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Abstract

Number restrictions are concept constructors that ardéadl@iin almost all implemented Description
Logic systems. However, they are mostly available only imther weak form, which considerably
restricts their expressive power.

On the one hand, the roles that may occur in number restictioe usually of a very restricted
type, namely atomic roles or complex roles built using eiih&rsection or inversion. In the present
paper, we increase the expressive power of Descriptioncsdgy allowing for more complex roles
in number restrictions. As role constructors, we consigenmosition of roles (which will be present
in all our logics) and intersection, union, and inversiorraies in different combinations. We will
present two decidability results (for the basic logic theteads ALC by number restrictions on roles
with composition, and for one extension of this logic), ahtee undecidability results for three other
extensions of the basic logic.

On the other hand, with the rather weak form of number regiris available in implemented
systems, the number of role successors of an individual nhnbe restricted by a fixed non-negative
integer. To overcome this lack of expressiveness, we altlowdriables ranging over the non-negative
integers in place of the fixed humbers in number restrictiditee expressive power of this constructor
is increased even further by introducing explicit quantifier the numerical variables. The Description
Logic obtained this way turns out to have an undecidablefgaility problem. For a restricted logic
we show that concept satisfiability is decidable.

1 Introduction

Description Logics provideonstructorsthat can be used to build complex concepts and
roles from atomic concepts (unary predicates) and roles (binary predicates)ell-known
Description Logic AL [24] allows for propositionalconstructorsT, LI, — on concepts as
well as foruniversalandexistential value restrictionsFor examplé, the following concept
describes happy parents as humans having a nice child and whose childreyppyeahd
have some nice friends:

Hurmman 1 (3chi | d.Ni ce) 1 (Vchi | d.(Happy M (3fri end.Ni ce))).

*To appear inJournal of Logic and Computatioivol. 9(3), 1999
1This investigation was motivated by a process engineerpijaation. However, to present our results in a way
that is more intuitive for readers not familiar with procesgyineering, we give examples concerning families.



The general idea underlying knowledge representation systems based oiptidgstogics
(DL-systems) is the following. First, titerminologyof an application domain is fixed. In the
terminology belownumber restrictiongre used to describe parents as those humans having
at least one child, parents of many children as those having at least fanechiétc. Number
restrictions allow one to restrict the numberrofe-successorghat is, the number of those
objects an object is related to via a role. In this exam@te4 chi | d) restricts the number

of chi | d-successors to at least 4, wheréa<2 chi | d) restricts this number to at most 2.

Parent := Human M (> 1child)
Par ent _of _many := Parent N (>4child)
Par ent _of few := Parent N (< 2child)
Human 1 (3chil d.Ni ce)
M (Vchi | d.(Happy 1 (3f ri end.Ni ce)))

HappyPar ent

In the next modelling step, this terminology can be used to describeaete “world.” DL-
systems are designed t@asonabout both the terminology and the description of concrete
worlds. For example, they should be able to infer tHappy Par ent , Par ent _of _nany,
andPar ent _of _f ew are subsumed bfpar ent . Another relevant inference problem is
to decide whether a given concept is satisfiable, that is, whether its destriptnon-
contradictory.

To be useful in an application, thexpressive powesf a given Description Logic must
be adequate for the application (see [2, 15] for a formal definition pfessive power).
Intuitively, the Description Logic should allow one to describe tielevant properties of
objects of the application.

Number restrictions appear to provide expressive power required by apgoligations.
Moreover, humans also tend to describe objects by restricting the nurhbéjeats they
are related to. As a consequence, number restrictions are present in meshéntgd DL
systems [16, 20, 21, 3]. Unfortunately, they are usually fountieir tveakest form:

1. They arenot qualifying that is, we may not restrict the number of role-successors of
a certain kind, but only the total number of role successors. For exampl cannot
restrict the number of childrethat are girls but we can only restrict the total number
of children.

2. Inside number restrictions, only atomic roles are allowed, thaoisiplexroles built
using some role-forming constructors are disallowed. Thus, oneotaastrict the
number of grandchildren using only the ralki | d.

3. Finally, it is only possible to restrict the number of role-sucoest at least or at most
n, for afixednon-negative integer. For example, it is not possible to describe persons
having more children than they have friends or persons hauimg same number of
children as their spouse or husband—without fixing a bound fomntiisber.

The first shortcoming has been overcome in [12], where so-cqilatifyingnumber restric-
tions were introduced. For examp(e; 4 chi | d G r 1) is a qualifying number restriction
describing parents having at least four children that are girls. To overtoensecond and
third shortcoming, we will introduceomplex roles in number restrictioasdsymbolic num-
ber restrictions



Complex roles in number restrictions

Complex roles are built using role constructors such as compasitioion, intersection,
inversion (or converse), or the transitive closure of roles. It was/shthat Description Logics
can be extended with complex roles in value restrictions without dodacidability of the
relevantinference problems [1, 22, 23, 7, 6, 8]. However, investigaidf the computational
complexity of complex roles in number restrictions were restrictedtersection [9] and
inversion [5]. If both complex roles and number restrictions are ptesea Description
Logic, one thus must distinguish between the roles allowed in valugatess and those
allowed in number restrictions.

By restricting the use of complex roles to value restrictions, osed@xpressiveness, as
illustrated by the following examples. For example, by usingpositiorof roles in number
restrictions one can describe persons having at least four grandchildren:

Human M (> 4 chi | dochi | d).

To describe those persons whose children still live at home, additypthe union of roles
inside number restrictions is needed:

Human 1 (= 1 has- addr ess U (chi | dohas- addr ess)).
To describe persons having at least five siblimgggrsioncomes into play:
Human 11 (> 6 chi | dochi | d™h).

Finally, usingintersectionof roles, we can describe persons having at least five friends in
common with their husband or spouse:

Humenn (> 5friendn (narri ed-toof ri end)).

Symbolic number restrictions

In traditional number restrictions, we always have to fix a non-negatteger by which the
number of role successors is restricted. Thus, we cannot describe, fqulexparents whose
children like at least as many things as they dislike—without giving@reu bound on the
number of things their children may dislike. Symmetry-conditioks the one above (i.e.,
conditions of the form “having the same numbermngfas ofys) often occur in practice, but
they cannot be expressed using traditional number restrictions.
To overcome this lack of expressiveness, we introduce numerical variales. . to be

used in number restrictions. Thus, the above example can be described by

Parent Mvchil d.((=adislikes)n(>alikes)),

whereq is supposed to be interpreted by a non-negative integer. This exaievglals a cer-
tain ambiguity: the exact meaning of the concept expression depends drewthet variable
« must be interpreted by the same non-negative integer for all childrewhether it can

have different values for different children. To avoid this ambiguitg will introduce ex-

plicit existential quantification of numerical variables (denoteddyto distinguish between
(1) parents all of whose children like more things than they dislike

Parent M (Vchil d.(Ja.(= adi slikes)n (> alikes))), 1)



and (2) parents where all children dislike the same number of thingdjkendhore things
than they dislike:

Parent N (Ja.(Vchild.(=adislikes)n(>alikes))). 2

Outline of this paper

In the following, these two ways of augmenting the expressive pofveamber restrictions
are investigated in detail. It turns out that these extensions are ofeshayh expressive
power that they lead, in many cases, to undecidability. To keep things alesispossible,
we will restrict our attention to the basic inference problems subfompnd satisfiability
of concepts, and not mix both extensions. In Section 2, the basic Désaripgics and the
relevant inference problems are introduced.

In Section 3, the extensions by complex roles in number restrictienmaioduced, and
their computational properties are investigated. Extensiopi©by different kinds of com-
plex roles in number restrictions are almost completely classified witfeotso the decid-
ability of the satisfiability and subsumption problem. These resarg obtained either as a
consequence of a general decidability result in [11], or they are explicitved in this paper.
The latter ones include the

o decidability of AZC with composition in number restrictions,
¢ undecidability of AZC with composition and intersection in number restrictions,
¢ undecidability of AZC with compaosition, union, and inversion in number restrictions.

In addition, we also considetC . (i.e., the extension oflC by transitive closure of roles in
value restrictions), and show that its extension by number restrictio roles with composi-
tion is undecidable.

In Section 4, symbolic number restrictions are introduced. It tutrigtmat, for “full”
symbolic number restrictions, satisfiability and subsumption ackeoidable, whereas a re-
striction to the kind of symbolic number restrictions used in alh&f above examples leads
to decidability of satisfiability. Unfortunately, this restrictiaelds to a logic that is no longer
closed under negation, and it turns out that, for this logic, thewsupton problem is still
undecidable.

Finally, in Section 5, we mention related decidability and undecidabiégults from
Description Logics, Modal Logics, and Predicate Logic.

2 Preliminaries

All investigations in this work concern extensions of the Descriptiogic ACCN [13, 9],
which is the extension ofiZC [24] with (non-qualifying) number restrictions on atomic roles.
For these two Description Logics, both satisfiability and subswonpdire decidable. More
precisely, these inference problems were shown ®3pace-complete [13, 9].

Definition 1 Let N be a set oftoncept namesand N a set ofrole names The set of
ALC-conceptss the smallest set such that

e every concept name is a concept.



¢ if C'andD are concepts ang is a role name, then

- (CnD), (CUD), (-C),
- (VR.C), (3R.C)

(Boolean operators)
(value restrictions)

are concepts.

Starting with role names iV, regular rolesare built using the role constructors composition
(RoS), union(R LI S), and transitive closureR™*).

o AL, is obtained fromALC by allowing, additionally, for regular roles in value re-
strictions.

o ALC . is obtained fromALC by allowing, additionally, for the transitive closure of roles
in value restrictions.

o ACCN (resp. AL\ and AL, N) is obtained fromALC (resp. AL, and AL )
by allowing, additionally, for concepts of the for(@® n R) and(< n R) (number
restrictions), for all role name® and non-negative integens

In the next section, we will also consider the additional role corsirs intersectioiRM.5)
and inversior(R~1).

The meaning of these constructors, and thus also of the Descriptidoslwg have just
introduced, is defined using a Tarski-style model-theoretic semantics.

Definition 2 An interpretationZ = (AZ,-T) consists of a sefZ, called thedomainof Z,
and an extension functiof that maps every concept to a subset\df, and every (complex)
role to a subset oA’ x A such that the following equalities are satisfied:

(Cn D) =CTN D7,
(CuD)t = C’IUDI,
-C% = \CI

(AR.C)T ={d € AT |Fe € AT : (d,e) € RT Ae € CT},

(VR.C)T ={d € AT |Ve € AT : (d,e) € RT = e € CT},
(>n R)” = {de AT | #{e € AT | (d,e) € RT} > n},
((<nR;§ {de AT | #lee AT |(d,e) € BT} <n},
R1 |_|R2 UR2 )
(R, I‘le)I LN Ry,

(BT ((16) 8% x AT | s € R,
(R 1E>R2;§ {(d, JZ%%AI x AT |Je € AT : (d,e) € RT A (e, f) € R%},
Usi>

where# X denotes the cardinality of a s&t and(R%)! thei-times composition of2% with
itself. If d € CZ, we say thatl is aninstance ofC' in Z. If (d,e) € R%, we say thatl is an
R-predecessor of, ande is an R-successor of in Z.

A conceptC is calledsatisfiableiff there is some interpretatiofi such thatC? # 0.
We call such an interpretationmodel of C. A conceptD subsumes conceptC' (written
C C D) iff for all interpretationsZ we haveC’ C DZ.



Additional Boolean operators, such as implication, will be used as aialtivs: for
example A = B stands for~A Ul B. Furthermore, we can express all relationg+#n <, >}
inside number restrictions, for examgle n R) = (< n R)and(=n R) = ((<n R) N
(>n R)).

If a Description Logic allows for negation and conjunction of conceptbsumption and
(un)satisfiability can be reduced to each other:

e C C Diff C =D is unsatisfiable,
e (' is unsatisfiable ifC’ C A M —A (for a concept namd).

Since all but one Description Logic considered here are in fact propoalty closed, this
connection between satisfiability and subsumption will be heavilyodtqul: we restrict our
attention to one of the two inference problems, namely satisfiabitity) im the decidability
and in the undecidability proofs.

3 Number Restrictions on Complex Roles

In this section, we introduce extensions 4CN, AN, and ACC 4N with number re-
strictions on complex roles and investigate the complexity of theesponding inference
problems. This investigation yields an almost complete classificatidheo&xtensions of
ALCN by different kinds of complex roles in number restrictions. Furthmenit turns out
that it suffices to extendliC, N with number restrictions on role chains (that is to allow for
number restrictions with composition) to obtain undecidability.

To simplify the presentation of our results, we start by giving sesod of how to build
extensions ofACCN', AL\, and AL\ with number restrictions on complex roles. The
name of such an extension consists of the name of the base logicddlloythe set of role
constructors that are allowed inside number restrictions.

Definition 3 For a setM C {LI,M,o, ~'} of role constructors and a complex rakg
we call a number restriction of the forf®> n R) or (< n R) an M-number restric-
tion iff R is built using only constructors from/. The set of ACCA (M)-conceptgresp.
ALCLN (M)-conceptsand AL\ (M )-concepty is obtained from.A(C-concepts (resp.
ALC ;- and ALC g-concepts) by additionally allowing fav/-number restrictions.

Composition is present in all extensions investigated in this papehéodfollowing rea-
sons. On the one hand, composition in number restrictions syrangleases the expres-
sive power: it allows one to restrict the number of roleainsuccessors. The expressive-
ness of this extension even leads to the loss of the tree-model prop@ryperty satisfied
by most of the Description Logics considered in the literature. For gi@nthe concept
(> 2 R)N(YR.3S.A) M (< 1 RoS) is obviously satisfiable, but each of its instances has
two R-successors having a comm@ksuccessor. Thus, models of this concept cannot be
tree-models. On the other hand, decidability of satisfiability and saptian for ACCN (M)
for setsM C {u,n, ~'} follows immediately from a result in [11]; this result is discussed
in more detail in Section 5.

The examples introduced in Section 1 should provide an intuitiontaftwan be ex-
pressed using complex roles inside number restrictions. To obtadeed insight into the
expressive power of Description Logics with complex number regirictive first show the
undecidability results.



3.1 Undecidable Extensions

We will use a reduction of the domino problem—a well-known unded&phoblem [14, 4]
often used in undecidability proofs in logic—to show that concept saltigifiy is undecidable
for the three extensiondCA (o, L1,~1), ACCN (o, M), and ACLC N (o) of the decidable logic
ALCN (o) considered in the next subsection. For didactic reasons, we will alsidesrthe
logics AL e\ (0, U) and AL\ (o, 1), although their undecidability follows from the other
results.

Definition 4 A tiling systemD = (D,H,V) is given by a non-empty seD =
{D,,...,D,} of domino typesand by horizontal and verticalatching pairsH C D x D,
V C D x D. Thedomino problenasks for acompatible tilingof the first quadraniN x IN
of the plane, i.e., a mappirtg IN x N — D such that, for alin,n € N,

(t(m,n),t(m+1,n)) € Hand
(t(m,n),t(m,n+1)) € W

The standard domino problem asks for a compatible tiling of the evptdne. However,
a compatible tiling of the first quadrant yields compatible tilingsatbitrarily large finite
rectangles, which in turn yield a compatible tiling of the plane [14jug, the undecidability
result for the standard problem [4] carries over to this variant.

In order to reduce the domino problem to satisfiability of concepts, w& show how a
given tiling systenD can be translated into a concdpp (of the logic under consideration)
such thatEp is satisfiable iffD allows for a compatible tiling. This task can be split into
three subtasks, which we will first explain on an intuitive level dsefshowing how they can
be achieved for the five Description Logics under consideration.

Task 1: It must be possible to represent a single “squard¥of IN, which consists of points
(n,m), (n,m+1),(n+1,m),and(n+1,m+1). Theideais to introduce roles, Y,
where X goes one step into the horizontal (i.e-) direction, andY” goes one step
into the vertical (i.ey-) direction. The Description Logic must be expressive enough
to describe that an individual (a poiftt, m)) has exactly oné{-successor (the point
(n+1,m)), exactly on&”-successor (the poifit, m+1)), and that theXoY -successor
coincides with thé” o X -successor (the poirit + 1, m + 1)).

Task 2: It must be possible to express that a tiling is locally compatitde, that theX - and
Y -successors of a point have an admissible domino type. The idea sociate each
domino typeD; with an atomic concepb;, and to express the horizontal and vertical
matching conditions via value restrictions on the rolgd”.

Task 3: It must be possible to impose the abdweal conditions on all points iflN x N.
This can be achieved by constructing a “universal” idland a “start” individual such
that every point is &/-successor of this start individual. The local conditions can then
be imposed on all points via value restrictionsioffior the start individual.

Task 2 is rather easy, and can be realized using #8-conceptCp given in Figure 1.
The first conjunct expresses that every point has exactly one domieo &y the value
restrictions in the second conjunct express the horizontal and verticathimgiconditions.

Task 1 can be achieved in any extension4fC\ (o) with either union or intersection of
roles in number restrictions: see the concépisandC); in Figure 1.



Cp:= LI (D;m( [1 =Dj)n

1<i<m 1§;s,m
i#]
D (U Dy L D))

(D
Chi= (=1X)N(=1Y)N(=1XoY)N(=1YoX)N(=1YoX L XoY)
Chi= (=1X)N(=1Y)N(=1XoY)N(=1YoX)N(=1YoX NXoY)

EY) = (=1R)N(YR*.(CLNCp M (>2R) N (<2RUXUY)))

EY = >1U)n(VU. (CLNCpN(=1XoU )M (=1YoeU )M
(K1U'UYoUTUXoU™Y)))
E¥ .= (=1R)N(=1RNRoToR)M
(VRVYTYR. (CAnCpn(K1T)NNVWY(S1T)N(VX(K1T))N

(=1TNXoTNYoT)N
(=1 XMNXoToR)N(=1Y NYoToR)))

whereA = B is an abbreviation forA LI B and

(= n R) is an abbreviation fof> n R) N (< n R).

Figure 1: Concepts used in the proof of Theorem 5

Task 3is easy for logics that extend/C ., and more difficult for logics without transitive
closure. The general idea is that the start individuiglan instance of the concept, to be
constructed. From this individual, one can reachighe origin(0,0) of N x IN and all
points that are connected with the origin via arbitr&ryandY -paths.

With this intuition in mind, the reduction concepts that achieve Taagkehhow explained
in detail for each undecidable extension.#C, AL, and ALz by complex number
restrictions.

ALC N (e, L1): We start with an extension ofilC,.; since here it is rather easy to reach,
from the start individual, all individuals representing pointshe plane. In fact, in
extensions ofA(C g, we can use the complex ro[& LI Y)* to reach every point
accessible from the origif0, 0) via arbitrary X - andY -paths. Thus, for each tiling
systemD, the AL .\ (o, )-concept

EY) := (=1 R) N (V(RU (Ro(X LY)™)).(CL N Cp)).

can be constructed, which is obviously satisfiable if, and only #idmits a compatible
tiling.

ALC N (o,U1): The complex role in the value restriction can even be restricted to desimp
transitive closure of an atomic role. Intuitively, a starting paintside the plane is
used which is connected to each point in the plane via sBrpath. To achieve this,
the conceptEgl) in Figure 1 makes sure that thé- and theY -successors of each
point in the plane are alsB-successors of this point. Hen&" can be used in place

of (X UY)* as “universal” role, and thus the concé_i)%l) is in ALC4N (o, U).



ACCN (0,U,71): In ALCN (0,U,71), a role namé/ for the “universal” role is explicitly in-
troduced, and number restrictions involving composition, uniodjaversion of roles
are used to make sure that the start individual is directly connected wi#h every
point: see the concepﬂg) in Figure 1 and the left diagram in Figure 2. The number
restrictions inside the value restriction make sure that every pdhmt is reached via
U from the start individual satisfies the following: L&-successor and its-successor
each have exactly orié-predecessor, which coincides with the (uniguepredecessor
of p, i.e., the start individual. Thus, th€-successor and thé-successor of are also
U-successors of the start individual.

Y Y
X
/Y
X
U

W

SO

Figure 2: The universal role fod{CA (o, ,” 1) and ACCN (o, )

ALCN (0,1): For ACCN (o, M), a similar construction is possible. Since inversion of roles is
not allowed inAZCN (o,), two role namesk andT are needed for the construction
of the universal role. The intuition is thdt plays the role of the inverse @t (except
for one individual), and the “universal” role corresponds to the aositipn RoT o R;
see the right diagram in Figure 2. The start individu@hich is an instance ofg)),
has exactly ondt-successopg gy, which coincides with its207'o R-successor. The

individual p(g ) corresponds to the origin @ x IN. The number restrictions cﬂ‘/‘g)
make sure thap(g,o) satisfies the following: It has exactly orfé-successor, call it
s', which coincides with thé? o T-successor of, and with the (uniqueT-successors
of the X- andY -successors gf(o,0). In addition, the (uniqueX -successor of o o)
is also anX o T o R-successor ofyg ), Which makes sure that th¥-successor of
P(0,0) IS an R-successor of’, and thus anmzo T o R-successor of. The same holds
for theY-successor. One can now continue the argument wittiktheeiccessor (resp.
Y'-successor) oo, in place ofp(q,q).

With the intuitions given above, it is not hard to show forall < i < 3, that a tiling
systemD has a compatible tiling ing) is satisfiable, and that the same is truelﬂ;ﬂ' ),

Theorem 5 Satisfiability (and thus also subsumption) of concepts is undecidavle f
ALC N (o,1), ACN (o,u,7 1), and ALCN (0, 1).



H,U,O,-71
Gradel, Otto, and RW/ \
ML, -t ,o,.- 71 M, L,o Mo, -1
n,.—! L, .t mn,u U, o M,o o,- 7!
1 U I o
ACC N

Figure 3: (Un)decidability results for extensions44C\.

This theorem does not explicitly mention the undecidability resultdC .\ (e, L), since it
is an immediate consequence of the result46¢, N (o, L).

Figure 3 gives an overview of the (un)decidability results for exterssof ACN by
complex roles in number restrictions. Decidable extensions are lighit whereas undecid-
able ones are dark grey. The overview shows the results from Theoregethér with the
decidability results that follow from [11] and the decidability reshiat will be shown in
the next section. The only problems that remain open for the extensfodC\ concern
ALCN (0,71) and ALCN (o,L1). Until now, neither a decision procedure for one of these
extensions nor a proof of their undecidability could be found.

To make the picture more complete, we will now focus on extension§6f . So far,
only ACC. N (o, 1) was shown to be undecidable. It will now be shown that, in extensibns o
ALC, N, it suffices to allow for composition in number restriction in ordeiose decidability
(see Figure 6 for an overview of the (un)decidability results foeesions of ACC A by
number restrictions on complex roles). Again, a reduction of the domioblem to concept
satisfiability is used to show undecidability g, N (c). Since this reduction is rather
different from the ones above and more complicated, it is treated separdtelgrebundant)
reduction forAZC N (o, LI) was given since it served to give the intuition $&C N (o, 1,71 )
and ALCN (o, ). The concepts used for the reduction of the domino probleAtth A (o)-
concept satisfiability are given in Figure 4.

The concepCiim Makes sure that each point will be an instance of either B or C
(which are disjoint), and that with each point exactly one domino ®pwiill be associated.

Task 1is achieved via the conceply, which describes a square by using a single dle
Each instance of'g has twoX-successors that in turn each have tWesuccessors. The
conjunct(= 3 X o X)) makes sure that th& -successors of an instance @fz have one

10



Ca =(=2X)N(YX.(=2X))N(=3XoX)
Cprim := (AUuBUC)n U (D;n( 'l =Dy))

1<i<m 1§;§]m

Caiag = (4 = (AX.B) N (3X.C)) 1
(B = ((3X.A) N (3X.0))) N
(C = ((3IX.A) N (3X.B)))

Cp =

L1 ((anpy = @x(cn ((DHD e DNNAXBA(, L D)

(BN Di) = (3X.(A1 ((D“D aDnnaxen(, U pynn
(€npy=@Ex@n(, LI pynaxan(, L b))

EY = (=1X)N(3X.A) N (VX+.(Cq N Cprim M Caiag N Cp))

whereA, B andC are disjoint concepts since they are abbreviations for
A= Al, B .= ﬁ141 1 A2 C = _|A1 1 _|A2

Figure 4: Concepts used in the proof of Theorem 6

commonX -successor.
Task 3is easy becausd/C .\ (o) allows for the transitive closure of roles.dis an instance

of E Ok , thens has exactly oneX-successor, say(o,o), which is an instance ofl. Each

pomt in the grid is anX ™-successor of. Thus, the local conditions on all points in the grid

are imposed by X+ (Cg M Cprim M Cdiag 1 Cp).

Task 2 is difficult because we must distinguish between the “horizontal” andvieical”
X-successor of a point. For this purpose, the concépf3, andC are used in the following
way (see Figure 5 for a better intuition).

A C B A C B
. o . . ] .
C B A (] B A
° . . . . °
B A C B A C
° ° . . ° °
A C B A C B
° . . . ° .

Figure 5: Visualisation of the grid as enforced by &, A/ (o) reduction concept.

11



M, L, o0, L

m,u,-—1 U,o0,-~1 M, L, o Mo, -1

E]

1 |_|’
De Giacomo and Lenzerini [5] “
=i

Figure 6: (Un)decidability results for extensionsAdC . .

The conceptllyia; Makes sure that each instancedohas oneX-successor i3 and one in
C, and similar for instances @ andC'. Without loss of generality, we draw thé-successor
of py,o that is inC' to its right and call itp; o. The otherX -successor ofy o, which is inB,
is calledpy 1 and is drawn above it. Now, it is easy to see that the remaining parte gfith
are determined in the sense that

¢ for each diagonal in the grid there is @ e {A, B,C} such that all points on this
diagonal are instances &f,

¢ horizontal successors of points.ihare always inC, of points inC' are always inB,
and of points inB are always in4,

¢ vertical successors of points ihare always inB, of points inB are always inC', and
of points inC' are always inA.

With the intuitions given above, it is not hard to show that a tilgygtemD has a com-
patible tiling iff £\ is satisfiablé

Theorem 6 Satisfiability (and thus also subsumption) of concepts is undecidatvle f

ALCLN (o).

2To make the reduction more obvious, the con(ﬂﬁ) is longer than necessary. In fact, the subconcgpt,,
could have been left out.
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3.2 AN (o) is decidable

We present a tableau-like algorithm for deciding satisfiability4s€ A/ (o)-concepts. The
algorithm and the proof of its correctness are very similar to existlggrithms and proofs
for ACZC with number restrictions on atomic roles [13, 12]. These proofsiheamploy
the fact that each satisfiabhlC\-concept has a tree-modelt can easily be seen that, in
contrast taALCN, the logic ACCN (o) does not have the tree-model property. For example,
the concept

(>2R)N(VR.3S.A)N(L1RoS)

is obviously satisfiable, but each of its instances haBafl successod that is reachable via
two different paths. In particula#, has two different role predecessors.

Nevertheless, the models that will be generated by our algorithm areiwgtgrdo tree-
models in that every element of the model can be reached from an initial (reotget via
role chains, the root does not have a role predecessor, and every rolérohathe root to an
element has the same length (even though there may exist more than omdainghin the
proof of the termination of the algorithm, this fact will be usedtie place of the tree-model
property.

As usual [24], we assume without loss of generality that all conceptsnanegation
normal form (NNF), i.e., negation occurs only immediately in fronatefmic concepts. The
basic data structure our algorithm works on are constraints:

Definition 7 Let 7 = {z,y,z,...} be a countably infinite set of individual variables. A
constraintis either of the form

xRy, whereR is arole name irfNg andx,y € T,
z:D for someAL N (o)-conceptD in NNF and some: € T, or
z#y forz,yert

A constraint systens a set of constraints. For a constraint systentet 7¢ C 7 denote
the individual variables occurring ifi.

An interpretatiorf is amodel of a constraint systefiff there is a mapping : 7¢ — AT
such thatZ, 7 satisfy each constraint ifi, i.e.,

(m(z),n(y)) € RT forallzRy € S,

m(x) # w(y) forall (z #y) € S,
m(z) € DY forallz:D € S.

For a constraint systes), individual variables:, y, and role nameg;, we say thay is an
R;o0...0R,,-successoof z in S iff there areyy, . . .,y € 7 such thatt = yo,y = ym, and
{yiRit1yi+1 | 0 <i <m —1} C S. The systent contains alashiff {z: A,z:-A} C S
for some concept namé and some variable € 7, orz:(< n R) € S andz hast > n
R-successorgi,...,ye in S such that for alk # j we havey; # y; € S. A constraint
systemsS is calledcompleteff none of the completion rules given in Figure 7 can be applied
toS.

3A tree-model is a model having the shape of a tree, i.e., iahast, which does not have role predecessors, and
every other element of the model has exactly one role predeceln particular, there are no cyclic role chains in
the model.

“We consider such inequalities as being symmetric, i.ec, # y belongs to a constraint system, then# =
(implicitly) belongs to it as well.

13



1. Conjunction: If z:(C; N Cy) € Sandz:C; ¢ Sorz:Cy ¢ S, then
S — SU{I‘CCl,l'CCQ}

2. Disjunction: If z:(Cy U Cy) € Sandz:Cy ¢ S andz:Cy ¢ S, then
S — 51=SU{5L’101}
S — S2ZSU{I‘SC2}

3. Value restriction: If z:(VR.C) € S for a role nameR, y is an R-successor
ofzinSandy:C ¢ S, then
S— Su{y:C}

4. Existential restriction: If z:(3R.C) € S for a role nameR and there is
no R-successoy of z in Swithy : C € S, then
S — SU{zRz,z:C}foranewvariable € 7\ 7s.

5. Number restriction: If z:(> n Ryo...0R,,) € S forrole namesk,,..., R,
andzx has less than R;o...0R,,-successors i, then
S —= SU{zRiy2,ymBmz} U{yiRiyiy1 |2<i<m -1} U
{z#w|wisanR;o...oR,,-successor of in S}
wherez, y; are new variables in \ 7s.

6. Number restriction: If z:(< n Rjo...0R,,) € S, x has more than
Ryo...0R,,-successors iy, and there ar@; o. . .o R,,,-successorg, , y, of z in S with

(yl 7£ y2) ¢ S, then
S = Sy, e = Sly2/y1]
for all pairsy;,y2 of Ryo...0R,-successors of with (y1 # y2) € S.

Figure 7: The completion rules fotCN (o)

Figure 7 introduces theompletion ruleghat are used to test{CA/ (o)-concepts for sat-
isfiability. In these rules, the constraint systéiiy./y:] is obtained fromS by substituting
each occurrence af, in S by y;.

The completion algorithnworks on a tree where each node is labelled with a constraint
system. It starts with the tree consisting of a root labelled Witk {z,: Cy}, whereCj is
the ACCN (o)-concept in NNF to be tested for satisfiability. A rule can only be appbeal t
leaf labelled with a clash-free constraint system. Applying a fules S;, for 1 < i < n,
to such a leaf leads to the creatiormohew successors of this node, each labelled with one
of the constraint systents;. The algorithm terminates if none of the rules can be applied to
any of the leaves. In this situation, it answers witty‘is satisfiable” iff one of the leaves is
labelled with a clash-free constraint system.

Soundness and completeness of this algorithm is an immediate consequémedobf
lowing facts:

Lemma 8 LetCy be anAL N (o)-conceptin NNF, and lef be a constraint system obtained
by applying the completion rules fa, : Cp}. Then
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1. For each completion rulR that can be applied t8 and for each interpretatich, the
following equivalence holdsT is a model ofS iff Z is a model of one of the systems
S; obtained by applying.

2. If S'is a complete and clash-free constraint system, fhbas a model.
3. If S contains a clash, the$idoes not have a model.
4. The completion algorithm terminates when appliedig: Cy}.

Indeed, termination shows that after finitely many steps we obtain a tcbelsat all its leaf
nodes are labelled with complete constraint systemgl, Ifs satisfiable, theRzq : Cp} is
also satisfiable, and thus one of the complete constraint systems fimbkiby (1). By (3),
this system must be clash-free. Conversely, if one of the completeramtstystems is clash-
free, then it is satisfiable by (2), and because of (1) this implies{thatC, } is satisfiable.
Consequently, the algorithm is a decision procedure for satisfiabflitC A\ (o)-concepts:

Theorem 9 Subsumption and satisfiability of(C (o)-concepts is decidable.

Proof of Part 1 of Lemma 8: We consider only the rules concerned with number restric-
tions, since the proof for Rules 1-4 is just as #iC.

5. Number restriction: Assume that the rule is applied to the constraitt> n Rio...0
R,,), and that its application yields

S'=SU{zRiy2, ymBm2} U{yiRiyiv1 |2 <i <m — 1}
U{z#w|wisanR;o...oR,-successor af in S}.

SinceS is a subset of’, any model ofS’ is also a model of.

Conversely, assume thatis a model ofS, and letr : 7¢ — AZ be the corresponding
mapping of individual variables to elements4f. On the one hand, sindesatisfies
z:(>n Rio...oRy), m(z) has at least R;o...oR,,-successors iff. On the other
hand, since Rule 5 is applicableto(> n Rjo.. .oR,,), z hasless than Rjo.. oR,,-
successors i§. Thus, there exists aR; o. ..o R,,,-successob of 7(z) in Z such that
b # w(w) forall Ryo...0R,,-successors of z in S. Letbs,,...,b, € AZ be such
that (m(z),b2) € RI,(ba,b3) € RE, ..., (bm,b) € RL. We definer’ : 75 — AT
by 7' (y) := w(y) forally € 7, 7' (y;) := b; forall i,2 < i < m, andn’(z) := b.
Obviously,Z, 7' satisfyS’.

6. Number restriction: Assume that the rule can be applieditd< n Rjo...0R,,) € S,
and letZ together with the valuatiom : 7¢ — A” be a model ofS. On the one
hand, since the rule is applicable,has more tham R;o...o R,,-SUCCeSsors itt.
On the other handZ, = satisfyz:(< m Rjo...0R,;,) € S, and thus there are two
differentR; 0. ..o R,,-Successorg,, y» of z in S such thatr(y,) = w(y2). Obviously,
this implies that(y; # y2) ¢ S, which shows thaf,, ,, = S[y2/y1] is one of the
constraint systems obtained by applying Rule & t0< n Rio...oR,,). In addition,
sincen(y1) = m(y2), Z, w satisfyS,, 4.

Conversely, assume th8y, ,, = S[y2/y1] is obtained front by applying Rule 6, and
let Z together with the valuation be a model of5,, ,,,. If we take a valuatiom’ that
coincides withr on the variables ins, =~ and satisfiesr’(y2) = 7(y1), thenZ, =’
obviously satisfysS.

Y2
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Proof of Part 2 of Lemma 8: Let.S be a complete and clash-free constraint system that is
obtained by applying the completion rules{te, : Cy }. We define a canonical mod€glof S
as follows:
AT :=r1¢ and
forall A € N¢ : re AT iff z:A€S,
foral Re€ Ng: (x,y) € RT iff zRy € S.

In addition, letr : 7¢ — AZ be the identity orrs. We show thaf, 7 satisfy every constraint
inS.

By definition of Z, a role constraint of the formRy is satisfied byZ, = iff xRy € S.
More generallyy is anR; 0. ..o R,,-successor af in S iff y isanR;o...oRy,-successor of
x in Z. We show by induction on the structure of the conaggphat every concept constraint
x:C € Sis satisfied byZ, 7. Again, we restrict our attention to number restrictions since the
induction base and the treatment of the other constructors is just a&for

e Considerr:(> n Rjo...0R,,) € S. SinceS is complete, Rule 5 cannot be applied to
z:(>n Rjo...0R,,), and thus has at least R;o...oR,,-successors if§, which are
alsoRjo. . oR,,-successors af in Z. This shows thal, = satisfyz :(> n Rjo.. oR,,).

e Constraints of the formz :(< n Ryo...0R,,) € S are satisfied becausgis clash-free
and complete. In fact, assume thahas more tham Rjo...o R,,-successors if.
Thenz also has more tham R; 0. ..o R,,-successors i§. If S contained inequality
constraintgy; # y; for all these successors, then we would have a clash. Otherwise,
Rule 6 could be applied.

Proof of Part 3 of Lemma 8: Assume thatS contains a clash. Ifz:A4,z:—-A} C S,
then it is clear that no interpretation can satisfy both constraints. Thusresthatr :(<
n R) € S andz has? > n R-successorg,...,y, in S with (y; # y;) € Sforalli # j.
Obviously, this implies that in any modél = of S, =(x) has¢ > n distinct R-successors
w(y1),--.,m(ye) in Z, which shows thaf, = cannot satisfy: :(< n R).

Proof of Part 4 of Lemma 8: The detailed proof can be found in the appendix. For this
proof, the following observations, which are an easy consequence okfimitidn of the
completion rules, are important:

Lemma 10 Let Cy be anAL N (o)-concept in NNF, and le§ be a constraint system ob-
tained by applying the completion rules{a, : Co }.

1. Every variable: # xo that occursirf is anR;o. . .oR,,-successor af, for some role
chain of lengthn > 1. In addition, every other role chain that connegwith = has
the same length.

2. If x can be reached i by a role chain of lengttn from zq, then for each constraint
z:C in S, the maximal role depthof C' is bounded by the maximal role depth@§
minusm. Consequentlyy is bounded by the maximal role depth@.

5The role depth is formally defined in the appendix. Intulijyét is the depth of nested role “expressions” in
value restrictions and number restrictions.
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Intuitively, these two facts are used as follows. bej be the maximal role depth afy.
Because of the first fact, every individualn a constraint systerfi (reached fron{z, : Co}
by applying completion rules) has a unique role leleslel ), which is its distance from
the root nodex, i.e., the unique length of the role chains that conagotvith 2. Because
of the second fact, the level of each individual is an integer betwessmdm,. Both facts
together imply that the length of role chains is boundedryy Since the number of direct
role successors of a given individual can also be bounded by the siZg tifis implies that
the size of the constraint systems that can be built by the completiorithly is bounded. A
formal proof of termination based on an explicit termination ordeigrgjven in the appendix.

Discussion of the result: For logics where number restrictions may contain—in addition
to composition—union or intersection of roles, an important progpesed in the above ter-
mination proof is no longer satisfied. It is not possible to assoeiatd individual generated
by a tableau-like procedure with a unique role level, which is ittadise from the “root”
individual z¢ (i.e., the instance, of C, to be generated by the tableau algorithm). Indeed,
in the concept

Co:=(3R.3R.A)N (<1 RURoR),

the number restriction enforces that Brsuccessor of an instance 6f is also anR o R-
successor of this instance. For this reasonResuccessor of the root individual must be both
on levell and on leveR, and thus the relatively simple termination argument that was used
above is not available for these larger logics. However, as we will dhedawy, this termi-
nation argument can still be used if union and intersection are restrictetetohains of the
same length. Without this restriction, satisfiability may become uddédé: in Section 3.1

we have shown that satisfiability is in fact undecidable g€\ (o, M). For ALCN (o, L),
decidability of satisfiability is still an open problem.

3.3 An extension of the decidability result

The algorithm given in Section 3.2 will be extended such that it can a¢sd trnion and
intersection of role chains that have the same length. The proof afisess, completeness
and termination of this extended algorithm is very similar to the anéhfe basic algorithm,
and will thus only be sketched.

In the remainder of this sectioncamplex rolds

e arole chaifR = Rjo...0R,, or
e anintersectiork = Rjo...0R, M S;o0.. .05, of two role chains of the same length, or
e aunionR = Rjo...0oR, 1S 0...08, of two role chains of the same length.

The satisfiability algorithm is extended by adding two new rules talleamumber restrictions
(> n R) for complex roles with union or intersection and by modifying thie for number

restrictions such that it can handle the new types of complex roles. riiwufate the new
rules, we must extend the notion of a role successor in a constrai@nsyappropriately.
Building up on the notion of a role successor for a role chain, we éefin

e yisan(Rjo...0R,S;o0...0S5,)-successor af in Siff y isanR;o...oR,-successor
oransS;o...oS,-successor of in S, and
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5a. Number restriction: If z:(>n Rjo...0R,, USj0...05,,) € S andz has less
thann (Ryo...0R,, L Sjo0...05,,)-successors i, then
S = 81 = SU{rR1y2, ym Rz} U{yiRiyiy1 |2 <i <m — 1} U
{z#w|wisan(Rjo...0R,, USjo0...05,,)-successor af in S}
S = Sy =SU{zS1y2,YmSmz} U{yiSivi+1 | 2<i<m—1}U
{z#w|wisan(Rjo...0R,, USjo...05y,)-successor af in S}
wherez, y; are new variables in \ 7s.

5b. Number restriction: If z:(> n Rio...0R,;, M Sj0...05,,) € S andz has less
thann (Rio...0R;, M Syo...05,,)-successors i, then
S = SU{zR1y2, 25195, ymRm2, Y Smz} U
{WiRiyit1,yiSiyi |2 <i<m -1} U
{z#w|wisan(Rjo...0R, M Sjo...0Sy,)-successor of in S}
wherez, y!, y; are new variables in \ 5.

6’. Number restriction: If z:(<n R) € S for some complex rol&, = has more
thann R-successors ¥, and there ar®-successorg, , y» of z in S with (y; # y2) &
S, then

S — Sy17y2 = S[y2/y1]

for all pairsy;, y» of R-successors of with (y; # y2) € S.

Figure 8: The additional completion rules.

e yisan(Rjo...0R,MS;o...05,)-successor af in S'iff y isanR;o...oR,-successor
and anS;o...0S,-successor af in S.

Obviously, this definition is such that role successorS are also role successors in every
model ofS: if Z, 7 satisfyS, andy is an’R-successor of: in S for a complex roleR, then
7(y) is anR-successor of (z) in Z.

The new rules are described in Figure 8. The ruiles5b are added to the completion
rules, whereas rul& substitutes rulé in Figure 7. To show that the new algorithm obtained
this way decides satisfiability of concepts for the extended logic, we pnase that all four
parts of Lemma 8 still hold.

1. Local correctnes®f the rulessa, 5b and6’ can be shown as in the proof of Part 1 of
Lemma 8 above.

2. Thecanonical modeinduced by a complete and clash-free constraint system is defined
as in the proof of Part 2 of Lemma 8. The proof that this canonical modd&y sedisfies
the constraint system is also similar to the one given there. Note thatation of
an R-successor of a complex rofe in a constraint system was defined such that it
coincides with the notion of aR-successor in the canonical modeinduced by the
constraint system.

3. The proof that a constraint system containing a clash is unsatisBahke same as the
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one given above. Note that this depends on the fact that role successamistiaint
system are also role successors in every model of the constraint system.

4. The proof ofterminationis also very similar to the one given above. The definition of
the depth of a concept (see the appendix) is extended in the obvious wagdepts
with number restrictions on complex roles:

deptf>n Ryo...0R,;, M Sj0...05,) = m,
deptf>n Rio...oR, U Sjo...05,) = m,
deptf<n Rio...0oR, M Sjo...08,) = m,
deptf<n Rjo...0R,, U Sj0...05,) = m.

Because the role chains in complex roles are of the same length, it is easg to
that Lemma 10 still holds. Thus, we can define the same meagdieas in the ap-
pendix for all constraint systems obtained by applying the extendedletorprules
to {zo:Cp}. Itis easy to see that the proof thait— S’ impliesx(S) > x(S) can
be extended to the new rules. It should be noted that the proof givéreiappendix
was already formulated in a more general way than necessary for the logicereasid
there. Actually, we have only used the fact that all role chains connectmgtiivid-
uals have the same length (which is still satisfied for the extendéd)|@md not that
these role chains also have the same name (which is only satisfigddddr (o)).

The following theorem is an immediate consequence of these observations:

Theorem 11 Subsumption and satisfiability is decidable for the logic that exdetfd A/ (o)
by number restrictions on union and intersection of role chains ofahre=dength.

4 Symbolic Number Restrictions

In this section, we introduce the extension4CN by symbolic number restrictions and
investigate the complexity of satisfiability and subsumption &f #xtension. As motivated
by the examples in the introduction, we need a formalism that allows irstroduce ex-
plicitly existentially quantified numerical variables in number reswitsi. If we want to
extend ALCN such that it is still closed under negation, universal quantificatioruoferical
variables comes in as the dual of existential quantification. We will shatthis propo-
sitionally closed extension is undecidable. However, if we restricfeeof negation such
that universally quantified numerical variables do not occur, satisfiab#itpmes decidable.
Unfortunately, subsumption of this restricted logic is still enmtiable.

4.1 Syntax and Semantics

In order to introduce symbolic number restrictions, we must extenmdsocabulary by vari-
ables that stand for non-negative integers.

Definition 12 Let Ny be a set of numerical variables. ThdfCA"® is obtained fromACN
by additionally allowing for

e symbolicnumber restrictioné< a R) and(> a R) for a role nameR and a numerical
variablea, and
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o the existential quantificatiof.«.C') of numerical variables: whereC' is an ACCN®-
concept.

As in the case of traditional number restrictions, we use additioraioaes=, <, > as
abbreviations. For examplé= « R) is an abbreviation fof< o R) N (> o R). To give an
intuitive understanding of the meaning of symbolic number resdrist we first present two
examples: the concept

Humman 1 (Vchi | d.Ja.(=avice)N (> avirtue))
describes persons whose children all have less vices than virtues, whereaad¢kpt
Human M (la.Vchil d.(= avice)N (> avirtue))

describes persons whose children all have the same number of vices, s/biolller than
the number of their virtues.

Since ALCN® allows for full negation of concepts, universal quantification of nuoari
variables can be expressed: in the following, we(ts.C) as shorthand for(la.~C).
Before giving the semantics offC\"®-concepts, we define what it means for a numerical
variable to occur free in a concept.

Definition 13 The occurrence of a variablec Ny is said to bebound inC' iff o occurs in
the scope’’ of a quantified subterrfj«.C") of C'. Otherwise, the occurrence is said to be
free The set fre@C') C Ny denotes the set of variables that occur fre€'inThe concept’

is closediff free(C') = 0. For a non-negative integer, the concepC[%] is obtained from
the concep? by substituting all free occurrences@by n.

Note that, as usual, a variable can occur both free and bound in a concepkaFfple,«
occurs both free and bound (= o R) M ({a.(3R.(> a R)))) .
Using this notation, we can define the semanticsiéf\"°-concepts.

Definition 14 An ALCN S-interpretation is and(C\ -interpretation that, additionally, satis-
fies the equation
n
(a.0)” = |J (2D
neN

for all closed ACCN®-concept|a.C). If C is not closed and fré€) = {a,...,a,} for
n > 1then

CT = (log.... la,.C)E.

This definition reduces the semantics of symbolic number restrictmtiset semantics of
traditional ones. Sincéta.C) is an abbreviation for:(Ja.—C'), we can give its semantics

directly by
n

(ta.0)* = () (C[=)".

(0]
neN

Similar to ACCV, it can be shown thaZCAV® still has the tree-model property, but in contrast
to ACCN, the logic.ACCA® does not have the finite-model property. For example, the concept

(ta.(> a R)) ®)
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is satisfiable, but each instance of (3) has infinitely mBrsuccessors. On the one hand, the
interpretatior? where

AI = {‘rayo,ylay%"'}
RT = {(z,y;)|i €N}

is clearly a model of (3). On the other hand, each mdded (3) satisfies),,cn(> n R)? #
@, hence each instance of (3) has infinitely mdyguccessors.

To give a better insight into the expressive power of symboliclmemestrictions we first
give the undecidability result.

4.2 ACCN? is undecidable

Similar to the undecidability proofs in Section 3.1, undecidabilftyatisfiability for ACCN™

is shown by a reduction of the domino problem to concept satisfialfiy.ACN ", however,
the proof is easier if we take another variant of the domino problenteadsof asking for a
compatible tiling of the first quadrant of the plane, we now ask for apaihle tiling of the
“second eighthIN x N)< := {(a,b) | a,b € N anda < b} of the plane. Since such a tiling
yields compatible tilings of arbitrarily large finite rectangles, ibajgelds a compatible tiling
of the plane [14].

In contrast to the reduction given in Section 3.1, in this reductianjribividuals repre-
senting points in the grid are not related to each other by roles—theoediguivalent to the
“horizontal” and “vertical” rolesX andY. Instead, the reduction works as follows: First,
we define anA/.‘(Z/\fS-conceptCN such that, for each model @fx with o € C%, there is
a natural relationship between tuplgsb) € (N x N)< andS-successorg,,, of o. The
point(a, b) is represented by afi-successor o havinga L-successors angdR-successors.
Second, for a given tiling systef, we construct a concepip that (1) is subsumed ¥y,

(2) ensures that eveny, , has exactly one domino type, and (3) encodes the compatibility
conditions of the matching pairs.

The formal definition ofCy is given in Figure 9. Assume thatis a model ofCy with
o € CL. Now, C; makes sure that, for every non-negative integes has anS-successor
having exactlyu L-successors. The precondition@f makes sure that is smaller tharb,
and thus the whole implication says that, for each pait b of non-negative integers,has
anS-successor having exactlyL-successors aridR-successors (there can be more than one
suchS-successor). Finally's says that, whenever &tsuccessor of hasa L-successors
andb R-successors, we have< b. Thus, there is an obvious correspondence betwien
successors afand points in the second eighth of the plane: ev®guccessor corresponds to
apointin(IN x N) < and vice versa. More formally, we will prove the following observas
concerningC Where, for a role nam& and somer € AZ, xzz” denotes the number of
R-fillers of z in Z, that is

er’ = #{y € AT | (z,y) € R"}.
Lemma 15 Let Cy be the concept introduced in Figure 9.

1. Cy is satisfiable.

2. LetZ be a model of’y with o € CL and letY = {y € AT | (0,y) € ST}.
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On = (Ta.18.(C1 N Cy 1 C3)) where

Cy:=(3S.(= ))

Cy == ((35. ( L)n(<p L) = @3S(=al)n(=pR))
C3:=(VS.((=aL)N (=B R)) = (<A L))

Given a tiling systenD = ({D,,..., Dy}, H,V) and the subconcept;, C>, C; of
Cn as defined above, let

Cp:=Cnn(vS.( LI (Din( 1 D))

<i<m 1§]¢§m
(ta.1B. 1§|i_|§m(35 ((=aL)n(=pR)ND;)) =
(VS.(#Fa L)U(# B8 R)UD;)) N (1)

(1y-(<(e, B) N=(a+1,7)) =

(VS(((=~vL)N(=B R)) = (Di’%]_')eHDj))) n (2)
(ty-(=(6+1,7) =

(VS.((=aL)N(=~vR)) = i LI D)) (3)

Figure 9: Definition of the concepfsy andC'p used for the reduction of the domino problem
to the ACCN® satisfiability problem

(i) For each(a,b) € (N x N)< there existy,, € Y With (y,)z” = a and
(ya,b)RI =b.
(i) If y € Y andy;” = a andyr? = b, thena < b.

3. If o € On7, then there is an injective mappig (N x N)< — Y from the second
eighth of the plane to the set Stsuccessors aof.

PROOF. 1. DefineZ = (A%, -7) ando as follows:

AT = {o} W {yas | (a,b) € (NxN)<}W {ly,r | a,b e N},
ST = {(0,4ap) | (a,b) € (N x N)<},

I = {(Wap,la) ] (a,b) € (N x N)< anda’ < a},

RY = {(Wap,mv) | (a,b) € (N x N)< andd’ < b}.

7 is a well-definedALCA ® -interpretation and it is clear that, for &lt,b) € (N x N)<, we
have(ya;).” = aand(y,s)r” = b. It remains to be shown thate Cn:

We know thato € Cn” iff for all a,b € N: 0 € (C1[2][5])%, 0 € (C2[2][5])%, and
o € (Cs[2][5])". Thus, leta,b € N.

o o€ (Ci[2][4])7 since(o, ya,) € ST for somed’ > a.
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eo0€ (C’g[%][%])l If o € (3S.(=a L)N (< b L)), thena < band(o,y.,) € S7,
which implieso € (3S.(=a L) N (= b R))~.

e o€ (C’g[%][%])l Let (o,y) € ST. If y € ((= a L) N (= b R))Z, theny = y, , with
a < b, which impliesy € (< b L)Z.

2(9. The subconcepf; ensures that, for each € N, there exists somg, € Y with
(Ya);” = a. If a,b € N satisfya < b, theny, obviously belongs t4(= a L) 11 (< b L))%.
Thus, the subconcegt, ensures that there also exists $rsuccessoy,, , of o that hasa
L-successors angdR-successors.

2(i)). The subconcepf’s ensures that, for aly € Y, y;,” = a andyg” = b implies
yrt < b, and thus: < b.

3. This is a direct consequence of 2(i): we defiriie, b) := y wherey € Y is such that
yrt =aandyr? =b. [ |

Please note that, far,b € IN, there might be more than ogec Y with y,Z = a and
A
yr~ =b.
The definition of the concepts associated with a tiling systef is also given in Fig-
ure 9, where the following abbreviations are employed:

<(a,p) = (@BS((=al)N(=p R)N=(=p L)),
=(a+1,0) <(a,B) N(VS.((€ a L) U (= B L))).

In the context of the concejily, these abbreviations really express the relatioand the
successor relation on natural numbers:dfer Cn”, we have € (<(a, ,8)[%][%])1 iffa <b

as an immediate consequence of Lemma 15.2. Furthermae,=(a + 1, ﬂ)[g][%])f iff

a + 1 = b sinceo has some&'-successor having L-successors for eaeghe IN.

The first line in the definition o, makes sure that'y subsume€’p, and that every
S-successor of an instane®f C'p has exactly one domino type. In the remainder of the def-
inition, we consider ay-successoy,, , with domino typeD; anda L- andb R-successors.
Now, (1) ensures that evefifsuccessor with the same numbefefandR-successors ag, ;
has the same domino tygde;, (2) takes care of the horizontal matching condition, and (3)
of the vertical matching condition. Given this intuition, it is easyshmw that the following
lemma holds.

Lemma 16 C'p is satisfiable iff there exists a compatible tiling of the second &ighthe
plane usingD.

The proof of this lemma can be found in the appendix.

Now, undecidability of the domino problem yields undecidability loé tsatisfiability
problem for ACCN®-concepts. Sinc&' is unsatisfiable iffC T (A M —A), this implies
undecidability of subsumption.

Theorem 17 Satisfiability and subsumption ofZCA"*-concepts are undecidable.

4.3 A decidable restriction of ACCN®

We have seen in the last section that, by using universally quantifieénzahvariables in
ALCN®, we can enforce infinite models. The undecidability proof also makesgstrse of
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universal quantification. In order to obtain a decidable extensioAZGf\ with symbolic
number restrictions, which also has the finite-model property, wednte AN, a frag-
ment of ACCA"® that is obtained by allowing only for existential quantification of rauiwal
variables. This is achieved by restricting the use of negation.

Definition 18 AZEN °-concepts are thosdlCN -concepts where negation occurs only in
front of concept names or number restrictions.

In the following, we will refer to concept names and number restrictiormg@aicconcepts.
Since inACCN ™ universal quantification of numerical variables came in only as an abbrevi-
ation of negated existential quantification, all numerical variabledd#\™° are therefore
existentially quantified. Nevertheless, the logic is still an extemsif ACCN since ACCN -
concepts in NNF satisfy the above restriction. Furthermore, all exargples in Section 1

to motivate the introduction of symbolic number restrictions. 4f8EA ™ -concepts.

In this section, it will be shown that satisfiability ofZ/£N°-concepts is decidable. In
order to simplify our investigation of the satisfiability problenr fAZ/N°-concepts, we
will restrict our attention to concepts where each numerical variable occues déitund
or free, and where each variable is bound at most onc¢. bit is easy to see that each
ACUEN S -concept can be transformed into an equivalent concept of this form by didsiten
quantifying all free variables and by appropriately renaming bound vasabl

Decidability of satisfiability ofAZN " -concepts will be shown by presenting a tableau-
based algorithm and showing that, for eadfl4A*-conceptC!, this algorithm is sound,
complete, and terminating. Similarly to the algorithm presented in Se8t® the algorithm
works on constraints, but fodZN ° -concepts we need additional variabtes Suppose
we have the constraigt:(VR.(l«.C)). Then, for eactk-successar of y, we need a variable
a, that stand forx “in the context ofz”. Since there are further subtle differences between
the algorithm in Section 3.2 and the one S44\°, we provide a complete description of
the latter.

Definition 19 We assume that we have a countably infiniterset {x, y, z, . . .} of individ-
ual variables, and for each pdit,z) € Ny x 7 a new numerical variable,, which may
occur free in concepts. fonstraintis either of the form

xRy, whereRis arole name Vg andz,y € 7, or
z:D  for someAEN *-conceptD and somer € 7.

A constraint systeris a set of constraints.
An interpretatior? is a model of a constraint systeshiff there is a mapping: 7 — AZ
and a mapping: Ny x 7 — N such thatZ, =, v satisfy each constraint ifi, i.e., we have

(r(z),7(y)) € RT forallzRy € S,
n(z) e v(D)?  forallz:D €S,

wherev (D) is obtained fromD by replacing each variable, by its v-imagev(a, y).

A constraint systen$' is said to contain &lashiff for some concept namd and some
variablez € 7 we have{z: A,z:-~A} C S. A constraint systens is said to benumerically
consistentff the conjunction of all numerical constraints f i.e.,

/\ (xrreln) A /\ (zrrelay),
z:(reln R) € S z:(relay R) € S
r €T, RE€ Ng,neN z,y €ET,R € Np,a € Ny
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is satisfiable iNIN, <), wherez g, o, are interpreted as variables for non-negative integers
and rel stands for relations i<, >, <, >, =}.

A constraint systen§ is calledcompletdff none of the completion rules of Figure 10 can
be applied tcS.

Like the algorithm presented in the previous section, the algorfthmiZ/EN S works
on a tree where each node is labelled with a constraint system. It stdrta wie consisting
of arootlabelled withs = {z : Cy} for some closed concepy. A rule can only be applied
to a leaf labelled with a clash-free constraint system. Applying aSule S;, for1 < i < n,
to such a leaf leads to the creationmofiew successors of this node, each labelled with the
constraint systemsS;. The algorithm terminates if none of the rules can be applied to any of
the leaves. The algorithm answers withy‘is satisfiable” iff one of the leaves obtained this
way is a clash-free, numerically consistent, and complete constraint system.

Before showing that the completion algorithm described in Figureidéldly a decision
procedure for satisfiability oftZ4\°-concepts, let us make some comments on the rules.
First, note that each of the completion rules adds constraints when appléedonstraint
system, none of the rules removes constraints, and individual variatdesever identified
or substituted. With respect to this last property, the algorithmo4i/N ™ differs from the
tableau-based algorithms falC\ described in [9] and farllC N (o) presented in the previ-
ous section. Unlike Rule 4 in Figure 10, these algorithms intcedfor each constraint of the
formz :3R.C, a newR-successor af. If 2 also has a constraint of the form(< n R), and
more tham R-successors have been introduced, then some of these individuals gifesidien
Rule 4 in Figure 10 avoids identification by “guessing” the numbetiofved R-successors
of = before introducing these successors. In fact, since we do not haveiterpmbers,
and since restrictions on numerical variabigsin constraints: :(< «, R) can derive from
different parts of the constraint system, an identification on demand sassible here. The
second new feature is Rule 3. Given a constraifif.«.D), we substitute a new numerical
variablea, for a to make sure that the semantics of the existential quantifigs obeyed,
i.e., that the valuation fotx depends orx. If we would just usey, the difference between
la.VR.D andVR.(l«.D) would not be captured.

Again, correctness of this algorithm is an easy consequence of the fajdevinma.

Lemma 20 Let C, be a closeddZ/EN°-concept, and le be a constraint system obtained
by applying the completion rules fa:, : Co}. Then

1. The completion algorithm terminates when appliedatg: Cy }.

2. For each completion rulR that can be applied t§, and for each interpretatichwe
have:Z is a model ofS iff Z is a model of one of the systen§s obtained by applying
R.

3. If S'is clash-free, numerically consistent, and complete, $heas a model.

4. If S contains either a clash or is not numerically consistent, the&oes not have a
model.

PROOF 1. The termination proof is similar to the one for the tableau-basgatitim for
ALCN [9].
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1. Conjunction: If z:(C1 M Cy) € Sandz:Cy g Sorz:Ce ¢ S, then
S —n SU{z:C1,z:Cy}
2. Disjunction: If z:(Cy UCs) € Sandz:Cy ¢ Sandz:Cy ¢ S, then
S—=u S =SU{z:C}
S =y Se=8SU{z:Cy}
3. Numerical Existential Quantification: If z:(la.D) € S andz: D[%=] ¢ S, then
S —, Su{z:D[%=]}

4. New Objects:
If xRy & S forally € , andm > 0, k > 0 aremaximalsuch that

{z:(3R.E;),...,x:(3R.Ey,),x:(VR.Dy),...,x:(NVR.Dy)} C S
and Rules 1-3 cannot be applied9pthen for eacln with 1 < n < m and for each
n-PartitionP = Wi <;<, P; of {1,...,m}, let Sp be defined as follows:

S—rSp = SU{zRy;,|1<i<n}Uu{z:(>nR)}U

{yi:Ej|1<i<n,jeP}U{yi:D;j |1<i<n,1<j<k}

wherey; € T are new variables (i.e., variables not occurringn
5. Prophylactic new objects:
If zRy ¢ Sforally € randz:(< 0 R) ¢ S andk maximal withz :(VR.D;) € S for
1<i<kx:(relN R) e Sfor N € NorN = «, for somey € 7,a € Ny and
Rules 1-4 cannot be applied $9 thensS;, S, are defined as follows:

S—=,S5=SU{z:(<0R)}

S —=n S2=SU{zRy}U{y:D; |1 <i<k}U{z:(>0R)}

wherey € 7 is a new variables (i.e., a variable not occurringin

Figure 10: Thecompletion algorithnfor AZEN S -concepts

2. We consider only Rules 3, 4 and 5 since Rules 1 and 2 are obviatisisijenerated
by the application of a completion rule £ thenS C S’. Hence every model &’ is also a
model of S. Thus we must consider only the other direction.

Numerical Existential Quantification:Application of this rule adds the constraint
r:C[%=] to S, wherez: |a.C is contained inS. If Z, 7, v satisfy S, then we know that
there exists am € N such thatr(z) € v(C[2])”. Since the variable,, does not occur in
S (by our assumption that every variable is bound only once in thet iogucept), we can
assume without loss of generality thdty,) = n, and thusZ, «, v satisfyz : C[%=].

New ObjectsLet z, R, k, m be as specified in the precondition of Rule 4 and/lesat-
isfy S. Since{z:(3R.E;),...,z:(3R.Ey,),z:(YR.Dy),...,2:(VR.D;)} C S, there exist
some’ < m and/ distinct elementds, ..., d, € AT such that

e (w(z),d;) € RT foralliwith1 <i <,
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e forall1 < j < mthereis somg’ € {1,...,¢} withd; € E;*, and
e foralll1 <j <kandalll <i</¢we haved; € D;~.

The second item above implies that there exists at least one funttiph...,m} —
{1,...,¢} such thatdy;) € EjI forall 1 < j < /4. Let P be thel-partition of {1,...,m}
induced byf, i.e., Py := {j | f(j) = j'}. Inthe corresponding constraint systetn, ¢
new variableg); and the corresponding new constraints are introducedrlug) = d; for
1 < ¢ < £. Then, by definition of”? and the three items from above,

o (m(z),m(y;)) € R forall1 <i <,

o for each of the new constraings: F; in Sp we haver(y;) € E;” sincej € P; implies
f(j) =i, and thust(y;) = dy(;) € E;,

o for each of the new constraings: D; in Sp we haver(y;) = d; € DjI, and
e zi’ > ¢sincer(z) has at least th&-successors, , . .., dy.

HenceZ satisfiesSp.

Prophylactic New Objectd.et z, R, k be as specified in the precondition of Rule 5 and
assume that satisfiesS. Two cases are to be distinguished:zl§Z = 0, then clearlyZ
satisfiesS;. Now letzg? > 0 with (7(z),d) € R” for somed € AZ. If we definer(y) = d,
thenZ satisfiesS, = SU {zRy}U{z:(>0R)}U{y:D; |1 <i<k}.

3. As usual, we construct the canonical interpretafigrinduced byS: AZs consists
of the individual variables occurring ifi; (z,y) € RZs iff zRy € S; andz € ATs iff
x:A € S. This yields a tree-like interpretation. However, this Interpretatieed not be a
model of S since some number restrictions may be violated for one of the fallpweasons.
Either (a) an individual does not have any role successors, but theteege is implied
by number restrictions, or (b) it has some, but not sufficiently maiey saccessors. Note
that exact numerical restrictions on the number of role successors arebgieesolution in
(N, <) of the numerical constraints (which are satisfiable sific@numerically consistent).
In the first caseS does not contain any constraints on such role successors since Rule 5 is
not applicable. Thus, we can simply generate an appropriate number of théne. decond
case, the idea is to add sufficiently macgpiesof some already existing role succesgor
More precisely, we need to copy the whole subtree thayleasits root. Proceeding like this
from the leaves to the root, we end up with a mode$oThis can be shown by induction on
the structure of concepts in constraints.

4. This is obvious. ||

Theorem 21 Satisfiability of AN -concepts is decidable.

PrROOF Lemma 20 implies that the completion algorithm always terminates. liti@olthe
second statement of the lemma shows that the original syStenC, } has a model iff one
of the leaves of the tree obtained by the algorithm has a model. Thusné of the leaves
is clash-free and numerically consistent, then the fourth statement &drtimea shows that
{zo:Cy} does not have a model. Otherwise, one of the leaves is a clash-free, caliperi
consistent, and complete, and thus the third statement of the lemmattadyvs, : Co } has

a model. Obviously{z, : Cp} has a model ift; is satisfiable. It remains to be shown that it
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is decidable whether a constraint system contains a clash and whether a nbagstaim is
numerically consistent. Detecting clashes is trivial.

Numerical consistency can be tested using a modified cycle detection atgouitiming
in time polynomial in the size of the formula. To be more preciseyargiormulais translated
into a graph whose nodes correspond to the numerical variables and gativategers oc-
curring in the formula. The edges are induced by the numerical constedditite formula.
For exampleq < g yields an edge from the node corresponding to the node correspond-
ing to 3, and this edge is labelled witk. Obviously, if there is a cyclic path in the graph
that is labelled with at least one strict inequality, then the formulaniatisfiable. Because
of the presence of concrete numbers, testing for cycles is not suffidiengh. Given nodes
kn, k., corresponding to the numbetsm, one must also check that a path frégmto &,
does not contain more tham — n strict inequalities.

Unfortunately, sincedN " is not propositionally closed, subsumption cannot be re-
duced to satisfiability. A closer look at the specific form of the conégptintroduced in
Figure 9 reveals that it can be written@g = D, M—D, for two ALM‘?/\/S-conceptle, Ds.

In fact, D, is the first conjunct o€p and D, is the negation of the remainder 6f,. Note
that D, does not contain numerical variables. Furthermore, all numerical variablesiaogcur
in the remainder o’ are universally quantified, which shows thas contains only exis-
tential quantification of numerical variables. SinBe M — D, is unsatisfiable iffD; C D,
this implies:

Theorem 22 Subsumption ofACUEN -concepts is undecidable.

5 Related work

Some Modal Logics and Description Logics can be translated into firgtrtodic such that
only two different variable names occur in the formulae obtained by taisstation. Thus,
decidability of subsumption and other inference problems for thesesldgllows from the
known decidability result fot,, i.e., first-order logic with two variables and without function
symbols [18, 10]. Recently, this decidability result has been extend@gd ice., first-order
logic with 2 variables and counting quantifiers [11]. Independently, it has been praved i
[19] that satisfiability ofC, formulae can be decided in nondeterministic doubly exponential
time. As an immediate consequence, satisfiability and subsumptiofdfo¥ (L1, 11, -, 71 ),
the extension ofAZC by number restrictions with inversion and Boolean operators on rales, i
still decidable. It should be noted, however, that expressing comgosi roles in predicate
logic requires more than two variables.

Using sophisticated techniques for translating Description Logic casdsje formulae
of Propositional Dynamic Logics, it has been shown in [5] that decidiatisfiability and
subsumption for a very expressive extensiotdt .., is ExpTime-complete. In particular,
this extension allows foqualifyingnumber restrictions on atomic and inverse roles, and thus
it is an extension of the l0gielC e (7).

To the best of our knowledge, there are no (un)decidability or contglessults for logics
that are similar to our DL with symbolic number restrictions.
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6 Conclusion

The expressive power of traditional number restrictions is seveeslyicted for at least two
reasons: only fixed non-negative integers may occur in humber resisgctind it is not
possible to restrict the number of successors of a complex role. dipéper, we have tried
to overcome these two restrictions by introducing two separate apprdactessending the
expressiveness of number restrictions: symbolic number restisctiott number restrictions
on complex roles. Although our goal was to obtain decidable Descrihtigyics, it turned
out that both types of extensions may easily cause undecidability.

For number restrictions on complex roles, we have considered extensiol/CN and
ACC, N, and investigated decidability of the subsumption and the satisfiapitbblem. We
could provide an almost complete classification of extensiod(G\ with number restric-
tions on complex roles, and a rather strong undecidability resultdi@nsions ofAZC V.
Another inference problem of the decidable extensid A (o), namely checking the con-
sistency of a concrete world description (“ABox-consistency”), wagstigated in [17]. It
was shown that consistency of ABoxes of a restricted form is decidable—eatdecidabil-
ity of consistency of generadC N (o)-ABoxes is still an open problem.

To overcome the need to fix a non-negative integer in number restsctianintroduced
numerical variables to be used in number restrictions, where these varialndse exis-
tentially quantified. The propositionally closed extension (naméky,dne that allows for
full negation, and thus implicitly introduces universal quantificatid numerical variables)
turned out to be undecidable, whereas a restriction of this “full” extent atomic nega-
tion turned out to have a decidable satisfiability problem. Unfately, the subsumption
problem for this logic is still undecidable. The undecidability drizcalso interesting from
a theoretical point of view because symbolic number restrictions tn@vexpressive power
to enforce infinitely branching models, whereas the undecidability efrdtyics is usually
due to the fact that infinite paths can be enforced.

Summing up, this paper almost completely answers the question hovwefaxgnessive
power of number restrictions can be increased without losing decidadilitye important
inference problems. The decidable extensions, namely compositiofesfironumber re-
strictions and the decidable form of symbolic number restrictiongyige an expressive
power that is useful in many applications, not only in the process engigegpplication
that motivated this research.

References

[1] F. Baader. Augmenting concept languages by transitive closure of Auteslternative
to terminological cycles. IfProc. of the 12th Int. Joint Conf. on Atrtificial Intelligence
(IJCAI-91) 1991.

[2] F. Baader. A formal definition for the expressive power of termigidal knowledge
representation languagekurnal of Logic and ComputatioB(1):33-54, 1996.

[3] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich.efpirical anal-
ysis of optimization techniques for terminological representatioresyst or: Making
KRIS get a move onApplied Artificial Intelligence4:109-132, 1994.

29



[4] R. Berger. The undecidability of the dominoe probleMem. Amer. Math. Soc66,
1966.

[5] G. De Giacomo and M. Lenzerini. Thox and Abox reasoning in expresi&seription
logics. InProc. of the 5th Int. Conf. on the Principles of Knowledge Represientand
Reasoning (KR-96pages 316—-327. Morgan Kaufmann, Los Altos, 1996.

[6] G. De Giacomo and M. Lenzerini. Boosting the correspondence betweenptiescr
logics and propositional dynamic logics (extended abstractprde. of the 12th Nat.
Conf. on Artificial Intelligence (AAAI-941994.

[7] G. De Giacomo and M. Lenzerini. Concept language with number restrctmd
fixpoints, and its relationship with mu-calculus.Prnoc. of the 11th European Conf. on
Artificial Intelligence (ECAI-94)1994.

[8] G. De Giacomo and M. Lenzerini. What's in an aggregate: Foundatiordefaription
logics with tuples and sets. Proc. of the 14th Int. Joint Conf. on Artificial Intelligence
(IJCAI-95), 1995.

[9] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity concept lan-
guagesinformation and Computatiqri34:1-58, 1997.

[10] E. Gréadel, P. Kolaitis, and M. Vardi. On the Decision ProblemTan-Variable First-
Order Logic.Bulletin of Symbolic Logic3:53—-69, 1997.

[11] E. Gradel, M. Otto, and E. Rosen. Two-variable logic with caumis decidable.
In Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science (RIQ,S-
1997. Available viahtt p: / / speedy. i nformati k. rwt h- aachen. de/ WWV
papers. htnl .

[12] B. Hollunder and F. Baader. Qualifying number restrictions in cohlzamuages. In
Proc. of the 2nd Int. Conf. on the Principles of Knowledge Repreientand Reason-
ing (KR-91) pages 335-346, Boston, MA, USA, 1991.

[13] B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Subsumptigorithms for concept
description languages. BCAI-9Q Pitman Publishing, London, 1990.

[14] D.E. Knuth. The Art of computer programmingolume 1. Addison Wesley Publ. Co.,
Reading, Massachussetts, 1968.

[15] N. Kurtonina and M. de Rijke. Classifying description logicén M.-C. Rousset,
R. Brachmann, F. Donini, E. Franconi, |I. Horrocks, and A. Levy, edjt®roceedings
of the International Workshop on Description Logicsif sur Yvette, France, 1997.
Université Paris-Sud.

[16] R. MacGregor. Inside the LOOM description classifisStGART Bulletin2(3):88-92,
1991.

[17] R. Molitor. Konsistenz von Wissensbasen in Beschreibungstogmit Rollenopera-
toren. Diploma thesis, RWTH Aachen, Germany, 1997.

[18] M. Mortimer. On languages with two variablegeitschr. f. math. Logik u. Grundlagen
d. Math, 21:135-140, 1975.

30



[19] L. Pacholski, W. Szwast, and L. Tendera. Complexity of two-vaei&dgic with count-
ing. In Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science (RIQ,S-
1997.

[20] P. Patel-Schneider, D. McGuinness, R. Brachman, L. Resnick, and Aiddor The
CLASSIC knowledge representation system: Guiding principles antemmgntation
rationale.SIGART Bulletin2(3):108—-113,1991.

[21] C. Peltason. The BACK System - an OvervieS¥{GART Bulletin2(3):114-119, 1991.

[22] K. Schild. A correspondence theory for terminological logics: iRrslary report. In
Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJG81), pages 466-471,
Sydney, 1991.

[23] K. Schild. Terminological cycles and the propositionatalculus. In J. Doyle,
E. Sandewall, and P. Torasso, editd?spc. of the 4th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR{8jes 509-520, Bonn, 1994. Mor-
gan Kaufmann, Los Altos.

[24] M. Schmidt-Schaul3 and G. Smolka. Attributive concept descriptigith comple-
ments.Artificial Intelligence 48(1):1-26, 1991.

Appendix

Proof of Part 4 of Lemma 8 We must show that the tableau algorithm that tests satisfia-
bility of ALCN (o)-concepts always terminates. In the following, we consider only constrai
systemsS that are obtained by applying the completion rule$ig: Cy}. For a concep€,
we define its and/or-siZ€’|,., as the number of occurrences of conjunction and disjunction
constructors irC'. The maximal role deptbleptiC') of C is defined as follows:

depthf{A) := deptii—A) := 0for A € N¢,

dept{Cy 1 Cs) := max deptiC), dept{Cs)},

deptiCy U Cy) := max depth{C,), depthC>)},

deptiVR,.Cy) := depti3R,.C}) := 1 + deptiC,),

deptf> n Rio...0Ry,) :=m,

depti< n Rjo...0R,) :=m.

The following observations were made in Lemma 10:

1. Every variabler # z, that occurs inS is an R; o. ..o R,,-successor of, for some
role chain of lengthm > 1. In addition, every other role chain that conneetswith
has the same length.

2. If z can be reached it¥ by a role chain of lengthn from zq, then for each constraint
z:C' in S, the maximal role depth af' is bounded by the maximal role depth@f
minusm. Consequentlyy is bounded by the maximal role depth(@.
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Let my be the maximal role depth @f,. Because of the first fact in Lemma 10, every
individual z in a constraint systerfi (reached fror{z, : Cy } by applying completion rules)
has a unique role levéévelz), which is its distance from the root nodsg, i.e., the unique
length of the role chains that connagtwith 2. Because of the second fact, the level of each
individual is an integer betwedhandm.

In the following, we define a mappingof constraint systemsS to 5(mg + 1)-tuples of
non-negative integers such thit—+ S’ impliesx(S) > «(S’), where> denotes the lexico-
graphic ordering 06 (mg + 1)-tuples. Since this lexicographic ordering is well-founded, this
implies termination of our algorithm. In fact, if the algorithm didtrterminate, then there
would exist an infinite sequenc® — S; — ..., and this would yield an infinite descending
>-chain of tuples.

Thus, letS be a constraint system that can be reached ffosm Co} by applying com-
pletion rules. We define

K(S) := (Ko, K1y - -+ s Bmg—1s Bmg )
wherer, := (k¢ 1, ke, ke 3, ke 4, ke,5) and the components ; are obtained as follows:
e kg1 is the number of individual variablesin S with levelz) = ¢.

e ko is the sum of the and/or-sizé€'|n,, of all constraintsz:C' € S such that
levelz) = £ and the conjunction or disjunction rule is applicable:taC in S.

e For a constraink:(> n Ry0...0R,,), letk be the maximal cardinality of all sefe
of Ryo...0R,,-successors af for whichy; # y; € S for all pairs of distinct elements
yi,y; of M. We associate with :(> n Ryo...0R,,) the number :=n —k,if n > &,
andr := 0 otherwise. The componeht ;3 sums up all the numbersassociated with
constraints of the formz :(> n R;o...0R,,) for variablesr with levelz) = £.

e kg 4 is the number of all constraints:(3R.C) € S such thatlevelz) = ¢ and the
existential restriction rule is applicableta(3R.C) in S.

e k¢ 5 is the number of all pairs of constraints(VR.C'), xRy € S such thaleve(xz) = ¢
and the value restriction rule is applicableitqVR.C), Ry in S.

In the following, we show for each of the rules of Figure 7 thiat> S” impliesx(S) > x(S').

1. Conjunction: Assume that the rule is applied to the constrain€; 1 C5, and letS’ be
the system obtained froifi by its application. Let := levelz).
First, we comparg, andk;, the tuples respectively associated with letiel S andS’.
Obviously, thefirst componentsf «, andx; agree since the number of individuals and
their levels are not changed. Thecond componeof «; is smallerthan the second
component ok,: |Ci M Cs|n,u is removed from the sum, and replaced by a number
that is not larger thafC |, + |C2|n,u (depending on whether the top constructor of
(4, and( is disjunction or conjunction, or some other constructor). Sinpktuare
compared with the lexicographic ordering, a decrease in this componersmake
that it is irrelevant what happens in later components.
For the same reason, we need not consider tugle$or m > £. Thus, assume that
m < £. In such a tuple, the first three components are not changed by applichtion o
the rule, whereas the remaining two components remain unchanged or decrease. Such
a decrease can happeriafe(y) = m andS contains constraintgRz, y :(VR.C;) (or
y:(AR.Cy)).
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2. Disjunction: This rule can be treated like the conjunction rule.

3. Value restriction: Assume that the rule is applied to the constrainté/R.C), 2 Ry, and
let S’ be the system obtained frofhby its application. Le? := leve[xz). Obviously,
this implies thatevely) = levelz) + 1 > ¢.
On level/, the first three components &f remain unchanged; the fourth remains
the same, or decreases fifcontains constraintsSy and z :(35.C) for an individ-
ual z with levelz) = ¢); and the fifth decreases by at least one since the constraints
z:(VR.C), zRy are no longer counted. It may decrease by more than dghedhtains
constraints: Sy andz :(V.S.C) for an individualz with levelz) = ¢.
Because of this decrease at legglhe tuples at larger levels (in particular, the one for
level levelz) + 1, where there might be an increase), need not be considered.
The tuples of levels smaller thdrare not changed by application of the rule. In partic-
ular, the third component of such a tuple does not change since no regaiats or
inequality constraints are added or removed.

4. Existential restriction: Assume that the rule is applied to the constrain@R.C'), and
let S’ = S U {zRy,y:C} be the system obtained fro by its application. Let
¢ := levelz). Obviously, this implies thatevely) = levelz) + 1 > .
The first two components of, obviously remain unchanged. The third component
may decrease (ij is the first successor for an at-least restriction) or it stays the same.
Since the fourth component decreases, the possible increase of the fifplocent is
irrelevant.
For the same reason, the increase of the first componeni ¢fis irrelevant.
Tuples of levels smaller thafiare not increased by application of the rule. All com-
ponents of such a tuple remain unchanged, with the possible exceptiba third
component, which may decrease.

5. Number restriction: Assume that the rule is applied to the constraitit> n R;o...0
R,,) € S, let S’ be the system obtained by rule application, and tetlevelz).
Similar to Rule 4, the first two componentsiofremain the same. In addition, there is
a decrease in the third componentQf since the new individual can now be added
to the maximal sets of explicitly distind®; o. ..o R,,,-successors af. Note that these
sets were previously smaller thar{because even the set of &l o. . .oR,,,-successors
of z was smaller thamn).
For this reason, the possible increase in the fifth component and in the first com-
ponents of tuples of levels larger thé&mare irrelevant. Tuples of levels smaller thén
are either unchanged by application of the rule, or their third componeraatas.

6. Number restriction: Assume that the rule is applied to the constraint< n R; o
...oR,;) € S, letS" = S,, ,, be the system obtained by rule application, and let
? = levelz).
On level? + m, the first component of the tuple,,, decreases. Thus, possible in-
creases in the other components of this tuple are irrelevant.
Tuples associated with smaller levels remain unchanged or decrease. In fact, since
in S’ has all its old constraints and the constraintg-oh S, some value restrictions or
existential restrictions for individuals of the level immediately eb&evel/ + m may
become satisfied (in the sense that the corresponding rule no longersap@@ince
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no constraints are removed, previously satisfied value restrictiomdgsiential restric-
tions remain satisfied. The third component of tuples of smaller levelatancrease
since the individualgy , y» that have been identified were not related by inequality con-
straints.

Proof of Lemma 16 We must show that'p is satisfiable iff there exists a compatible tiling
of the second eighth of the plane usifg Note that the definition of's obviously implies
thatC'p is subsumed b¢'y, and thus Lemma 15 applies to instance§'sf

“=" Given a model of C'p with 0 € Cp”, we define the mapping (NxN)< - Das
follows:
t(a,b) = D;iff 0 € (3S.((=a L) N (= b R) N D;))~.

First, we show that is well-defined. Thus, lei, b € IN. Since
. -/ . I
o€ (vs.( L (in( T1 =Dy,

1<i<m
i#]
eachS-successor o is an instance of exactly on@; € D. For each(a,b) € (N x
N)< and eactD; € D
0€((3S.(=aL)yn(=bR)ND;)) = (VS.(#a L) U (# b R) U D;)))7,

which implies that allS-successors af having the same number éfsuccessors and
the same number dR-successors are instances of the sdmec D. Thust is well-
defined, and it remains to be shown thét indeed a compatible tiling.

Leta,b € N, a < bandt(a,b) = D;. From Lemma 15.2.(i) it follows thad €
(3S.((=a L)N (= b R))) and we have already seen that edesuccessor of is an
instance of exactly on®; € D; henceo € (3S.((= a L) (= b R) N D;))” for some
D;. Nowo € Cp? implies that

o€ (17.((<(a,b) N=(a+1,7)) = (3S.((= v L) N (= B B) N D)))))*

for someD; with (D;, D;) € H. Henceo € (3S.((=a+ 1 L)N (= b R) N D;))%,
which implies that(a + 1,b) = D; and(D;, D) € H.

Now leta,b € N with a < b andt(a,b) = D;. Then agairo € (3S.((=a L) N (=
b R)N D))", ando € Cp” implies that

o€ (t7.((= (b+1,7) = 3S.((=a L) N (= v R)N D;))))*

for someD; with (D;, D;) € V. Henceo € (3S.((=a L) N (= b+ 1 R) N D;))Z,
which implies that(a,b + 1) = D; and(D;, D;) € V. To sum up, we have shown
thatt is a tiling.

“«<” Given atilingt, we define a model = (AZ, 1) of Cp as follows:
AT .= {0} W{y.p | a,b e Nanda < b} W {l,, 7 | a,b € N},
ST :={(0,Yap) | a,b € N anda < b},
LT .= {(yap,lu) | a,a',b € N anda' < a < b},
RT := {(Yap,7p) | a,b,0' € N anda < bandb’ < b},
DF = {yas | t(a,) = Di}
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By definition of DZ, eachS-successor of is an instance of exactly one; € D, and
hence
) D )NZ
o€ (VS'(lngglm(D’ n (1§|j1m D;))))".
i#j

The interpretatior? defined above just extends the one constructed in the proof of
Lemma 15.1 by the interpretation of the atomic concéptsThus, Lemma 15.1 yields
o€ (TaTﬁ(Cl [l 02 [l 03))2.
Now leta,b € N. Theno € (3S.(=a L)N (=4 R) N Di))[g][%])z iff @ < band
t(a, b) = Dl
For alla,b such thab € (3S.((=a L)N(= B R) N Di))[g][%])f, we must show
thato also belongs to the concepts on the right-hand side of the implicgémnlines
(1), (2), (3) in Figure 4).

e oe (VS((Fa L)U(#B R)U Di)[g][%])l sinceo has exactly oné§-successor
Ya,b € AT havinga L-successors and R-successors, and for thissuccessor
Ya,s We knowy,, , € DI by assumption.

e If o € ((<(a, ) N =(a + 1,7))[%][%][%])1 for someg € IN, thena < b and
a + 1 = g. The definition ofZ and the fact thatis a compatible tiling entail that
0 € (3S.((=~ L)N (= B R) N Dy)[§][£])* for someD; with (D;, D;) € H,
and hence € (< (a,f)N=(a+1,7)) = 3S((=~v L)N(= B R)N
Ujer(p) D) 2115127

o If 0 € (=(8+1,7))[5][2])" for someg € N, thenb + 1 = g. Again, the
definition of Z and the fact that is a compatible tiling entail that € (3S.((=
al)M(=~v RN Dj)[g][%])f for someD; with (D;, D;) € V, and hence
o€ ((=(6+17) = 3S.((=aL)N (=7 R) NUjevp)D))2I5IELD*.

To sum up, we have shown that CpZ, and thu<’p is satisfiable. [ |
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