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Abstra
t. It is well-known that problems like validity and subsumption

of general CGs are unde
idable, whereas subsumption is NP-
omplete for

simple 
on
eptual graphs (SGs) and tra
table for SGs that are trees. We

will employ results on de
idable fragments of �rst-order logi
 to iden-

tify a natural and expressive fragment of CGs for whi
h validity and

subsumption is de
idable in ExpTime. In addition, we will extend exist-

ing work on the 
onne
tion between SGs and des
ription logi
s (DLs) by

identifying a DL that 
orresponds to the 
lass of SGs that are trees. This

yields a tra
tability result previously unknown in the DL 
ommunity.

1 Introdu
tion

Con
eptual graphs (CGs) are an expressive formalism for representing knowledge

about an appli
ation domain in a graphi
al way. Sin
e CGs 
an express all of

�rst-order predi
ate logi
 (FO), they 
an also be seen as a graphi
al notation for

FO formulae.

In knowledge representation, one is usually not only interested in representing

knowledge, one also wants to reason about the represented knowledge. For CGs,

one is, for example, interested in validity of a given graph, and in the question

whether one graph subsumes another one. Be
ause of the expressiveness of the

CG formalism, these reasoning problems are unde
idable for general CGs. In

the literature [14, 16, 12℄ one 
an �nd 
omplete 
al
uli for validity of CGs, but

implementations of these 
al
uli have the same problems as theorem provers

for FO: they may not terminate for formulae that are not valid, and they are

very ineÆ
ient. To over
ome this problem, one 
an either employ in
omplete

reasoners, or try to �nd de
idable (or even tra
table) fragments of the formalism.

This paper investigates the se
ond alternative.

The most prominent de
idable fragment of CGs is the 
lass of simple 
on
ep-

tual graphs (SGs), whi
h 
orresponds to the 
onjun
tive, positive, and existential

fragment of FO (i.e., existentially quanti�ed 
onjun
tions of atoms). Even for

this simple fragment, however, subsumption is still an NP-
omplete problem [5℄.

SGs that are trees provide for a tra
table fragment of SGs, i.e., a 
lass of simple

?

This work was partially supported by the Deuts
he Fors
hungsgemeins
haft Grant

No. GRK 185/3-98 and Proje
t No. GR 1324/3-1




on
eptual graphs for whi
h subsumption 
an be de
ided in polynomial time

[13℄. In this paper, we will, on the one hand, des
ribe a de
idable fragment of

CGs that is 
onsiderably more expressive than SGs. On the other hand, we will

identify a tra
table fragment of SGs that is larger than the 
lass of trees.

Instead of trying to prove new de
idability or tra
tability results for CGs

from s
rat
h, our idea was to transfer de
idability results from �rst-order logi
s

[4℄ and from des
ription logi
s [9, 10℄ to CGs. The goal was to obtain \natural"

sub-
lasses of the 
lass of all CGs in the sense that these sub-
lasses are de�ned

dire
tly by synta
ti
 restri
tions on the graphs, and not by 
onditions on the

�rst-order formulae obtained by translating CGs into FO.

Although des
ription logi
s (DLs) and CGs are employed in very similar ap-

pli
ations (e.g., for representing the semanti
s of natural language senten
es),

it turned out that these two formalisms are quite di�erent for several reasons:

(1) 
on
eptual graphs

1

are interpreted as 
losed FO formulae, whereas DL 
on-


ept des
riptions are interpreted by formulae with one free variable; (2) most

DLs do not allow for relations of arity > 2; (3) SGs are interpreted by existential

senten
es, whereas almost all DLs 
onsidered in the literature allow for universal

quanti�
ation; (4) be
ause DLs use a variable-free syntax, 
ertain identi�
ations

of variables expressed by 
y
les in SGs and by 
o-referen
e links in CGs 
annot

be expressed in DLs. As a 
onsequen
e of these di�eren
es, we 
ould not identify

a natural fragment of CGs 
orresponding to an expressive DL whose de
idability

was already shown in the literature. We 
ould, however, obtain a new tra
tabil-

ity result for a DL 
orresponding to SGs that are rooted, ar
- and node labeled

trees. This 
orresponden
e result stri
tly extends the one in [7℄. In addition, we

have extended the tra
tability result from SGs that are trees to SGs that 
an be

transformed into trees using a 
ertain \
y
le-
utting" operation.

An interesting de
idable fragment of FO, whi
h has re
ently been introdu
ed

by van Benthem [15℄, is the so-
alled loosely guarded fragment of FO. It 
ontains

(the �rst-order translations of) many modal logi
s and des
ription logi
s, but

is not restri
ted to unary and binary relations. We 
ould identify a fragment of

CGs 
orresponding to the loosely guarded fragment of FO in the sense that the

�rst-order translation of CGs belonging to this fragment are equivalent (though

not ne
essarily identi
al) to a loosely guarded formula, and every loosely guarded

formula 
an be obtained in this manner. The 
hara
terization of this fragment

is given by synta
ti
 restri
tions on the graphs, and for a given graph it is easily

de
idable whether it belongs to this fragment.

2 Preliminaries

To �x our notation, we re
all basi
 de�nitions and results on 
on
eptual graphs.

Basi
 ontologi
al knowledge from the appli
ation domain is 
oded in the sup-

port, whi
h is a stru
ture of the form S = hN

C

; N

R

; N

I

i. Here N

C

is the set of


on
ept types, whi
h is ordered by a partial order �

C

expressing the is-a-kind-of

1

Here, we restri
t our attention to the �rst order fragment of CGs.
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Fig. 1. An example of a support.

relation between 
on
ept types. We require N

C

to 
ontain a distinguished ele-

ment >

C

representing the entire domain, i.e., >

C

is the greatest element w.r.t.

�

C

. Similarly, the set of relation types, N

R

, is ordered by a partial order �

R

.

Ea
h element of N

R

has a �xed arity, and relation types with di�erent arity

are in
omparable by �

R

. The set of individual markers is denoted by N

I

; an

additional generi
 marker is denoted by �. We de�ne a partial order �

I

on

N

I

[f�g su
h that � is the greatest element, and all other elements are pairwise

in
omparable.

Throughout the paper, we 
onsider examples over the support hN

C

; N

R

; N

I

i

shown in Fig. 1, where all relation types are assumed to have arity 2.

A simple graph (SG) over the support S is a labeled bipartite graph of the

form g = hC;R;E; `i, where C and R are the node sets, 
alled 
on
ept nodes and

relation nodes, respe
tively, and E � C � R is the edge relation. The labeling

` labels g in the following way: Ea
h 
on
ept node 
 2 C is labeled by a pair

`(
) = (type(
); ref(
)) 2 N

C

� (N

I

[ f�g), 
alled the type and the referent of


. If ref(
) = �, then 
 is 
alled a generi
 
on
ept node, otherwise 
 is 
alled an

individual 
on
ept node. Ea
h relation node r 2 R is labeled with a relation type

`(r) 2 N

R

. All edges that are in
ident to the same relation node are labeled by

` with sets of natural numbers in su
h a way that, if `(r) has arity n, then all

numbers from f1; : : : ; ng appear exa
tly on
e in these labels. The 
on
ept node


 linked to r by an edge with j 2 `(
; r) is 
alled the jth neighbor of r and is

denoted by r(j). The set of all simple graphs over S is denoted by SG(S).

SGs 
an be 
ombined into more 
omplex stru
tures 
alled graph propo-

sitions. A graph proposition p is a negated graph proposition, or a box that


ontains a SG (whi
h may be empty) and �nitely many graph propositions (see

Fig. 2). These boxes are also 
alled the 
ontexts of the proposition. We require

that all simple graphs appearing in a graph proposition have disjoint node sets.

In a linear notation one 
an represent graph propositions as expressions gener-

ated by the EBNF grammar

p ::=

�

g p

�

�

j :p;

where g stands for a SG. For ea
h SG g in p there is exa
tly one 
ontext p

0

whi
h


ontains g at top level. This 
ontext is 
alled the 
ontext of g, and we say that p

0


ontains all nodes of g. We say that a 
ontext p (stri
tly) dominates a 
ontext q
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Fig. 2. An example of a 
on
eptual graph.

i� q is (stri
tly) 
ontained in p. The set of all 
on
ept nodes of all simple graphs

o

urring in p is denoted by C(p).

A 
on
eptual graph (CG) over the support S is a pair G = hp; 
orefi,

where p is a graph proposition over S and 
oref, the set of 
oreferen
e links,

is a symmetri
 binary relation over C(p) satisfying the following property: for

ea
h pair of 
on
ept nodes (


1

; 


2

) 2 
oref 
ontained in the 
ontexts p

1

and p

2

,

respe
tively, either p

1

dominates p

2

or p

2

dominates p

1

. We denote the set of all

CGs over S by CG(S).

An example of a CG built over the support from Fig. 1 is shown in Fig. 2

using the usual graphi
al notation. It asserts that for ea
h parent and 
hild there

is another parent of that 
hild who likes the �rst parent (see the translation of

this graph into FO below). The extra markers p

i

and 


i

will be used in a later

se
tion of this paper to refer to the di�erent parts of the CG.

Both SGs and CGs are given a semanti
s in FO by the operator �. Let

G = hp; 
orefi 2 CG(S) be the CG to be translated, and let V be a 
ountably

in�nite set of variables. Firstly, we �x two mappings id and links as follows:

id assigns a unique variable to ea
h generi
 
on
ept node 
 2 C(p), and its

individual marker to ea
h individual 
on
ept node; we de�ne links(
) to 
onsist

of id(


0

) of all 
on
ept nodes 


0

that are linked to 
 by a 
oreferen
e link and are


ontained in a 
ontext dominating the 
ontext of 
. The triple

b

G = hp; id; linksi

obtained this way is translated by � into FO as follows:

{ For a SG g = hC;R;E; `i we de�ne �(g) =

V


2C

�(
) ^

V

r2R

�(r), where

�(
) :=

^

s2links(
)

id(
)

:

= s ^

(

id(
)

:

= id(
) if type(
) = >

C

P (id(
)) if type(
) = P

;

and, for a relation node r with `(r) = S of arity n,

�(r) := S(id(r(1)); : : : ; id(r(n))):

The quanti�er pre�x of g is �

p

(g) := 9x

1

: : :9x

k

, where fx

1

; : : : ; x

k

g :=

fid(
) j 
 2 Cg \ V .



{ The operator � is de�ned by indu
tion on the stru
ture of graph propositions:

� �

�

g p

1

: : : p

m

�

:= �

p

(g):

�

�(g) ^

^

j=1;:::;m

�(p

j

)

�

,

� �

�

:p

�

:= :�

�

p

�

.

For a SG g we de�ne its FO semanti
s �(g) by �

p

(g):�(g).

To translate the graph G from Fig. 2, we set id(


i

) = x

i

(i = 1; : : : ; 6). For

links, this yields links(


3

) = fx

1

g, links(


5

) = fx

2

g, links(


6

) = fx

4

; x

5

g, and

links(


i

) = ; for i = 1; 2; 4. After eliminating equalities of the form x

i

:

= x

i

we

obtain the following FO formula:

�(G) = :(9x

1

x

2

:(Human(x

1

) ^ Human(x

2

) ^ hasChild(x

2

; x

1

) ^

:(9x

3

x

4

x

5

:(x

3

:

= x

1

^ x

5

:

= x

2

^ Human(x

4

) ^

hasChild(x

4

; x

3

) ^ likes(x

4

; x

5

) ^

:(9x

6

:(x

6

:

= x

4

^ x

6

:

= x

5

))))))

Note that the sub-formula :(9x

6

:(x

6

:

= x

4

^ x

6

:

= x

5

) only expresses x

4

6

:

= x

5

.

We 
an also de�ne the semanti
s of the order relations in the support by a FO

formula. For a given support S = hN

C

; N

R

; N

I

i, the partial orders �

C

and �

R

are interpreted as follows: P

1

�

C

P

2


orresponds to the formula 8x:P

1

(x) !

P

2

(x), and for two relation types of arity n, S

1

�

R

S

2

yields the formula

8x

1

: : : x

n

:S

1

(x

1

; : : : ; x

n

) ! S

2

(x

1

; : : : ; x

n

). We de�ne �(S) to be the 
onjun
-

tion of all these formulae.

Validity with respe
t to a support S for a CG G 
an be de�ned with

the help of the operator �: G is valid i� �(S)! �(G) is a valid FO formula.

Subsumption with respe
t to a support S for two SGs or CGs G;H is

de�ned as follows: G is subsumed by H (G v H) i� �(S) ^ �(G) ! �(H) is a

valid FO formula.

A SG g is said to be in normal form i� ea
h individual marker a 2 N

I

appears at most on
e as a referent of a 
on
ept node in g. Subsumption of two

simple graphs g; h 
an be 
hara
terized by the existen
e of 
ertain homomor-

phisms from h to g. To be more pre
ise, if there exists a homomorphism from h

to g, then g v h [14℄, and if g v h then there is su
h a homomorphism provided

that g is in normal form [5℄.

Subsumption for SGs over a support S is an NP-
omplete problem [5℄. Like

Peir
e's existential graphs, CGs are as expressive as FO formulae [14℄. Thus,

validity and subsumption for CGs are unde
idable.

3 A Tra
table Fragment of Simple Graphs

In this se
tion, we introdu
e the des
ription logi
 ELIRO

1

as well as the 
lass of

rooted SGs. We will show that ELIRO

1

-
on
ept des
riptions 
an be translated

into equivalent rooted SGs that are trees, and thus that subsumption in ELIRO

1


an be de
ided in polynomial time. In addition, we extend the known tra
tability

result for trees to a larger fragment of SGs.



Table 1. Syntax and semanti
s of ELIRO

1

-
on
ept des
riptions.

Constru
t name Syntax Semanti
s

top-
on
ept > x = x

primitive 
on
ept P 2 N

C

P P (x)


onjun
tion C uD 	

C

(x) ^ 	

D

(x) EL

existential restri
tion 9r:C 9y:	

r

(x; y) ^ 	

C

(y)


onstant a 2 N

I

fag x = a O

1

primitive role r 2 N

R

r r(x; y)

inverse role for r 2 N

R

r

�

r(y; x) I

role 
onjun
tion r

1

u r

2

	

r

1

(x; y) ^ 	

r

2

(x; y) R

Des
ription Logi
s

In DLs, knowledge from an appli
ation domain is represented by so-
alled 
on-


ept des
riptions. Con
ept and role des
riptions are indu
tively de�ned with the

help of a set of 
onstru
tors, starting with a set N

I

of 
onstants, a set N

C

of

primitive 
on
epts, and a set N

R

of primitive roles. The 
onstru
tors determine

the expressive power of the DL. In this paper, we 
onsider 
on
ept des
riptions

built from the 
onstru
tors shown in Table 1. The resulting DL is denoted by

ELIRO

1

. Due to the fa
t that referents of individual 
on
ept nodes in SGs are

single 
onstants a 2 N

I

, we restri
t ourselves to ELIRO

1

-
on
ept des
riptions in

whi
h ea
h 
onjun
tion 
ontains at most one 
onstant.

The semanti
s of a 
on
ept des
ription C (resp. a role des
ription r) is de�ned

by a FO formula 	

C

(x) with one free variable (resp. 	

r

(x; y) with two free

variables): see Table 1 for the indu
tive de�nition of these formulae. Given an

interpretation I = (�; �

I

) of the signature hN

C

; N

R

; N

I

i, the 
on
ept des
ription

C is interpreted as C

I

:= fÆ 2 � j I j= 	

C

(Æ)g.

For example, the 
on
ept des
ription

D = Female u 9likes:Male u 9has-
hild:(Student u 9attends:CS
ourse)

des
ribes all women who like a man and have a 
hild that is a student attending

a CS
ourse. The semanti
s of D is given by the following FO formula:

	

D

(x

0

) = Female(x

0

) ^ 9x:(likes(x

0

; x) ^Male(x)) ^

9y:(has-
hild(x

0

; y) ^ Student(y) ^ 9z:(attends(y; z) ^ CS
ourse(z))):

In order to obtain a stru
tured representation of the knowledge about the ap-

pli
ation domain one is interested in the subsumption hierar
hy formed by the


on
ept des
riptions. Using their FO semanti
s, subsumption between 
on
ept

des
riptions is de�ned as C v D i� 8x

0

:	

C

(x

0

)! 	

D

(x

0

) is valid.

Rooted Simple Graphs

We are interested in a 
lass of SGs 
orresponding to ELIRO

1

-
on
ept des
rip-

tions. On the one hand, we must restri
t our attention to 
onne
ted SGs over



a support S = hN

C

; N

R

; N

I

i 
ontaining only binary relation types, be
ause

ELIRO

1

-roles 
orrespond to binary relations and, as we will see, ELIRO

1

-
on
ept

des
riptions always des
ribe 
onne
ted stru
tures. Be
ause of the restri
tion to

binary relations, we 
an dispense with expli
it relation nodes: instead we 
onsider

dire
ted edges between 
on
ept nodes labeled by a relation type.

On the other hand, we must (1) deal with the di�erent semanti
s of SGs

and 
on
ept des
riptions (
losed formulae vs. formulae with one free variable),

and (2) introdu
e 
onjun
tions of types in SGs sin
e 
onjun
tions of primitive


on
epts may o

ur in ELIRO

1

-
on
ept des
riptions. In order to handle (2), we

allow for 
on
ept nodes labeled by a set of 
on
ept types fP

1

; : : : ; P

n

g � N

C

,

where the empty set 
orresponds to >

C

. Due to (1), we extend the notion of

SGs by introdu
ing one distinguished 
on
ept node 
alled the root of the SG.

Formally, we restri
t the attention to unordered supports hN

C

; N

R

; N

I

i where

the orders on N

C

and N

R

are the identity relations.

2

Given su
h an unordered

support hN

C

; N

R

; N

I

i we de�ne a rooted SG G = (V;E; 


0

; `) over this support

as a SG where V is a set of 
on
ept nodes, E � V �N

R

� V is a set of dire
ted

edges labeled by relation types from N

R

, 


0

is the root of G, and ` labels ea
h


 2 V by a set of 
on
ept types fP

1

; : : : ; P

n

g � N

C

and a referent from N

I

[f�g.

Given an interpretation I = (�; �

I

) of hN

C

; N

R

; N

I

i, the semanti
s of a

rooted SG G is given by fÆ 2 � j I j= �(G)(Æ)g, where � is an extension of

the � operator from SGs to rooted SGs. To be more pre
ise, the FO formula

�(G)(x

0

) with one free variable x

0

is obtained from G as follows. Let id : V !

(V n fx

0

g)[N

I

be a mapping as de�ned in Se
tion 2. Ea
h 
on
ept node 
 2 V

with type(
) = fP

1

; : : : ; P

n

g yields a 
onjun
tion P

1

(id(
))^ : : :^P

n

(id(
)), and

ea
h edge 


1

r


2

2 E yields r(id(


1

); id(


2

)). Now, �(G)(x

0

) is de�ned as the


onjun
tion of x

0

:

= id(


0

) and the formulae 
orresponding to 
on
ept nodes

and edges, where all variables ex
ept x

0

are existentially quanti�ed.

For example, the rooted SG G

1

with root 


0

depi
ted in Fig. 3 des
ribes all

women that are a daughter of Peter, and have a dear son that likes Peter and is

a student attending the CS
ourse number KR101.

Just as for SGs, subsumption between rooted SGs 
an be 
hara
terized by

the existen
e of a homomorphism. Here, the notion of a homomorphism between

SGs w.r.t. a support S [6℄ must be adapted to rooted SGs. A homomorphism

from H = (V

H

; E

H

; d

0

; `

H

) to G = (V

G

; E

G

; 


0

; `

G

) is a mapping ' : V

H

! V

G

su
h that (1) '(d

0

) = 


0

, (2) type

H

(d) � type

G

('(d)) and ref

H

(d) �

I

ref

G

('(d))

for all d 2 V

H

, and (3) '(d)r'(d

0

) 2 E

G

for all drd

0

2 E

H

.

The proof of the following theorem in [3℄ is similar to the proof of soundness

and 
ompleteness of the 
hara
terization of subsumption in [6℄.

Theorem 1. Let G be a rooted SG in normal form and H a rooted SG. Then

G v H i� there exists a homomorphism from H to G.

2

It should be noted that the restri
tion to unordered supports is without loss of

generality sin
e the order relation on N

C


an be en
oded into the type set labels,

and the one on N

R

into multiple edges between nodes. Vi
e versa, the introdu
tion

of sets of types is not a real extension sin
e their e�e
t 
an be simulated by an

appropriately extended ordered support (see [3℄ for details).
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For example, the rooted SG G

2

with root d

0

depi
ted in Fig. 3 subsumes G

1

be
ause mapping d

0

onto 


0

, d

1

and d

3

onto 


2

, and d

2

onto 


3

yields a homo-

morphism from G

2

to G

1

.

Unlike SGs over an arbitrary support, rooted SGs 
an be transformed (in

polynomial time) into equivalent rooted SGs in normal form by identifying all


on
ept nodes 


1

; : : : ; 


n

having the same referent a 2 N

I

and de�ning the type

set of the resulting 
on
ept node as

S

1�i�n

type(


i

).

For SGs over a support S, subsumption is known to be an NP-
omplete

problem. The known algorithms de
iding g v h w.r.t. S are based on the 
har-

a
terization of subsumption by homomorphisms, and thus require the subsumee

g to be in normal form. In order to obtain a subsumption algorithm for rooted

SGs, we must simply adjust the 
onditions tested for nodes and edges a

ording

to the modi�ed 
onditions on homomorphisms between rooted SGs. Conversely,

subsumption of SGs w.r.t. S 
an be redu
ed to subsumption of rooted SGs [3℄.

This shows that subsumption for rooted SGs is also an NP-
omplete problem.

In [13℄, a polynomial-time algorithm is introdu
ed that 
an de
ide g v t

w.r.t. a support S provided that t is a tree and g is a SG in normal form. In

this 
ontext, a SG t is 
alled a tree i� t 
ontains no 
y
les of length greater

than 2. The notion of a tree 
an be adapted to rooted SGs T by viewing T

as an undire
ted graph. A simple modi�
ation of the algorithm in [13℄ yields a

polynomial time algorithm de
iding G v T for a rooted SG T that is a tree and

a rooted SG G in normal form [3℄.

Now, we will show that this algorithm also yields a polynomial-time algorithm

for subsumption of ELIRO

1

-
on
ept des
riptions.

Translating 
on
ept des
riptions into rooted simple graphs

The main idea underlying the translation is to represent a 
on
ept des
ription

C as a tree T

C

. Intuitively, C is represented by a tree with root 


0

where all

atomi
 
on
epts and 
onstants o

urring in the top-level 
onjun
tion of C yield

the label of 


0

, and ea
h existential restri
tion 9r:C

0

in this 
onjun
tion yields

an r-su

essor that is the root of the tree 
orresponding to C

0

. For example, the


on
ept des
ription C below yields the tree T

C

in Fig. 4:



fFemaleg : �

; : Peter fMale, Studentg : �

fCS
ourseg : KR101; : Peter

attends

has-
hildlikes




2

likes

has-
hild




4

: Peter 


3

: CS
ourse,KR101




2

: Male, Student


1

: Peter




0

: Female

attendslikes

has-
hild

�

likes u has-
hild

T

C

: G

C

:




4




1




0




3

Fig. 4. Translating ELIRO

1

-
on
ept des
riptions into rooted simple graphs.

C := Female u 9has-
hild

�

:fPeterg u 9(likes u has-
hild):

(Male u Student u 9attends:(CS
ourse u fKR101g) u 9likes:fPeterg).

Now, we 
an de�ne the rooted SG G

C


orresponding to C as follows. The nodes

in T

C

yield the set of 
on
ept nodes V of G

C

. The label `(
) of a 
on
ept node


 2 V is determined by the label `

T

(
) of 
 in T

C

, i.e., type(
) is the set of all

atomi
 
on
epts o

urring in `

T

(
) and, if there is a 
onstant a 2 `

T

(
), then

ref(
) := a; otherwise ref(
) := �. Note that ref(
) is well-de�ned be
ause we have

restri
ted ELIRO

1

-
on
ept des
riptions to those 
ontaining at most one 
onstant

in ea
h 
onjun
tion. Finally, the set of edges of G

C

is obtained from the edges

in T

C

: 
onjun
tions of roles are de
omposed (
(r

1

u : : : u r

n

)d yields n edges


r

1

d; : : : ; 
r

n

d) and inverse roles are redire
ted (
r

�

d yields the edge dr
). In

our example, we obtain the rooted SG G

C

depi
ted in Fig. 4, whi
h is a tree.

Using the re
ursive de�nition of the tree T

C

, it 
an be shown [3℄ that C is

equivalent to G

C

, i.e., 8x

0

:	

C

(x

0

) $ �(G

C

)(x

0

) is a valid FO formula. Con-

versely, any rooted SG G that is a tree 
an be translated into an equivalent


on
ept des
ription C

G

[3℄. Thus, there is a 1{1 
orresponden
e between ELIRO

1

-


on
ept des
riptions and rooted SGs that are trees. Be
ause of this 
orrespon-

den
e, we 
an redu
e subsumption in ELIRO

1

to subsumption between rooted

SGs, i.e., C v D i� G

C

v G

D

. Sin
e G

C

is a tree and G

D


an be transformed into

normal form (in polynomial time), subsumption for ELIRO

1

-
on
ept des
ription

is polynomial-time de
idable by applying the polynomial-time algorithm men-

tioned above to the tree G

C

and the normal form of G

D

. This yields the following

tra
tability result for ELIRO

1

[3℄:

Theorem 2. Subsumption C v D of ELIRO

1

-
on
ept des
riptions 
an be de-


ided in time polynomial in the size of C and D.

Stri
tly speaking, the above argument shows tra
tability only for 
on
ept de-

s
riptions where ea
h 
onjun
tion 
ontains only one 
onstant. The result 
an,

however, easily be extended to general ELIRO

1

-
on
ept des
riptions [3℄.

Extending the tra
tability result

We will now extend the tra
tability result from (rooted) SGs that are trees to



(rooted) SGs that 
an be transformed into trees by \
utting 
y
les" of length

greater than 2. For a given rooted SG G, we 
an eliminate an (undire
ted) 
y
le




0

; : : : ; 


n

where 


0

= 


n

in G by applying the split-operation on 
on
ept nodes

as introdu
ed for SGs in [5℄. To be more pre
ise, we (1) arbitrarily 
hoose a node




i

2 f


1

; : : : ; 


n

g, (2) introdu
e a new node 
 labeled like 


i

, and (3) repla
e all

edges between 


i�1

and 


i

by edges between 


i�1

and 
. We then say that the


y
le is 
ut in 


i

. Obviously, any 
y
li
 SG G 
an be transformed into an a
y
li


SG G

�

by applying this operation a polynomial number of times. In general,

however, the resulting SG G

�

need not be equivalent to G.

As an example, 
onsider the rooted SG G

1

in Fig. 3. On the one hand, we 
an

eliminate the 
y
le 


1

; 


0

; 


2

; 


1

by introdu
ing a new node 


4

with label (;; P eter)

and repla
ing the edge 


2

likes


1

by 


2

likes


4

. The resulting tree 
oin
ides with

the tree G

C

in Fig. 4, and it is equivalent to G

1

be
ause G

1

is a normal form of

G

C

. On the other hand, if we introdu
e a new node 
 labeled (fFemaleg; �) and

repla
e 


1

has-
hild


0

by 


1

has-
hild
, then the resulting tree is not equivalent to

G

C

be
ause the student's mother and Peter's 
hild need no longer to be the same

person.

The following proposition introdu
es a 
ondition on rooted SGs that ensures

that rooted SGs satisfying this 
ondition 
an be transformed into equivalent

trees by applying the split operation to individual 
on
ept nodes [3℄.

Proposition 1. If ea
h 
y
le of length greater than 2 in the rooted SG G 
on-

tains at least one individual node 
, then G 
an be transformed into an equivalent

tree G

�

in time polynomial in the size of G.

Consequently, G v H 
an be de
ided in polynomial time if G is a rooted SG in

normal form and H satis�es the premise of the proposition. It is easy to see that

this tra
tability result also applies to (non-rooted) SGs over a support.

4 The Loosely Guarded Fragment of Con
eptual Graphs

Due to the expressiveness of the CG formalism, all the interesting reasoning

problems (su
h as subsumption and validity) are unde
idable for general CGs.

We will identify a large 
lass of CGs for whi
h both validity and subsumption

are de
idable. This fragment, whi
h we will 
all loosely guarded fragment of CGs,

will be de�ned dire
tly by synta
ti
 restri
tions on graphs. This allows for an

eÆ
ient test for guardedness of graphs. The fragment 
orresponds to the so-


alled loosely guarded fragment of FO. In [1℄, the guarded fragment of FO was

de�ned in an attempt to �nd a generalization of modal logi
s that still enjoys the

ni
e properties of modal logi
s (like de
idability, �nite axiomatizability, et
.). In

the same work, de
idability of this fragment was shown. In [15℄, an even larger

de
idable fragment of FO was introdu
ed, the loosely guarded fragment.

De�nition 1. Let � be a set of 
onstant and relation symbols in
luding equality

(
alled the signature). The loosely guarded fragment LGF(�) of �rst-order logi


is de�ned indu
tively as follows:



1. Every atomi
 formula over � belongs to LGF(�).

2. LGF(�) is 
losed under the Boolean 
onne
tives :;^;_;!, and $.

3. If x;y are tuples of variables, if �(x;y) is a formula from LGF(�), and if

�

1

^ � � � ^ �

n

is a 
onjun
tion of atoms, then

9x:((�

1

^ � � � ^ �

n

) ^ �(x;y)) and 8x:((�

1

^ � � � ^ �

n

)! �(x;y))

belong to LGF(�), provided that, for every variable x in x and every variable

z in x or y, there is an atom �

j

(the guard) su
h that x and z o

ur in �

j

.

An exa
t 
omplexity result for the satis�ability problem of the loosely guarded

fragment was shown by Gr�adel [11℄. It turned out that the 
omplexity of the

satis�ability problem in LGF(�) depends on the arity of the relation symbols

in the signature �. In general, the problem is 2-ExpTime-
omplete. However,

if the arity of all relation symbols in � is bounded by a 
onstant, then the

satis�ability problem for LGF(�) is \only" ExpTime-
omplete; in parti
ular,

this is the 
ase if � is �nite.

The de�nition of the loosely guarded fragment of FO gives rise to the de�ni-

tion of a 
orresponding fragment of CGs, whi
h we will 
all the loosely guarded

fragment of CGs. The restri
tions de�ning this fragment guarantee that all quan-

ti�ers in the FO translation of a loosely guarded graph 
an either be eliminated,

or are loosely guarded in the sense of Def. 1. The same must apply to any vari-

able appearing free in a sub-formula of the FO translation of a loosely guarded

graph. To state the appropriate restri
tions on the CGs, we identify the nodes

representing free and bound variables in the 
ontexts of a graph. These will be

the new and external nodes introdu
ed in the following de�nition.

De�nition 2. Let G = hp; 
orefi be a CG over S. A 
on
ept node 
 2 C(p)


ontained in a 
ontext q of p is 
alled external i� it has a 
oreferen
e link to

a stri
tly dominating 
on
ept node. It is 
alled old i� it satis�es one of the

following 
onditions:

{ 
 is an external or an individual 
on
ept node.

{ 
 is linked by a 
oreferen
e link to another old node in the same 
ontext q.

Nodes that are not old are 
alled new.

In the CG of Fig. 2, 


3

; 


5

; 


6

are external nodes while 


1

; 


2

; 


4

are new nodes.

Note that 


4

is a new node even though it is linked by a 
hain of 
oreferen
e

links to the old node 


5

. This is a desired e�e
t of the de�nition sin
e 
oreferen
e

links inside one 
ontext express equality of 
on
ept nodes, while the 
oreferen
e

links from 


4

and 


5

to 


6

are used to express inequality of 


4

and 


5

.

De�nition 3 (The loosely guarded fragment of 
on
eptual graphs). A

CG G = hp; 
orefi 2 CG(S) is 
alled loosely guarded i� it satis�es the following:

1. If (


1

; 


2

) 2 
oref and the 
ontext p

1

of 


1

stri
tly dominates the 
ontext p

2

of




2

, then for ea
h 
ontext q su
h that q lies between p

1

and p

2

(i.e. p

1

stri
tly

dominates q and q stri
tly dominates p

2

) it holds that q is labeled by a simple

graph g 
ontaining no new nodes.



>

C

: �

>

C

: �

>

C

: �

>

C

: �

>

C

: �

>

C

: �

1

2

hasO�s.

>

C

: �

>

C

: �

>

C

: �

hasO�s.

>

C

: �

1

2

2

1

1

2

1

2

hasO�s.

hasO�s.

hasO�s.

hasO�s.




1




2




3




4

>

C

: �

>

C

: �

1

2




5




6

Fig. 5. Two graphs that are not loosely guarded.

2. For ea
h simple graph g = hC;R;E; `i labeling a 
ontext of G, either g


ontains no new nodes, or g satis�es the following: if C = f
g, then type(
) 6=

>

C

or there is an r 2 R su
h that (
; r) 2 E; if jCj > 1, then for ea
h pair of

distin
t nodes 
; d 2 C su
h that 
 is new and d is not an individual 
on
ept

node, there is an r 2 R satisfying f(
; r); (d; r)g � E.

With lgCG(S) we denote the set of all loosely guarded CGs over the support S.

An example of a lgCG is the graph in Fig. 2. In fa
t, Property 1 is obviously

satis�ed sin
e no 
oreferen
e link 
rosses more than one 
ontext. Property 2 is

satis�ed as well; for example, in the 
ontext p

2

, the new node 


4

shares a relation

node with both 


3

and 


5

. The nodes 


2

and 


4

need not be adja
ent to the same

relation node sin
e both are old nodes.

CGs that violate one of the properties required by Def. 3 need not be equiv-

alent to a loosely guarded FO formula. For example, transitivity of a binary

relation symbol is an assertion that 
annot be expressed by a loosely guarded

formula [11℄. Figure 5 shows two CGs that assert transitivity of the binary re-

lation hasO�spring. The upper graph is not loosely guarded be
ause it violates

Property 2: 


1

and 


3

are both new nodes, but they are not adja
ent to the same

relation node. The lower graph is not loosely guarded be
ause it violates Prop-

erty 1: 


4

and 


6

are linked by a 
oreferen
e link that spans a 
ontext 
ontaining

the new node 


5

.

Note that, even though the de�nition of lgCGs may look quite 
omplex at �rst

sight, it is a purely synta
ti
 de�nition using easily testable properties of graphs.

Indeed, it is easy to show that membership of a given CG over S in lgCG(S) 
an

be tested in polynomial time [2℄. The name \loosely guarded fragment of CGs"

is justi�ed by the main theorem of this se
tion:



Theorem 3. Let S = hN

C

; N

R

; N

I

i be a support and let �

S

be the 
orrespond-

ing FO signature �

S

= N

C

[N

R

[N

I

.

1. For ea
h G 2 lgCG(S) there exists a formula '

G

2 LGF(�

S

) su
h that '

G

is equivalent to �(G). In addition, '

G

is 
omputable from G in polynomial

time.

2. For ea
h 
losed formula ' 2 LGF(�

S

) there is a graph G

'

2 lgCG(S) su
h

that �(G

'

) is equivalent to '. In addition, G

'

is 
omputable from ' in

polynomial time.

A 
omplete proof of this theorem 
an be found in [2℄. Here, we will illustrate the

main idea underlying the proof of the �rst part, using the example in Fig. 2. The

transformation of �(G) into a loosely guarded formula works indu
tively over the

stru
ture of G. Hen
e, we start with the innermost 
ontext p

3

of G. The formula

'

3

(x

4

; x

5

) := �(p

3

) = 9x

6

:(x

6

:

= x

6

^ x

6

:

= x

4

^ x

6

:

= x

5

) is loosely guarded,

and it is equivalent to the simpler loosely guarded formula '

0

3

= x

4

:

= x

5

. The

formula for the 
ontext p

2

,

'

2

(x

1

; x

2

) := �(p

2

) = 9x

3

x

4

x

5

:(x

3

:

= x

1

^ x

5

:

= x

2

^ Human(x

4

) ^

hasChild(x

4

; x

3

) ^ likes(x

4

; x

5

) ^ :'

0

3

(x

4

; x

5

));

is not loosely guarded. In order to obtain a loosely guarded formula, we eliminate

the identi�ers of the old nodes (in this 
ase x

3

; x

5

) together with their quanti�ers,

using the fa
t that '

2


ontains the 
onjun
ts x

3

:

= x

1

and x

5

:

= x

2

. Re-ordering

the 
onjun
ts yields the formula

'

0

2

(x

1

; x

2

) = 9x

4

:(hasChild(x

4

; x

1

) ^ likes(x

4

; x

2

) ^ Human(x

4

) ^ x

4

6

:

= x

2

);

whi
h is loosely guarded and equivalent to '

2

. The ne
essary guards are given

by the �rst two 
onjun
ts, whi
h 
orrespond to the relation nodes adja
ent to




3

, 


4

, 


5

. The existen
e of su
h nodes in a loosely guarded graph is guaranteed

by Property 2 of Def. 3.

Sin
e the 
ontext p

1

does not 
ontain old nodes, the next steps (in whi
h we

also treat the two negation signs) dire
tly yields the loosely guarded equivalent

'

G

of �(G) = �(p):

'

G

:= :9x

1

x

2

:(hasChild(x

2

; x

1

) ^ Human(x

1

) ^ Human(x

2

) ^ :'

0

2

(x

1

; x

2

)):

Summing up, the te
hniques used to transform �(p) into its loosely guarded

equivalent '

G

are: (1) Elimination of identi�ers and the 
orresponding quanti�ers

for old nodes; and (2) using Property 2 of Def. 3 to �nd the appropriate guards for

the remaining quanti�ed variables. As has already been pointed out, Property 1

of Def. 3 is ne
essary to ensure that no free variable of a sub-formula es
apes

the guards (see Fig. 5).

The following theorem is an immediate 
onsequen
e of part 1 of Theorem 3

and the known 
omplexity results for the loosely guarded fragment of FO.

Theorem 4. Let S be a �nite support. Then subsumption and validity of loosely

guarded CGs over S is de
idable in deterministi
 exponential time.

Be
ause of part 2 of Theorem 3, the ExpTime-hardness result for LGF(�

S

) also

transfers to lgCG(S).



5 Con
lusion

Although the 
hara
terization of the loosely guarded fragment of 
on
eptual

graphs may appear to be a bit 
omplex, it 
an easily be 
he
ked whether a

CG belongs to this fragment.It should also be easy to support the knowledge

engineer in designing CGs belonging to this fragment by showing external and

new nodes in di�erent 
olors, and by pointing out new nodes that are not yet

guarded. Another interesting point is that there are theorem-provers that are


omplete for FO, and behave as a de
ision pro
edure (i.e., always terminate)

for the loosely guarded fragment [8℄. If su
h a prover is used to prove validity

of general CGs, then one automati
ally has a de
ision pro
edure if the CGs are

loosely guarded.
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