
Rewriting in Description Logics Using Terminologies

Franz Baader and Ralf Molitor

LuFg Theoretical Computer Science, RWTH Aachen

email: fbaader,molitorg@informatik.rwth-aachen.de

Abstract

We consider the inference problem of comput-

ing (minimal) rewritings of concept descrip-

tions using de�ned concepts from a terminol-

ogy. We introduce a general framework for this

problem and instantiate it with the small de-

scription logicFL

0

, which provides us with con-

junction and value restrictions. We show that

the decision problem induced by the minimal

rewriting problem is NP-complete for FL

0

.

1 Motivation

Informally, the problem of rewriting a concept given a

terminology can be stated as follows: given a TBox T

and a concept description C that does not contain con-

cept names de�ned in T , can this description be rewrit-

ten into an equivalent \better" description D by using

(some of) the names de�ned in T ? Better may mean

shorter, but one can also imagine other optimality crite-

ria. In the formal framework of rewriting introduced in

Section 2 of this paper, we will not �x such an optimality

criterion, and we will allow T , C, and D to be built over

di�erent DLs. However, when instantiating this frame-

work in Section 3, we will assume that T , C, and D are

built over the same DL FL

0

, and we will use the size of

D as optimality criterion.

In the database area, the problem of rewriting queries

using views is a well-known research topic [8]. It is

closely related to the problem introduced in this pa-

per since views can be regarded as TBox de�nitions and

queries as concepts. However, our motivation for consid-

ering this new type of inference problem in DLs is quite

di�erent from the one in the DB area. There, one wants

to optimize the runtime of queries by using cached views,

and thus one wants to minimize the access to source rela-

tions. Our goal is to optimize the readability of concepts,

and thus minimal length of the concept D appears to be

a better optimality criterion.

More precisely, our interest in the rewriting problem

stems from an application in chemical process engineer-

ing [5, 10]. Within this application, we try to support

the bottom-up construction of KBs by computing most

speci�c concepts (msc) of individuals and least common

subsumers (lcs) of concepts: instead of directly de�n-

ing a new concept, the knowledge engineer introduces

several typical examples as individuals, which are then

generalized into a concept description by using the msc

and the lcs operation [2, 1]. This description is o�ered

to the knowledge engineer as a possible candidate for a

de�nition of the concept.

Unfortunately, due to the nature of the algorithms for

computing the lcs and the msc proposed in [2, 1], these

algorithms yield concept descriptions that do not con-

tain de�ned concept names, even if the descriptions of

the individuals use concepts de�ned in a TBox T . In

addition, due to the inherent complexity of the lcs and

the msc operation, these descriptions may be quite large.

To overcome this problem, we want to employ rewriting

of the computed concept description using T in order to

obtain a shorter and better readable description.

2 A general framework of rewriting

De�nition 1 Let N

r

be a set of role names and N

p

a

set of primitive concept names, and let L

1

, L

2

, and L

3

be three DLs. A rewriting problem is given by

� an L

1

-TBox T containing only role names from N

r

and primitive concept names from N

p

, and de�ning

the concept names in N

d

;

� an L

2

-concept description C using only the names

from N

r

and N

p

.

A rewriting of C using T is an L

3

-concept description D

built using names from N

r

and N

p

[N

d

such that C and

D are equivalent modulo the TBox T , i.e., D

I

= C

I

for

all models I of T .

Given an appropriate ordering � on L

3

-concepts built

using names from N

r

and N

p

[N

d

, a rewriting D is

called �-minimal i� there does not exist a rewriting D

0

such that D

0

� D.

It should be noted that there are cases in which there

always exists a trivial rewriting; e.g., whenever L

1

is a

sublanguage of L

3

. However, in these cases �nding a

minimal rewriting is still a non-trivial task. In the next

section, we will consider the case where all three DLs are

equal to FL

0

, and where the ordering is induced by the

size of (a normal form of) D.

In the remainder of this section, we will analyze the re-

sults of Section 3 in [8] within the framework introduced

above. There are two di�erences between the rewriting

problem considered there and the one introduced above.

First, [8] is concerned with maximally contained rewrit-

ings, i.e., the case where one wants to determine a max-

imal concept D subsumed by the input concept C. It

should be noted, however, that there exists a rewrit-

ing in our sense i� the maximally contained rewriting

is equivalent to C. Second, [8] is concerned with total

rewritings (i.e., D may only use de�ned concept names),

whereas we allow for partial rewritings (i.e., D may still

contain primitive concepts). Section 3 of [8] contains the

following two results:

� For L

1

= L

2

= ALCNR and L

3

= fu;tg, a maxi-

mally contained total rewriting is computable. Us-

ing the subsumption algorithm for ALCNR, this can

be used to decide whether there exists a total rewrit-

ing equivalent to the input concept C.

� If ALCNR is replaced byALN , then one can compute

a maximally contained total rewriting in polynomial

time, and existence of a total rewriting equivalent

to C can also be decided in polynomial time.

3 Rewriting in FL

0

Under rewriting in FL

0

we understand the instance of

the framework introduced above where (i) all three DLs

are the language FL

0

, which allows for value restrictions

and conjunction; and (ii) the TBox is of the usual form

(i.e., acyclic and without multiple de�nitions).

For the DL FL

0

, a concept-based normal form has

turned out to be quite convenient for various purposes

[4]: any FL

0

-concept description can be written in the

form 8L

1

:P

1

u : : : u 8L

k

:P

k

, where P

1

; : : : ; P

k

are con-

cept names and the L

i

are �nite sets of words over the

alphabet of role names. This normal form can be ob-

tained by (i) distributing value restrictions over conjunc-

tions; (ii) writing 8r

1

: : : r

n

:P

i

instead of 8r

1

: � � � 8r

n

:P

i

;

and �nally (iii) collecting the words w occurring in a

value restriction ending with P

i

in the set L

i

. For ex-

ample, the normal form of the FL

0

-concept description

P u 8r:(8r:P u 8r:Q) is given by 8f"; rrg:P u 8frrg:Q.

Using this normal form, equivalence of FL

0

-concept

descriptions can be characterized as follows [4]. Let C;D

be FL

0

-concept descriptions with normal forms C �

8L

1

:P

1

u : : : u 8L

k

:P

k

and D � 8M

1

:P

1

u : : : u 8M

k

:P

k

.

Then C � D i� L

i

=M

i

for i = 1; : : : ; k. (Note that L

i

(M

i

) is empty if C (D) does not contain a value restric-

tion ending with P

i

.)

With the help of this characterization, the rewriting

problem in FL

0

can be translated into a formal language

problem. Let (C; T) be an instance of the FL

0

rewrit-

ing problem, let P

1

; : : : ; P

k

be the available primitive

concepts, and let A

1

; : : : ; A

`

be the concept names de-

�ned in T . We assume that C has the normal form

C � 8L

1

:P

1

u : : : u 8L

k

:P

k

, and that the unfolded con-

cept description C

j

assigned by T to the name A

j

has

the normal form C

j

� 8N

j;1

:P

1

u : : : u 8N

j;k

:P

k

. Then,

the FL

0

-concept description D is a rewriting of C using

the TBox T i� its normal form is of the form

D � 8M

1

:A

1

u : : : u 8M

`

:A

`

u 8K

1

:P

1

u : : : u 8K

k

:P

k

;

where the assignment X

1

:= M

1

; : : : ; X

`

:= M

`

; Y

1

:=

K

1

; : : : ; Y

k

:= K

k

solves the system of formal language

equations

(�) L

i

= X

1

�N

1;i

[: : : [X

`

�N

`;i

[Y

i

(1 � i � k):

As an example, we consider the FL

0

-concept descrip-

tion C � 8f"; rrg:P

1

u 8frrg:P

2

and the FL

0

-TBox

T := fA

1

:

= P

1

u 8r:8r:P

2

; A

2

:

= 8r:P

1

;

A

3

:

= 8r:8r:P

2

u 8r:A

2

g:

The rewriting problem (C; T) translates into the system

of formal language equations

f"; rrg = X

1

�f"g [X

2

�frg [X

3

�frrg [Y

1

;

frrg = X

1

�frrg [X

2

�; [X

3

�frrg [Y

2

:

It is easy to see that the assignment X

1

:= f"g; X

2

:=

frg and X

3

:= Y

1

:= Y

2

:= ; solves this system. This

solution yields the rewriting D := A

1

u 8r:A

2

. It should

be noted that there are also other solutions of the system;

e.g., X

1

:= X

2

:= X

3

:= ; and Y

1

:= f"; rrg; Y

2

:= frrg

is also a solution, which yields the trivial rewriting D

0

:=

C.

Intuitively, D is a better rewriting than D

0

since it

is shorter, and thus better to read and comprehend.

This leads us to the de�nition of minimal rewritings.

As ordering on the rewriting concepts D we choose the

size of the concept description obtained after step (i) of

the normalization process (since the other steps just in-

troduce a di�erent representation of this description).

We can also de�ne this size directly on the concept-

based normal form: For a �nite set L of words, we

de�ne kLk :=

P

w2L

(jwj + 1), where jwj denotes the

length of w. The size of an FL

0

-concept description

C � 8L

1

:P

1

u : : : u 8L

k

:P

k

is now de�ned as kCk :=

P

1�i�k

kL

i

k. In the sequel, we are interested in �-

minimal rewritings where the partial ordering � is de-

�ned as D � D

0

i� kDk � kD

0

k. We call such a rewrit-

ing a cb-minimal rewriting since the partial ordering �

is based on the size of the concept-based normal form of

FL

0

-concept descriptions.

In our example, it can be shown that D

00

:= P

1

u A

3

is the unique cb-minimal rewriting of C using T . This

rewriting is induced by the solution Y

1

:= X

3

:= f"g and

X

1

:= X

2

:= Y

2

:= ; of the system of formal language

equations.

Although the DL FL

0

is rather small, cb-minimal

rewritings cannot be computed by a polynomial-time al-

gorithm (unless P = NP) since the decision problem in-

duced by the minimal rewriting problem is NP-complete.

Theorem 2 Let C be an FL

0

-concept description, T an

FL

0

-TBox, and � 2 IN.

Deciding whether there exists a rewriting D of C using

T that is in concept-based normal form and of size � �

is NP-complete.

Outline of the proof. First, we reduce the problem

of solving the system of k formal language equations (�)

to solving a single formal language equation. Then,

we determine a maximal solution of the single equation

(cf. Lemma 3). Unfortunately, computing this maxi-

mal solution may take time exponential in the size of

the TBox. Thus, in order to obtain a non-deterministic

polynomial algorithm, we introduce a set of possible so-

lutions that (a) contains all solutions (in particular, the

maximal solution), and (b) allows us to \guess" one of

its members in non-deterministic polynomial time. For

the possible solution obtained this way, deciding whether

it is in fact a solution and whether its size is � � takes

time polynomial in the size of C and T . This yields the

required NP-decision procedure.

In order to show that the problem is NP-hard, we will

give a polynomial reduction of the NP-complete problem

SETCOVER [7] to the decision problem induced by the

minimal rewriting problem.

Proof that the problem is in NP. For a language

L and a word w we de�ne L�w := fvw j v 2 Lg and

L�w

�1

:= fv j vw 2 Lg.

The system of formal language equations (�) can be

transformed into an equivalent single equation as fol-

lows. Let R

1

; : : : ; R

k

be k distinct role names (i.e., one

for each equation in (�)). We introduce the following

abbreviations:

S

0

:=

[

1�i�k

L

i

�R

i

and

S

j

:=

[

1�i�k

N

j;i

�R

i

for 1 � j � `:

Using these abbreviations, we can rewrite the system of

equations (�) into the single equation

(��) S

0

= X

1

�S

1

[: : : [X

`

�S

`

[

[

1�i�k

Y

i

�R

i

It is easy to show (see Lemma 13 in [3]) that the assign-

ment X

1

:= M

1

; : : : ; X

`

:= M

`

; Y

1

:= K

1

; : : : ; Y

k

:= K

k

solves the system (�) i� it solves the single equation (��)

(see Lemma 13 in [3]).

Because of the presence of the variables Y

i

, the sys-

tem (�) (and thus also the equation (��)) always has a

solution. The following lemma describes the maximal

solution of (��).

Lemma 3 [3] Let S

0

; S

1

; : : : ; S

`

be de�ned as above, and

c

M

j

:=

\

w2S

j

S

0

�w

�1

for 1 � j � `, and

b

K

i

:= L

i

for 1 � i � k:

The assignment X

1

:=

c

M

1

; : : : ; X

`

:=

c

M

`

; Y

1

:=

b

K

1

; : : : ; Y

k

:=

b

K

k

1. solves the equation (��), and

2. each solution M

1

; : : : ;M

`

;K

1

; : : : ;K

k

of (��) satis-

�es M

j

�

c

M

j

for all 1 � j � ` and K

i

�

b

K

i

for all

1 � i � k.

Thus, the problem of guessing an appropriate solu-

tion of (��) has been reduced to the problem of guessing

appropriate subsets of the sets

c

M

1

; : : : ;

c

M

`

;

b

K

1

; : : : ;

b

K

k

.

Unfortunately, the cardinalities of the languages

S

1

; : : : ; S

`

(which we need for computing the sets

c

M

j

)

may be exponential in the size of the TBox T . This is

due to the fact that the TBox provides for a compact rep-

resentation of the descriptions C

j

: unfolding of T may

lead to an exponential blow-up [9].

This problem can be avoided as follows. Instead of

guessing subsets of the sets

c

M

1

; : : : ;

c

M

`

;

b

K

1

; : : : ;

b

K

k

, we

guess subsets of a common superset of these sets. Let X

be the set of all pre�xes of words in S

0

. Since S

0

depends

only on the concept description C to be rewritten, and

since a word w has jwj + 1 pre�xes, the cardinality jX j

and the size kXk of X is polynomial in the size of C,

and this set can be computed in polynomial time. As

an easy consequence of the de�nition of

c

M

j

and

b

K

i

we

obtain

(� � �)

c

M

j

� X and

b

K

i

� X :

Now, the non-deterministic decision procedure works as

follows:

1. Guess sets M

j

� X , K

i

� X , i.e., determine a pos-

sible solution of (��).

2. Test whether the FL

0

-concept description D in-

duced by these sets is equivalent to C w.r.t. T .

3. Test whether kDk � �.

Return \yes" (meaning that there is a rewriting of

size � �) if there exists a successful computation for

Steps 1{3, i.e., there exist subsetsM

j

;K

i

of X such that

the induced FL

0

-concept description is equivalent to C

w.r.t. T and has size � �. Otherwise, return \no".

The correctness of this non-deterministic algorithm is

an immediate consequence of the fact that all solutions of

(��) are among the possible solutions guessed in Step 1.

This follows from (� � �) and Lemma 3. It remains to be

shown that the algorithm is indeed a non-deterministic

polynomial algorithm. Since the cardinality of X is poly-

nomial in the size of C, guessing (polynomially many)

subsets of X can be realized by polynomially many bi-

nary decisions. Polynomiality of the equivalence test in

Step 2 is less trivial since it must be done w.r.t. a TBox

(and unfolding the TBox could lead to an exponential

blow-up). Nevertheless, we were able to show (see [3],

Theorem 7) that this step can be realized in time poly-

nomial in the size of C and T . Finally, the size of the

induced FL

0

-concept description D is polynomial in the

size of C and T , and thus kDk � � can also be decided

in polynomial time.

Proof of NP-hardness. We will use a reduction of

the NP-complete problem SETCOVER. An instance of

this problem is of the following form [7]:

Instance: A �nite set U = fu

1

; : : : ; u

n

g, a family F =

fF

i

� U j 1 � i � mg of subsets of U , and a number

� 2 IN.

Question: Does there exist a subset fF

i

1

; : : : ; F

i

�

g of F

of size k � � such that F

i

1

[: : : [F

i

�

= U?

Obviously, we can restrict our attention to instances of

the problem where (a) at least F itself covers U , i.e.,

F

1

[: : : [F

n

= U , and (b) � � n.

For a given instance (U ;F ; �) of the SETCOVER

problem, we view U as set of role names, and de�ne the

corresponding instance of the FL

0

-rewriting problem as

follows:

C

U

:= 8U :P

T

F

:= fA

j

:

= 8F

j

:P j 1 � j � mg;

where P is the only primitive concept. Obviously, C

U

and T

F

are polynomial in the size of (U ;F ; �).

Lemma 4 There exists a cb-minimal rewriting D of C

U

using T

F

with kDk � � i� there exists a cover of U with

k � � sets F

i

1

; : : : ; F

i

k

from F .

Proof. The maximal rewriting of C

U

using T

F

is of the

form

b

D = 8f"g:A

1

u : : :u 8f"g:A

m

u 8U :P . Hence, each

rewriting of C

U

using T

F

is of the form 8M

1

:A

1

u : : : u

8M

m

:A

m

u 8K:P , where M

j

= ; or M

j

= f"g, K � U ,

and M

1

�F

1

[: : : [M

m

�F

m

[K = U .

Assume that F

i

1

; : : : ; F

i

k

is a cover of U of size k � �.

Then D

0

:= A

i

1

u : : :uA

i

k

is a rewriting of C

U

of size k,

and thus the cb-minimal rewriting has size � k � �.

Conversely, assume that D = 8M

1

:A

1

u : : : u

8M

m

:A

m

u 8K:P is a cb-minimal rewriting of C

U

us-

ing T

F

, and kDk � �. We show that K = ;. This

implies that D is of the form A

i

1

u : : : u A

i

k

for some

k � �, and hence fF

i

1

; : : : ; F

i

k

g is a cover of U of size

� �.

Assume that K 6= ;, and let u 2 K. Then, u 62

S

M

i

=f"g

F

i

since, otherwise, removing u from K would

yield a smaller rewriting.

Since the whole family F covers U , the fact that

u 62

S

M

i

=f"g

F

i

implies that there exists an index j

such that M

j

= ; and u 2 F

j

. This implies, however,

that removing u from K and inserting " into M

j

yields

a smaller rewriting, which is a contradiction. Thus, we

have shown that K = ;. 2

It should be noted that, in the formulation of Theo-

rem 2, we do not assume that the TBox T is unfolded.

Since it is well-known [9] that the equivalence problem

w.r.t. (not unfolded) FL

0

-TBoxes is a co-NP-complete

problem, one might conjecture that this is the source of

complexity for the rewriting problem. This is not true,

however: on the one hand, the TBox T

F

de�ned in the

reduction of SETCOVER to the rewriting problem is al-

ready unfolded; on the other hand, our NP-algorithm

is based on the fact that testing whether a candidate

rewriting D is equivalent to C can be realized in poly-

nomial time, even if T is not assumed to be unfolded.

4 Minimal rewritings in role-based

normal form

Above we have used the concept-based normal form

of FL

0

-concept descriptions for tackling the minimal

rewriting problem since it allowed us to reduce the

rewriting problem to solving a system of formal language

equations. However, the concept-based normal form of a

given FL

0

-concept description C need not be of minimal

size among all FL

0

-concept descriptions equivalent to C.

For example, the concept C := P

1

u 8r:8r:P

1

u 8r:8r:P

2

,

which is in concept-based normal form, is of size 7,

whereas the size of the equivalent concept C

0

:= P

1

u

8r:8r:(P

1

u P

2

) is only 5.

1

In order to obtain rewritings

of minimal size among all equivalent FL

0

-concept de-

scriptions, the so-called role-based normal form is more

appropriate.

Recall that, for a given FL

0

-concept description C,

1

As \size" of an FL

0

-concept description we take the sum

of the number of 8-constructors and the number of occur-

rences of concept names. For concepts in concept-based nor-

mal form, this coincides with the size we have de�ned before.

the corresponding concept-based normal form (more pre-

cisely, the description obtained after the �rst normaliza-

tion step) can be obtained by exhaustively applying the

rule 8r:(D u E) �! 8r:D u 8r:E: If we apply this rule

in the other direction, we obtain the role-based normal

form of C (as employed in structural subsumption algo-

rithms such as the one used in classic [6]). In the above

example, the concept C

0

= P

1

u8r:8r:(P

1

uP

2

) is in role-

based normal form. The reason for this di�erence in the

sizes of the two normal forms is that the role-based nor-

mal form \shares" common pre�xes of words occurring

in value restrictions, whereas the concept-based normal

form does not. In our example, the word rr is shared,

which explains the di�erence in the sizes.

It is easy to show that the role-based normal form

of a given FL

0

-concept description C is of minimal size

among all FL

0

-concept descriptions equivalent to C, and

that it can be computed in polynomial time. Thus, if we

are able to compute rewritings whose role-based normal

form is minimal (rb-minimal rewritings), then we can

compute rewritings that are minimal w.r.t. all equivalent

FL

0

-concept descriptions.

At �rst sight, the algorithm for computing cb-minimal

rewritings introduced above cannot be used to solve this

problem. In fact, the role-based normal form of a cb-

minimal rewriting need not be rb-minimal, and vice

versa.

For example, consider the concept description

C := 8r:8r:8r:(P

1

u P

2

u P

3

u P

4

u 8r:(P

1

u P

2

));

and the TBox

T := fA

1

:

= 8r:8r:P

1

; A

2

:

= 8r:8r:P

2

; A

3

:

= P

3

u P

4

;

A

4

:

= P

1

u P

2

u 8r:P

1

; A

5

:

= 8r:P

2

;

A

6

:

= 8r:8r:8r:(P

1

u P

2

)g:

The unique cb-minimal rewriting is

D

c

:= 8r:A

1

u 8r:A

2

u 8r:A

6

u 8r:8r:8r:A

3

;

and the unique rb-minimal rewriting is

D

r

:= 8r:8r:8r:(A

3

uA

4

u A

5

):

However, the role-based normal form of D

c

is

D

cr

:= 8r:(A

1

u A

2

uA

6

u 8r:8r:A

3

);

and the concept-based normal form of D

r

is

D

rc

:= 8r:8r:8r:A

3

u 8r:8r:8r:A

4

u 8r:8r:8r:A

5

:

Obviously, we have kD

c

k = 10 < 12 = kD

rc

k and

kD

r

k = 6 < 7 = kD

cr

k.

This example shows that it is not possible to com-

pute an rb-minimal rewriting by �rst computing a cb-

minimal rewriting, and then transforming the obtained

concept into role-based normal form. Nevertheless, a

simple modi�cation of the non-deterministic algorithm

introduced above can be used to treat concepts in role-

based normal form.

Theorem 5 Let C be an FL

0

-concept description, T an

FL

0

-TBox, and � 2 IN.

Deciding whether there exists a rewriting D of C using

T that is in role-based normal form and of size � � is

NP-complete.

The proof of this theorem is obtained through simple

modi�cations of the proof of Theorem 2. The proof of

NP-hardness can be used as it is since the cb-minimal

rewriting considered there is just a conjunction of con-

cept names. For concept descriptions of this form, the

role-based normal form coincides with the concept-based

normal form. The non-deterministic algorithm that

shows that the decision problem is in NP must be mod-

i�ed only at Step 3. Instead of checking whether the

concept-based normal form induced by the languages

guessed in Step 1 is � �, the modi�ed algorithm com-

putes the corresponding role-based normal form, and

then checks whether it is � �. Correctness of this algo-

rithm is an immediate consequence of the fact that the

languages guessed in Step 1 cover all possible rewritings,

and thus also the rb-minimal ones.

5 References

[1] F. Baader and R. K�usters. Computing the least common

subsumer and the most speci�c concept in the presence

of cyclic ALN -concept descriptions. In Proc. of KI'98,

volume 1504 of LNCS, 1998.

[2] F. Baader, R. K�usters, and R. Molitor. Computing least

common subsumers in description logics with existential

restrictions. In Proc. of IJCAI'99, 1999.

[3] F. Baader and R. Molitor. Rewriting Concepts Using

Terminologies. LTCS-Report 99-06. See http://www-

lti.informatik.rwth-aachen.de/Forschung/Papers.html.

[4] F. Baader and P. Narendran. Uni�cation of concept

terms in description logics. In Proc. of ECAI'98, 1998.

[5] F. Baader and U. Sattler. Knowledge representation in

process engineering. In Proc. of DL'96, 1996.

[6] A. Borgida and P. Patel-Schneider. A semantics and com-

plete algorithm for subsumption in the classic descrip-

tion logic. In JAIR, 1:277{308, 1994.

[7] M.R. Garey and D.S. Johnson. Computers and In-

tractability: A Guide to the Theory of NP-Completeness.

1979.

[8] C. Beeri, A.Y. Levy, and M.-C. Rousset. Rewriting

queries using views in description logics. In Proc. of

PODS'97, 1997.

[9] B. Nebel. Terminological reasoning is inherently in-

tractable. AIJ, 43(2):235{249, 1990.

[10] U. Sattler. Terminological knowledge representation sys-

tems in a process engineering application. PhD thesis,

RWTH Aachen, 1998.

