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Abstract

This paper presents a proposal for a Data Ware-
house Conceptual Data (CDWDM) Model which
allows for the description of both the relevant ag-
gregated entities of the domain—together with
their properties and their relationships with other
relevant entities—and the relevant dimensions in-
volved in building the aggregated entities. The
proposed CDWDM is able to capture the database
schemata expressed in an extended version of the
Entity-Relationship Data Model; it is able to in-
troduce complex descriptions of the structure of
aggregated entities and multiply hierarchically or-
ganised dimensions; it is based on Description
Logics, a class of formalisms for which it is possi-
ble to study the expressivity in relation with decid-
ability of reasoning problems and completeness of
algorithms.
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the fact that (1) experiences in the field of databases have
proved that conceptual modelling is crucial for the design,
evolution, and optimisation of a database, (2) a great va-
riety of data warehouse system are on the market, most
of them providing some implementation of multidimen-
sional aggregation, and (3) query optimisation with aggre-
gated queries [Nutt al., 1998, Coheret al., 1999] is even
more crucial for data warehouses than it is for databases—
which makesemantiqquery optimisation using a concep-
tual model even more important. As a consequence of
the absence of a such an extended modelling formalism,
a comparison of different systems or language extensions
for query optimisation is difficult: a common framework in
which to translate and compare these extensions is missing,
new query optimisation techniques developed for extended
schema and/or query languages cannot be compared appro-
priately.

In order to address these questions, a formal framework
must be developed that encompasses the abstract principles
of the data warehouse related extensions of traditional rep
resentation formalisms. In this paper, we present some pre-
liminary outcome from the research done within the “Foun-
dations of Data Warehouse Quality” (DWQ) long term re-
search project, funded by the European Commission (n.

Data Warehouse—and especially OLAP—applications ask2469) under the ESPRIT Programme. With respect to
for the vital extension of the expressive power and functhe global picture, the role of our research within DWQ
tionality of traditional conceptual modelling formalisrims
order to cope wittaggregation Still, there have been few Figyre 1). The conceptual data model we are investigat-
attempts [Cataraet al., 1995, Cabibbo and Torlone, 1998] ing should be able to abstract and describe the entities and
to provide such an extended modelling formalism, despitge|ations which are relevant both in the whole enterprise,
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is to study a formal framework at tlenceptual levelsee

and in the user analysis of such information. In the follow-
ing, we will refer to this formalism as the Data Warehouse
Conceptual Data Model (DWCDM).

1.1 A Data Warehouse Conceptual Data Model

A DWCDM must provide means for the representation of a
multidimensionatonceptual view of data. More precisely,
a DWCDM provides the language for defining multidimen-
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Figure 1: The role played by the Data Warehouse Concep-
tual Data Model with respect to the DWQ architecture.  has an associated hierarchy of levels of consolidated data.
For instance, a spatial dimension might have a hierarchy

sional information within a conceptual model in the datawith levels such as country, region, city, office.
warehouse global information base. As stated above, the Measures (which are also known as variables or
model is of support for the conceptual design of a datametrics)—like Sales in the example, or budget, revenue,
warehouse, for query and view management, and for upinventory, etc.—in a multidimensional array correspond to
date propagation: it serves as a reference meta-model f@olumns in a relational database table whose values func-
deriving the inter-relations among entities, relatiomgra-  tionally depend on the values of other columns. Values
gations, and for providing the integrity constraints neces within a table column correspond to values for that mea-
sary to reduce the design and maintenance costs of a dagare in a multidimensional array: measures associate val-
warehouse. Hence a DWCDM must be expressive enouglies with points in the multi-dimensional world. For ex-
to describe both the abstract business domain concerneginple, the measure of the sales of the product Cola, in
with the specific applicationEnterprise modg+—just like  the northern region, in January, is 13,000. Thus, a dimen-
a conceptual schema in the traditional database world—ansion acts as an index for identifying values within a multi-
the possible views of the enterprise information a specificiimensional array. If one member of the dimension is se-
user may want to analys€ljent mode}—with particular  |ected, then the remaining dimensions in which a range of
emphasis on the aggregated views, which are peculiar to @members (or all members) are selected defines a sub-cube.
data warehouse architecture (see Figure 1). A multidimenif all but two dimensions have a single member selected,
sional modelling object in the logical perspective—e.g., athe remaining two dimensions define a spreadsheet (or a
materialised view, a query, or a cube—should always bglice or a page). If all dimensions have a single member
related with some (possibly aggregated) entity in the conselected, then a single cell is defined. Dimensions offer a
ceptual schema. very concise, intuitive way of organising and selectingadat

In the following, we will briefly introduce the for retrieval, exploration and analysis. Usual pre-defined
ideas behind a multidimensional data model (see, e.ggr user-defined dimension levels (or Roll-Ups ) for aggre-
[Agrawalet al, 1995, Cabibbo and Torlone, 1998]) and gating data in DW are: temporal (e.g., year vs. month),
compare it with a traditional relational data model. A geographical/spatial (e.g., Rome vs. ltaly), organisetio
more comprehensive introduction has been done in thémeaning the hierarchical breakdowns of your organisa-
forthcoming book “Fundamentals of Data Warehousing'tion, e.g., Institute vs. Department), and physical (&g,
[Baaderet al., 1999], Chapter 4 oMultidimensional Ag-  vs. Engine).
gregation A value in a single cell may represent aggre-

Relational database tables contain records (or rows)gatedmeasure computed from more specific data at some
Each record consists of fields (or columns). In a normal relower level of the same dimensions. Aggregation in-
lational database, a number of fields in each record (keysjolves computingaggregation functions-according to
may uniquely identify each record. In contrast, a multidi- the attribute hierarchy within dimensions or to cross-
mensional database contaimglimensional arrays (some- dimensional formulas—for one or more dimensions. For
times calledhypercube®r cube$, where each dimension example, the value 13,000 for the sales in January, may
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Figure 3: The cubes reporting the average duration of cglt$albes in days and sources in point types, and by dates at the
level of week days and sources at the level of customer types.

have been consolidated as the sum of the disaggregated vaknted in [Calvanes#t al,, 1998a, Calvanes#t al., 1998c]

ues of the weekly (or day-by-day) sales. Another exampldased on an extended Description Logics data model
introducing an aggregation grounded on a different dimenfor both the conceptual and the logical levels; our pro-
sion is the cost of a product—e.g., a car—as being the surposal is compatible with the DWCDM presented in
of the costs of all of its components. [Calvanesest al., 1998c].

In order to provide an adequate conceptualisation of 'N€ Paper is organised as follows. Section 2 infor-
multidimensional information, a DWCDM should pro- mally introduces an extended ER formalism which allows

vide the possibility of explicitly modelling the relevant for the description of the explicgtructureof multidimen-
aggregationsand dimensions According to a conser- sional aggregations; the section briefly describes the se-
vative point of view, a desirable DWCDM should ex- mantics of the conceptual data model in terms of a logi-

tend some standard modelling formalism (such as Entity€@l representation of multidimensional databases, as pro-
Relationship) to allow for the description of both aggre-Posed by [Cabibbo and Torlone, 1998]. Section 3 will pro-

gated entities of the domain—together with their proper-P0S€ @ basic modelling language—based on Description
ties and their relationships with other relevant entities—L-09icS—Wwhich is expressive enough to capture the Entity-
and the dimensions involved. This document is about &:&lationship Data Model. The core part of the paper (Sec-
proposal for a Data Warehouse Conceptual Data Modéfon 4) shows how it is possible to translate a schema ex-
based on the Entity-Relationship model where aggregapreSS?d in the e.xtended ER Wlth aggregatmn; ina su_ltable
tions and dimensions are first class citizens. The dat®®Scription Logics theory, allowing for reasoning sersice
model it is based obescription Logic{DL), which have suc_h as §at|§f|ablllty of a schema or th(_a co_m_putatlon of a
been proved useful for a logical reconstruction of the mostogically implied statement, such as an implicit taxonomic
popular conceptual data modelling formalisms, includ-ink between entities.

ing the (enhanced) ER model. Advantages of using De-

scription Logics are.their high expressivity combingd W?t_h 2 Modelling the Structure of Aggregation
desirable computational properties—such as decidability

soundness and completeness of deduction procedures. Tiée introduce in this section an extension of the Entity-
devised logic has a decidable reasoning problem, thus aRelationship Conceptual Data Model for representing the
lowing for automated reasoning over the whole concepstructureof aggregations. Thus, a conceptual schema will
tual representation. The presented framework extendse able to describe abstract properties of multidimensiona
the ideas pursued in [Calvanesteal, 1998b] regarding cubes, their interrelationships, and, most notably, their
conceptual modelling using Description Logics as a data&omponents. A Data Warehouse Conceptual Schema may
model, and the Information Integration framework pre-contain detailed descriptions of the structure of aggesgyat
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Figure 4: The Conceptual Data Warehouse Schema for the béseahsidered in Figure 3.

but it may not explicitly include aggregation functions. gregation functions yield decidability of these problems.

Aggregations are first class citizens of the representatioa-hese results concern (1) the use of aggregatpn funct_|0ns
language: it is possible to describe the components of adn nested concepts,_ant_j (2) concrete d_omams like the inte-
gregations, and the relationships that the propertieseof th9€'S: the non-negative integers, the rationals, and the rea
components may have with the properties of the aggrega-
tion itself; it is possible to build aggregations out of athe 2-1 An extended Entity-Relationship Model
aggregations, i.e., it is possible for an aggregation to be\g stated in [Agrawaét al, 1995], a “good” data ware-
explicitly composed by other aggregations. This approachy,yse system should support user-definablétiple hier-
closely resembles the one pursued by [Caterail, 1995,  5rchies alongrbitrary dimensions. In Section 1.1 we have
De Giacomo and Naggar, 1996], in the sense of proposingyiefly defined a dimension as an index for identifying mea-
a conceptual data model in which aggregations are firstyres within a multidimensional data model. In the concep-
class entities intensionally described by means of theif 5| data model, “dimension” is a synonym for a domain of

components. an attribute (or of attributes) that is structured by a hiera
As we have pointed out, the description of an aggre<hy and/or an order. In order to support multiple hierar-
gation is not going to include a specificationfodwval-  chies, the data model must provide means for defining and

ues of its attributes are computed from attribute values ostructuring these hierarchies, and for arbitrary aggiegat

its components using aggregation functions such as mirglong the hierarchies.

average, or sum. While including such constructs in the A conceptual data model where both multidimensional
conceptual model is obviously important, if we restrict our aggregations and multiply hierarchically organised dimen
attention to data models which are computable (in a gensions can be abstracted and described can be used in
eral sense), then we should be very conservative. The reguery languages and for semantic optimization in mul-
son for this comes from an important result of the researcitidimensional data bases. In fact, in the few attempts
within the DWQ project which identifies the borders for the where acube algebraintroduces the notion of multi-
possible extensions of a Data Warehouse Conceptual Dafde dimensions and of levels within dimensions (e.g.,
Model towards the explicit inclusion of aggregation func- [Cabibbo and Torlone, 1997, Vassiliadis, 1998]) the Data
tions [Baader and Sattler, 1998]. It has turned out that théVarehouse Conceptual Schema can serve egesence
explicit presence of aggregation functions, when viewed asneta-modefor deriving the inter-relations among levels

a means to define new attribute values for aggregated entind dimensions.

ties, and built-in predicates in a concrete domain increase Let us now consider a concrete example related to the
the expressive power of the basic conceptual model in suchnalysis of the average duration of telephone calls accord-
a way that all interesting inference problems may easilying to their dates and source types. The base data involved
become undecidable. Moreover, this result is very tightlyin the analysis is represented at the conceptual level in Fig
bounded: extending a very weak Conceptual Data Modelire 4. In order to perform the analysis, the two tables of
allowing only basic constructs with a weak form of aggre-Figure 3 are materialised by the OLAP tool. Each cell
gation already leads to the undecidability of reasoning -in the bi-dimensional cube on top denotes the aggregation
i.e., no terminating procedure solving the reasoning probeomposed by all the telephone calls issued at some date
lem may ever exist. On the other hand, recent researctexpressed as a day of the year) and originated by a partic-
has shown that appropriate restrictions of the allowed agular source (expressed as the type of the calling telephone)
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Figure 5: The Conceptual Data Warehouse Schema for the gpperconsidered in Figure 3.

the date and the source are tienensionsof the cube, thetelephone calls issued at some day of the week and orig-
while the calls are thtarget In particular, cell®; istheag- inated from some source type of a different level as before
gregation composed by all those calls issued on 3/1/99 anghggregated now according to consumer and business type
originating from a land line phone point. Itis clear thiat  points)—more conceptual entities come into play. Figure 6
may include more than one call, and it may itself have somg@resents the extensions required to the original schema.
properties which depend on all of its components. For ex- Cell E; is the aggregation composed by all calls issued
ample,E; may have the propergver age(duration)  on Friday from a consumer type phone. SimilarHg,
which denotes the average duration of all the calls issued, may have the propergver age(dur at i on) which

on 3/1/99 and originating from a land line phone point. Of computeshe average duration of all those calls.

course, this property may be computed by an appropriate Thus, we need to add both a new aggregated entity and
aggregation function from the propewyir at i on of the  the definitions of the newly introduced levels for the dimen-
components. sionsdat e andsour ce. The new aggregated enti§g-

An adequate basic conceptual schema for this simpl@, aggregates calls according to the leweek day and
multidimensional information base should include the basehe levelCust omrer Type of the dimensionslat e and
entities such a€al | , Day, andPhone Poi nt andrela- sour ce respectively. Ther, is one of the aggregations
tions such aslat e andsour ce. Moreover, the schema denoted byAg- 2. The leveMéek Day is obtained by ag-
should also include an additionabgregated entitysay  gregating days from the partitioning of tlay entity into
Ag- 1, namely the class denoting the aggregations of call$even sub-entities, namely the seven days of the week. The
by date and source; such an aggregated entity can alsevelCust oner Type is obtained by aggregating phone
have attributes such @s/er age(durati on). We can  points from the partitioning of th®oi nt entity into the
also say thatAg- 1 aggregates telephone calls accordingtwo sub-entitie€Consuner andBusi ness. Cust oner
to the (basic) leveDay and the levelPoi nt Type of  Type is called simple aggregation, since there is no dimen-
the dimensionslat e andsour ce, respectively. The en- sjon involved in its definitions.Cust onmer Type and
tity Poi nt Type is itself an aggregation, aggregating all Week Day arelevelsin themultiply hierarchically organ-
the specific telephone points according to their four basigsedsource and date dimensions.
types. Itis clear thak; is one of the aggregations denoted  We do not formally define in this paper the syntax of the
by Ag- 1. extended ER model.

Figure 5 presents the schema in a variant of the Entity-

Rela_tionship data mode_l._ The parti_cular way 0f_repre-2.2 Semantics of the extended ER Model
senting aggregated entities in the figure is inspired by
[Catarciet al,, 1995, De Giacomo and Naggar, 1996]. The semantics of an ER schema is given in terms of le-

If we also consider as part of the multidimensional infor- gal multidimensional database states, i.e. multidimeradio
mation base thaggregated viewepresented by the second databases which conform to the constraints imposed by the
cube of Figure 3—denoting the aggregation composed bgchema. We consider as a starting point the ER semantics
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introduced in [Calvaneset al, 1998b], recasted to cope sic representation language for our DWCDM pro-
with multidimensional information. For we have chosenposal. With respect to the formal apparatus, we will
the multidimensional logical data modé&iD introduced  strictly follow the concept language formalism intro-
by [Cabibbo and Torlone, 1998]MD is independent of duced by [Schmidt-Schauld and Smolka, 1991] whose ex-
any specific implementation of multidimensional databasesensions have been summarised in [Doeinal., 1996,
(ROLAP or proprietary MOLAP), thus providing an ab- Calvaneset al., 1999].
stract and general framework for the logical represematio  The basic types of a concept language eoacepts
of multidimensional data. In [Cabibbo and Torlone, 1998]ples and features A concept is a description gath-
it is shown how aMD logical schema can be translated ering the common properties among a collection of in-
into a ROLAP logical representation in the form of a “star” dividuals; from a logical point of view it is a unary
schema, and into a general MOLAP logical representatiopredicate. Inter-relationships between these indivislual
in the form of sparse multidimensional arrays. are represented either by means of roles (which are in-
MD abstracts notions such as dimension hieral’ChiEﬁerpreted as binary re|ations) or by means of features
and levels, fact tables, cubes, and measures. As expectghich are interpreted as partial functions). Both roles
dimensions are organised into hierarchies of levels, corand features can be used to individuals to certain prop-
responding to the various granularity of the basic dataerties. In the following, we will consider the Descrip-
Within a dimension, levels are related through roll-up func tion Logic A£CFZ [Horrocks and Sattler, 1999], extend-
tions. The central element of (D schema is thétable,  ing .4£C with features (i.e., functional roles), inverse roles,
representing factual data. Artableis the abstract logical role composition, and role restrictions.

representation of a multidimensional cube, and it is a func- According to the syntax rules of Figure ALCFZ con-
tion a;sociating symbolic coordinates (one per involved di cepts(denoted by the lettex§ andD) are built out ofcon-
mgnsmn) to measures. Accqrdlng to the authors, a m“'éept namegdenoted by the letted), roles (denoted by the
tidimensional database state is thusimstanceof a MD  |ater R, §), andfeatures(denoted by the letterg g); roles
logical schema: it is the description of the specific f-table ;.o Lyilt out ofrole names(denoted by the letteP) and
involved, in the form, for example, of tables describing thege 41 res are built out déature nameédenoted by the letter

mapping from coordinates to measures. __p); itis worth noting that features are considered as special
Thus, a particular ER diagram denotes a set of multidi.5es of roles.

mensional database states, i.e., the set of all possible mul . .

- . . . . Let us now consider the formal semantics of the
tidimensional databases described\d® instances which : .

. . : ALCFTI. We define themeaningof concepts as sets of
conformto the diagram itself—i.e., they are legal states. | | . . .

) g ) T ; individuals—as for unary predicates—and the meaning of
diagram is inconsistent, then no multidimensional databas . R . X
may conform to it roles as sets of pairs of individuals—as for binary predi-

' cates. Formally, ainterpretationis a pairZ = (AZ,-T)
. . consisting of a seA” of individuals (thedomainof Z) and
3 The basic Modelling Language afunction-” (theinterpretation functiorof 7) mapping ev-
In this section we give a brief introduction to a ba- ery concept’ to a subse€” of AT, every roleR to a sub-
sic Description Logic, which will serve as the ba- setR” of AT x AZ, and every featuré to a partial function
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c,D — A A (concept name) TZ = AT

e (botom) o
bottom ottom T _ T T
-C | (not C) (complement) (_'C>I B AI \ CI
CND| (amdC'D...)  (conjunction) (cnb)y*= ¢c*nD
CuUD| (orCD...) (disjunction) (cuD)yr = ctuD”
VR.C| (allRC) (univ. quantifier) (VR.C)T = {ie AT |Vj.(i,j) € RT = j € CT}
JR.C| (some RC) (exist. quantifier) (AR.C)T = {ie AT |3j.(i,5) € RZ A j € CT}
1l (undefined f) (undefinedness) (DT = AT\ dom /T
f:C (in f C) (selection) . .
(f:C)F = {i€dom | fH(i)e C?}
RS — P| P (role name)
[l f (feature) (R=HT = {(i,j) € AT x AT | (j,i) € RT}
R (inverse R) (inverse role) (Rlc)T = RIn(AT x CT)
R|c | (restrict RC)  (range restriction) (RoS)T = RZosT
RoS (compose R S ...) (role chain)
f,g — p P (feature name) . .
7 L 9 (compose f g ...) (feature chain) Figure 8: The semantics ofLCFT.

[Horrocks and Sattler, 1999, Calvanegal, 1998b]. Re-
Figure 7: Syntax rules for thd LCFZ Description Logic.  cently, strictly more expressive conceptual data models

based on DLs have been considered, most notably the
f7 from A” to A7, such that the equations in Figure 8 are DLR conceptual data modelling formalisnDLR was
satisfied. first introduced by [Calvaness al, 1998a] as a means

A knowledge baseén this context, is a finite s&t of ter-  fOr €ncoding conjunctive queries over expressive seman-

minological axiomsit can also be called &rminologyor ~ fic data _models for information systems such as ex-
TBox. For a concept namé, and (possibly complex) con- tendet_j Entity Relationship in the_ context of sche_rr_la in-
ceptsC, D, terminological axioms are of the forst = ¢ t€gration. We _have chosen to _I|m|t the expressivity of
(concept definition)4 C C (primitive concept definition), the full DLR since we are looking for a language im-

C T D (general inclusion statement). An interpretation plementable with _the current technology, but still capa-
satisfiesC’ C D if and only if the interpretation of’ is ~ Ple to encode an interesting enhancement of the ER for-

included in the interpretation b, i.e., CZ C DZ. Itis malism. In particular, we have developed sophisticated
clear that the last kind of axiom is a generalisation of the"®asoning algorithms for it [Horrocks and Sattler, 1999]
first two: concept definitions of the typé = C—where and experlmented them using the current academic im-
A is a concept name—can be reduced to the pair of axplementations of expressive .DLs, namely the systems
ioms (A C C) and(C C A). Another class of termino- FaCT [Horrocks, 1998] and iFaCT. It has _been re-
logical axioms—pertaining to roleB, S—are of the form cently dem_onstrated [Hor_rock_s and PateI-Schnelder_, 1999]
R C S. Again, an interpretatioff satisfiesR C S if and that the_ logic we are considering here aII(_)ws forthe imple-
only if the interpretation oR—which is now a set opairs mentation of sound and complete reasoning algorithms that
of individuals—is included in the interpretation 6 i.e., behave quite well both in realistic applications and system
RT C ST. A non-empty interpretatioff is amodelof a  atC tests.
knowledge bas& iff every terminological axiom o is
satisfied byZ. If ¥ has a model, then it isatisfiablethus, 4 Encoding ER schemas with Aggregations
checking for KB satisfiability is deciding whether there is ]
at least one model for the knowledge basdogically im-  !tis shown how a schema expressed in the conceptual data
pliesan axioma (written X |= @) if « is satisfied by every model mformally introduced in the previous section can be
model of £. We say that a conce is subsumedy a expressed in gmccn knqw_ledge_base—whose models
conceptD in a knowledge basE (written S = C' T D) correspond with legal multldlmensmnfil databfase states of
it T C D7 for every modell of $. A conceptC! is sat- the- E.R Q|.agram—allowmg for reasoning services suph as
isfiable, given a knowledge ba& if there is at least one _satls_flablllty of a schema or the computation of a logically
modelZ of ¥ such thatlC” # §,i.e.S £ C = L. Con- implied statement.
cept subsumption can be reduced to concept satisfiability N the following, we describe the translation between an
sinceC is subsumed by in ¥ if and only if (C m—-D)is ~ ER diagram and aslLC T knowledge base.
unsatisfiable irk.
Definition 1 (Translation)

ALCFT was designed such that it is able to encodeAn ER schemd@ is translated into acorresponding knowl-
database schemas expressed in the most interesting Sedge bas& where for each domain, entity, aggregation, or
mantic Data Models and Object-Oriented Data Modelsrelationship symbol a concept name is introduced, and for
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each attribute or ER-role symbadymbol a feature name
is introduced. The terminology is defined to contain the
following axioms:

e Foreachsa link between two entitie&, F' (resp. two
relationshipsk, S) in D, ¥ contains:
ECF (resp.RCS)

For eachPARTITION of an entity £ into sub entities
F, ... F, inD, X contains:

ECFU...UF,

F,C—F; foralli#j

F,CE foralli

For each attributel in D with domainD of an entity
E (resp. of a relationshif), ¥ contains:
ECA:D (resp.RC A:D)

For each relationshipR in D relating n entities
Ei ...E, by means of the ER-roleBf ... Pf , %
contains:

RC (PR :E)N...N(PE : Ey)

For each minimum cardinality constraint= 1 in an
ER-role PE in D relating a relationshig? with and
entity £ (total or mandatory participation}. con-
tains:

EC3(PE)-L.R

For each aggregatiog in D with targetsT ... T},
¥ contains:
AgLC (Jtarget.T)MVtarget. Ty U...UT,

For each aggregatioig in D involving a targetl’, n
dimensionsD; (each one being a relationship )
and corresponding levels L; (each one being either
an entity £; or a simple aggregatioAg; in D), ¥
contains:
AgC Vtarget.
(BPF) o, 0P T
(¢(PF")™" o, 0P Li) U+ - U
(V(PF") ™" |, oy L)) 1T
@A@Y |p, PP T) M
(V(PPm) ™V |p, oPPm LL) L+ L
(V(PF")™" |b, oPL L")

where Lf = F; if the level i is described by an
entity F;; otherwise, if the level is described by a
simple aggregatioAg;, we use its targets] = 77 .

1ER-roles are the names given to the arguments of relatipsishie
assume that a unigue name is given within a relationshipdb E&-role,
representing a specific participation of an entity in thatrehship.
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Extending the results of [Calvanestal, 1994] to the
case of multidimensional databases, it can be proved that
the translation is correct, in the sense that whenever a rea-
soning problem has a specific solution in the ER model,
then the corresponding reasoning problem in the DL has a
corresponding solution, and vice-versa. This is grounded
on the fact that there is a precise correspondence between
legal multidimensional databases Bfand models of.
Thus, it is possible to exploit DL reasoning procedures for
solving reasoning problems in the ER model. The reason-
ing problems we are mostly interested in aoasistencyf
a ER schema—uwhich is mapped to a satisfiability problem
in the corresponding DL knowledge base—awmgical im-
plication within a ER schema—which is mapped to a log-
ical implication problem in the corresponding DL knowl-
edge base.

The proof is based by establishing the existence of two
mappings from legal multidimensional database statés of
to models of and vice-versa. Informally speaking, the ex-
istence of the mappings ensures that, whenever an aggrega-
tion is satisfiable irk, then a non-empty mapping describ-
ing the corresponding f-table i® exists, and vice-versa.
The same applies for level orderings and roll-up functions
in D. A more detailed sketch of the proof will be given in
the full paper.

As a final remark, it should be noted that the high ex-
pressivity of DL constructs can capture an extended version
of the basic ER model, which includes not only taxonomic
relationships, but also arbitrary boolean constructsyioae
sent so called generalized hierarchies with disjoint ustion
entity definitions by means of either necessary or sufficient
conditions or both, and integrity constraints expressed by
means of generalised axioms [Calvanesal., 1998b].

Let us now consider the example introduced in Sec-
tion 2. We start to (partially) formalise the schema of Fig-
ure 4, i.e., the base data. Please recall that every role name
which appears in the translation of an ER schema in a De-
scription Logic knowledge base—with the exception of the
aggregation roles—is a functional role name.

DATE C what : Call M when : Day
SOURCE C what : Call [1where : Point
DEST C what : Call [ where : Point

Point C Consumer LI/ Business
Consumer [ Point N —=Business
Business C Point M =Consumer

The partitioning of days into the seven day of the week is
translated in a similar way.

The aggregated entity Customer Type is the simple aggre-
gation of telephone points into two categories:

Customer-Type C
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Figure 9: A Conceptual Data Warehouse Schema introducigrttityMobile Call.

(target. T)M ness phone point.
Vtarget.(Consumer Ll Business)

5 Conclusions

The Week Day simple aggregation is obtained in a similar _
way. We have introduced ®ata Warehouse Conceptual Data

The aggregated entit§g- 2 is defined as being an aggre- Model extending the most interesting traditional Semantic
gation composed by those calls issued in some day of thBat@ Models and Object-Oriented Data Models, which al-

week and originated by either a consumer telephone poiHPWS the representation of a multidimensional conceptual
or a business telephone point: view of data_t. We haye seen how the propose_d ponceptual
data model is able to introduce complex descriptions of the
Ag-2 C (Jtarget. T) M VYtarget.Call structure of aggregated entities and multiply hierardhica
Ag-2 C Vtarget. (3(what ! |sye; owhere). T 1 organised dimensions. In order to support multiple hier-
(V(what ! |z owhere). Consumer LI archies, the data model provides means for defining and
V(what ! |sume oWhere).Business) 1 structuring these hierarchies, and for arbitrary aggiegat

J(what ! | owhen). T 11 along the hierarchies. Our future work will be devoted to a

(V(what ! |, owhen). Mon L further development of the data model in order to explicitly
U consider temporal and spatial dimensions, and a study of

V(what™! |,,;s owhen).Sun)) the expressivity in relation with decidability and complex

ity of the refinementeasoning task.

Recall thatAg- 2 is the class of all aggregations such that
each one of them aggregates calls issued at the same day3€ferences

the week and originated from the same telephone point. [Agrawalet al, 1995] Agrawal, R.; Gupta, A.; and
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Aggregation Springer-Verlag. chapter 4. Edited by M.
Jarke, M. Lenzerini, Y. Vassilious and P. Vassiliadis.

E. Franconi, U. Sattler 13-9



[Cabibbo and Torlone, 1998] Cabibbo, Luca and Torlone [Franconi and Sattler, 1999] Franconi, Enrico and Sattler,
Riccardo 1998. A logical approach to multidimensional  Ulrike 1999. A data warehouse conceptual data model
databases. IRroc. of EDBT'98 for multidimensional aggregation: a preliminary report.

Journal of the Italian Association for Artificial Intelli-
[Calvanesest al, 1994] Calvanese, Diego; Lenzerini, genceAl*IA Notizie 9-21.

Maurizio; and Nardi, Daniele 1994. A unified frame-

work for class-based representation formalisms. In[Horrocks and Patel-Schneider, 1999] Horrocks, 1. and

Proc. of KR-94 Bonn D. Patel-Schneider, P. F. 1999. Optimising description
logic subsumptionJournal of Logic and Computation

[Calvanesest al, 1998a] Calvanese, D.; De Giacomo, G.;  To appear.

Lenzerini, M.; Nardi, D.; and Rosati, R. 1998a. De-

scription logic framework for information integration. In [Horrocks and Sattler, 1999] Horrocks, lan and Sattler,

Proceedings of the 6th International Conference on the Ulrike 1999. A description logic with transitive and in-

Principles of Knowledge Representation and Reasoning Verse roles and role hierarchieournal of Logic and

(KR-98) Morgan Kaufmann. 2—13. Computation To appear.

[Calvaneset al, 1998b] Calvanese, D.; Lenzerini, M.; [Horrocks, 1998] Horrocks, I. 1998. Using an expressive
description logic: FaCT or fiction? IRroc. of the 8"

and Nardi, D. 1998b. Description logics for conceptual : o

data modeling. In Chomicki, Jan and Saake, Ginter, ed- Internat|onal_ Conference on Principles of Knowledge
itors 1998bLogics for Databases and Information Sys-  RePresentation and Reasonjfigento, Italy. 636-647.
tems Kluwer. [Nutt et al, 1998] Nutt, Werner; Sagiv, Yehoshua; and
Shurin, Sara 1998. Deciding equivalences among ag-

[Calvanesest al,, 1998c] Calvanese, Diego; Giacomo, gregate queries. IRroc. of PODS'98 214—223.

Giuseppe De; Lenzerini, Maurizio; Nardi, Daniele; and
Rosati, Riccardo 1998c. Information integration: Con-[Schmidt-Schauf and Smolka, 1991] Schmidt-Schauf3, M.
ceptual modeling and reasoning support. Proc. of and Smolka, G. 1991. Attributive concept descriptions
the 6th Int. Conf. on Cooperative Information Systems  with complementsArtificial Intelligence48(1):1-26.

(CooplS’'98) 280-291.
[Vassiliadis, 1998] Vassiliadis, P. 1998. Modeling multi-

[Calvanesest al,, 1999] Calvanese, Diego; De Giacomo, dimensional databases, cubes and cube operations. In
Giuseppe; Lenzerini, Maurizio; and Nardi, Daniele  Proc. of the 10th SSDBM Conferen&apri, Italy.
1999. Reasoning in expressive description logics. In
Robinson, Alan and Voronkov, Andrei, editors 1999,
Handbook of Automated Reasonirtelsevier Science
Publishers, Amsterdam. To appeatr.

[Catarciet al,, 1995] Catarci, Tiziana; D’Angolini, Gio-
vanna; and Lenzerini, Maurizio 1995. Conceptual lan-
guage for statistical data modelinData & Knowledge
Engineering (DKEXL7:93-125.

[Cohenet al, 1999] Cohen, S.; Nutt, W.; and Serebrenik,
A. 1999. Rewriting aggregate queries using views. In
Proc. of PODS’99 To appear.

[De Giacomo and Naggar, 1996] De Giacomo, G. and
Naggar, P. 1996. Conceptual data model with structured
objects for statistical databases. Pmoceedings of the
Eighth International Conference on Statistical Database
Management Systems (SSDBM'9BEE Computer So-
ciety Press. 168-175.

[Donini et al,, 1996] Donini, F.; Lenzerini, M.; Nardi, D.;
and Schaerf, A. 1996. Reasoning in description logics.
In Brewka, G., editor 1996Principles of Knowledge
Representation and Reasonirgtudies in Logic, Lan-
guage and Information, CLSI Publications. 193—-238.

E. Franconi, U. Sattler 13-10



