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Abstrat. It is well-known that problems like validity and subsumption

of general CGs are undeidable, whereas subsumption is NP-omplete for

simple oneptual graphs (SGs) and tratable for SGs that are trees. We

will employ results on deidable fragments of �rst-order logi to iden-

tify a natural and expressive fragment of CGs for whih validity and

subsumption is deidable in ExpTime. In addition, we will extend exist-

ing work on the onnetion between SGs and desription logis (DLs) by

identifying a DL that orresponds to the lass of SGs that are trees. This

yields a tratability result previously unknown in the DL ommunity.

1 Introdution

Coneptual graphs (CGs) are an expressive formalism for representing knowledge

about an appliation domain in a graphial way. Sine CGs an express all of

�rst-order prediate logi (FO), they an also be seen as a graphial notation for

FO formulae.

In knowledge representation, one is usually not only interested in representing

knowledge, one also wants to reason about the represented knowledge. For CGs,

one is, for example, interested in validity of a given graph, and in the question

whether one graph subsumes another one. Beause of the expressiveness of the

CG formalism, these reasoning problems are undeidable for general CGs. In

the literature [14, 16, 12℄ one an �nd omplete aluli for validity of CGs, but

implementations of these aluli have the same problems as theorem provers

for FO: they may not terminate for formulae that are not valid, and they are

very ineÆient. To overome this problem, one an either employ inomplete

reasoners, or try to �nd deidable (or even tratable) fragments of the formalism.

This paper investigates the seond alternative.

The most prominent deidable fragment of CGs is the lass of simple onep-

tual graphs (SGs), whih orresponds to the onjuntive, positive, and existential

fragment of FO (i.e., existentially quanti�ed onjuntions of atoms). Even for

this simple fragment, however, subsumption is still an NP-omplete problem [5℄.

SGs that are trees provide for a tratable fragment of SGs, i.e., a lass of simple
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oneptual graphs for whih subsumption an be deided in polynomial time

[13℄. In this paper, we will, on the one hand, desribe a deidable fragment of

CGs that is onsiderably more expressive than SGs. On the other hand, we will

identify a tratable fragment of SGs that is larger than the lass of trees.

Instead of trying to prove new deidability or tratability results for CGs

from srath, our idea was to transfer deidability results from �rst-order logis

[4℄ and from desription logis [9, 10℄ to CGs. The goal was to obtain \natural"

sub-lasses of the lass of all CGs in the sense that these sub-lasses are de�ned

diretly by syntati restritions on the graphs, and not by onditions on the

�rst-order formulae obtained by translating CGs into FO.

Although desription logis (DLs) and CGs are employed in very similar ap-

pliations (e.g., for representing the semantis of natural language sentenes),

it turned out that these two formalisms are quite di�erent for several reasons:

(1) oneptual graphs

1

are interpreted as losed FO formulae, whereas DL on-

ept desriptions are interpreted by formulae with one free variable; (2) most

DLs do not allow for relations of arity > 2; (3) SGs are interpreted by existential

sentenes, whereas almost all DLs onsidered in the literature allow for universal

quanti�ation; (4) beause DLs use a variable-free syntax, ertain identi�ations

of variables expressed by yles in SGs and by o-referene links in CGs annot

be expressed in DLs. As a onsequene of these di�erenes, we ould not identify

a natural fragment of CGs orresponding to an expressive DL whose deidability

was already shown in the literature. We ould, however, obtain a new tratabil-

ity result for a DL orresponding to SGs that are rooted, ar- and node labeled

trees. This orrespondene result stritly extends the one in [7℄. In addition, we

have extended the tratability result from SGs that are trees to SGs that an be

transformed into trees using a ertain \yle-utting" operation.

An interesting deidable fragment of FO, whih has reently been introdued

by van Benthem [15℄, is the so-alled loosely guarded fragment of FO. It ontains

(the �rst-order translations of) many modal logis and desription logis, but

is not restrited to unary and binary relations. We ould identify a fragment of

CGs orresponding to the loosely guarded fragment of FO in the sense that the

�rst-order translation of CGs belonging to this fragment are equivalent (though

not neessarily idential) to a loosely guarded formula, and every loosely guarded

formula an be obtained in this manner. The haraterization of this fragment

is given by syntati restritions on the graphs, and for a given graph it is easily

deidable whether it belongs to this fragment.

2 Preliminaries

To �x our notation, we reall basi de�nitions and results on oneptual graphs.

Basi ontologial knowledge from the appliation domain is oded in the sup-

port, whih is a struture of the form S = hN

C

; N

R

; N

I

i. Here N

C

is the set of

onept types, whih is ordered by a partial order �

C

expressing the is-a-kind-of

1

Here, we restrit our attention to the �rst order fragment of CGs.
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Fig. 1. An example of a support.

relation between onept types. We require N

C

to ontain a distinguished ele-

ment >

C

representing the entire domain, i.e., >

C

is the greatest element w.r.t.

�

C

. Similarly, the set of relation types, N

R

, is ordered by a partial order �

R

.

Eah element of N

R

has a �xed arity, and relation types with di�erent arity

are inomparable by �

R

. The set of individual markers is denoted by N

I

; an

additional generi marker is denoted by �. We de�ne a partial order �

I

on

N

I

[f�g suh that � is the greatest element, and all other elements are pairwise

inomparable.

Throughout the paper, we onsider examples over the support hN

C

; N

R

; N

I

i

shown in Fig. 1, where all relation types are assumed to have arity 2.

A simple graph (SG) over the support S is a labeled bipartite graph of the

form g = hC;R;E; `i, where C and R are the node sets, alled onept nodes and

relation nodes, respetively, and E � C � R is the edge relation. The labeling

` labels g in the following way: Eah onept node  2 C is labeled by a pair

`() = (type(); ref()) 2 N

C

� (N

I

[ f�g), alled the type and the referent of

. If ref() = �, then  is alled a generi onept node, otherwise  is alled an

individual onept node. Eah relation node r 2 R is labeled with a relation type

`(r) 2 N

R

. All edges that are inident to the same relation node are labeled by

` with sets of natural numbers in suh a way that, if `(r) has arity n, then all

numbers from f1; : : : ; ng appear exatly one in these labels. The onept node

 linked to r by an edge with j 2 `(; r) is alled the jth neighbor of r and is

denoted by r(j). The set of all simple graphs over S is denoted by SG(S).

SGs an be ombined into more omplex strutures alled graph propo-

sitions. A graph proposition p is a negated graph proposition, or a box that

ontains a SG (whih may be empty) and �nitely many graph propositions (see

Fig. 2). These boxes are also alled the ontexts of the proposition. We require

that all simple graphs appearing in a graph proposition have disjoint node sets.

In a linear notation one an represent graph propositions as expressions gener-

ated by the EBNF grammar

p ::=

�

g p

�

�

j :p;

where g stands for a SG. For eah SG g in p there is exatly one ontext p

0

whih

ontains g at top level. This ontext is alled the ontext of g, and we say that p

0

ontains all nodes of g. We say that a ontext p (stritly) dominates a ontext q
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Fig. 2. An example of a oneptual graph.

i� q is (stritly) ontained in p. The set of all onept nodes of all simple graphs

ourring in p is denoted by C(p).

A oneptual graph (CG) over the support S is a pair G = hp; orefi,

where p is a graph proposition over S and oref, the set of oreferene links,

is a symmetri binary relation over C(p) satisfying the following property: for

eah pair of onept nodes (

1

; 

2

) 2 oref ontained in the ontexts p

1

and p

2

,

respetively, either p

1

dominates p

2

or p

2

dominates p

1

. We denote the set of all

CGs over S by CG(S).

An example of a CG built over the support from Fig. 1 is shown in Fig. 2

using the usual graphial notation. It asserts that for eah parent and hild there

is another parent of that hild who likes the �rst parent (see the translation of

this graph into FO below). The extra markers p

i

and 

i

will be used in a later

setion of this paper to refer to the di�erent parts of the CG.

Both SGs and CGs are given a semantis in FO by the operator �. Let

G = hp; orefi 2 CG(S) be the CG to be translated, and let V be a ountably

in�nite set of variables. Firstly, we �x two mappings id and links as follows:

id assigns a unique variable to eah generi onept node  2 C(p), and its

individual marker to eah individual onept node; we de�ne links() to onsist

of id(

0

) of all onept nodes 

0

that are linked to  by a oreferene link and are

ontained in a ontext dominating the ontext of . The triple

b

G = hp; id; linksi

obtained this way is translated by � into FO as follows:

{ For a SG g = hC;R;E; `i we de�ne �(g) =

V

2C

�() ^

V

r2R

�(r), where

�() :=

^

s2links()

id()

:

= s ^

(

id()

:

= id() if type() = >

C

P (id()) if type() = P

;

and, for a relation node r with `(r) = S of arity n,

�(r) := S(id(r(1)); : : : ; id(r(n))):

The quanti�er pre�x of g is �

p

(g) := 9x

1

: : :9x

k

, where fx

1

; : : : ; x

k

g :=

fid() j  2 Cg \ V .



{ The operator � is de�ned by indution on the struture of graph propositions:

� �

�

g p

1

: : : p

m

�

:= �

p

(g):

�

�(g) ^

^

j=1;:::;m

�(p

j

)

�

,

� �

�

:p

�

:= :�

�

p

�

.

For a SG g we de�ne its FO semantis �(g) by �

p

(g):�(g).

To translate the graph G from Fig. 2, we set id(

i

) = x

i

(i = 1; : : : ; 6). For

links, this yields links(

3

) = fx

1

g, links(

5

) = fx

2

g, links(

6

) = fx

4

; x

5

g, and

links(

i

) = ; for i = 1; 2; 4. After eliminating equalities of the form x

i

:

= x

i

we

obtain the following FO formula:

�(G) = :(9x

1

x

2

:(Human(x

1

) ^ Human(x

2

) ^ hasChild(x

2

; x

1

) ^

:(9x

3

x

4

x

5

:(x

3

:

= x

1

^ x

5

:

= x

2

^ Human(x

4

) ^

hasChild(x

4

; x

3

) ^ likes(x

4

; x

5

) ^

:(9x

6

:(x

6

:

= x

4

^ x

6

:

= x

5

))))))

Note that the sub-formula :(9x

6

:(x

6

:

= x

4

^ x

6

:

= x

5

) only expresses x

4

6

:

= x

5

.

We an also de�ne the semantis of the order relations in the support by a FO

formula. For a given support S = hN

C

; N

R

; N

I

i, the partial orders �

C

and �

R

are interpreted as follows: P

1

�

C

P

2

orresponds to the formula 8x:P

1

(x) !

P

2

(x), and for two relation types of arity n, S

1

�

R

S

2

yields the formula

8x

1

: : : x

n

:S

1

(x

1

; : : : ; x

n

) ! S

2

(x

1

; : : : ; x

n

). We de�ne �(S) to be the onjun-

tion of all these formulae.

Validity with respet to a support S for a CG G an be de�ned with

the help of the operator �: G is valid i� �(S)! �(G) is a valid FO formula.

Subsumption with respet to a support S for two SGs or CGs G;H is

de�ned as follows: G is subsumed by H (G v H) i� �(S) ^ �(G) ! �(H) is a

valid FO formula.

A SG g is said to be in normal form i� eah individual marker a 2 N

I

appears at most one as a referent of a onept node in g. Subsumption of two

simple graphs g; h an be haraterized by the existene of ertain homomor-

phisms from h to g. To be more preise, if there exists a homomorphism from h

to g, then g v h [14℄, and if g v h then there is suh a homomorphism provided

that g is in normal form [5℄.

Subsumption for SGs over a support S is an NP-omplete problem [5℄. Like

Peire's existential graphs, CGs are as expressive as FO formulae [14℄. Thus,

validity and subsumption for CGs are undeidable.

3 A Tratable Fragment of Simple Graphs

In this setion, we introdue the desription logi ELIRO

1

as well as the lass of

rooted SGs. We will show that ELIRO

1

-onept desriptions an be translated

into equivalent rooted SGs that are trees, and thus that subsumption in ELIRO

1

an be deided in polynomial time. In addition, we extend the known tratability

result for trees to a larger fragment of SGs.



Table 1. Syntax and semantis of ELIRO

1

-onept desriptions.

Construt name Syntax Semantis

top-onept > x = x

primitive onept P 2 N

C

P P (x)

onjuntion C uD 	

C

(x) ^ 	

D

(x) EL

existential restrition 9r:C 9y:	

r

(x; y) ^ 	

C

(y)

onstant a 2 N

I

fag x = a O

1

primitive role r 2 N

R

r r(x; y)

inverse role for r 2 N

R

r

�

r(y; x) I

role onjuntion r

1

u r

2

	

r

1

(x; y) ^ 	

r

2

(x; y) R

Desription Logis

In DLs, knowledge from an appliation domain is represented by so-alled on-

ept desriptions. Conept and role desriptions are indutively de�ned with the

help of a set of onstrutors, starting with a set N

I

of onstants, a set N

C

of

primitive onepts, and a set N

R

of primitive roles. The onstrutors determine

the expressive power of the DL. In this paper, we onsider onept desriptions

built from the onstrutors shown in Table 1. The resulting DL is denoted by

ELIRO

1

. Due to the fat that referents of individual onept nodes in SGs are

single onstants a 2 N

I

, we restrit ourselves to ELIRO

1

-onept desriptions in

whih eah onjuntion ontains at most one onstant.

The semantis of a onept desription C (resp. a role desription r) is de�ned

by a FO formula 	

C

(x) with one free variable (resp. 	

r

(x; y) with two free

variables): see Table 1 for the indutive de�nition of these formulae. Given an

interpretation I = (�; �

I

) of the signature hN

C

; N

R

; N

I

i, the onept desription

C is interpreted as C

I

:= fÆ 2 � j I j= 	

C

(Æ)g.

For example, the onept desription

D = Female u 9likes:Male u 9has-hild:(Student u 9attends:CSourse)

desribes all women who like a man and have a hild that is a student attending

a CSourse. The semantis of D is given by the following FO formula:

	

D

(x

0

) = Female(x

0

) ^ 9x:(likes(x

0

; x) ^Male(x)) ^

9y:(has-hild(x

0

; y) ^ Student(y) ^ 9z:(attends(y; z) ^ CSourse(z))):

In order to obtain a strutured representation of the knowledge about the ap-

pliation domain one is interested in the subsumption hierarhy formed by the

onept desriptions. Using their FO semantis, subsumption between onept

desriptions is de�ned as C v D i� 8x

0

:	

C

(x

0

)! 	

D

(x

0

) is valid.

Rooted Simple Graphs

We are interested in a lass of SGs orresponding to ELIRO

1

-onept desrip-

tions. On the one hand, we must restrit our attention to onneted SGs over



a support S = hN

C

; N

R

; N

I

i ontaining only binary relation types, beause

ELIRO

1

-roles orrespond to binary relations and, as we will see, ELIRO

1

-onept

desriptions always desribe onneted strutures. Beause of the restrition to

binary relations, we an dispense with expliit relation nodes: instead we onsider

direted edges between onept nodes labeled by a relation type.

On the other hand, we must (1) deal with the di�erent semantis of SGs

and onept desriptions (losed formulae vs. formulae with one free variable),

and (2) introdue onjuntions of types in SGs sine onjuntions of primitive

onepts may our in ELIRO

1

-onept desriptions. In order to handle (2), we

allow for onept nodes labeled by a set of onept types fP

1

; : : : ; P

n

g � N

C

,

where the empty set orresponds to >

C

. Due to (1), we extend the notion of

SGs by introduing one distinguished onept node alled the root of the SG.

Formally, we restrit the attention to unordered supports hN

C

; N

R

; N

I

i where

the orders on N

C

and N

R

are the identity relations.

2

Given suh an unordered

support hN

C

; N

R

; N

I

i we de�ne a rooted SG G = (V;E; 

0

; `) over this support

as a SG where V is a set of onept nodes, E � V �N

R

� V is a set of direted

edges labeled by relation types from N

R

, 

0

is the root of G, and ` labels eah

 2 V by a set of onept types fP

1

; : : : ; P

n

g � N

C

and a referent from N

I

[f�g.

Given an interpretation I = (�; �

I

) of hN

C

; N

R

; N

I

i, the semantis of a

rooted SG G is given by fÆ 2 � j I j= �(G)(Æ)g, where � is an extension of

the � operator from SGs to rooted SGs. To be more preise, the FO formula

�(G)(x

0

) with one free variable x

0

is obtained from G as follows. Let id : V !

(V n fx

0

g)[N

I

be a mapping as de�ned in Setion 2. Eah onept node  2 V

with type() = fP

1

; : : : ; P

n

g yields a onjuntion P

1

(id())^ : : :^P

n

(id()), and

eah edge 

1

r

2

2 E yields r(id(

1

); id(

2

)). Now, �(G)(x

0

) is de�ned as the

onjuntion of x

0

:

= id(

0

) and the formulae orresponding to onept nodes

and edges, where all variables exept x

0

are existentially quanti�ed.

For example, the rooted SG G

1

with root 

0

depited in Fig. 3 desribes all

women that are a daughter of Peter, and have a dear son that likes Peter and is

a student attending the CSourse number KR101.

Just as for SGs, subsumption between rooted SGs an be haraterized by

the existene of a homomorphism. Here, the notion of a homomorphism between

SGs w.r.t. a support S [6℄ must be adapted to rooted SGs. A homomorphism

from H = (V

H

; E

H

; d

0

; `

H

) to G = (V

G

; E

G

; 

0

; `

G

) is a mapping ' : V

H

! V

G

suh that (1) '(d

0

) = 

0

, (2) type

H

(d) � type

G

('(d)) and ref

H

(d) �

I

ref

G

('(d))

for all d 2 V

H

, and (3) '(d)r'(d

0

) 2 E

G

for all drd

0

2 E

H

.

The proof of the following theorem in [3℄ is similar to the proof of soundness

and ompleteness of the haraterization of subsumption in [6℄.

Theorem 1. Let G be a rooted SG in normal form and H a rooted SG. Then

G v H i� there exists a homomorphism from H to G.

2

It should be noted that the restrition to unordered supports is without loss of

generality sine the order relation on N

C

an be enoded into the type set labels,

and the one on N

R

into multiple edges between nodes. Vie versa, the introdution

of sets of types is not a real extension sine their e�et an be simulated by an

appropriately extended ordered support (see [3℄ for details).
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For example, the rooted SG G

2

with root d

0

depited in Fig. 3 subsumes G

1

beause mapping d

0

onto 

0

, d

1

and d

3

onto 

2

, and d

2

onto 

3

yields a homo-

morphism from G

2

to G

1

.

Unlike SGs over an arbitrary support, rooted SGs an be transformed (in

polynomial time) into equivalent rooted SGs in normal form by identifying all

onept nodes 

1

; : : : ; 

n

having the same referent a 2 N

I

and de�ning the type

set of the resulting onept node as

S

1�i�n

type(

i

).

For SGs over a support S, subsumption is known to be an NP-omplete

problem. The known algorithms deiding g v h w.r.t. S are based on the har-

aterization of subsumption by homomorphisms, and thus require the subsumee

g to be in normal form. In order to obtain a subsumption algorithm for rooted

SGs, we must simply adjust the onditions tested for nodes and edges aording

to the modi�ed onditions on homomorphisms between rooted SGs. Conversely,

subsumption of SGs w.r.t. S an be redued to subsumption of rooted SGs [3℄.

This shows that subsumption for rooted SGs is also an NP-omplete problem.

In [13℄, a polynomial-time algorithm is introdued that an deide g v t

w.r.t. a support S provided that t is a tree and g is a SG in normal form. In

this ontext, a SG t is alled a tree i� t ontains no yles of length greater

than 2. The notion of a tree an be adapted to rooted SGs T by viewing T

as an undireted graph. A simple modi�ation of the algorithm in [13℄ yields a

polynomial time algorithm deiding G v T for a rooted SG T that is a tree and

a rooted SG G in normal form [3℄.

Now, we will show that this algorithm also yields a polynomial-time algorithm

for subsumption of ELIRO

1

-onept desriptions.

Translating onept desriptions into rooted simple graphs

The main idea underlying the translation is to represent a onept desription

C as a tree T

C

. Intuitively, C is represented by a tree with root 

0

where all

atomi onepts and onstants ourring in the top-level onjuntion of C yield

the label of 

0

, and eah existential restrition 9r:C

0

in this onjuntion yields

an r-suessor that is the root of the tree orresponding to C

0

. For example, the

onept desription C below yields the tree T

C

in Fig. 4:



fFemaleg : �

; : Peter fMale, Studentg : �

fCSourseg : KR101; : Peter

attends

has-hildlikes



2

likes

has-hild



4

: Peter 

3

: CSourse,KR101



2

: Male, Student

1

: Peter



0

: Female

attendslikes

has-hild

�

likes u has-hild

T

C

: G

C

:



4



1



0



3

Fig. 4. Translating ELIRO

1

-onept desriptions into rooted simple graphs.

C := Female u 9has-hild

�

:fPeterg u 9(likes u has-hild):

(Male u Student u 9attends:(CSourse u fKR101g) u 9likes:fPeterg).

Now, we an de�ne the rooted SG G

C

orresponding to C as follows. The nodes

in T

C

yield the set of onept nodes V of G

C

. The label `() of a onept node

 2 V is determined by the label `

T

() of  in T

C

, i.e., type() is the set of all

atomi onepts ourring in `

T

() and, if there is a onstant a 2 `

T

(), then

ref() := a; otherwise ref() := �. Note that ref() is well-de�ned beause we have

restrited ELIRO

1

-onept desriptions to those ontaining at most one onstant

in eah onjuntion. Finally, the set of edges of G

C

is obtained from the edges

in T

C

: onjuntions of roles are deomposed ((r

1

u : : : u r

n

)d yields n edges

r

1

d; : : : ; r

n

d) and inverse roles are redireted (r

�

d yields the edge dr). In

our example, we obtain the rooted SG G

C

depited in Fig. 4, whih is a tree.

Using the reursive de�nition of the tree T

C

, it an be shown [3℄ that C is

equivalent to G

C

, i.e., 8x

0

:	

C

(x

0

) $ �(G

C

)(x

0

) is a valid FO formula. Con-

versely, any rooted SG G that is a tree an be translated into an equivalent

onept desription C

G

[3℄. Thus, there is a 1{1 orrespondene between ELIRO

1

-

onept desriptions and rooted SGs that are trees. Beause of this orrespon-

dene, we an redue subsumption in ELIRO

1

to subsumption between rooted

SGs, i.e., C v D i� G

C

v G

D

. Sine G

C

is a tree and G

D

an be transformed into

normal form (in polynomial time), subsumption for ELIRO

1

-onept desription

is polynomial-time deidable by applying the polynomial-time algorithm men-

tioned above to the tree G

C

and the normal form of G

D

. This yields the following

tratability result for ELIRO

1

[3℄:

Theorem 2. Subsumption C v D of ELIRO

1

-onept desriptions an be de-

ided in time polynomial in the size of C and D.

Stritly speaking, the above argument shows tratability only for onept de-

sriptions where eah onjuntion ontains only one onstant. The result an,

however, easily be extended to general ELIRO

1

-onept desriptions [3℄.

Extending the tratability result

We will now extend the tratability result from (rooted) SGs that are trees to



(rooted) SGs that an be transformed into trees by \utting yles" of length

greater than 2. For a given rooted SG G, we an eliminate an (undireted) yle



0

; : : : ; 

n

where 

0

= 

n

in G by applying the split-operation on onept nodes

as introdued for SGs in [5℄. To be more preise, we (1) arbitrarily hoose a node



i

2 f

1

; : : : ; 

n

g, (2) introdue a new node  labeled like 

i

, and (3) replae all

edges between 

i�1

and 

i

by edges between 

i�1

and . We then say that the

yle is ut in 

i

. Obviously, any yli SG G an be transformed into an ayli

SG G

�

by applying this operation a polynomial number of times. In general,

however, the resulting SG G

�

need not be equivalent to G.

As an example, onsider the rooted SG G

1

in Fig. 3. On the one hand, we an

eliminate the yle 

1

; 

0

; 

2

; 

1

by introduing a new node 

4

with label (;; P eter)

and replaing the edge 

2

likes

1

by 

2

likes

4

. The resulting tree oinides with

the tree G

C

in Fig. 4, and it is equivalent to G

1

beause G

1

is a normal form of

G

C

. On the other hand, if we introdue a new node  labeled (fFemaleg; �) and

replae 

1

has-hild

0

by 

1

has-hild, then the resulting tree is not equivalent to

G

C

beause the student's mother and Peter's hild need no longer to be the same

person.

The following proposition introdues a ondition on rooted SGs that ensures

that rooted SGs satisfying this ondition an be transformed into equivalent

trees by applying the split operation to individual onept nodes [3℄.

Proposition 1. If eah yle of length greater than 2 in the rooted SG G on-

tains at least one individual node , then G an be transformed into an equivalent

tree G

�

in time polynomial in the size of G.

Consequently, G v H an be deided in polynomial time if G is a rooted SG in

normal form and H satis�es the premise of the proposition. It is easy to see that

this tratability result also applies to (non-rooted) SGs over a support.

4 The Loosely Guarded Fragment of Coneptual Graphs

Due to the expressiveness of the CG formalism, all the interesting reasoning

problems (suh as subsumption and validity) are undeidable for general CGs.

We will identify a large lass of CGs for whih both validity and subsumption

are deidable. This fragment, whih we will all loosely guarded fragment of CGs,

will be de�ned diretly by syntati restritions on graphs. This allows for an

eÆient test for guardedness of graphs. The fragment orresponds to the so-

alled loosely guarded fragment of FO. In [1℄, the guarded fragment of FO was

de�ned in an attempt to �nd a generalization of modal logis that still enjoys the

nie properties of modal logis (like deidability, �nite axiomatizability, et.). In

the same work, deidability of this fragment was shown. In [15℄, an even larger

deidable fragment of FO was introdued, the loosely guarded fragment.

De�nition 1. Let � be a set of onstant and relation symbols inluding equality

(alled the signature). The loosely guarded fragment LGF(�) of �rst-order logi

is de�ned indutively as follows:



1. Every atomi formula over � belongs to LGF(�).

2. LGF(�) is losed under the Boolean onnetives :;^;_;!, and $.

3. If x;y are tuples of variables, if �(x;y) is a formula from LGF(�), and if

�

1

^ � � � ^ �

n

is a onjuntion of atoms, then

9x:((�

1

^ � � � ^ �

n

) ^ �(x;y)) and 8x:((�

1

^ � � � ^ �

n

)! �(x;y))

belong to LGF(�), provided that, for every variable x in x and every variable

z in x or y, there is an atom �

j

(the guard) suh that x and z our in �

j

.

An exat omplexity result for the satis�ability problem of the loosely guarded

fragment was shown by Gr�adel [11℄. It turned out that the omplexity of the

satis�ability problem in LGF(�) depends on the arity of the relation symbols

in the signature �. In general, the problem is 2-ExpTime-omplete. However,

if the arity of all relation symbols in � is bounded by a onstant, then the

satis�ability problem for LGF(�) is \only" ExpTime-omplete; in partiular,

this is the ase if � is �nite.

The de�nition of the loosely guarded fragment of FO gives rise to the de�ni-

tion of a orresponding fragment of CGs, whih we will all the loosely guarded

fragment of CGs. The restritions de�ning this fragment guarantee that all quan-

ti�ers in the FO translation of a loosely guarded graph an either be eliminated,

or are loosely guarded in the sense of Def. 1. The same must apply to any vari-

able appearing free in a sub-formula of the FO translation of a loosely guarded

graph. To state the appropriate restritions on the CGs, we identify the nodes

representing free and bound variables in the ontexts of a graph. These will be

the new and external nodes introdued in the following de�nition.

De�nition 2. Let G = hp; orefi be a CG over S. A onept node  2 C(p)

ontained in a ontext q of p is alled external i� it has a oreferene link to

a stritly dominating onept node. It is alled old i� it satis�es one of the

following onditions:

{  is an external or an individual onept node.

{  is linked by a oreferene link to another old node in the same ontext q.

Nodes that are not old are alled new.

In the CG of Fig. 2, 

3

; 

5

; 

6

are external nodes while 

1

; 

2

; 

4

are new nodes.

Note that 

4

is a new node even though it is linked by a hain of oreferene

links to the old node 

5

. This is a desired e�et of the de�nition sine oreferene

links inside one ontext express equality of onept nodes, while the oreferene

links from 

4

and 

5

to 

6

are used to express inequality of 

4

and 

5

.

De�nition 3 (The loosely guarded fragment of oneptual graphs). A

CG G = hp; orefi 2 CG(S) is alled loosely guarded i� it satis�es the following:

1. If (

1

; 

2

) 2 oref and the ontext p

1

of 

1

stritly dominates the ontext p

2

of



2

, then for eah ontext q suh that q lies between p

1

and p

2

(i.e. p

1

stritly

dominates q and q stritly dominates p

2

) it holds that q is labeled by a simple

graph g ontaining no new nodes.



>

C

: �

>

C

: �

>

C

: �

>

C

: �

>

C

: �

>

C

: �

1

2

hasO�s.

>

C

: �

>

C

: �

>

C

: �

hasO�s.

>

C

: �

1

2

2

1

1

2

1

2

hasO�s.

hasO�s.

hasO�s.

hasO�s.



1



2



3



4

>

C

: �

>

C

: �

1

2



5



6

Fig. 5. Two graphs that are not loosely guarded.

2. For eah simple graph g = hC;R;E; `i labeling a ontext of G, either g

ontains no new nodes, or g satis�es the following: if C = fg, then type() 6=

>

C

or there is an r 2 R suh that (; r) 2 E; if jCj > 1, then for eah pair of

distint nodes ; d 2 C suh that  is new and d is not an individual onept

node, there is an r 2 R satisfying f(; r); (d; r)g � E.

With lgCG(S) we denote the set of all loosely guarded CGs over the support S.

An example of a lgCG is the graph in Fig. 2. In fat, Property 1 is obviously

satis�ed sine no oreferene link rosses more than one ontext. Property 2 is

satis�ed as well; for example, in the ontext p

2

, the new node 

4

shares a relation

node with both 

3

and 

5

. The nodes 

2

and 

4

need not be adjaent to the same

relation node sine both are old nodes.

CGs that violate one of the properties required by Def. 3 need not be equiv-

alent to a loosely guarded FO formula. For example, transitivity of a binary

relation symbol is an assertion that annot be expressed by a loosely guarded

formula [11℄. Figure 5 shows two CGs that assert transitivity of the binary re-

lation hasO�spring. The upper graph is not loosely guarded beause it violates

Property 2: 

1

and 

3

are both new nodes, but they are not adjaent to the same

relation node. The lower graph is not loosely guarded beause it violates Prop-

erty 1: 

4

and 

6

are linked by a oreferene link that spans a ontext ontaining

the new node 

5

.

Note that, even though the de�nition of lgCGs may look quite omplex at �rst

sight, it is a purely syntati de�nition using easily testable properties of graphs.

Indeed, it is easy to show that membership of a given CG over S in lgCG(S) an

be tested in polynomial time [2℄. The name \loosely guarded fragment of CGs"

is justi�ed by the main theorem of this setion:



Theorem 3. Let S = hN

C

; N

R

; N

I

i be a support and let �

S

be the orrespond-

ing FO signature �

S

= N

C

[N

R

[N

I

.

1. For eah G 2 lgCG(S) there exists a formula '

G

2 LGF(�

S

) suh that '

G

is equivalent to �(G). In addition, '

G

is omputable from G in polynomial

time.

2. For eah losed formula ' 2 LGF(�

S

) there is a graph G

'

2 lgCG(S) suh

that �(G

'

) is equivalent to '. In addition, G

'

is omputable from ' in

polynomial time.

A omplete proof of this theorem an be found in [2℄. Here, we will illustrate the

main idea underlying the proof of the �rst part, using the example in Fig. 2. The

transformation of �(G) into a loosely guarded formula works indutively over the

struture of G. Hene, we start with the innermost ontext p

3

of G. The formula

'

3

(x

4

; x

5

) := �(p

3

) = 9x

6

:(x

6

:

= x

6

^ x

6

:

= x

4

^ x

6

:

= x

5

) is loosely guarded,

and it is equivalent to the simpler loosely guarded formula '

0

3

= x

4

:

= x

5

. The

formula for the ontext p

2

,

'

2

(x

1

; x

2

) := �(p

2

) = 9x

3

x

4

x

5

:(x

3

:

= x

1

^ x

5

:

= x

2

^ Human(x

4

) ^

hasChild(x

4

; x

3

) ^ likes(x

4

; x

5

) ^ :'

0

3

(x

4

; x

5

));

is not loosely guarded. In order to obtain a loosely guarded formula, we eliminate

the identi�ers of the old nodes (in this ase x

3

; x

5

) together with their quanti�ers,

using the fat that '

2

ontains the onjunts x

3

:

= x

1

and x

5

:

= x

2

. Re-ordering

the onjunts yields the formula

'

0

2

(x

1

; x

2

) = 9x

4

:(hasChild(x

4

; x

1

) ^ likes(x

4

; x

2

) ^ Human(x

4

) ^ x

4

6

:

= x

2

);

whih is loosely guarded and equivalent to '

2

. The neessary guards are given

by the �rst two onjunts, whih orrespond to the relation nodes adjaent to



3

, 

4

, 

5

. The existene of suh nodes in a loosely guarded graph is guaranteed

by Property 2 of Def. 3.

Sine the ontext p

1

does not ontain old nodes, the next steps (in whih we

also treat the two negation signs) diretly yields the loosely guarded equivalent

'

G

of �(G) = �(p):

'

G

:= :9x

1

x

2

:(hasChild(x

2

; x

1

) ^ Human(x

1

) ^ Human(x

2

) ^ :'

0

2

(x

1

; x

2

)):

Summing up, the tehniques used to transform �(p) into its loosely guarded

equivalent '

G

are: (1) Elimination of identi�ers and the orresponding quanti�ers

for old nodes; and (2) using Property 2 of Def. 3 to �nd the appropriate guards for

the remaining quanti�ed variables. As has already been pointed out, Property 1

of Def. 3 is neessary to ensure that no free variable of a sub-formula esapes

the guards (see Fig. 5).

The following theorem is an immediate onsequene of part 1 of Theorem 3

and the known omplexity results for the loosely guarded fragment of FO.

Theorem 4. Let S be a �nite support. Then subsumption and validity of loosely

guarded CGs over S is deidable in deterministi exponential time.

Beause of part 2 of Theorem 3, the ExpTime-hardness result for LGF(�

S

) also

transfers to lgCG(S).



5 Conlusion

Although the haraterization of the loosely guarded fragment of oneptual

graphs may appear to be a bit omplex, it an easily be heked whether a

CG belongs to this fragment.It should also be easy to support the knowledge

engineer in designing CGs belonging to this fragment by showing external and

new nodes in di�erent olors, and by pointing out new nodes that are not yet

guarded. Another interesting point is that there are theorem-provers that are

omplete for FO, and behave as a deision proedure (i.e., always terminate)

for the loosely guarded fragment [8℄. If suh a prover is used to prove validity

of general CGs, then one automatially has a deision proedure if the CGs are

loosely guarded.
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