching problems C; = D; contained in the
system. However, it is easy to see that solving systems of matching problems can be
reduced (in linear time) to solving a single matching problem.

Lemma 5 Let Ry,..., R,, be distinct atomic roles. Then o solves the system {Cy =’
Di,...,Cn =° D,,} if and only if it solves the single matching problem

VR1.CiM - MYRp.Con = VR1.D1 M+ MYRyn.Di.

Consequently, we may (without loss of generality) restrict our attention to single
matching problems with or without finite sets of (strict) subsumption conditions.

Borgida and McGuinness [10, 25] have considered a different type of matching
problems. We will refer to those problems as matching problems modulo subsump-
tion in order to distinguish them from the matching problems modulo equivalence
introduced above.

Definition 6 A matching problem modulo subsumption is of the form C' C° D where
C is a concept description and D is a pattern. A solution of this problem is a
substitution o satisfying C C o(D).

For any description language allowing conjunction of concepts, matching modulo
subsumption can be reduced (in linear time) to matching modulo equivalence:

Lemma 7 The substitution o solves the matching problem C C° D if and only if it
solves C =" C'N D.

For ALN, and more generally for any description language in which variables in
patterns may only occur in the scope of “monotonic” operators, solvability of matching
problems modulo subsumption can be reduced to subsumption:

Lemma 8 Let C C° D be a matching problem modulo subsumption in ALAN, and
let o1 be the substitution that replaces each variable by T. Then C T’ D has a
solution if and only if o1 solves C C° D.

Thus, solvability of matching problems modulo subsumption in ALN and its
sublanguages is not an interesting new problem. This changes, however, if we consider
such matching problems together with additional (strict) subsumption conditions. In
fact, these conditions may exclude the trivial solution 1. In addition, one is usually
not interested in an arbitrary solution of the matching problem C C° D, but rather
in computing a “minimal” solution:

Definition 9 Let C C° D be a matching problem modulo subsumption. The solution
o of C C* D is called minimal if and only if there does not exist a substitution ¢ such

that C C §(D) T o(D).

Lemma 10 Let C C° D be an ALN-matching problem modulo subsumption. If o
is the least solution of C' C° D w.r.t. subsumption of substitutions, i.e., ¢ C § for all
solutions §, then ¢ is also a minimal solution.

Proor. This is an immediate consequence of the following fact, which can easily
be proved by induction on the structure of ALN-concept patterns: If o T 6, then
o(D) C §(D) for any ALN-concept pattern D. [|

It should be noted that talking about the least solution is a slight abuse of language
since the least solution of a given matching problem is unique only up to equivalence:
if o and 7 are both least solutions of the same matching problem, then they subsume
each other, which means that o(X) = 7(X) for all variables X € X.

The converse of Lemma 10 need not hold. For example, for the matching problem
VR.A C? VR.ANVR.X, the substitutions ¢ := {X + A} and 7 := {X +— T} are
both minimal solutions, but 7 obviously cannot be a least solution. This example
also demonstrates that minimal solutions of a given matching problem need not be
unique up to equivalence.

3 Matching in FL,|

The purpose of this section is to show that solvability of F L -matching problems can
be decided in polynomial time. In addition, for matching problems modulo subsump-
tion we can compute a minimal solution in polynomial time. Our algorithm is based
on a “concept-centered” normal form for FL, -concept descriptions.

First, let us recall the concept-centered normal form for FLp-concept descriptions
introduced by Baader and Narendran [6]. It is easy to see that any FLy-concept
description can be transformed into an equivalent description that is either T or
a (nonempty) conjunction of descriptions of the form VR;.---YR,.A for m > 0
(not necessarily distinct) atomic roles Ry,..., Ry and an atomic concept 4 # T.
We abbreviate VR;.---VR,,.A by VR1...R,,.A, where R;...R,, is considered as
a word over the alphabet ¥ := R of all atomic roles. If m = 0, then this is the
empty word €, and thus Ve.A is our “abbreviation” for A. In addition, instead of
Ywi. AN. . .NYwe. A we write VL. A where L := {wy, ..., w,} is a finite set of words over
3. Using these abbreviations, any pair of FLg-concept descriptions C, D containing
the atomic concepts Aj,..., Ar can be rewritten as

C=VU,. A1 N...NVU,.A; and D=VVi.A;N...0VWV.Ag,

where U;,V; are finite sets of words over the alphabet of all atomic roles. By con-
vention, the term V(.4 is considered to be equivalent to T, and hence the concept T
itself can be represented by making all the coeflicients, V;, be empty sets. This normal
form provides us with the following characterization of equivalence of FLg-concept
descriptions [6]:

Lemma 11 Let C, D be FLg-concept descriptions with normal forms as introduced
above. Then C' = D if and only if U; = V; for all 2,1 < < k.

This characterization can in turn be used to reduce matching of FLy-concept
descriptions to a certain formal language problem, which can easily be shown to be
solvable in polynomial time [6].

If we treat L like an arbitrary atomic concept, FL-concept descriptions C, D
can still be represented in the form®

C= VU()J_ M VUl.Al Mm...n VUkAk and D = VV()J_ M VVl.Al Mm...n VVkAk

However, equivalence of the descriptions no longer corresponds to equality of the
languages U; and V;. The reason is that YR;.---VR,,.L is subsumed by any value
restriction of the form VRy. - -VRp,. VRpy1.- - VRpmin.A. This fact is taken into
account by the following characterization of equivalence of FL | -concept descriptions:

Lemma 12 Let C, D be FL | -concept descriptions with FLg-normal forms as intro-
duced above. Then

cC=D iff U()E* = V()E* and
Ui UUpX* = V; UVp-X* for all i,1 < i <k,

where X* is the set of all words over the alphabet of all atomic roles and - stands for
concatenation.

ProoOF. Assume that the right-hand side of the equivalence stated in the lemma
holds. It is sufficient to show that this implies C C D (since D C C then follows by
symmetry). Considering the normal form of D this means that we must show that
for all w € Vy we have (1) C C Vw.L, and for all 4,1 < ¢ < k, and all w € V; we
have (2) C C Vw.A;. Thus, let w € Vy. By assumption, Vo C V5-X* = Up-Z*, which
implies that there exist a word v € Uy and v € X* such that w = wv. Thus, the
normal form for C' contains the conjunct Vu.Ll. Since Yu.l C Vuv.L for any word v
we have established that (1) holds. Property (2) can be shown similarly.

Conversely, assume that the right-hand side of the equivalence stated in the lemma
does not hold, i.e., (1) Ug-Z* # V5-X%, or for some ¢,1 <4 < k, (2) U; UU-* #
Vi UV 2.

First, we assume that (1) holds. Without loss of generality we may assume that
there exists a word w := R;y...R,; € £* such that w € Up-E* and w ¢ Vo-X*. We
claim that this implies D [Z C, and thus C # D.

In order to prove this claim, we construct an interpretation I as follows: the
domain A := {dy,...,d,,} consists of m + 1 distinct individuals; the interpretation
of atomic concepts A; is given by A := AZ; finally, the atomic roles are interpreted
as ST := {(d;_1,d;) | S = R;}. It is easy to see that this interpretation satisfies
do € (Vu.Ai)I for all words uw € X" (since Al = AI), and do € (Vu.J_)I for all
words u that are not a prefix of w = Ry...R,,. Consequently, dy € (Vu.4;)! for
all w € V;. In addition, w ¢ Vo-X* implies that no word in V; is a prefix of w, and
thus do € (Vu.L)! for all words u € Vy. This shows that dy € Df. However, by
construction, do & (Vw.L)!, which implies do ¢ CT.

Second, we assume that (1) does not hold, i.e., Up-X* = V5-X*, and that (2) holds.
Without loss of generality we may assume that there exists a word w := Ry ... Ry, €

4We shall call this the FL¢-normal form of the descriptions.

10

2" such that w € U; and w € V; U V-5, Again, we claim that this implies D [Z C,
and thus C # D.

In order to prove this claim, we construct an interpretation I as follows: the
domain A := {dy,...,d,,} consists of m + 1 distinct individuals; the interpretation
of atomic concepts A; for j # i is given by A;T := Al; the interpretation of A4; is
Al .= AT\ {d,,}; finally, the atomic roles are interpreted as ST := {(d;_1,d;) | S =
R;}. By construction do ¢ (Vw.4;)?, and thus dgp € CI. On the other hand, it is easy
to show (using arguments that are similar to the ones employed in the first case) that

do € D. [|

If D is an FL, -pattern containing the atomic concepts A4; ... Ar and the variables
Xi1,..., Xy, then its FLg-normal form is of the form

D=VVo.LOVVL. A D OV A, YW X ... YW, X,

If we want to match D with the description C (with normal form as above), we
must solve the following “formal language” equations (where X;; are interpreted as
variables for finite sets of words):

(J_) Up- 2" = Vp-2F UWl-XLO-E* U...UW[XLO-E*,
and for all 7,1 < ¢ < k,
(A,) U; UU-Z* IV;UWl'XL,'U...UW[‘X@JUU@‘E*.

Theorem 13 Let C be an FL | -concept description and D an FL | -concept pattern
with FLo-normal forms as introduced above. Then the matching problem C =° D
has a solution if and only if the formal language equations (L) and (41),...,(4y) are
each solvable.

ProOOF. Let

k k
o0:={X1—VLio.LMN il:ll VL1 Aiy ooy Xe— VLo L1 i|:|1 VL A}

be a substitution.® By employing elementary equivalences between concept descrip-

tions we can show that the FLo-normal form of o(D) is
O'(D) = V(VoUWl'LLoU"'UW[LLo).J_H
k
|j|1V (V; U Wl'Ll,i .-y Wl'Ll,i) VAL

Lemma 12 implies that C = o(D) if and only if
UO'E* = (Vo U Wl'Ll,O .- W['LL())'E*, (1)
and for all 7,1 < ¢ < k,

U; UU-2* = VU Wl‘Ll,i .-y Wg'LL,’ U
(Vo UWi-LigU---U Wg-LLO)-E*. (2)

5Without loss of generality we restrict our attention to the images of variables occurring in D,
and assume that o introduces only atomic concepts occurring in C or D.

11

Since concatenation distributes over union, (1) corresponds to the fact that the as-
signment Xi 0 := Lq,0,...,Xe0 := Lo solves equation (L). In addition, if we al-
ready know that (1) holds, then (2) corresponds to the fact that the assignment
X1i:=L14...,X¢; = Ly; solves equation (4;).

This shows how a solution o of the matching problem C =’ D yields solutions
of the equations (L), (41), ..., (4x), and conversely how solutions of these equations
can be used to construct a matcher o. [|

Example 14 As a running example, we will consider the problem of matching the
pattern

D .= Xl M (VRXl) M (VSXZ)

against the description
C:=VR.((¥S.41) N (YR.L))NVSVS. L.
The FL | -normal forms of C' and D are
C =V{RR,S5S}.LNV{RS}.A; and D=V0.LNV0.A;NV{e, R}.X; NV{S}.X>.
Thus, the matching problem C =° D is translated into the following two equations:

(L) {RR,SS}-£* = 0-5* U {e, R}-X1,0-5" U {§}- X3 0-T%,
(41) {RS}U{RR,SS}-* = QU {e, R}-X1, U{S}- X5, U {RR, SS}-*.

If we want to utilize Theorem 13 for deciding matching problems in F£ | , we must
show how solvability of the equations (L), (41), ..., (4g) can be tested. First, we
address the problem of solving equation ().

Lemma 15 Equation (L) has a solution if and only if replacing X; o-X* by the sets

Lio:= (] w (Uox")
weW;
solves equation (L).°
Proor. To show the only-if direction, we assume that the assignment X3 o := My 0,...,
X0 := My, solves equation (L).

First, we prove that M;q-X* C ﬂwer w~(Up-2*) holds for all j,1 < j < 4.
Thus, let v € M; 2" and w € W;. Since W;-M;o-3* C Up-X", we know that
wv € Up-Z*, and thus v € w™1+(Uy-X*). This shows that M;¢-X* C w=-(Uy-T*) for
all w € Wj, and thus M; 02" C ﬂwer w=(Up-T%).

As an immediate consequence, we obtain

U = VX UWl-MLo-E* U...UW[‘ML()-E*
- VO'E* U Wiy m w_l'(Uo'E*) U...U W, m w_l-(Uo-E*).
weW; weWw,
$For a word w and a set of words L we have w™!.L := {u | wu € L}. This language is called a

left quotient of L.

12

It remains to be shown that the inclusion in the other direction holds as well. Obvi-
ously, we have Vo-35* C Up-X* since there exists a solution of (L). To conclude the
proof of the only-if direction, assume that « € W; and v € mwer w1 (Ug-X*). We

must show that uv € Up-Z*. Obviously, u € W; implies v € u=1+(Up-Z*), and thus
uv € Up-2*.

To prove the if direction, it is sufficient to show that there exist finite sets of words
Ljo (j = 1,...,¢) such that L;o-X* = ﬂwer w~(Up-2*). This is an immediate
consequence of the fact that languages of the form L-X* for finite L are closed under
(binary) intersection and left quotients (see (1) and (2) of Lemma 16 below). [|

The following lemma shows that languages of the form L-%* for finite L are closed
under left quotients, intersection, union, and left concatenation with finite languages.

Lemma 16 Let U,V be finite languages and w a word.
1. There exists a finite language Ly such that L;-%* = w=1(U-Z%).
2. There exists a finite language L such that Ly X" = U-Z* N V.Z".
3. U UV.E = (UUV)E* and U(V-Z*) = (U-V)-Z*.

PrOOF. (1) Since (uv)~1L = v~1-(u~1-L) for all languages L, it is sufficient to con-
sider the case where w has length 1, i.e., w € X. We distinguish two cases:

o If the empty word ¢ belongs to U, then U-2* = ©* = w~1.%*, and thus we can
take L1 := {e}.

e If ¢ ¢ U, then our assumption that w € ¥ implies that w=!-(U-2*) = (w=1.U)-
¥*, and thus we can take L; := w~'-U, which is finite since U is finite.

(2) It is easy to see that we can take Ly := (UNV-Z*)U(V NU-Z*).
(3) is trivial. [|

For the matching problem of Example 14, we replace X1-X* by
R “({RR,SS}-=*)ne '({RR,SS}-£*) = {R}-Z* N {RR, SS}-* = {RR}-. ="
and X5-3* by
S71.({RR,SS}-T*) = {S}-.B".
It is easy to see that this replacement solves equation (L). The finite languages L; o

are defined as L1 := {RR} and Ls¢:={S}.
Now, let us consider the equations (4;) for 1 <7 < k.

Lemma 17 Equation (4;) has a solution if and only if replacing the variables X; ;
by the sets L;; := ﬂwer w™(U; UUqy-X*) yields a solution of (4;).

PrOOF. The proof of the only-if direction is very similar to the proof of this di-
rection for Lemma 15. In particular, one can show that any assignment X;; :=
My, ..., X := M ; that solves (A;) satisfies M;; C f’j,i-

To prove the if direction, it is sufficient to show that there exist finite sets of words
L]'J' such that W]’-L]",' UUg- X" = W]’-E]",' U Ug-2".

13

We have EN = ﬂwer (w™r-U; Uw™1(Up-T*)). By applying distributivity of
intersection over union, this intersection of unions can be transformed into a union
of intersections. Except for the intersection ﬂwer w™(Up-T*), all the intersection

expressions in this union contain at least one language w='U; for a word w € W;.
Since U; is finite, this shows that ﬂwer w™L(Up-*) is the only (possibly) infinite
language %n the Tmion. Consequently, if we define L;; := L;; \ ﬂwer w=(Up-T*),
then L;; is a finite language.

In order to prove that W;-L;; U Uy-2* = W;-L;; UUy-X", it is sufficient to show
that v € W; and v € L;,; \ L;; implies uv € Up-X*. By definition of L;;, we know
that v € ﬂwer w™t(Up-T*), and thus u € W, implies uv € Up-T*. [|

For the matching problem of Example 14, we have

Ly = R “{RS}U{RR,SS}-x*)ne ' ({RS}U{RR,SS}T")
({SHU{R}E")N({RS}U{RR,SS}X7)
= {RS}U{RR} %",

Ion = S ' ({RS}U{RR,SS}¥%)
= {S}-=".

Again, it is easy to see that replacing the variables X; 1 by /I\%l yields a solution of
equation (A;). The finite languages L; 1 are defined as Ly 1 := {RS} and Ly := 0.

Lemma 15 and 17 provide us with a polynomial algorithm for deciding solvability
of matching problems in FL .

Theorem 18 Solvability of matching problems in £, can be decided in polynomial
time.

Proor. Obviously, Lemma 15 and 17 provide us with an effective method for testing
matching problemsin FL, for solvability. It remains to be shown that this test can be
realized in polynomial time. First, note that the combined size” of the finite languages
U; and V; is linear in the size of the concept description and the pattern. Thus, the
size of the equations (L) and (4;) is polynomial in the size of the original matching
problem. Both for equation (L) and for equation (4;) we compute a “candidate” for
a solution and then test whether it really is a solution.

First, let us consider equation (L). Given the finite language Ug, we can construct
(in polynomial time) a deterministic finite automaton that accepts the left-hand side
Up-Z* of equation (L), and whose size is linear in the size of Up.

Regarding the right-hand side of equation (L), it is easy to see that computing
the candidate and inserting it into the right-hand side can be done in polynomial
time. To be more precise, we can compute (in polynomial time) a deterministic
finite automaton accepting the (regular) language obtained by inserting the candidate
solution into the right-hand side of equation (L), and the size of this automaton is
polynomial in the size of the equation. In fact, in order to construct this automaton,
we start with very simple finite deterministic automata for Up-%* and V5-2*. In
principle, these automata have the form of a tree (representing the finite language Uy

TAs size of a finite language we take the sum of the length of the words occurring in the language.

14

Figure 1: Tree-like automata for the languages {RR,SR,SS}-{R,S}* and {R,SR} U
{RR,SS}-{R,S}". The root of the tree is the initial state and the final states are marked
by exiting arrows without destination.

or Vo) with loops at the leaves (representing the 3* at the end), where the root is the
initial state and the leaves are the final states (see the left-hand side of Fig. 1 for an
example). It is easy to see that computing the left quotient and the intersection of
languages represented by such tree-like automata can be realized as linear operations
on tree-like automata. Thus, computing the languages /I\%O, and thus the candidate
solution, is polynomial. Inserting the candidate solution into the right-hand side of
the equation is also polynomlal since the concatenation Wj- L] o can be realized by a
quadratic operation: W;- L] o can be represented as union of the languages {w} L] 0
where w € W;. Now, computing a tree-like automaton corresponding to {w}- I j,0is a
linear operation. In addition, union can be realized as a linear operation on tree-like
automata as well.

Since equivalence of regular languages given by deterministic finite automata can
be decided in time polynomial in the size of the automata,® this shows that solvability
of equation (L) can be tested in polynomial time.

The equations (4;) can be treated similarly. We just have to extend our argu-
ment regarding closure properties of tree-like automata from automata representing
languages of the form L-3* for finite L to languages of the form L U L'-X* for finite
L, L’ (see the right-hand side of Fig. 1 for an example of such an extended tree-like
automaton). [|

The proofs of Lemma 15 and 17 also show how to compute a matcher of a given
solvable FL | -matching problem. In fact, if the matching problem is solvable, then
the following substitution ¢ is a matcher:

k k
0:={X1—VLio.L0N i|:|1 VL1:.Ai, ..., X¢— VLo LN i|:|1 VL. A},

where the languages L; o (1 < j < £) are defined as in the proof of Lemma 15, and
the languages L;; (1 < j <¢,1<1{<k) are defined as in the proof of Lemma 17.

Lemma 19 The substitution ¢ defined above can be computed in polynomial time.

8Note that this would not be the case for nondeterministic finite automata.

15

Figure 2: The complement tree-like automata for the automata in Fig. 1.

Proor. It is sufficient to show that the languages L; ; can be computed in polynomial
time. For ¢ = 0 this has already been shown in the proof of Theorem 18 since L; ¢ can
easily be read off the tree-like automata for E]"o. For ¢ > 0 we have L, ; = EN \ E]"o.
We know that both for EN and for Ej,o we can compute tree-like automata in poly-
nomial time. Since intersection is a linear operation on tree-like automata, it remains
to be shown that the complement of the language accepted by a tree-like automaton
can also be accepted by a tree-like automaton, and that this complement automaton
can be computed in polynomial time. This can be achieved by first completing the
tree-like automaton by additional sink states; then iteratively removing all leaves that
are final states; and finally exchanging final and non-final states (see Fig. 2 for two
examples).

For the matching problem of Example 14, we thus obtain the matcher
{X1—~ (YRYR.L)N(VRVS.4), X5 —» VS. L}

Lemma 20 Assume that the given £ | -matching problem C =° D is solvable. Then
the substitution o defined above is the least solution of C' =* D.

Proor. Assume that

k k
§:={X1— VMio.LN 'Ijll VMyiAiy ooy Xo—> VMo LT 'Ijll VM. A}
is another solution of C =" D. Consequently, the assignment X100 = Mypo,...,

X0 := My solves equation (L), and the assignment Xy ; := My ;,..., X 1= Me;
solves (A;). As shown in the proofs of Lemma 15 and 17, this implies that M ¢-3* C
LioX (1<j<fand M;; CL;j; (1<j<41<i<k).

As in the proof of Lemma 12, we can infer o(X;) C 6(X;) from M, o-X* C L; o-Z*
and M;; UM, o-X* C L;; ULjo-X". We already know that the first inclusion holds.
For the second inclusion, it remains to be shown that M;; C L, ; U L; o-3*. This is
an immediate consequence of M;; C EN since /I\,N =L;; U ﬂwer w1 (Up-2*) and
Lo B = e, v (U0T"). N

This lemma, together with Lemma 10, immediately implies the following theorem:

16

Theorem 21 Let C T D be a solvable matching problem modulo subsumption.
Then the least solution of C =* C M D is a minimal solution of C C? D, and this
solution can be computed in polynomial time.

4 Extension to larger languages

In this section, we show that our approach for solving matching problems in FL

can be extended to the larger languages F£-, and ALN.

4.1 Matching in FL_

In order to extend the results for matching in FL, to the larger language FL-, we
treat negated atomic concepts like new atomic concepts. The fact that A M —A4 is
inconsistent (i.e., equivalent to L) is taken care of by extending the language in the
value restriction for the concept L appropriately.

To be more precise, let C, D be FL_-concept descriptions, and Ai,..., Ay the
atomic concepts occurring in C, D. By treating the negated atomic concepts —4; like
new atomic concepts, we can transform C and D into their FLy-normal forms:

C = VU .LNVU. A .. .NMVUR. A N VUk+1.—|A1 N...0VUz;.0Ag,

D = VVi. LNV A N...OVV. A T VVk+1.—|A1 M...0VVop.mAg.
If we define
R 3 R 3
Uo:=Upo U J(WiNUkyi) and Vo :=VoU | J(ViNVigi),
i=1 i=1

then Lemma 12 can be generalized to FL-, as follows:

Lemma 22 Let C, D be FL_-concept descriptions with F Lo-normal forms as intro-
duced above. Then

c=D iff Uy =V, and
U, UTo-S* = V; UVp-T* for all i,1 < i < 2k.

Since the formulation of this lemma is just a syntactic variant of the one of
Lemma 12 (where k is replaced by 2k and the sets Uy, Vo by U, V5), one might
conjecture that Theorem 13 can be generalized accordingly. Unfortunately, this is
not the case, as demonstrated by the following example.

Example 23 Let R, S, T be three distinct atomic roles. We consider the problem of
matching the pattern

(VR.(X1 M X3))N(VS.Xy) N (VT.X3)
against the description

(VR.L) M (VS. A1) 1 (VT.-4,).

17

Obviously, this matching problem can be solved by simply replacing X; by 4; and
X> by = A;. However, if we construct the equations (L), (41), and (—41) according
to the way it is done in Section 3, with the only difference that Uy, Vo are replaced
by Uop, Vo,° then we obtain

(L) {R}E" ={R,S}X1,0Z" U{R, T} X5 %",
(A1) {S}U{R}Z* ={R,S}-X1,1 U{R,T}-X>1 U{R}-Z",
(—41) {TYU{R}X" ={R,S}- X1 2 U{R,T}- X5, U{R}-Z".
Obviously, the equation (A1) can be solved by X1 := {¢} and X, := nd the

0, a
equation (—A1) by X1, := 0 and X5, := {¢}. However, the equation (L) is not
solvable.

The reason for the problem exhibited by this example is that the value restriction
VR.L required by the description cannot directly be generated from the pattern by
insertion of |, but instead by an interaction of 4; and —A; in the instantiated pattern.
In fact, the solutions of the equations (A1) and (—4;) defined above satisty

Re ({R,S}{e} U{R,T}-0)Nn ({R,S}-OU{R, T}{}),

which provides us with the word R (and thus the language R-%*) missing on the
right-hand side of (L).

In order to formulate this solution to the problem in the general case, we consider
the generic FL£_-matching problem C =’ D, where the FLy-normal forms of C, D
are

C = VUp.LNVUL.A ...V A 1N VUk+1.—|A1 O...NYU.— A,

D YVo.LMVVL.A ..MV A N VVk_|_1.—|A1 M...0YVa. A T
YW.. X, n...N¥YW,.X,.

The sets ﬁo, 170 are assumed to be defined as above Lemma 22. If we want to match D
with the description C, then we must solve the following formal language equations:

k
(L) Tox* = V=" UWi-X1,08" U...UWp-Xp08" U | Int(4y, ~4)-57,

i=1
where

Int(A,', —|A,') = (V, U Wl‘Xl,i U...u Wg-XL,') n
(Vk+i U Wl'Xl,k-H U...u Wl'Xl,k+i) s

and for all 7,1 < ¢ < k,
(4) U;UTeS =ViUWy-X1,U...UW;-X¢; UUp 5"
and

(—|A,') Up4i U 5’0-2* =Vepi UWr- X1 4 U . . UWp- Xy gy U ﬁo-E*.

9Note that for this particular matching problem, Uy = ﬁo and Vy = 170.

18

Theorem 24 Let C be an FL_-concept description and D an FL_-concept pattern
with FLo-normal forms as introduced above. Then the matching problem C =’
D has a solution if and only if the system of formal language equations (L) and

(A1),...,(Ar), (041),..., (0Ag) is solvable.

ProOOF. Let

k k
o = {Xl — VL170.J_ M il:ll VLL,'.A,' M i|:|1 VLl,k+i-_‘Aia

k k
X — VLLo.J_ M 'ljll VLL,'.A,' M 'ljll VLl,k+i-_‘Ai}

be a substitution.!® Again, by employing elementary equivalences between concept
descriptions we can show that the FLp-normal form of o(D) is

O'(D) = V(VoUWl'LLoU"'UWg'LLo).J_H

k
IV (Vi UW3Lyi U UWerLy) Ai Tl
k
Elv (Vepi UWi-Ly jyi U - U WL gyi) - Aptie

Thus, Lemma 22 implies that o satisfies C = o(D) if and only if the assignment
X;i=L;j; (j=1,...,4,:=1,...,2k) solves the system of formal language equations
(L), (A1), ..., (Ak), (0A1),. .., (—4).

It remains to be shown how solvability of the system (L), (41), ..., (4z), (041),...,
(mAr) can be tested. In contrast to the formal language equations considered for
matching in FL |, the equations of this system cannot be solved separately since (L)
contains variables also occurring in the other equations. Nevertheless, the approach
employed in the previous section for solving the equations separately also applies to
the system to be considered here.

Lemma 25 The system of equations (L), (41),...,(4r), (041),...,(—Ax) has a so-
lution if and only if

1. replacing the variables X;; by the sets EN = ﬂwer w=(U; U ﬁo-E*) yields
a solution of (4;) fori=1,...,k,

2. replacing the variables X; r1; by the sets Ej,k+i = ﬂwer w= b (Ugyi U ﬁo-E*)
yields a solution of (—4;) for i =1,...,k, and

3. replacing X; o-X* by the sets Ej,o = ﬂwer w_l-(ﬁo-E*) together with the
assignments considered in 1. and 2. solves equation (L).

0Without loss of generality we may assume that ¢ introduces only atomic concepts occurring in
C or D. In fact, additional atomic concepts or negated atomic concepts introduced by a solution of
the matching problem can simply be replaced by L (see the proof of Proposition 35).

19

Proor. To show the only-if direction, assume that the assignment X;; := M,;
(j=1,...,¢,i=0,...,2k) solves the system (L), (A1),...,(4r), (041),...,(—4).

As in the proof of Lemma 17 we can show that M;; C EN holdsforall j =1,...,¢
and ¢ = 1,...,2k, and that replacing the variables X;; (resp. X; r4:) by the sets EN
(resp. Ej,k+i) solves equation (4;) (resp. (—4;)).

As in the proof of Lemma 15 we can show that M; X" C f, holds for all
j = 1,...,4. Together with the inclusions M;; C /I\,N for j = 1,...,£ and 7 =

.5 2k, this implies that the left-hand side ﬁo-E* of equation () is contalned in
the set obtained by replacing in the right-hand side of (L) the variables X;; by LN
(G=1,....4i=1,...,2k) and X, 0-5* by Lj0 (G =1,...,4).

To conclude the proof of the only-if direction, it remains to be shown that the
inclusion in the other direction holds as well. Obviously, Vo-X* C Ug-X* and W;-L; o C

ﬁo-E* can be shown as in the proof of Lemma 15. Thus, assume that
S (VZ U Wl'j.—z\lﬂ' U...uU Wg-fz7i) n (Vk+i U Wl'zl,k+i U...u Wg-ka_H) .

Since we already know that the equations (A) and (—4;) are solved by the assignment
X = L] i, this 1mphes that w € (U; U Uo NN Uy U ﬁo-E*). By definition of ﬁo,
we have U; N U4 C Uo, and thus w € Uo hIN

In the proofs of the #f direction of Lemma 15 and Lemma 17 we have shown how
to construct finite languages L;; (7 =1,...,4,¢=0,...,2k) such that

o LjoXt = Ej,o forall j =1,...,4, and

e LjiULjoxX =L forallj=1,....4andi=1,,...,2k
(see the proof of Lemma 20).

To proof the if direction of the present lemma, it remains to be shown that the
assignment X;; := L;; solves the system (L), (A41),...,(A4r), (0A41),...,(—4s).

For the equations (A;) (vesp. (—4;)), this is an immediate consequence of the
following facts:

o the assignment X;; := EN (resp. Xj kti = Ej,k+i) solves (A;) (resp. (—4;)),

° _/L\jﬂ' = L]'J' U Lj,O'E*a and

o Wj-Lj X" = W;-Ljo C Up-n*
For the equation (L), let L; be the language obtained by instantiating Int(4;,—-4;)
with the languages L] i, and L the language obtained by instantiating Int(4;, —4;)
with the languages L] i dince Lj - X" = L] 0, it remains to be shown that any word
w in L; \ L; belongs to Wy-Lq,o0-X* U ... U W;-Leo-X*. This is, however, an easy
consequence of the fact that L; ; = L;; U L; o-3*, which implies that such a word w
must belong to W;-L; o-3" for some 7,1 < 7 < /4. [|

As in the proof of Theorem 18 we can show that this lemma provides us with
a polynomial algorithm for deciding solvability of matching problems in F£,. In
addition, as in the proof of Lemma 20 we can show that the solution ¢ obtained from
the sets L;; is the least solution of the matching problem, and that this solution can
be computed in polynomial time.

20

Theorem 26 Let C' =’ D be an FL_-matching problem. Solvability of C' =7 D can
be tested in polynomial time. If C =" D is solvable, then a least solution of C =" D
can be computed in polynomial time.

Corollary 27 Let C C° D be a solvable F£_-matching problem modulo subsump-
tion. Then a minimal solution of C' C° D can be computed in polynomial time.

4.2 Matching in ALN

Let C, D be ALMN-concept descriptions, C the set of atomic concepts occurring in
C and D, N> the set of at-least restrictions in C' and D, and N< the set of at-
most restrictions in C and D. Without loss of generality we assume that A'> does
not contain at-least restrictions of the form (> 0 R) since these restrictions can be
replaced by T.

By treating negated atomic concepts and number restrictions like atomic concepts,
we can transform C and D into their FLp-normal forms

C = vU,..L 1 [1vUs AN [1VU.4-A N (3)
AeC AcC

[T VUs.r.(>nR) N (1 YUcur.(<nR),
nmens, 2R ZRE) T TR (S)

D = vi.Ln [1vwaAn [1VV4-4nN (4)
AeC AcC

(ZnESENéVVénR(Z7LR)[j(gnggeNgVVgnR(§7lR»

In the following, we will also use the notation Usp g (vesp. U<nr, Ua, U-4) for at-least
restrictions (resp. at-most restrictions, atomic concepts and_negated atomic concepts)
not contained in N> (resp. N<, C). In this case, these sets are assumed to be empty.
The same holds for V in place of U. R

If C is an FL-concept description, then the set Up-3* (as defined in Section 4.1)
is equal to the set {w € T*|C C Vw. L} of so-called C-excluding words. The following
definition generalizes this notion to ALA -concept descriptions:

Definition 28 For an ALN -concept description C, we define B¢ := {w € * |C C
Vw.Ll}, and call this set the set of C-excluding words.

In order to provide a syntactic description of E¢ we need one more notation.

Definition 29 A word w = Ry --- R,, € ©* is required by the ALN -concept descrip-
tion C (with FLo-normal form as in (3)) starting from v = Ry -+ Ry, m < n, if and
only if for all 7, m < ¢ < n, there are numbers k;11 > 1 such that vRp41--- R; €
UskigiRigs-

Note that both n and m in this definition may be 0. Thus, the empty word ¢ is

required (starting from ¢) by any ALN -concept description. The intuition underlying
the notion of required words is clarified in the next lemma.

Lemma 30 Assume that w = Ry --- R, isrequired by C starting fromv = Ry --- Ry,
m < n, and that I is an interpretation such that d € CT and (d,e) € Rio...o RL.
Then e has an (Rp41 - Rp)-successor in I, i.e., there is an individual f such that

(e,f)ERﬁz_I_lo...oRfl.

21

Example 31 Let us illustrate the above definition using the following ALN -concept
descriptions:

c Y{RS,R}.(>2S) NV¥{RS}.(<18) NV¥{S}.4;,
D := VY{R}.(>2S)NVY{R}.(<1S)NVY{RRS,S}.A; N (<1R).

It is easy to see that both RS and RSS are required by C starting from R. The
concept D also requires RS starting from R, but it does not require RSS.

Using the notion of required words, exclusion can be characterized as follows [23]:

Theorem 32 For an ALN-concept description C' (with FLo-normal form as in (3))
it holds that w € E¢ if and only if

1. there exists a prefix v € X* of w and a word v’ € X* such that vv' is required
by C starting from » and
(a) vo' €Uy, or
(b) there is an atomic concept 4 with vv' € U4 NU- 4, or
(c) there are number restrictions (> £ R) and (< » R) such that £ > r and

v’ € UZZR N USTR; or

2. there exists a prefix vR of w (with v € ¥, R € %) such that v € U<gr.
Furthermore, it can be shown [5]:

Proposition 33 For an ALN -concept description C one can compute (in polynomial
time) a finite set of words U such that Ec = U-2*.

Using Theorem 32 (1c), it is not hard to verify that, for the concept description C
and D of Example 31, the sets of excluding words are Ec = Ep = R{R, S}*. Thus,
in both cases we can take U := {R} in the above proposition.

Again, equivalence'! of ALN -concept descriptions can be characterized in terms
of certain regular languages [23]:

Theorem 34 Let C, D be ALN-concept descriptions with FLg-normal forms as
introduced in (3) and (4), respectively. Then C' = D if and only if for all 4 € C,
(>nR) € N>, and (< n R) € N< we have
EC = ED7
UsUEc =V4UEDp,
U—.A UEC = V—|A UED7
UmZn UZmR UE¢c = UmZn VZmR U Ep, and
Um<n USmR U EC'R_l = Um<n VSmR U ED'R_l’

where, for I C ©*, we define L-R™! := {w € " |wR € L}.

1 For subsumption, it can be shown that C C D if and only if set inclusion “D” instead of equality
“=" holds between the languages.

22

The intuition underlying these equations is that the languages on the left- and
right-hand sides represent all value-restrictions satisfied by C' and D, respectively.
For example, C' C Vw.A iff w € U4 U E¢. The set of excluding words E¢ is necessary
in this characterization because of Vw.L C Vw.A. For at-most restrictions we must
use Ec - R7! instead of E¢ since VwR.1 C Yw.(<n R) for any n > 0.

Let us illustrate Theorem 34 using the concept descriptions C, D introduced in
Example 31. According to the definition of C' and D and the sets of excluding words
we have already computed for them, Theorem 34 says that C' = D holds if and only
if the following identities are true:

(L) R{R,S}" = R{R,S}"

(Al) {S} UR{Ra S}* - {RRS, S} UR{R? S}*
(>25) {RS,R}UR{R,S}* = {R}UR{R,S)"
(<1S) {RS}UR{R,S}-S1 {R}UR{R,S}*-51
(<1R) DUR{R,S}*R! {eJUR{R,S}*-R!

It is easy to see that these identities are indeed true, and thus we can conclude
that C and D are equivalent. The identity for (< 1 R) shows that we really must
use Ec-R™! instead of Ec and Ep-R™! instead of Ep. In fact, # U R{R, S}* #
{e} UR{R, S}*, and thus, using Ec, Ep in place of Ec-R™1, Ep-R™!, we would have
concluded (incorrectly) that C and D are not equivalent.

The characterization of equivalence provided by Theorem 34 can again be used
to reduce a given ALN -matching problem C =" D to a system of formal language
equations. In the sequel, we assume that the FLo-normal form of C is given as in (3)
and the one for the ALN -concept pattern D is

D = vvi.Ln [vyvedAn [vv-4n (5)
AeC AcC

[l VYVenpr.(>nR) N [T VVeur.(<nR) N

£
1 yw..X;.

Proposition 35 The matching problem C =° D has a solution o iff it has a solution
¢ that does not introduce new atomic concepts or number restrictions.

ProoF. The if direction is trivial. For the only-if direction, we distinguish two cases,
depending on whether the new concept is atomic or a number restriction.

(1) First, assume that o introduces exactly one new atomic concept B ¢ C. Thus,
the FLo-normal form of o(D) has the form

o(D) = vV/.Ln AQCVVA.A n Al;lcvvjA.ﬁA n (6)

VYV, g-(>nR) N [T YV, g(<nR) M

(> n R)EN> (< n R)ENS

YV5.B N VV!5.-B.

We obtain & by replacing every occurrence of B and —B in o by L. Then, it is easy
to see that

5(D) = Y(V{UViUV!g).L N AQCVVA.A n AlgCVVjA.ﬁA n (7)

[l VV,p(>nR) M

(< n R)ENS

23

Since L C B and L C —B it follows that (D) C (D).

Conversely, since B is a concept name not occurring in C, D, we know that Up =
U.p = 0. By Theorem 34, we can conclude from C = o(D) that Up U E¢c =
Vg UEc as well as U.p U Ec = V.3 U Ec. This implies Vg UV:!p C Ec = E,(p),
and thus o(D) C Y(VFUV!g). L. Let D’ be the concept description obtained from
o(D) by removing the conjunct VV;.B N VV!p.—~B. Obviously, o(D) C D’ and
7(D) = D' NY(VLUV!g).L. This, together with o(D) C V(V UV!g).L, implies
o(D) C 5(D).

If o introduces more than one new atomic concept, then we simply iterate this
argument.

(2) In the second case, we assume that ¢ introduces exactly one new at-least
restriction (> & S) ¢ N>. Thus, the FLo-normal form of (D) has the form:

o(D) = vV/.Ln AQCVVA.A n AQCVVLA.—'A n (8)

YW, g-(>nR) N [T YVl ,p(<nR) N

(> n R)EN> (< n R)ENS

VVZI rs-(>kS)
We distinguish two sub-cases:

(a) There is an at-least restriction (> h S) € N> with & > k and there isno &' < h
with this property, i.e., we choose the “least” at-least restriction on S in N>
that is “‘greater” than (>%.S) (in the sense that the number h occurring in this
restriction is larger than k). We obtain & by replacing (> & S) in o by (> h 5).
Thus,

(D)

! ! !

YVi.L M ADCVVA.A n AI;ICVI/;A. An (9)
[YV, g (>nR) M

e amens\izasy | 2= R

VWi, p(SnR) M V(Vs UVg).(>hS).

(< n R)ENS <nR (<nR) (>hS ZkS) (>)

Since (> h 8) C (> k S) we know that (D) C o(D).

Because C = o(D), Theorem 34 yields VékS C Um>r U>ms U E¢. Fur-

thermore, Uzz;lk Usms = 0 by definition of (> h S). Consequently, VI, C

Um>h Usms U Ec. Therefore, using the characterization of subsumption it can

be verified that C C VV{,c.(> R S), and thus o(D) C VWV, c.(> R S). Let

D’ be the concept description obtained from o(D) by removing the conjunct

VVi,.5.(> %k S). Obviously, o(D) C D' and 5(D) = D' NVYVL,s.(> h S). This,

together with o(D) C VV{, 5.(> h S), implies (D) C 5(D).

(b) If there is no greater at-least restriction (> h S) € A for (> k §), then & is
obtained from o by replacing all occurrences of (> % .S) in o by L. Theorem 34
for C and o(D) yields VI, s C E¢, and thus one can show o(D) = ¢(D) as in
the first part of the proof.

If more than one new at-least restriction is introduced by o, then the argument
presented above can again be iterated.

24

For at-most restrictions one chooses the greatest at-most restriction in A< that is
less than (< k S). If there is no such at-most restriction, again, (< k 5) is replaced
by L. The proof for at-most restrictions is very similar to the proof for at-least
restrictions. [|

Matching of the pattern D onto the description C' can again be reduced to solving
a system of formal language equations. First, we organize the variables occurring in
the system of equations by defining certain tuples of variables:

X = (Xi1,--s Xe,1)s

Xe = (Xia|l<i<(tA€(),

X, = (Xi-all<i<t Aco),

Xy = (Xizar|1<i<L(>nR)eNs),
X< = (Xi<ar|1<i<£(<nR)eN<).

An assignment of finite languages L; | to X; 1, L; 4 to X; 4, Li -4 to X; 14, Li >ar
to Xi >nr, and L; <nr to X; <nr defines the following substitution o

O'(X,) = VL,’J_.J. M ADCVLZ"A'A M AlgCVLi’_‘A'_‘A M (10)

VL,’72nR.(ZnR) M 1 VLi,SnR-(SnR)

(> n R)EN> (< n R)EN

fori=1,...,4

For a given assignment, the operator Ep(X,,X¢, X-, X>,X<) yields the set
E,(p) of o(D)-excluding words, where o is the substitution defined by the assign-
ment.

The following equations correspond to the matching problem C =7 D:

(J—) EC — ED(XJ_7XC7X—|7X27X§)7
forall AeC
(A) UoUEs = VAUW1'X17AU"'UW[XLA U E¢,
(—|A) U_oUE:s = V-.AUWl-XL-.AU"'UW['XL-.AUEb,

for all (>n R) € N>
(>nR) UpsnUsmrUEc = Uysy Vomr U
Wi-X15prU---UWe-Xg5nr U Ec,
and for all (<n R) € N<
(<nR) Umn<p Usmr U Ec-R™' = Um<n Vamr U
Wi-X1,<nrU: - UWpXp<nrUEc-R™L.

Theorem 36 Let C be an ALN -concept description and D an ALN -concept pattern
with FLo-normal forms as introduced in (3) and (5). Then the matching problem

C =" D has asolution if and only if the system of formal language equations (L), (A),
(—4), (>nR), and (<nR) is solvable, where A € C, (>nR) € N>, and (<nR) € N<.

25

ProoF. By Proposition 35 we can restrict our attention to substitutions that do not
introduce new atomic concepts or number restrictions. Thus, let o be a substitution
of the form shown in (10). Then,

— ’ ’ o
o(D) = vvi.Ln ADCVVA.A n AI;ICVI/;A. AN (11)
YVL R(>nR) N 1 vVl gp(<nR),
(> n R)ENS >nR (_) (< n R)ENT <nR (_)
where

VJI_ = ViUWi-Ly U---UWg-Ly o,
VA = VAUW1-L17AU--'UW[LLA,
_I|A = Vou UWl'LL-.A U ---UW[LL-.A,

Vier = VourUWi-LisprU---UWi-Lysnr,

VSInR = VaurUWi-Ly<arU- - UWi-Ly<nr.

Since for n > m we have (>n R) C (>m R), we can without loss of generality assume
that L; >mr 2 Li>nr for allm > m and 1 <4 < 4. Analogously, we may assume
that L; <mr 2 Li <qr for all n <m and 1 < ¢ < {. Consequently, we have

U Ving = U Vomr UWy- U Li>mrU---UW,- U Li>mr
m>n m>n m>n m>n
= U VomrUWi-Ly spr U+ UWe-Ly >nr.
m>n

An analogous identity holds for at-most restrictions. These identities, together with
Theorem 34, imply that C' = o(D) if and only if

(J-)l Ec = Ea(D)a
(A)/ UsUE: = VAUWl'L17AU---UWg-LLAUEc,
(—|A)l U-oUEc = Voo,UW-Ly4U---UWy-Ly-4UEc,
(Z n R)l UmZn UZmR U EC = UmZn VZmR U
Wi-Ly,snrU---UW;i-Ly>ar U Ec,
(S n R)l Umgn USmR U EC'R_l = Umgn VSmR U

Wi-Ly<nrU---UW;-Ly <nr U Ec¢-R™ 1.

We are now ready to proof the statement of the theorem.

First, assume that the substitution o solves C = D. Without loss of generality, we
may assume that o is of the form shown in (10), and that it satisfies Li>mr 2 Li>nr
foralln > mand 1 <:¢ < ¥4, and Lj<mr 2 Li<ar foralln < mand 1 <1 < 4
Because of C' = o(D) we know that the identities (L)', (4), (-=4), (> n R)’, and
(<n R)" are satisfied, which shows that the system of formal language equations (L),
(4), (mA4), (>nR), and (<nR)for A€C, (>nR)E N>, and (KnR) € Nc is

solvable.

26

Conversely, assume that the system (L), (4), (-4), (> n R), and (< n R) is
solved by the languages L; 1, L; a, Li~a, Li >nr, Li <nr. Because of the union on
the left-hand side of the equations for number restrictions, it is easy to see that we
can assume without loss of generality that the following inclusion relationships hold:
Li>mr 2 Lispr foralln > mand 1 <3 <4 and Lj <mr 2 Li<pr foralln <m
and 1 < ¢ < 4. If the substitution o is defined as in (10) using the languages of the
solution of (L), (4), (—4), (>n R), and (< n R), then it follows that the identities
(LY, (4, (mA4)Y, (>nR), and (< n R) are satisfied, and thus C = o(D). [|

In order to compute candidate solutions of the system of equations corresponding
to C =" D, we generalize the definitions of the languages L; ; introduced in Lemma 25:

Ei,J_ = m w_lEC
weWw;
Lia = m w™(Ua U Ee),
weWw;
Lia = m w™(U-4 U Ec),
weWw;
Ei,an = m w_l(U Usmr U Ec),
weW; m>n
Ei,gnR = m w_l(U Ucmr UEc-R™1)
weW; m<n

foralll1 <i< 4 A€C, (>nR)E€ N>, and (<nR) € Nc. Using these (possi-
bly infinite) languages we define finite languages that are a solution of the system
of equations corresponding to C =’ D, provided that there exists a solution (see
Lemma 37).

By Proposition 33 we know that E¢ is of the form U-X*. Therefore, as a con-
sequence of Lemma 16, for all 1 < 7 < /, there exists a language L; | such that,

L %= Ei,J-- Furthermore, we define

L;y := ffi,A \ Ei,J_a
L~y := Ei,ﬂA \ Ei,J_a
Li>nr = Ei,an \ Ei,J_a
Li<nr = Ei,gnR \ Ei,J_a

foralll1 <i<¢, A€l (>nR)€ENs, and (<nR) € N<. Applying the fact that
E¢ is of the form U-Z*, it is easy to see that E¢-R™! = U-2* U U-R~!. Similar to
the proof of Lemma 17 one can now show that the languages L. . introduced above
are finite.

These languages can be used to determine whether the system of equations corre-
sponding to C =7 D has a solution or not.

Lemma 37 The system of equations (L), (4), (—4), (> n R), and (< n R), where
A€l (>nR)€E N>, and (<nR) € N<, has a solution if and only if

27

1. replacing the variables X; 4, 1 < ¢ < {4, by the sets L; 4 yields a solution of
equation (4) for all 4 €C,

2. replacing the variables X; -4, 1 <1 < 4, by the sets L; -4 yields a solution of
equation (—A4) for all 4 € C,

3. replacing the variables X; >n,r, 1 <1 <4, by the sets L; >, r yields a solution
of equation (> n R) for all at-least restrictions (>n R) € N>,

4. replacing the variables X; <,r, 1 < ¢ < £, by the sets L; <,r yields a solution
of equation (< n R) for all at-most restrictions (< n R) € N<,

5. replacing the variables X; 1, 1 < ¢ < 4, by the sets L; | together with the
assignments considered in 1.-4. solves equation (L).

ProOF. The if direction of this lemma is trivial. To show the only-if direction, let
M; 1, M; 4, M; 4, M; >nr, and M; <, r denote the languages assigned by a solution
of the equation system, and let o3 be the substitution defined by this solution.

Claim 1: M; 1 C Ei,J_a M; 4 C Ei,Aa M; 4 C Ei,ﬂA, M;>nr C Ez’,an, and

M; <nr C Ei,SnR-
Proof of the claim. For A, =A, (> n R), and (< n R) this can be shown as in the
proof of Lemma 15. Obviously, we have W;-M; 1 C E,, (p) = Ec. Thus, w € W;
and v € M; | imply v € w~ L. E¢. Since this holds for all w € W;, we have v € EM_,
and therefore, M; | C EM_, which completes the proof of Claim 1. o

Let o1 be the substitution defined by using the languages L; | in place of M; 1,
and the languages Mi7A7 M,'7_.A, Mi,ZnRa Mi,SnR-

Claim 2: oy Coy and o (D) = oy (D) =C.

Proof of the claim. Claim 1 yields M; | C Ei,J-- Since Ei,J- = L; 1 -%*, this implies
VL;1.1 CVM; 1 .1. As an easy consequence, we obtain oy T oyy.

Now, VL; 1.1l C VM; .1, together with the definition of the substitution o,
yields o (D) = op(D) N |_|f:1 VW;-L; .L. By definition of L; |, we know that
Wi-Li 1 C Ec = E,,,(p)- This yields 0, (D) = o3r(D), and thus completes the proof
of Claim 2. o

Let ¢’ be the substitution defined by the languages MZ»’J_ =Ly, MZ»’7A = M; 4\
Lijwy Mj 4= Mi~a\Lio, M, p = Mi>nr\ L1, and M] ., p := Mi <nr \ Li 1.

2 2
Claim 3: ¢’ C oy and o) C o', L.e., 0’ and o, are equivalent.

Proof of the claim. If w € M; 4 N EM_, then (by definition of L; |) there is a word
v € L; | and v' € " such that w = vv'. Furthermore, Yw.4A M Vv.L = Vv.L. This
also holds for -4, (>n R) and (< n R) in place of A. As an easy consequence of this
observation we obtain that ¢’ and o, are equivalent. o

Claims 2 and 3 imply that the languages M, |, M 4, M] _ 4, M| r, M] ., also
yield a solution of the equation system. More(;ver, by Claim 1 and the definition of
the languages M. and L. . it follows that M | C L; 1, M] 4 C Li a, M{ 4 C Lj -a,

Mz'l,an C Li,>nr. and Mz'l,gnR C Li »>ng- Thus, for the langnages L. ., the C-direction
k)

of the equations (4), (-4), (> n R), and (< n R) holds.

28

As in the proof of Lemma 15 it can be shown that for the languages 5.7. the
inclusion in the other direction holds as well. Consequently, this is also the case for
the languages L.. C f To sum up, we have shown that, for the languages L. ., the
equations (4), (-4), (Z n R), and (< n R) are satisfied. It remains to be shown that
(L) is also satisfied for these languages.

Let o be the substitution defined by the languages L; 1, L; 4, L,'7_.A, L; >nr,
L; <nr, and let o(D) be of the form shown in (11). Obviously, o C ¢’ since MZ_J_ C
Lz) MZIA g Lz ,A M,'l C Lz ,mA MZ >nR C Lz ,>nR; and MZ <nR C Lz >nR- Thus

(D) Co'(D)=C. ThlS 1mphes E'U(D) D Ec. To show E,(p) C E¢, we assume that
w € Eg(p). According to Theorem 32 we must distinguish two cases:

(1) There is a prefix v of w and a word v = Ry--- R, € X" such that vv' is
required by o (D) starting from v, i.e., there are at-least restrictions (> m;11 Riy1),
m;41 > 1 such that vRy---R; € V;mi+1Ri+1’ 0 < i < n. Furthermore, vv' € V|, or
there is an 4 € C with vv' € V} N V! ,, or there are number restrictions (> k R),
(<rR), k>r, withv e VI g NV, 5.

Because the respective equations are satisfied, we already know that

Vémi_HRH_l g U UZmRi+1 U ECa
m>miyq
Vi C UaUEc,
_I|A C U4 U ECa
Viig € |J UsmrUEc, and
m>k
VSITR - U Ung UEC'R_l.
m<r

Moreover, by definition of L; i, the inclusion V| C FE¢ holds. To conclude that
w € E¢ we must distinguish two cases:

(a) If there is no proper prefix v of v’ such that vv" € E¢, then vv' is required by
C starting from ». Furthermore, it holds that vv’ € E¢, or vv' € (U4 U E¢) N
(U4 UE¢), or vv' € (UmZk Usmr U Ec) N (Umgr U<mr U Ec-R7Y). In all
three cases it follows that vv’ € F¢. By Lemma 30 this implies v € E¢. Since
Yv.1l C Vw.L we know w € E¢.

(b) If v” is the shortest prefix of v such that vv” € E¢, then vv” is required by C
starting from v. Again, by Lemma 30 it follows that v € E¢, and thus w € E¢.

(2) There exists a prefix vR of w (where v € & and R € X) such that v € V5.
Because the equation (< 0 R) is satisfied, it follows that V.o r C U<or U Ec-R™*. If
v € U<or, then Theorem 32 yields w € Ec. If v € Ec-R™%, then C C Vo.(< 0 R).

Obviously, this also implies w € E¢. [|

By Proposition 33 we know that E¢ is of the form U-X* for a finite language U
of polynomial size, and we have already observed that Ec-R~! = (U UU-R~1)-2*
Consequently, using Proposition 33, we can compute a finite set V' C X* in time
polynomial in the size of C such that E¢-R™! = V-X*. Thus, as shown in Lemma 19,
the languages L.. can be computed in time polynomial in the size of the matching

29

problem C' =’ D. Furthermore, as in the proof of Theorem 18 we can show that
inserting these candidate solutions into the equations (4), (-4), (>nR), and (<n R),
and testing whether they solve these equations can be realized in polynomial time.
Finally, because (D) (where o is defined as in the proof of Lemma 37) can be
computed in time polynomial in the size of C' and D, this also holds for the language
V with V-X* = E,(p). This shows that the problem Ec = E,(p) is decidable in time
polynomial in the size of C' and D.

Theorem 38 Solvability of matching problems in ALN can be decided in polynomial
time.

In the proof of Proposition 35 we have shown that, for an arbitrary solution o,
of C =" D, there is a solution oj; that does not introduce new atomic concepts
or number restrictions. More precisely, the proof of Proposition 35 shows that new
atomic concepts can be replaced by L, at-least restrictions can be replaced by greater
at-least restrictions or by 1, and at-most restrictions can be replaced by smaller at-
most restrictions or by L. Thus, oy C of,. Furthermore, in the proof of Lemma 37
we have verified that oy satisfies oy J o) = o/ J 0. Consequently, we can again
compute the least solution of the matching problem.

Lemma 39 Assume that the given ALAN-matching problem C =’ D is solvable.
Then the substitution o defined above is the least solution of C =* D.

This lemma, together with Lemma 10, immediately implies the following theorem:

Theorem 40 Let C C° D be a solvable ALN -matching problem modulo subsump-
tion. Then the least solution of C =° C M D is a minimal solution of C C? D, and
this solution can be computed in polynomial time.

We conclude this section with an example that illustrates the matching algorithm

for ALN described above.

Example 41 Let C be an ALN-concept description (describing a class of rather
unhappy persons) and D an ALN-concept pattern having the following F Lo-normal
forms:

C = Vfriends.L M Venemies.Rich,
D V{friends }.(> 2 enemies) M
V{friends friends, enemies }.X; M V{friends enemies }.X5.

It is easy to see that Fc = {friends}-Z* where = = {friends,enemies}. Thus, the
equations (Rich) and (> 2 enemies) have the following form:

(Rich) {enemies } U {friends }-3* =) U {friends }.=* U
{friends friends, enemies }-X; gich U
{friends enemies }- X5 gich,

(> 2 enemies) 0 U {friends }-=* = {friends} U {friends }-3* U
{friends friends, enemies } - X1 > 2enemies U
{friends enemies }- X > senemies-

30

It is easy to see that the approach for finding candidate solutions of these equations
described above yields Ll,Rich = {5}7 L2,Rich = wa L1,22enemies = wa and L2,22enemies = @,
which indeed solve (Rich) and (> 2 enemies). In addition, ELJ_ = and EZJ_ = X,
and thus Ly ;| =0 and Ly | = {e}.

The substitution ¢ induced by these finite languages replaces X; by Rich and X,
by L. It remains to be shown that the equation (L) is satisfied by this substitution,
i.e., that Ec = E,(p) holds. We have

o(D) = V{friends}.(> 2 enemies)
V{friends friends, enemies }.Rich M ¥{friends enemies }. L.

Because the word friends enemies is required by o(D) starting from friends and (D)
contains the value restriction V{friends enemies}. L, we know that friends is an element
of Ey(p) by Theorem 32. Consequently, every word that starts with the letter friends
is in E,(p). In addition, it is easy to see that enemies and the empty word ¢ do not
belong to E,(p). To sum up, we have E,(p) = {friends}-X* = Ec.

This shows that ¢ is indeed a solution of the matching problem. It should be
noted that the matching algorithm introduced by Borgida and McGuinness [10] does
not find this solution.

5 Matching under side conditions

In the following, we will show that strict subsumption conditions increase the com-
putational complexity of matching. Non-strict subsumption conditions can often be
eliminated, but it is not yet clear whether this elimination leads to an increase in
the complexity of the problem. For strict subsumption conditions we obtain a poly-
nomiality result if the right-hand sides of the conditions are restricted to concept
descriptions rather than patterns.

5.1 Strict subsumption conditions

Recall that a strict subsumption condition is of the form X C° E where X is a
concept variable and F is a concept pattern. If the concept patterns of a set of strict
subsumption conditions do not contain variables (i.e., the expressions E on the right-
hand sides of the strict subsumption conditions are concept descriptions), then it is
sufficient to compute a least solution of the matching problem, and then test whether
this solution also solves the strict subsumption conditions.

Theorem 42 Let C =° D be an ALN-matching problem, and X; C° Eq,..., X, C*
E, strict subsumption conditions such that Eq, ..., E, are ALN -concept descriptions.
Then solvability of C = D under these conditions is decidable in polynomial time.

The same holds for the smaller languages FLo, FL,, and FL,.

If the right-hand sides of strict subsumption conditions may contain variables,
then solvability becomes NP-hard, even for the language FLo. It should be noted
that this does not automatically imply NP-hardness for the larger languages FL| ,
FL-, and ALN, though we strongly conjecture that the hardness result also holds
for them.

31

The hardness result for FLg will be shown by reducing 3SAT [20] to the matching
problem under strict subsumption conditions. Recall that matching modulo subsump-
tion can be reduced to matching modulo equivalence, and that a system of matching
problems can be coded into a single matching problem. For this reason, we may,
without loss of generality, construct a problem that consists of matching problems
modulo subsumption, matching problems modulo equivalence, and strict subsump-
tion conditions.

Theorem 43 Matching under strict subsumption conditions is NP-hard, even for the
small language F L.

PrOOF. Let A be an arbitrary concept name. For every propositional variable p
occurring in the 3SAT problem, we introduce three concept variables, namely X,
Xp, and Z,, and two roles R, and Rp. Using these concept variables and roles, we
construct the matching statement

VR, ATMVRz.A C Zp, (12)
and the strict subsumption condition
Z, C VR, X,NVRpXp. (13)

It is easy to see that the subsumption relationship between VR,.A N VRz A and
VR,.X, N VRy X5 enforced by (12) and (13) implies that any solution 8 of (12) and
(13) satisfies:

(X)) =AVOX,) =T)ANB(Xp) =AVIXp) =T).
In addition, the fact that this subsumption relationship must be strict implies
X)) =TVOXF)=T.
Finally, if this solution also satisfies the matching statement
A = X,NXp, (14)
then we know that not both variables can be replaced by T, i.e.,
0(X,)=AVIXp) = A

This shows that, if we take T as the truth value 1 and A as the truth value 0, then
any solution assigns either 0 or 1 to X,,, and the opposite truth value to X5.

It remains to be shown that 3-clauses and the corresponding truth conditions
can be encoded. We introduce a concept variable Z. and three roles R, 1, Rc 2, Rc 3
for every 3-clause ¢ in our 3SAT problem, and represent the clause by a matching
problem together with a strict subsumption condition. For example, assume that
¢:=pV =gV r. Then c is represented by the matching statement

VR.1.ANVR. . ANNVR. 3. A C Z,
and the strict subsumption condition

Z. T VYRe1.X,NVR.5.XzMVYR.3.X,.

32

Obviously, the strict inclusion implied by these two statements can only be satisfied
by a substitution € if it assigns T to at least one of the variables X,, Xg, and X,.
This completes our reduction. [|

Note that (14) is a matching problem modulo equivalence that cannot be repre-
sented by a matching problem modulo subsumption. Thus, it is still open whether
the NP-hardness result also holds for matching modulo subsumption under strict
subsumption conditions.

Theorem 43 only provides a hardness result for matching under strict subsumption
conditions. Thus, another open question is how to extend the matching algorithm for
FLo (or one of the larger languages considered in this paper) to an algorithm that
can also handle strict subsumption conditions.

5.2 Subsumption conditions

Recall that a subsumption condition is of the form X C° E where X is a concept
variable and F is a concept pattern. If the subsumption conditions do not introduce
cyclic variable dependencies, then a matching problem with subsumption conditions
can be reduced to an ordinary matching problem.

Definition 44 The sequence of subsumption conditions X; C° Ey,..., X, C° E, is
acyclic if and only if for all 4,1 < ¢ < n, the pattern F; does not contain the variables
Xiyeooy Xn-

A set of subsumption conditions is called acyclic if and only if the subsumption
conditions can be arranged in an acyclic sequence.

Note that we may (without loss of generality) assume that Xi,..., X, are all
the variables occurring in the patterns D, Ey, ..., E, since, for an additional variable
Z occurring in one of the patterns, we can simply add the subsumption condition
Z C° T to the beginning of the sequence.

Given such an acyclic sequence of subsumption conditions, we can define a substitution'?
o inductively as follows:

o(X1):=Y1NE; and o(X;):=Y;No(E;) (1<i<n),
where the Y; are new variables.
Proposition 45 The matching problem C =’ D is solvable under the acyclic sub-
sumption conditions X; C° Eq,..., X, C° E, if and only if C =7 (D) is solvable

without subsumption conditions.

PrROOF. To show the #f direction, we assume that 7' is a solution of the matching
problem C =7 o(D). We construct a new substitution 7 by induction on i

7(X1):=7 (Y1) E; and 7(X;):=7(YV;)N7(E;) (1<i<n).

12 8trictly speaking, this is not a substitution as introduced in Section 2 since variables are mapped
to patterns, and not just to descriptions. It should be clear, however, that the notion of a substitution
can be extended appropriately.

33

Since the sequence of subsumption conditions X; C° Ey,..., X, C° E, is acyclic, E;
does not contain variables, and E; may only contain the variables X;,..., X;_1. Thus,
we have By = 7(E1) and 7(FE;) is well-defined by induction. It remains to be shown
that 7 solves C =’ D under the subsumption conditions X; C° Eq,...,X,, C° E,.

Since 7(X;) = 7(Y;) N 7(E;) C 7(E;), the subsumption conditions are satisfied by
definition of 7 and the fact that By = 7(Fy).

By induction on ¢, it is easy to show that 7(X;) = 7'(¢(X;)) holds for all 4,1 <
1 < n. Since we have assumed that the patterns do not contain variables other than
X1,...,X,, this implies 7(D) = 7'(0(D)). Finally, 7'(¢(D)) = C since 7’ solves
C =" o(D).

To show the only-if direction, we assume that 7 is a solution of the matching
problem C =" D that satisfies the subsumption conditions X; C° Eq,..., X, C° E,.
The new substitution 7’ is defined by 7/(¥;) := 7(X;). First, we show (by induction
on ¢) that 7(X;) = 7'(c(X;)) holds for all 4,1 < i < n.

For i = 1 we have

TI(O'(Xl)) = Tl(Yl M El) = Tl(Yl) M Tl(El) = T(Xl) M El = T(Xl) M T(El) = T(Xl).

The last equivalence holds since 7(X1) C 7(E1) by the assumption that 7 satisfies the
subsumption conditions. In the induction step, we have

(o(X;)) = 7'(YiNo(Ey)) = 7'(Y) N7 (o(Ey)) = 7(X;) N7(E;) = 7(X5).

Thus, 7'(c(D)) = (D) = C, which shows that 7' solves the matching problem
C =" o(D).

Unfortunately, the new pattern o(D) may be exponentially larger than the original
matching problem with subsumption conditions.

Example 46 Let R, S be distinct atomic roles and A an atomic concept. We consider
the acyclic subsumption conditions

XiC'A, X, C°VRX,NVYS.Xy, ..., X, C°VR.X,_1NVS.X,_1.

Let the substitution o be defined as described above. It is easy to see that the size of
o(X,) is exponential in n. In fact, the FLo-normal form of o(X,) is

O'(Xn) = Yn M VLl.Yn_l |_|VL2.Yn_2 Mm...n VLn_l.Yl M VLn_l.A,

where L; denotes the set of all words of length ¢ over the alphabet ¥ := {R, S}. The
set L,_1 alone already contains 27~ 1 different words.

This example also suggests the use of a compact representation of (the FLo-
normal form of) the pattern o(D). In the example, we can represent L; as the i-fold
concatenation of L;. This yields a polynomial representation of the exponentially
large languages L;. It is easy to see that such a compact representation of (D)
is always possible. However, it is not yet clear whether the computations required
by our solvability test for matching problems are still polynomial in the size of this
compact representation, though we strongly conjecture that this is the case.

The reduction described in Lemma 45 is independent of the DL used for con-
structing the patterns and descriptions. For FLg, we can go one step further: cyclic
subsumption conditions can here be reduced to acyclic ones.

34

Proposition 47 For every F Lo-matching problem with subsumption conditions there
exists an equivalent'® FLg-matching problem with acyclic subsumption conditions
whose size is polynomial in the size of the original problem.

PrOOF. Let C =’ D be an FLo-matching problem and T' := {X; C° Ey,..., X, C°
E,} aset of FLo-subsumption conditions. The set ' defines a dependency graph Gr,
whose nodes are the variables X;,..., X,,, and whose edges are defined as follows:
there is an edge from X; to X; with label W if and only if E; contains a value
restriction of the form VW.X; (where W is a word over the set of role names). For
example, the condition X, C VR.VS.X; M X3 induces an edge with label RS from X,
to X1, and an edge with label € from X5 to X3. Obviously, the set T is acyclic if and
only if the graph Gr is acyclic. We distinguish between two different types of cycles
in Gr, and show how they can be eliminated.

First, assume that there is a path from X; to X; whose label (i.e., the concatenation
of the labels of its edges) is a nonempty word W. Then any substitution ¢ satisfying
T' also satisfies the subsumption relation o(X;) C VW.o(X;). Since W is nonempty
and o(X;) must be an FLo-concept description, this is only possible if o(X;) = T.
Let 7 be the substitution that replaces X; by T. We eliminate X; by applying 7 both
to I' and to the matching problem C' =" D. It should be noted that this transforms
the subsumption condition X; C E; into the matching problem T C 7(E;), which is
equivalent to T =’ 7(E;). However, as shown in Lemma 5, the two matching problems
C =" 7(D) and T =7 7(E;) can be transformed into a single matching problem.

Second, assume that there 1s a path from X; to X; with label €. If this path has
length 1, then E; is of the form X; M E!. Since a substitution satisfies X; C X,; N B! if
and only if it satisfies X; C E/, such a cycle can easily be eliminated. Finally, if the
cyclic path involves also another variable, say X;, then any substitution o satisfying
T also satisfies 0(X;) = 0(X;), and thus we can eliminate X; by replacing it by X;.ll

6 Future Work

Our goal is to extend the results on matching to cover languages at least as expressive
as Crassic. This requires extending the language to include range constructors (min
and max), an individual set constructor (one-of), and a fills constructor. We believe
that this should be an easy extension of the results presented in this paper. In fact,
min, max, and one-of mainly require an appropriate treatment of disjointness, which
we have already achieved by our treatment of atomic negation. The fills construct is
similar to number restrictions in that it states the existence of a certain role successor.

The work on strict and non-strict subsumption conditions will be continued. One
way of showing decidability of matching under strict subsumption conditions could
be to extend the results on unification of concept terms [6] to disunification, i.e.,
problems that may contain both equations and negated equations [15]. For non-strict
subsumption conditions we will try to show that a compact representation of the
pattern o(D) can be used to obtain a polynomiality result.

Another motivation for investigating matching modulo equivalence may be found
in merging heterogeneous databases. Consider a situation where there is a master

13 Equivalent means that the problems have the same set of solutions.

35

ontology along with new database schemas that need to be integrated into the master
ontology. In this situation, the integrator would like to know how the new schemas
may be mapped onto the master ontology. Our idea is to represent the ontology and
the schemas in an appropriate DL, and to view the problem of finding such a mapping
as a matching problem of the concepts of the new schema onto the concepts of the
master ontology.

7 Conclusion

We have been motivated by the need to prune complicated structures in order to
provide manageable object presentations and explanations. The pruning problem can
be viewed as a matching problem where there is a comparison between a pattern
describing the interesting portions of the object and the larger object itself. Only
those portions of the object that match the pattern of interest should be presented.
We began with the filtering work introduced in CrassIc and the theoretical work on
the unification of concept terms and generated a formal treatment of matching in the
description logic languages FL,, FL-, and ALN. We presented results concerning
the solvability of the problem including polynomial decidability and (for solvable
problems) polynomial computability of a least solution.

We have mentioned in the introduction that positive results for matching (such as
decidability in polynomial time) do not automatically transfer from a given language
to its sublanguages since a matching problem of the smaller language that does not
have a solution in this language may well have one in the larger language. For example,
in the sublanguage of FL¢ that does not allow for the top concept T, the matching
problem A =° ANVYR.X obviously does not have a solution, whereas it is solvable by
{X — T}in FLo. As an easy consequence of the results presented in this paper, one
can show, however, that this phenomenon cannot occur between the languages F Lo,
FLy, FL,, and ALN (see, in particular, the proof of Proposition 35).

We also extended the work to include matching under additional side constraints
on the variables in the matching patterns. We showed that matching modulo equiv-
alence with strict subsumption conditions is NP-hard for the small language FLy. It
should be noted that the phenomenon mentioned above does occur between FLy and
F L, if subsumption conditions are allowed. For example, the set of subsumption
conditions {X C° VR.X, X C? A} is not satisfiable in FL¢, but it can be satisfied by
the FL | -substitution {X — L}. Thus, the NP-hardness result for matching mod-
ulo equivalence with strict subsumption conditions in Ly does not imply hardness
of this problem for the larger languages FL,, FL-, and ALN, though we strongly
conjecture that the hardness result also holds for them.

References

[1] F. Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Proceedings of the 12th International
Joint Conference on Artificial Intelligence, pages 446-451, Sydney, Australia,
1991.

36

[2]

[3]

F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on concepts.
Artificial Intelligence, 88(1-2):195-213, 1996.

F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In Proceedings of the 12th International Joint Conference on
Artificial Intelligence, pages 452-457, Sydney, Australia, 1991.

F. Baader and B. Hollunder. A terminological knowledge representation system
with complete inference algorithms. In M. Richter and H. Boley, editors, Proceed-
ings of the First International Workshop on Processing Declarative Knowledge,
volume 567 of Lecture Notes in Computer Science, pages 67-85, Kaiserslautern
(Germany), 1991. Springer-Verlag.

F. Baader, R. Kiusters, and R. Molitor. Structural subsumption from an au-
tomata theoretic point of view. In Proceedings of the 1998 International Work-
shop on Description Logics (DL’98), Trento, Italy, 1998. An extended ver-
sion has appeared as Technical Report LTCS-98-04, LuFg Theoretical Com-
puter Science, RWTH Aachen, Germany (see http://www-1ti.informatik.rwth-
aachen.de/Forschung/Papers.html).

F. Baader and P. Narendran. Unification of concept terms in description logics.
In H. Prade, editor, Proceedings of the 13th European Conference on Artificial
Intelligence (ECAI-98), pages 331-335, Brighton, UK, 1998. John Wiley & Sons
Ltd.

F. Baader and U. Sattler. Description logics with symbolic number restrictions.
In W. Wahlster, editor, Proceedings of the Twelfth European Conference on Ar-
tificial Intelligence (ECAI-96), pages 283-287, Budapest, Hungary, 1996. John
Wiley & Sons Ltd.

F. Baader and U. Sattler. Number restrictions on complex roles in description
logics. In Proceedings of the Fifth International Conference on the Principles
of Knowledge Representation and Reasoning (KR-96), Cambridge, MA (USA),
1996. Morgan Kaufmann, Los Altos.

A. Borgida. Description Logics in Data Management. IEEE Transactions on
Knowledge and Data Engineering, 7(5): 671-682, 1995.

A. Borgida and D. L. McGuinness. Asking queries about frames. In Proceedings
of the Fifth International Conference on Principles of Knowledge Representation
and Reasoning, KR’96, pages 340-349, Cambridge, MA (USA), 1996. Morgan

Kaufmann, Los Altos.

A. Borgida and P. Patel-Schneider. A semantics and complete algorithm for
subsumption in the CLASSIC description logic. Journal of Artificial Intelligence
Research, 1:277-308, 1994.

R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick, and
A. Borgida. Living with CLASSIC: When and how to use a KL-ONE-like lan-
guage. In J. Sowa, editor, Principles of Semantic Networks, pages 401-456.
Morgan Kaufmann, San Mateo, Calif., 1991.

37

[13]

[14]

[15]

[16]

[18]

[19]

R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171-216, 1985.

M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research,

1:109-138, 1993.

H. Comon. Disunification: A survey. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson, pages 322-359. MIT
Press, Cambridge, MA, 1991.

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning, pages 151-162, Cambridge MA
(USA), 1991.

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tractable concept languages. In
Proceedings of the 12th International Joint Conference on Artificial Intelligence,
pages 458-463, Sydney, Australia, 1991.

F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept lan-
guages: From subsumption to instance checking. Journal of Logic and Compu-

tation, 4(4):423-452, 1994.

F. Donini, B. Hollunder, M. Lenzerini, A.M. Spaccamela, D. Nardi, and W. Nutt.
The complexity of existential quantification in concept languages. Journal of

Artificial Intelligence, 53:309-327, 1992.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

B. Hollunder and F. Baader. Qualifying number restrictions in concept languages.
In Proceedings of the 2nd International Conference on Principles of Knowledge

Representation and Reasoning, pages 335-346, Cambridge MA (USA), 1991.

B. Hollunder, W. Nutt, and M. Schmidt-Schauff. Subsumption algorithms for
concept description languages. In Proceedings of the 9th European Conference
on Artificial Intelligence, pages 348-353, Stockholm, Sweden, 1990.

R. Kiisters. Characterizing the semantics of terminological cycles in ACA us-
ing finite automata. In Proceedings of the Sizth International Conference on
Principles of Knowledge Representation and Reasoning (KR’98), pages 499-510,
Trento, Italy, 1998.

H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowledge
representation and reasoning. Computational Intelligence, 3:78-93, 1987.

D. L. McGuinness. Ezplaining Reasoning in Description Logics. Ph.D. thesis, De-
partment of Computer Science, Rutgers University, October 1996. Also available
as a Rutgers Technical Report LCSR-TR-277.

38

[26]

[29]

D. L. McGuinness and A. Borgida. Explaining subsumption in Description Logic.
In Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence, IJCAI’95, pages 816-821, Montréal, Canada, 1995. Morgan Kaufmann.

D. L. McGuinness and P. F. Patel-Schneider. Usability issues in Description Logic
systems. In Proceedings of the 15th National Conference on Artificial Intelligence,
AAAI98, Madison, Wisconsin, 1998.

D. L. McGuinness, L. Alperin Resnick, and C. Isbell. Description Logic in prac-
tice: A CLASSIC application. In Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence, IJCAI’95, pages 2045-2046, Montréal, Canada,
1995. Morgan Kaufmann. Video Presentation.

D. L. McGuinness, C. Isbell, M. Parker, P. F. Patel-Schneider, L. Alperin
Resnick, and C. Welty. A Description Logic-based configurator on the Web.
ACM Sigart Bulletin, 9(2):20-22, 1998.

D. L. McGuinness and J. R. Wright. An industrial strength Description Logic-
based configurator platform. IEEE Intelligent Systems, 13(4): 66-77, 1998.

D. L. McGuinness and J. R. Wright. Conceptual modeling for configuration: A
description logic-based approach. Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing Journal, 12:333-344, 1998.

B. Nebel. Computational complexity of terminological reasoning in BACK. Jour-

nal of Artificial Intelligence, 34(3):371-383, 1988.

B. Nebel. Reasoning and Revision in Hybrid Representation Systems, volume
422 of Lecture Notes in Computer Science. Springer—Verlag, 1990.

B. Nebel. Terminological reasoning is inherently intractable. Journal of Artificial

Intelligence, 43(2):235-249, 1990.

A. Schaerf. On the complexity of the instance checking problem in concept
languages with existential quantification. Journal of Intelligent Information Sys-

tems, 2:265-278, 1993.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with com-
plements. Journal of Artificial Intelligence, 47:1-26, 1991.

W. A. Woods and J. G. Schmolze. The KL-ONE family. Computers and Mathe-
matics with Applications, special issue on knowledge representation, 23(2-5):133—

177, 1991.

J. R. Wright, E. S. Weixelbaum, G. T. Vesonder, K. Brown, S. R. Palmer,
J. I. Berman, and H. H. Moore. A knowledge-based configurator that supports
sales, engineering, and manufacturing at AT&T network systems. AI Magazine,

14(3):69-80, 1993.

39

