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Abstract. It is well-known that problems like validity and subsumption
of general CGs are undecidable, whereas subsumption is NP-complete for
simple conceptual graphs (SGs) and tractable for SGs that are trees. We
will employ results on decidable fragments of first-order logic to iden-
tify a natural and expressive fragment of CGs for which validity and
subsumption is decidable in EXPTIME. In addition, we will extend exist-
ing work on the connection between SGs and description logics (DLs) by
identifying a DL that corresponds to the class of SGs that are trees. This
yields a tractability result previously unknown in the DL community.

1 Introduction

Conceptual graphs (CGs) are an expressive formalism for representing knowledge
about an application domain in a graphical way. Since CGs can express all of
first-order predicate logic (FO), they can also be seen as a graphical notation for
FO formulae.

In knowledge representation, one is usually not only interested in representing
knowledge, one also wants to reason about the represented knowledge. For CGs,
one is, for example, interested in validity of a given graph, and in the question
whether one graph subsumes another one. Because of the expressiveness of the
CG formalism, these reasoning problems are undecidable for general CGs. In
the literature [14,16,12] one can find complete calculi for validity of CGs, but
implementations of these calculi have the same problems as theorem provers
for FO: they may not terminate for formulae that are not valid, and they are
very inefficient. To overcome this problem, one can either employ incomplete
reasoners, or try to find decidable (or even tractable) fragments of the formalism.
This paper investigates the second alternative.

The most prominent decidable fragment of CGs is the class of simple concep-
tual graphs (SGs), which corresponds to the conjunctive, positive, and existential
fragment of FO (i.e., existentially quantified conjunctions of atoms). Even for
this simple fragment, however, subsumption is still an NP-complete problem [5].
SGs that are trees provide for a tractable fragment of SGs, i.e., a class of simple
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conceptual graphs for which subsumption can be decided in polynomial time
[13]. In this paper, we will, on the one hand, describe a decidable fragment of
CGs that is considerably more expressive than SGs. On the other hand, we will
identify a tractable fragment of SGs that is larger than the class of trees.

Instead of trying to prove new decidability or tractability results for CGs
from scratch, our idea was to transfer decidability results from first-order logics
[4] and from description logics [9,10] to CGs. The goal was to obtain “natural”
sub-classes of the class of all CGs in the sense that these sub-classes are defined
directly by syntactic restrictions on the graphs, and not by conditions on the
first-order formulae obtained by translating CGs into FO.

Although description logics (DLs) and CGs are employed in very similar ap-
plications (e.g., for representing the semantics of natural language sentences),
it turned out that these two formalisms are quite different for several reasons:
(1) conceptual graphs! are interpreted as closed FO formulae, whereas DL con-
cept descriptions are interpreted by formulae with one free variable; (2) most
DLs do not allow for relations of arity > 2; (3) SGs are interpreted by existential
sentences, whereas almost all DLs considered in the literature allow for universal
quantification; (4) because DLs use a variable-free syntax, certain identifications
of variables expressed by cycles in SGs and by co-reference links in CGs cannot
be expressed in DLs. As a consequence of these differences, we could not identify
a natural fragment of CGs corresponding to an expressive DL whose decidability
was already shown in the literature. We could, however, obtain a new tractabil-
ity result for a DL corresponding to SGs that are rooted, arc- and node labeled
trees. This correspondence result strictly extends the one in [7]. In addition, we
have extended the tractability result from SGs that are trees to SGs that can be
transformed into trees using a certain “cycle-cutting” operation.

An interesting decidable fragment of FO, which has recently been introduced
by van Benthem [15], is the so-called loosely guarded fragment of FO. It contains
(the first-order translations of) many modal logics and description logics, but
is not restricted to unary and binary relations. We could identify a fragment of
CGs corresponding to the loosely guarded fragment of FO in the sense that the
first-order translation of CGs belonging to this fragment are equivalent (though
not necessarily identical) to a loosely guarded formula, and every loosely guarded
formula can be obtained in this manner. The characterization of this fragment
is given by syntactic restrictions on the graphs, and for a given graph it is easily
decidable whether it belongs to this fragment.

2 Preliminaries

To fix our notation, we recall basic definitions and results on conceptual graphs.
Basic ontological knowledge from the application domain is coded in the sup-
port, which is a structure of the form S = (N¢, Ng, Ny). Here N¢ is the set of
concept types, which is ordered by a partial order < expressing the is-a-kind-of

! Here, we restrict our attention to the first order fragment of CGs.
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Fig. 1. An example of a support.

relation between concept types. We require N¢ to contain a distinguished ele-
ment T representing the entire domain, i.e., T¢ is the greatest element w.r.t.
<¢-. Similarly, the set of relation types, Ng, is ordered by a partial order <pg.
Each element of Ng has a fixed arity, and relation types with different arity
are incomparable by <pg. The set of individual markers is denoted by Np; an
additional generic marker is denoted by x. We define a partial order <; on
NrU{x} such that = is the greatest element, and all other elements are pairwise
incomparable.

Throughout the paper, we consider examples over the support (N¢, Ng, Ny)
shown in Fig. 1, where all relation types are assumed to have arity 2.

A simple graph (SG) over the support S is a labeled bipartite graph of the
form g = (C, R, E, (), where C and R are the node sets, called concept nodes and
relation nodes, respectively, and E C C' x R is the edge relation. The labeling
¢ labels g in the following way: Each concept node ¢ € C is labeled by a pair
£(c) = (type(c), ref(c)) € No x (Ny U {x}), called the type and the referent of
c. If ref(c) = %, then c is called a generic concept node, otherwise c is called an
individual concept node. Each relation node r € R is labeled with a relation type
£(r) € Ng. All edges that are incident to the same relation node are labeled by
£ with sets of natural numbers in such a way that, if £(r) has arity n, then all
numbers from {1,...,n} appear exactly once in these labels. The concept node
¢ linked to r by an edge with j € £(c,r) is called the jth neighbor of r and is
denoted by (7). The set of all simple graphs over S is denoted by SG(S).

SGs can be combined into more complex structures called graph propo-
sitions. A graph proposition p is a negated graph proposition, or a box that
contains a SG (which may be empty) and finitely many graph propositions (see
Fig. 2). These boxes are also called the contexts of the proposition. We require
that all simple graphs appearing in a graph proposition have disjoint node sets.
In a linear notation one can represent graph propositions as expressions gener-
ated by the EBNF grammar

pu=[gp*] | —p

where g stands for a SG. For each SG g in p there is exactly one context p’ which
contains g at top level. This context is called the context of g, and we say that p'
contains all nodes of g. We say that a context p (strictly) dominates a context g



Fig. 2. An example of a conceptual graph.

iff ¢ is (strictly) contained in p. The set of all concept nodes of all simple graphs
occurring in p is denoted by C(p).

A conceptual graph (CG) over the support S is a pair G = (p, coref),
where p is a graph proposition over S and coref, the set of coreference links,
is a symmetric binary relation over C(p) satisfying the following property: for
each pair of concept nodes (c1,c2) € coref contained in the contexts p; and po,
respectively, either p; dominates py or p» dominates p;. We denote the set of all
CGs over S by CG(S).

An example of a CG built over the support from Fig. 1 is shown in Fig. 2
using the usual graphical notation. It asserts that for each parent and child there
is another parent of that child who likes the first parent (see the translation of
this graph into FO below). The extra markers p; and ¢; will be used in a later
section of this paper to refer to the different parts of the CG.

Both SGs and CGs are given a semantics in FO by the operator &. Let
G = (p, coref) € CG(S) be the CG to be translated, and let V be a countably
infinite set of variables. Firstly, we fix two mappings id and links as follows:
id assigns a unique variable to each generic concept node ¢ € C(p), and its
individual marker to each individual concept node; we define links(c) to consist
of id(c’) of all concept nodes ¢’ that are linked to ¢ by a coreference link and are
contained in a context dominating the context of c¢. The triple G = (p, id, links)
obtained this way is translated by @ into FO as follows:

— For a SG g = (C, R, E, £) we define ¢(g9) = A.cc #(c) A N\, cg @(r), where

id(c) = id(c) if type(c) = T¢

o(c)i= [\ i) =sA {P(id(c)) if type(c) = P

s€links(c)
and, for a relation node r with £(r) = S of arity n,
o(r) := S(id(r(1)), ..., id(r(n))).

The quantifier prefiv of g is ¢p(g) = Ixy...3zy, where {x1,..., 24} =
{id(c)|ce C}NV.



— The operator @ is defined by induction on the structure of graph propositions:

« Plopipn] = 00(0)- (A N\ Pw).
o #[-p)] = ~0[p). o

For a SG g we define its FO semantics ®(g) by ¢,(g).¢(g).

To translate the graph G from Fig. 2, we set id(c;) = z; (i = 1,...,6). For
links, this yields links(cs) = {x1}, links(cs) = {z2}, links(ce) = {x4,25}, and
links(c;) = 0 for i = 1,2,4. After eliminating equalities of the form z; = z; we
obtain the following FO formula:

&(G) = =(Fz122.(Human(z1) A Human(zz) A hasChild(za, z1) A
—(Fzzzams.(x3 = 21 A5 = 2 A Human(zy4) A
hasChild(z4, x3) A likes(z4, z5) A
~(Jze.(x6 = T4 A w6 = 75))))))

Note that the sub-formula —(3z6.(z = 24 A 6 = x5) only expresses x4 7 x5.

We can also define the semantics of the order relations in the support by a FO
formula. For a given support S = (N¢, Ng, N1), the partial orders < and <g
are interpreted as follows: Py <¢ P, corresponds to the formula Vz.P;(z) —
Py(x), and for two relation types of arity n, S; <gr S» yields the formula
Voy...zn.S1(21,. .. ,2n) = Sa(z1,... ,2,). We define &(S) to be the conjunc-
tion of all these formulae.

Validity with respect to a support S for a CG G can be defined with
the help of the operator @: G is valid iff $(S) — ¢(G) is a valid FO formula.

Subsumption with respect to a support S for two SGs or CGs G, H is
defined as follows: G is subsumed by H (G C H) iff (S) A #(G) — $(H) is a
valid FO formula.

A SG g is said to be in normal form iff each individual marker a € Ny
appears at most once as a referent of a concept node in g. Subsumption of two
simple graphs g, h can be characterized by the existence of certain homomor-
phisms from A to g. To be more precise, if there exists a homomorphism from h
to g, then g C h [14], and if g C h then there is such a homomorphism provided
that g is in normal form [5].

Subsumption for SGs over a support S is an NP-complete problem [5]. Like
Peirce’s existential graphs, CGs are as expressive as FO formulae [14]. Thus,
validity and subsumption for CGs are undecidable.

3 A Tractable Fragment of Simple Graphs

In this section, we introduce the description logic ELZRO! as well as the class of
rooted SGs. We will show that ELIRO!-concept descriptions can be translated
into equivalent rooted SGs that are trees, and thus that subsumption in ELZRO!
can be decided in polynomial time. In addition, we extend the known tractability
result for trees to a larger fragment of SGs.



Table 1. Syntax and semantics of ELTRO-concept descriptions.

|Construct name |Syntax| Semantics | |
top-concept T r=z

primitive concept P € N¢| P P(x)
conjunction CND| Ye(z)ANPp(z) |ELC
existential restriction Ir.C |y O (z,y) A Pc(y)
constant a € Ny {a} r=a of
primitive role r € Ng r r(z,y)

inverse role for r € Ny r- r(y,x) z
role conjunction riMre |, (z,y) AN, (z,y)| R

Description Logics

In DLs, knowledge from an application domain is represented by so-called con-
cept descriptions. Concept, and role descriptions are inductively defined with the
help of a set of constructors, starting with a set Ny of constants, a set N¢o of
primitive concepts, and a set Ng of primitive roles. The constructors determine
the expressive power of the DL. In this paper, we consider concept descriptions
built from the constructors shown in Table 1. The resulting DL is denoted by
ELTRO'. Due to the fact that referents of individual concept nodes in SGs are
single constants a € N7, we restrict ourselves to ELZRO-concept descriptions in
which each conjunction contains at most one constant.

The semantics of a concept description C' (resp. a role description r) is defined
by a FO formula Wo(z) with one free variable (resp. @,(x,y) with two free
variables): see Table 1 for the inductive definition of these formulae. Given an
interpretation 7 = (A, -T) of the signature (N¢, Ng, N7), the concept description
C is interpreted as CT := {§ € A | T E ¥c(6)}.

For example, the concept description

D = Female M Jlikes.Male 1 Jhas-child.(Student M Jattends.CScourse)

describes all women who like a man and have a child that is a student attending
a CScourse. The semantics of D is given by the following FO formula:

Up(xo) = Female(zg) A Jz.(likes(zo, z) A Male(z)) A
Jy.(has-child(zo, y) A Student(y) A 3z.(attends(y, z) A CScourse(z))).

In order to obtain a structured representation of the knowledge about the ap-
plication domain one is interested in the subsumption hierarchy formed by the
concept descriptions. Using their FO semantics, subsumption between concept
descriptions is defined as C' C D iff VoW (20) — Pp(xo) is valid.

Rooted Simple Graphs
We are interested in a class of SGs corresponding to ELIRO*-concept descrip-
tions. On the one hand, we must restrict our attention to connected SGs over



a support S = (N¢, Ng, N;) containing only binary relation types, because
ELTRO" -roles correspond to binary relations and, as we will see, ELZRO" -concept
descriptions always describe connected structures. Because of the restriction to
binary relations, we can dispense with explicit relation nodes: instead we consider
directed edges between concept nodes labeled by a relation type.

On the other hand, we must (1) deal with the different semantics of SGs
and concept descriptions (closed formulae vs. formulae with one free variable),
and (2) introduce conjunctions of types in SGs since conjunctions of primitive
concepts may occur in ELIRO"-concept descriptions. In order to handle (2), we
allow for concept nodes labeled by a set of concept types {P,...,P,} C N¢,
where the empty set corresponds to T¢. Due to (1), we extend the notion of
SGs by introducing one distinguished concept node called the root of the SG.

Formally, we restrict the attention to unordered supports (N¢, Ng, Ni) where
the orders on N and Ny are the identity relations.? Given such an unordered
support (N¢, Ng, N;) we define a rooted SG G = (V, E, ¢y, £) over this support
as a SG where V is a set of concept nodes, E C V x Ng x V is a set of directed
edges labeled by relation types from Ng, cg is the root of G, and ¢ labels each
¢ € V by a set of concept types {Pi,... ,P,} C N¢ and a referent from NyU{x}.

Given an interpretation 7 = (A,-%) of (N¢, Ng, N1), the semantics of a
rooted SG G is given by {0 € A | T E #(G)(d)}, where & is an extension of
the @ operator from SGs to rooted SGs. To be more precise, the FO formula
&(G)(zp) with one free variable xg is obtained from G as follows. Let id: V' —
(V\ {z0}) U N1 be a mapping as defined in Section 2. Each concept node ¢ € V
with type(c) = {P1, ..., P,} yields a conjunction P (id(c)) A...A P,(id(c)), and
each edge cirea € E yields r(id(c1),id(c2)). Now, &(G)(zo) is defined as the
conjunction of zy = id(cp) and the formulae corresponding to concept nodes
and edges, where all variables except z( are existentially quantified.

For example, the rooted SG G; with root cg depicted in Fig. 3 describes all
women that are a daughter of Peter, and have a dear son that likes Peter and is
a student attending the CScourse number KR101.

Just as for SGs, subsumption between rooted SGs can be characterized by
the existence of a homomorphism. Here, the notion of a homomorphism between
SGs w.r.t. a support S [6] must be adapted to rooted SGs. A homomorphism
from H = (Vy,Em,do, i) to G = (Vg, Eg,co,lg) is a mapping ¢ : Vg — Vg
such that (1) ¢(do) = co, (2) typen(d) C typec(p(d)) and refr(d) >1 refa(o(d))
for all d € Vi, and (3) ¢(d)ro(d') € Eg for all drd’ € Ey.

The proof of the following theorem in [3] is similar to the proof of soundness
and completeness of the characterization of subsumption in [6].

Theorem 1. Let G be a rooted SG in normal form and H a rooted SG. Then
G C H iff there exists a homomorphism from H to G.

2 It should be noted that the restriction to unordered supports is without loss of
generality since the order relation on N¢ can be encoded into the type set labels,
and the one on Npg into multiple edges between nodes. Vice versa, the introduction
of sets of types is not a real extension since their effect can be simulated by an
appropriately extended ordered support (see [3] for details).
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Fig. 3. Two rooted simple graphs.

For example, the rooted SG Gy with root dy depicted in Fig. 3 subsumes G,
because mapping dy onto cg, di and ds onto ¢z, and dy onto c3 yields a homo-
morphism from G» to G .

Unlike SGs over an arbitrary support, rooted SGs can be transformed (in
polynomial time) into equivalent rooted SGs in normal form by identifying all
concept nodes ci, ... ,c, having the same referent a € N1 and defining the type
set of the resulting concept node as |J, «,,, type(c;).

For SGs over a support S, subsumption is known to be an NP-complete
problem. The known algorithms deciding g C h w.r.t. S are based on the char-
acterization of subsumption by homomorphisms, and thus require the subsumee
g to be in normal form. In order to obtain a subsumption algorithm for rooted
SGs, we must simply adjust the conditions tested for nodes and edges according
to the modified conditions on homomorphisms between rooted SGs. Conversely,
subsumption of SGs w.r.t. S can be reduced to subsumption of rooted SGs [3].
This shows that subsumption for rooted SGs is also an NP-complete problem.

In [13], a polynomial-time algorithm is introduced that can decide g C t
w.r.t. a support S provided that t is a tree and ¢ is a SG in normal form. In
this context, a SG t is called a tree iff t contains no cycles of length greater
than 2. The notion of a tree can be adapted to rooted SGs T by viewing T
as an undirected graph. A simple modification of the algorithm in [13] yields a
polynomial time algorithm deciding G C T for a rooted SG 7 that is a tree and
a rooted SG G in normal form [3].

Now, we will show that this algorithm also yields a polynomial-time algorithm
for subsumption of ELZRO*-concept. descriptions.

Translating concept descriptions into rooted simple graphs

The main idea underlying the translation is to represent a concept description
C as a tree T¢. Intuitively, C' is represented by a tree with root ¢y where all
atomic concepts and constants occurring in the top-level conjunction of C' yield
the label of ¢y, and each existential restriction Jr.C"’ in this conjunction yields
an r-successor that is the root of the tree corresponding to C’. For example, the
concept description C below yields the tree T in Fig. 4:
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Fig. 4. Translating ELZRO-concept descriptions into rooted simple graphs.

C := Female M Jhas-child™.{Peter} M 3(likes M has-child).
(Male M Student M Jattends.(CScourse M {KR101}) M Jlikes.{Peter}).

Now, we can define the rooted SG G corresponding to C' as follows. The nodes
in T yield the set of concept nodes V of Go. The label £(c) of a concept node
¢ € V is determined by the label ¢7(c) of ¢ in T¢, i.e., type(c) is the set of all
atomic concepts occurring in £ (c) and, if there is a constant a € ¢r(c), then
ref(c) := a; otherwise ref(c) := *. Note that ref(c) is well-defined because we have
restricted E,CZ’R(’)l—concept descriptions to those containing at most one constant
in each conjunction. Finally, the set of edges of G is obtained from the edges
in T¢: conjunctions of roles are decomposed (¢(ry M ... M r,)d yields n edges
crid, ... ,crpd) and inverse roles are redirected (cr~d yields the edge dre). In
our example, we obtain the rooted SG G¢ depicted in Fig. 4, which is a tree.

Using the recursive definition of the tree T¢, it can be shown [3] that C is
equivalent to G¢, i.e., Voo.We(xo) ¢ P(Gc)(xo) is a valid FO formula. Con-
versely, any rooted SG G that is a tree can be translated into an equivalent
concept description C¢ [3]. Thus, there is a 1-1 correspondence between ELIRO! -
concept descriptions and rooted SGs that are trees. Because of this correspon-
dence, we can reduce subsumption in ELZRO' to subsumption between rooted
SGs,i.e., C C D iff Go C Gp. Since G¢ is a tree and Gp can be transformed into
normal form (in polynomial time), subsumption for ELZRO-concept description
is polynomial-time decidable by applying the polynomial-time algorithm men-
tioned above to the tree Go and the normal form of Gp. This yields the following
tractability result for ECZRO" [3]:

Theorem 2. Subsumption C T D of ELIRO" -concept descriptions can be de-
cided in time polynomial in the size of C' and D.

Strictly speaking, the above argument shows tractability only for concept de-
scriptions where each conjunction contains only one constant. The result can,
however, easily be extended to general ELZRO"-concept descriptions [3].

Extending the tractability result
We will now extend the tractability result from (rooted) SGs that are trees to



(rooted) SGs that can be transformed into trees by “cutting cycles” of length
greater than 2. For a given rooted SG G, we can eliminate an (undirected) cycle
co,--- ,Cp Where cg = ¢, in G by applying the split-operation on concept nodes
as introduced for SGs in [5]. To be more precise, we (1) arbitrarily choose a node
ci € {c1,... ¢}, (2) introduce a new node ¢ labeled like ¢;, and (3) replace all
edges between ¢;—1 and ¢; by edges between ¢;—; and ¢. We then say that the
cycle is cut in ¢;. Obviously, any cyclic SG G can be transformed into an acyclic
SG G* by applying this operation a polynomial number of times. In general,
however, the resulting SG G* need not be equivalent to G.

As an example, consider the rooted SG G; in Fig. 3. On the one hand, we can
eliminate the cycle ¢, ¢g, ¢2, ¢1 by introducing a new node ¢4 with label (), Peter)
and replacing the edge colikesc; by cslikeses. The resulting tree coincides with
the tree G¢ in Fig. 4, and it is equivalent to G; because Gy is a normal form of
Gc. On the other hand, if we introduce a new node ¢ labeled ({Female}, %) and
replace c;has-childey by ¢y has-childe, then the resulting tree is not equivalent to
Gco because the student’s mother and Peter’s child need no longer to be the same
person.

The following proposition introduces a condition on rooted SGs that ensures
that rooted SGs satisfying this condition can be transformed into equivalent
trees by applying the split operation to individual concept nodes [3].

Proposition 1. If each cycle of length greater than 2 in the rooted SG G con-
tains at least one individual node c, then G can be transformed into an equivalent
tree G* in time polynomial in the size of G.

Consequently, G C H can be decided in polynomial time if G is a rooted SG in
normal form and H satisfies the premise of the proposition. It is easy to see that
this tractability result also applies to (non-rooted) SGs over a support.

4 The Loosely Guarded Fragment of Conceptual Graphs

Due to the expressiveness of the CG formalism, all the interesting reasoning
problems (such as subsumption and validity) are undecidable for general CGs.
We will identify a large class of CGs for which both validity and subsumption
are decidable. This fragment, which we will call loosely guarded fragment of CGs,
will be defined directly by syntactic restrictions on graphs. This allows for an
efficient test for guardedness of graphs. The fragment corresponds to the so-
called loosely guarded fragment of FO. In [1], the guarded fragment of FO was
defined in an attempt to find a generalization of modal logics that still enjoys the
nice properties of modal logics (like decidability, finite axiomatizability, etc.). In
the same work, decidability of this fragment was shown. In [15], an even larger
decidable fragment of FO was introduced, the loosely guarded fragment.

Definition 1. Let X' be a set of constant and relation symbols including equality
(called the signature). The loosely guarded fragment LGF(X) of first-order logic
is defined inductively as follows:



1. Every atomic formula over X belongs to LGF(X).

2. LGF(XY) is closed under the Boolean connectives =, \,V,—, and <.

3. If x,y are tuples of variables, if B(x,y) is a formula from LGF(X), and if
ar A - A ay is a conjunction of atoms, then

Ix((ar A ANay) AB(x,y)) and Vx.((aa A -+ Aayp) = B(X,Y))

belong to LGF(X), provided that, for every variable x in x and every variable
z in x ory, there is an atom o (the guard) such that x and z occur in ;.

An exact complexity result for the satisfiability problem of the loosely guarded
fragment was shown by Grédel [11]. Tt turned out that the complexity of the
satisfiability problem in LGF(X) depends on the arity of the relation symbols
in the signature X. In general, the problem is 2-EXPTIME-complete. However,
if the arity of all relation symbols in X' is bounded by a constant, then the
satisfiability problem for LGF(X) is “only” ExpPTIME-complete; in particular,
this is the case if X is finite.

The definition of the loosely guarded fragment of FO gives rise to the defini-
tion of a corresponding fragment of CGs, which we will call the loosely guarded
fragment of CGs. The restrictions defining this fragment guarantee that all quan-
tifiers in the FO translation of a loosely guarded graph can either be eliminated,
or are loosely guarded in the sense of Def. 1. The same must apply to any vari-
able appearing free in a sub-formula of the FO translation of a loosely guarded
graph. To state the appropriate restrictions on the CGs, we identify the nodes
representing free and bound variables in the contexts of a graph. These will be
the new and ezxternal nodes introduced in the following definition.

Definition 2. Let G = (p, corefy be a CG over S. A concept node ¢ € C(p)
contained in a context q of p is called external iff it has a coreference link to
a strictly dominating concept node. It is called old iff it satisfies one of the
following conditions:

— ¢ is an external or an individual concept node.
— c is linked by a coreference link to another old node in the same context q.

Nodes that are not old are called new.

In the CG of Fig. 2, ¢3,¢5,¢6 are external nodes while ¢y, ¢2, ¢4 are new nodes.
Note that ¢4 is a new node even though it is linked by a chain of coreference
links to the old node c5. This is a desired effect of the definition since coreference
links inside one context express equality of concept nodes, while the coreference
links from ¢4 and c5 to cg are used to express inequality of ¢4 and cs.

Definition 3 (The loosely guarded fragment of conceptual graphs). 4
CG G = (p, corefy € CG(S) is called loosely guarded iff it satisfies the following:

1. If (e1,c2) € coref and the context py of ¢y strictly dominates the context ps of
¢a, then for each context q such that q lies between p; and ps (i.e. py strictly
dominates q and q strictly dominates p>) it holds that q is labeled by a simple
graph g containing no new nodes.



hasOffs.

Fig. 5. Two graphs that are not loosely guarded.

2. For each simple graph g = (C,R, E,{) labeling a context of G, either g
contains no new nodes, or g satisfies the following: if C = {c}, then type(c) #
Te or there is anr € R such that (¢,r) € E; if |C| > 1, then for each pair of
distinct nodes ¢,d € C' such that ¢ is new and d is not an individual concept
node, there is an r € R satisfying {(c,r),(d,r)} C E.

With lgCG(S) we denote the set of all loosely guarded CGs over the support S.

An example of a 1gCG is the graph in Fig. 2. In fact, Property 1 is obviously
satisfied since no coreference link crosses more than one context. Property 2 is
satisfied as well; for example, in the context ps, the new node ¢4 shares a relation
node with both ¢3 and ¢5. The nodes ¢ and ¢4 need not be adjacent to the same
relation node since both are old nodes.

CGs that violate one of the properties required by Def. 3 need not be equiv-
alent to a loosely guarded FO formula. For example, transitivity of a binary
relation symbol is an assertion that cannot be expressed by a loosely guarded
formula [11]. Figure 5 shows two CGs that assert transitivity of the binary re-
lation hasOffspring. The upper graph is not loosely guarded because it violates
Property 2: ¢; and c3 are both new nodes, but they are not adjacent to the same
relation node. The lower graph is not loosely guarded because it violates Prop-
erty 1: ¢4 and cg are linked by a coreference link that spans a context containing
the new node cs.

Note that, even though the definition of lgCGs may look quite complex at first
sight, it is a purely syntactic definition using easily testable properties of graphs.
Indeed, it is easy to show that membership of a given CG over S in lgCG(S) can
be tested in polynomial time [2]. The name “loosely guarded fragment of CGs”
is justified by the main theorem of this section:



Theorem 3. Let S = (N¢, Ngr, N1) be a support and let Xs be the correspond-
ing FO signature ¥s = No U Ngp U Nr.

1. For each G € lgCG(S) there exists a formula o € LGF(Xs) such that pa
is equivalent to ®(G). In addition, pg is computable from G in polynomial
time.

2. For each closed formula ¢ € LGF(Xs) there is a graph G, € lgCG(S) such
that &(Gy) is equivalent to ¢. In addition, G, is computable from ¢ in
polynomial time.

A complete proof of this theorem can be found in [2]. Here, we will illustrate the
main idea underlying the proof of the first part, using the example in Fig. 2. The
transformation of #(G) into a loosely guarded formula works inductively over the
structure of GG. Hence, we start with the innermost context p3 of G. The formula
p3(xa,25) := P(p3) = Jxg.(vs = w6 A g = x4 A g = x5) is loosely guarded,
and it is equivalent to the simpler loosely guarded formula ¢} = 24 = x5. The
formula for the context ps,

po(x1,x2) 1= P(p2) = Axzwaxs.(x3 = 21 A 5 = 22 A Human(z4) A
hasChild(zy, z3) A likes(z4, 5) A —h (24, 5)),

is not loosely guarded. In order to obtain a loosely guarded formula, we eliminate
the identifiers of the old nodes (in this case 3, z5) together with their quantifiers,
using the fact that ¢o contains the conjuncts z3 = x; and x5 = 5. Re-ordering
the conjuncts yields the formula

oy (w1,m9) = Jwg.(hasChild(z4, z1) A likes(xs, z2) A Human(zy) A x4 # 2),

which is loosely guarded and equivalent to ¢-. The necessary guards are given
by the first two conjuncts, which correspond to the relation nodes adjacent to
3, ¢4, ¢5. The existence of such nodes in a loosely guarded graph is guaranteed
by Property 2 of Def. 3.

Since the context p; does not contain old nodes, the next steps (in which we
also treat the two negation signs) directly yields the loosely guarded equivalent
¢q of &(G) = D(p):

oG = —3z172.(hasChild(z2, 71) A Human(z1) A Human(zs) A —ph (71, 72)).

Summing up, the techniques used to transform &(p) into its loosely guarded
equivalent p¢ are: (1) Elimination of identifiers and the corresponding quantifiers
for old nodes; and (2) using Property 2 of Def. 3 to find the appropriate guards for
the remaining quantified variables. As has already been pointed out, Property 1
of Def. 3 is necessary to ensure that no free variable of a sub-formula escapes
the guards (see Fig. 5).

The following theorem is an immediate consequence of part 1 of Theorem 3
and the known complexity results for the loosely guarded fragment of FO.

Theorem 4. Let S be a finite support. Then subsumption and validity of loosely
guarded CGs over S is decidable in deterministic exponential time.

Because of part 2 of Theorem 3, the EXPTIME-hardness result for LGF(Xs) also
transfers to lgCG(S).



5 Conclusion

Although the characterization of the loosely guarded fragment of conceptual
graphs may appear to be a bit complex, it can easily be checked whether a
CG belongs to this fragment.It should also be easy to support the knowledge
engineer in designing CGs belonging to this fragment by showing external and
new nodes in different colors, and by pointing out new nodes that are not yet
guarded. Another interesting point is that there are theorem-provers that are
complete for FO, and behave as a decision procedure (i.e., always terminate)
for the loosely guarded fragment [8]. If such a prover is used to prove validity
of general CGs, then one automatically has a decision procedure if the CGs are
loosely guarded.
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