
Matching in Description Logics with Existential Restrictions

Franz Baader and Ralf K�usters

LuFg Theoretical Computer Science, RWTH Aachen

email: fbaader,kuestersg@informatik.rwth-aachen.de

Abstract

Matching of concepts with variables (concept

patterns) is a relatively new operation that

has been introduced in the context of descrip-

tion logics, originally to help �lter out unim-

portant aspects of large concepts appearing in

industrial-strength knowledge bases. Previous

work on this problem has produced polynomial-

time matching algorithms for sublanguages of

the DL used in CLASSIC. Consequently, these

algorithms cannot handle existential restric-

tions. In this paper, we consider matching in

DLs allowing for existential restrictions. We

describe decision procedures that test solv-

ability of matching problems as well as algo-

rithms for computing complete sets of match-

ers. Unfortunately, these algorithms are no

longer polynomial-time, even for the small lan-

guage EL, which allows for the top concept, con-

junction and existential restrictions.

1 Motivation

Matching concepts against patterns is a relatively new

inference problem for DLs, which has been introduced

in [5, 7] to support the pruning of large concept de-

scriptions. Given a concept pattern D (i.e., a concept

description containing variables) and a concept descrip-

tion C without variables, the matching problem C v

?

D

asks for a substitution � (of the variables by concept de-

scriptions) such that C v �(D). More precisely, one is

interested in a matcher � such that the instance �(D)

of D is as small as possible, i.e., � should satisfy the

property that there does not exist a substitution � such

that C v �(D) < �(D). We will call such a matcher

i-minimal (instance minimal).

For example, the i-minimal matcher of the pattern

D := 8research-interests:X

against the description

C := 8pets:Cat u 8research-interests:AI

assigns AI to the variable X , and thus �nds the scienti�c

interests (in this case Arti�cial Intelligence) described in

the concept. (The concept pattern can be thought of

as a \format statement", describing what information

is to be displayed, if the pattern matches successfully

against a speci�c concept. If there is no match, nothing

is displayed.)

A polynomial-time algorithm for computing an i-

minimal matcher for a rather expressive DL (extending

ALN by existential restrictions and some other opera-

tors) was introduced in [5]. The main drawback of this

algorithm is that it requires the concept pattern to be

in structural normal form, and thus it cannot handle

arbitrary matching problems. In addition, due to an in-

complete treatment of the top- (>) and the bottom- (?)

concepts, it does not always �nd a matcher, even if one

exists.

For the DL ALN , a polynomial-time matching algo-

rithm that applies to arbitrary matching problems and

always computes an i-minimal matcher (if the problem

is solvable at all) was presented in [2]. Actually, this

algorithm solves matching problems modulo equivalence

(C �

?

D) instead of the matching problems modulo sub-

sumption (C v

?

D) introduced above: � is a matcher of

C �

?

D i� C � �(D). Since � is a matcher of C v

?

D

i� it is one of C �

?

C uD, matching modulo subsump-

tion is a special case of matching modulo equivalence.

Moreover, the matcher � computed by the algorithm is

the least matcher w.r.t. subsumption v

s

of substitutions,

where � v

s

� i� �(X) v �(X) for all variables X . Note

that the least matcher is also i-minimal since � v

s

�

implies �(D) v �(D).

The purpose of this paper is to transfer these results

to DLs allowing for existential restrictions (9R:C). A

more detailed presentation and all proofs can be found

in [1]. In order to get a feel for the new problems caused

by existential restrictions, we start with the small DL



EL, which allows for the constructors top-concept, con-

junction (u), and existential restriction. The results ob-

tained for EL are then extended to the DL ALE , which

additionally allows for the constructors bottom-concept,

atomic negation (:A for concept names A), and value re-

striction (8r:C). We start with formally introducing the

notions already mentioned above and mentioning some

simple properties.

2 Preliminaries

In the following, let N

C

and N

R

be two disjoint sets of

concept names and roles names, respectively. In order

to de�ne concept patterns, we additionally need the set

X of concept variables, which is disjoint from N

C

[N

R

.

Roughly speaking, an ALE-concept pattern is an ALE-

concept description over the concept names N

C

[X and

the role names N

R

. However, although ALE allows for

negation of atomic concepts, negated concept variables

are disallowed.

De�nition 1 The set of all ALE-concept patterns over

N

C

, N

R

, X is inductively de�ned as follows:

� Every concept variable X 2 X is a pattern.

� Every ALE-concept description over N

C

and N

R

is

a pattern.

� If C and D are concept patterns, then C u D is a

concept pattern.

� If C is a concept pattern and R is a role name, then

8R:C and 9R:C are concept patterns.

Concept patterns for sublanguages of ALE are de�ned

analogously. For example, to de�ne EL-concept patterns,

we replace ALE in the second item by EL, and remove

the value restriction 8R:C from the fourth item. The

following notion can also be restricted to sublanguages

of ALE in the obvious way. A substitution � is a mapping

from X into the set of all ALE-concept descriptions. This

mapping is extended to concept patterns in the obvious

way, i.e.,

� �(E) := E for all E 2 N

C

,

� �(>) := > and �(?) := ?,

� �(C uD) := �(C) u �(D),

� �(8R:C) := 8R:�(C) and �(9R:C) := 9R:�(C).

For example, applying the substitution � := fX 7! E u

8R:E; Y 7! Fg to the pattern X u Y u 8R:X yields the

description E u (8R:E) u F u 8R:(E u 8R:E).

It is easy to see that the result of applying a sub-

stitution to an ALE-concept pattern is an ALE -concept

description. (Note that this would no longer be the case

if negation were allowed in front of concept variables.)

Now, matching problems modulo subsumption (C v

?

D) and modulo equivalence (C �

?

D) and their solutions

(called matchers) are de�ned as already stated in the �rst

section.

For a given matching problem, we are not interested in

all matcher, but rather in matchers that are \minimal"

w.r.t. subsumption. There are two possibilities for com-

paring the matchers: either by comparing the instances

of the right-hand side that they induce, or by comparing

the substitutions themselves. The following de�nition

can analogously be stated for matching modulo equiva-

lence.

De�nition 2 Let C v

?

D be a matching problem, and

let � and � be solutions of this problem. Then we de�ne

1. � is s-subsumed (\s" for \substitution") by � (� v

s

�) i� �(X) v �(X) for all variables X occurring in

D.

2. � is i-subsumed (\i" for \instance") by � (� v

i

�)

i� �(D) v �(D).

A matcher � of C v

?

D is called s-minimal i� there is

no matcher � of the problem such that � <

s

�, (i.e.,

� v

s

� and � 6v

s

�); i-minimal matchers are de�ned

analogously.

The following two examples show that s-minimal

matchers are not necessarily i-minimal, and that con-

versely i-minimality does not imply s-minimality. (1) For

the matching problem 9R:A u 9R:B v

?

9R:X u 9R:Y ,

the matcher � := fX 7! A; Y 7! Ag is s-minimal, but

not i-minimal since with � := fX 7! A; Y 7! Bg we

have � <

i

�. (2) For the matching problem 9R:A v

?

9R:A u 9R:X the matcher � := fX 7! >g is i-minimal,

but not s-minimal since the matcher � := fX 7! Ag

satis�es � <

s

�.

In contrast to the case for ALN , solvable ALE-

matching problems need not have a unique s-minimal (i-

minimal) matcher, as illustrated by the following exam-

ple: the ALE -matching problem 9R:A u 9R:B v

?

9R:X

has two s-minimal solutions � := fX 7! Ag and � :=

fX 7! Bg, which are also i-minimal since they lead to

two minimal instances �(9R:X) = 9R:A and �(9R:X) =

9R:B of the pattern. (Note that fX 7! A u Bg is not a

solution of the matching problem.)

For this reason, our matching algorithm computes so-

called complete sets of matchers. A set C of matchers is

s-complete i� for all matchers � of the matching problem

there exists �

0

2 C such that �

0

v

s

�; i-complete sets are

de�ned analogously.

1

The matching algorithm presented below will compute

s-complete sets as opposed to i-complete sets. The fol-

lowing (simple) observations justify this decision: From

v

s

� v

i

we can deduce that every s-complete set is also

1

The notion of a complete set of solutions is also used in

uni�cation theory [4], but there the solutions (i.e., uni�ers)

are compared w.r.t. the instantiation quasi-ordering.



w

0

: P

w

1

: X w

2

: X;Y

w

3

: Y

r s

r

G

D

:

v

1

: P

v

3

: P v

4

: Q v

5

: P

v

2

: P;Q

s

r r

r

G

C

:

r

v

0

: P;Q

Figure 1: EL-description trees.

i-complete (the converse is not true). Furthermore, ev-

ery s-complete set contains all s-minimal and i-minimal

matchers modulo s-equivalence (i.e., s-subsumption in

both directions). Consequently, given an s-complete set,

it is easy to extract the s- and i-minimal matchers using

the subsumption algorithm for the DL in question.

3 The matching algorithm for EL

This algorithm is based on the characterization of sub-

sumption between EL-concepts via homomorphisms be-

tween the corresponding description trees. This char-

acterization has been introduced in [3] for the purpose

of computing the least common subsumer (lcs) of EL-

concepts. Intuitively, the EL-description tree G

C

corre-

sponding to an EL-concept description C is just a graph-

ical representation of the syntactic structure of the de-

scription. For example, the description tree correspond-

ing to the EL-concept description

C := P uQ u 9r:(P u 9r:P u 9r:Q) u 9s:(P uQ u 9r:P )

is depicted on the left-hand side of Fig. 1. For an EL-

concept C and a node v in the corresponding description

tree G

C

, we denote the subconcept of C corresponding to

v by C

v

. In our example, we have C

v

1

= P u9r:P u9r:Q.

A homomorphism from the EL-description tree H into

the EL-description tree G is a mapping ' from the nodes

of H into the nodes of G such that (i) the root of H is

mapped to the root of G; (ii) if H contains an edge from

v to w with label r, then G contains an edge from '(v) to

'(w) with label r; (iii) if the concept name A belongs to

the label of the node v in H, then it also belongs to the

label of '(v) in G. Given two EL-concept descriptions

C;D, we have C v D i� there exists a homomorphism

from G

D

into G

C

[3].

The notion of an EL-description tree can be extended

to concept patterns by simply treating variables like con-

cept names. For example, the concept pattern D :=

P u9r:(Xu9r:Y )u9s:(XuY ) yields the description tree

depicted on the right-hand side of Fig. 1. When extend-

ing the notion of a homomorphism to description trees

representing concept patterns, we simply ignore the con-

cept variables, i.e., (iii) is required only for non-variable

concept names. In our example, there are exactly two

homomorphisms '

1

; '

2

from G

D

into G

C

. Both map w

i

Input: EL-matching problem C �

?

D.

Output: s-complete set C of matchers for C �

?

D.

Compute G

C

and G

D

;

C := ;;

For all homomorphisms ' from G

D

into G

C

do

De�ne � by

�(X) := lcsfC

'(v)

j X 2 label of v in G

D

g

for all variables X in D;

If C w �(D) then C := C [ f�g;

Figure 2: The EL-matching algorithm.

onto v

i

for i = 0; 1; 2, and we have '

1

(w

3

) = v

3

and

'

2

(w

3

) = v

4

.

The matching algorithm described in Fig. 2 �rst tries

to construct substitutions � such that C v �(D), i.e.,

there is a homomorphism from G

�(D)

into G

C

. In a

second step, it checks which of the computed substitu-

tions really solve the matching problem, i.e., also satis�es

C w �(D). (Obviously, for a matching problem modulo

subsumption, this second step can be dispensed with.)

The �rst step is achieved by �rst computing all homo-

morphisms from G

D

into G

C

. The remaining problem is

that a variableX may occur more than once in D. Thus,

we cannot simply de�ne �(X) as C

'(v)

where v is such

that X occurs in the label of v. Since there may exist

several nodes v with this property, we take the lcs of the

corresponding subconcepts of C. The reason for taking

the least common subsumer is that we want to compute

substitutions that are as small as possible w.r.t. v

s

. Re-

call that E is the least common subsumer of E

1

; : : : ; E

n

i� i) E subsumes E

1

; : : : ; E

n

and ii) E is the least con-

cept description w.r.t. subsumption that satis�es i). An

algorithm for computing the lcs of EL-concepts has been

described in [3]. The size of the lcs is at most exponential

in the size of the concepts E

1

; : : : ; E

n

.

In our example, the homomorphism '

1

yields the sub-

stitution �

1

:

�

1

(X) := lcsfP u 9r:P u 9r:Q; P uQ u 9r:Pg

� P u 9r:P;

�

1

(Y ) := lcsfP uQ u 9r:P; Pg

� P;

whereas '

2

yields the substitution �

2

:

�

2

(X) := lcsfP u 9r:P u 9r:Q; P uQ u 9r:Pg

� P u 9r:P;

�

2

(Y ) := lcsfP uQ u 9r:P; Qg

� Q:

Since C 6w �

1

(D) and C w �

2

(D), the output of the

algorithm is f�

2

g.



4 The complexity of matching in EL

We can show that our matching algorithm always com-

putes an s-complete (and thus also i-complete) set of

matchers and that it runs in time exponential in the size

of the matching problem [1].

Theorem 3 For every EL-matching problem there ex-

ists a s-complete (i-complete) set of matchers with size

at most exponential in the size of the matching problem,

and this set can be computed in exponential time.

The following example demonstrates that this upper

bound is optimal.

Example 4 Consider the EL matching problem 9r:A u

9r:B �

?

9r:X

1

u � � � u 9r:X

n

, where A, B are concept

names and X

i

, 1 � i � n, are concept variables.

For a word w = a

1

� � � a

n

2 fA;Bg

n

we de�ne

�

w

(X

i

) := a

i

for every 1 � i � n. Obviously, if w

contains both A and B, �

w

is a matcher of the match-

ing problem. It is not hard to verify that each of these

matchers �

w

must be contained (modulo equivalence) in

every s-complete set. Since there are exponentially many

words of length n containing both A and B, we can con-

clude that every s-complete set is exponential in the size

of the matching problem.

Proposition 5 The cardinality of s-complete sets of

matchers may grow exponentially in the sizes of the EL-

matching problems.

Since the lcs of a sequence of EL-concept description

may grow exponentially in the size of the sequence, not

only the cardinality of a complete set of matchers, but

also the size of a single matcher may grow exponentially.

Deciding solvability of matching problems in EL

The algorithm described in Fig. 2 always computes an

s-complete set of matchers. Consequently, the matching

problem has a solution i� this set is non-empty. This

provides us with an exponential time decision procedure

for matching modulo equivalence in EL. However, it can

be shown [1] that every solvable EL-matching problem

has a matcher of size polynomially bounded in the size

of the matching problem. As a result, there even ex-

ists a non-deterministic polynomial decision procedure.

Furthermore, we can show that the problem of match-

ing modulo equivalence in EL is NP-hard by a reduction

of SAT [6] to the matching problem. In contrast, solv-

ability of matching problems modulo subsumption can

be decided in polynomial time since it can be reduced

to subsumption by replacing all variables in the concept

pattern by >.

Proposition 6 Deciding solvability of an EL-matching

problem modulo equivalence is NP-complete.

In [1], NP-hardness is proved by a reduction of SAT

that uses only a �xed number of concept names and role

names. Here we give a simpler reduction for which, how-

ever, the number of concept names and role names grows

with the given formula.

Let � = p

1

^ � � � ^ p

m

be a propositional for-

mula in conjunctive normal form and let fx

1

; : : : ; x

n

g

be the propositional variables of this problem. For

these variables, we introduce the concept variables

fX

1

; : : : ; X

n

; X

1

; : : : ; X

n

g. Furthermore, we need con-

cept names A and B as well as role names r

1

; : : : ; r

n

and

s

1

; : : : ; s

m

.

First, we show that we can specify a matching prob-

lem such that X

i

must be replaced by A and X

i

by B

(corresponding to x

i

= true) or vice versa (correspond-

ing to x

i

= false). This matching problem is given by

C �

?

D, where

C := 9r

1

:A u 9r

1

:B u � � � u 9r

n

:A u 9r

n

:B;

D := 9r

1

:X

1

u 9r

1

:X

1

u � � � u 9r

n

:X

n

u 9r

n

:X

n

:

The matchers of this problem are exactly the substitu-

tions that replace X

i

by A and X

i

by B, or vice versa.

In order to encode �, we �rst introduce a concept pat-

tern D

p

i

for each conjunct p

i

. For example, if p

i

=

x

1

_ x

2

_ x

3

_ x

4

, then D

p

i

:= X

1

uX

2

uX

3

uX

4

u B.

The whole formula is then represented by the matching

problem C

0

�

?

D

0

, where

C

0

:= 9s

1

:(A u B) u � � � u 9s

m

:(A u B);

D

0

:= 9s

1

:D

p

1

u � � � u 9s

m

:D

p

m

:

This matching problem ensures that, among the vari-

ables in D

p

i

, at least one must be replaced by A. This

corresponds to the fact that, within one conjunct p

i

,

there must be at least one literal that evaluates to true.

Note that we need the concept B in D

p

i

to cover the

case where all variables in D

p

i

are substituted by A.

We combine the two matching problems introduced

above into a single problem C uC

0

�

?

DuD

0

. It is easy

to verify that � is satis�able i� this matching problem is

solvable.

5 Extension to ALE

In order to handle ALE-matching problems, the match-

ing algorithm for EL must be modi�ed in two respects.

First, the concept description C must be normalized us-

ing the rules in [3] before translating it into a description

tree G

C

. In principle, these rules propagate value restric-

tions onto existential restrictions, and replace 8r:> by>.

As shown in [3], the size of this normalized description

may be exponential in the size of the original descrip-

tion. Second, instead of computing all homomorphisms

between G

D

and G

C

, one must consider all possible con-

ceptsD

0

obtained by replacing some of the variables inD

by >, and compute all homomorphisms between G

D

0

and



w

2

: X w

3

: Y

r

8s8r

w

0

: ;

w

1

: ;

r

8s

v

3

: Q

8r

v

4

: P

r

v

0

: ;

v

2

: ;v

1

: ;

Figure 3: The description trees for C and D.

G

C

. (Of course, the notion of a description tree and of a

homomorphism must be adapted to the larger language;

see [3] for details.) The need for the latter modi�cation

is demonstrated by the following example:

Example 7 Consider the ALE-matching problem C v

?

D, where

C := (9r:8r:Q) u (9r:8s:P ) and D := 9r:(8r:X u 8s:Y ):

The description trees for C and D are depicted in Fig-

ure 3. In addition to the edges representing existential

restrictions (9-edge), these tress contain 8-edges, which

represent value-restrictions. (The trees in our example

need not be normalized since they are already in nor-

mal form.) Obviously, � := fX 7! Q; Y 7! >g and

� := fX 7! >; Y 7! Pg are solutions of the given match-

ing problem. However, there is no homomorphism from

the tree for D into the one for C: The node w

1

can be

mapped either to v

1

or to v

2

. In the former case, w

2

can

be mapped to v

3

, but there is no appropriate image for

w

3

. In the latter case, w

3

can be mapped to v

4

, but then

there is no appropriate node w

2

can be mapped to.

Now, consider the concept patternD

0

obtained fromD

by replacing Y by>. The normalization process removes

the node w

3

(which corresponds to the fact that 8s:> �

>), and thus the normalized description tree G

D

0

consists

of the nodes w

0

; w

1

; w

2

. Obviously, fw

0

7! v

0

; w

1

7!

v

1

; w

2

7! v

3

g is a homomorphism between G

D

0

and G

C

.

This homomorphism corresponds to the matcher �. The

matcher � can be obtained analogously (by replacing X

by >).

From a conceptual point of view, it is thus not hard to

turn our matching algorithm for EL into one that can also

handle ALE . However, the run-time complexity of the

algorithm increases considerably. The following results

for matching in ALE are proved in [1]:

Theorem 8 1. There is an algorithm for computing s-

complete sets of ALE-matchers, which uses at most

exponential space.

2. Solvability of ALE-matching problems modulo

equivalence is NP-hard, and it can be decided in

nondeterministic exponential time.

3. Solvability of ALE-matching problems modulo sub-

sumption is an NP-complete problem.

6 Conclusion and future work

We have seen that existential restrictions have two un-

pleasant e�ects w.r.t. matching: (1) There need no

longer exist a unique least matcher, and (2) the com-

plexity of computing complete sets of matchers and of

deciding solvability of matching problems is no longer

polynomial. In contrast, for the language ALN , which

does not allow for existential restrictions, solvability of

matching problems can be decided in polynomial time,

and a solvable matching problem always has a least so-

lution [2].

For ALE , the complexity of our matching algorithm is

not optimal w.r.t. the known lower bounds. Thus, our

short-term goal is to obtain tighter complexity bounds

for matching in that DL. We will also try to extend the

results to DLs allowing for number restrictions, and|

in the long run|to DLs allowing for full negation. We

conjecture, however, that DLs with full negation will re-

quire techniques quite di�erent from the ones used in

this work.

References

[1] F. Baader and R. K�usters. Matching in de-

scription logics with existential restrictions. Tech-

nical Report LTCS-Report 99-07, LuFg Theo-

retical Computer Science, RWTH Aachen, Ger-

many, 1999. See http://www-lti.informatik.rwth-

aachen.de/Forschung/Papers.html.

[2] F. Baader, R. K�usters, A. Borgida, and D.L.

McGuinness. Matching in description logics. Journal

of Logic and Computation, 9, 1999.

[3] F. Baader, R. K�usters, and R. Molitor. Computing

least common subsumer in description logics with ex-

istential restrictions. In Proceedings of the 16th Inter-

national Joint Conference on Arti�cial Intelligence

(IJCAI'99), 1999.

[4] F. Baader and J.H. Siekmann. Uni�cation theory. In

D.M. Gabbay, C.J. Hogger, and J.A. Robinson, edi-

tors, Handbook of Logic in Arti�cial Intelligence and

Logic Programming, pages 41{125. Oxford University

Press, Oxford, UK, 1994.

[5] A. Borgida and D. L. McGuinness. Asking queries

about frames. In Proceedings of the Fifth Interna-

tional Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR'96), pages 340{349,

San Francisco, Calif., 1996. Morgan Kaufmann.

[6] M.R. Garey and D.S. Johnson. Computers and

Intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, 1979.

[7] D.L. McGuinness. Explaining Reasoning in Descrip-

tion Logics. PhD thesis, Department of Computer

Science, Rutgers University, October, 1996.


