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Abstract

Description Logics (DLs) are a family of knowl-
edge representation formalisms mainly charac-
terised by constructors to build complex concepts
and roles from atomic ones. Expressive role con-
structors are important in many applications, but
can be computationally problematical. We present
an algorithm that decides satisfiability of the DL
ALC extended with transitive and inverse roles,
role hierarchies, and functional restrictions; early
experiments indicate that this algorithm is well-
suited for implementation. Additionally, we show
that ALC extended with just transitive and inverse
roles is still in P®ACE. Finally, we investigate the
limits of decidability for this family of DLs, show-
ing that relaxing the constraints placed on the kinds
of roles used in number restrictions leads to the un-
decidability of all inference problems.
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gree of non-determinism appears to prohibit their use in real-
istic applications. This is mainly due to the fact that these al-
gorithms can handle not just transitive roles but also the tran-
sitive closure of roles. It has been shol@attler, 1996that
restricting the DL to transitive roles can lead to a lower com-
plexity, and that transitive roles, even when combined with
role hierarchies, allow for algorithms that behave quite well
in realistic applicationgHorrocks, 1998 However, it re-
mained to show that this is still true when inverse roles are
also present.

This paper extends our understanding of these issues in
several directions. Firstly, we present an algorithm that de-
cides satisfiability ofALC extended with transitive and in-
verse roles, role hierarchies, and functional restrictions. This
algorithm can also be used for checking satisfiability and sub-
sumption with respect to general concept inclusion axioms
(and thus cyclic terminologies) because these axioms can be
“internalised”. The absence of transitive closure leads to a
lower degree of non-determinism, and experiments indicate
that the algorithm is well-suited for implementation.

Secondly, we show thatl £C extended with both transi-
tive andinverse roles is still in BPACE The algorithm used

Description Logics (DLs) are a well-known family of knowl- to prove this rather surprising result introduces an enhanced
edge representation formalisriBonini et al, 1994. They  blocking technique that should also provide useful efficiency
are based on the notion of concepts (unary predicates, classefjins in implementations of more expressive DLs.
and roles (binary relations), and are mainly characterised by Finally, we investigate the limits of decidability for this
constructors that allow complex concepts and roles to be buifamily of DLs, showing that relaxing the constraints placed
from atomic ones. Sound and complete algorithms for the inon the kinds of roles used in number restrictions leads to the
teresting inference problems such as subsumption and satisfindecidability of all inference problems.
ability of concepts are known for a wide variety of DLs.
Transitive and inverse roles play an importantrole notonly>  preliminaries
in the adequate representation of complex, aggregated ob- _ )
jects[Horrocks & Sattler, 1999 but also for reasoning with In this section, we present the syntax and semantics of the var-
conceptual data model€alvaneset al, 1994. Moreover, 10US DLs that are _|r_1vest|g_ated in subsequent sections. This
reasoning with respect to cyclic terminologies seems natulncludes the definition of inference problems (concept sub-
ral when using inverse roles, and is crucial with databas€Umption and satisfiability, and both of these problems with
schemata. respect to terminologies) and how they are interrelated.

The relevant inference problems for (extensions of) these The logics we will discuss are all based on an extension of
DLs are known to be decidabl@e Giacomo & Lenzerini, the well known DLALC [Schmidt-Schauf & Smolka, 19P1

scribed[De Giacomo & Massacci, 1998but their high de- We will call this logicS due to its relationship with the propo-
sition (multi) modal logicS4,,,,) [Schild, 1991." This basic

*This work was partially supported by EPSRC, Grant
GR/L54516, the Esprit Project 22469 — DWQ and by the DFG,
Project No. GR 1324/3-1

'This logic has previously been calleti’C 5+, but this becomes
too cumbersome when adding letters to represent addifieatires.



DL is then extended in a variety of ways—see Figure 1 for an|Construct NameSyntax Semantics
overview. atomic concep| A AT C AT
atomic role R RT C AT x AT
Definition 1 Let N be a set otoncept nameandR a set  |transitive role |R € Ry RT = (R™)*
of role nameswith transitive role nameR . C R. The setof |conjunction ¢nbp ctnpD*
SZ-rolesisRU{R™ | R € R}. The setofSZ-conceptssthe  |disjunction cCuD ctupD? S
smallest set such that every concept name is a concept, anhegation -C AT\ C?
if C andD are concepts anf is anSZ-role, then(C 1 D), exists re- AR.C |{z | 3y.(z,y) € R
(CuU D), (=C), (YR.C), and(3R.C) are also concepts. striction andy € C7}
SHT is obtained fromSZ by allowing, additionally, fora |value re- VR.C' |{z |Vy.(z,y) € RT
set of role inclusion axioms of the forf C .S, whereR and striction impliesy € CZ}
S are two (possbly inverse) roles. _ N role hierarchy | RC S RIC 57 e
SHIN is 0bta@m_ed fro_mS‘HI by allowing, additionally, inverse role R @) [ y,0) €RTY |2
for number restrictions, i.e., for concepts of the fogn R number SnR {7 | Hy-(r,y) € B2} > 0}
and<nR, whereR is asimplerole andn € IN. Aroleis restrictions < R YAT, Y RI 2 N
calledsimpleiff it is neither transitive nor has transitive sub- <nR |{z | H{y-(z,y) € R"} < n}

roles. SHZF is the restriction ofSHZN, where instead of
arbitrary number restrictions, onfynctional restrictionsof Figure 1: Syntax and semantics of th& family of DLs
the form<1R and their negatioiz2 R may occur.

AninterpretationZ = (AZ,.7) consists of a seh?, called
thedomainof Z, and a function” which maps every concept
to a subset ofA” and every role to a subset df’ x A’
such that, for all concepts, D, rolesR, S, and non-negative
integersn, the properties in Figure 1 are satisfied.

A conceptC' is calledsatisfiableff there is some interpre-
tation Z such thatC” # (). Such an interpretation is called
amodel ofC. A conceptD subsumes conceptC' (written
C C D) iff C* C D7 holds for each interpretatich For an
interpretationZ, an individualz € A7 is called aninstance
of a concept iff z € C7.

where(C;, D; are arbitrarySHZF-concepts. An interpreta-
tion 7 is said to be anodelof 7 iff C7 C D7 holds for all
C; C D; € T. C is satisfiablewith respect toy iff there is
a modelZ of 7 with C* # . Finally, D subsumeg with
respect to” iff for each modelZ of 7 we haveC” C D”.

The following lemma shows how general concept inclu-
sion axioms can b&ternalisedusing a “universal” rold/,
a transitive super-role of all roles occurring jn and their
respective inverses.

All DLs considered here are closed under negation, henceemma 3 Let 7 be terminology andC,D be SHZF-
subsumption and (un)satisfiability can be reduced to eachoncepts and let
other: C C D iff C M =D is unsatisfiable, and@' is unsat-

isfiable iff C T A 1 —A for some concept namé. Cr = Oi[';'ﬁ,gﬁci U D;.
In order to make the following considerations easier, we -
introduce the following expressions: Let U be a transitive role wittR C U, Inv(R) C U for each

1. To avoid considering roles such & —, we define a  role R that occursir7, C', or D.
function Inv on roles such thahv(R) = R~ if Ris a role ThenC is satisfiable with respect 16 iff C1C+1IVU.C+
name, andnv(R) = Sif R=5S". is satisfiable.D subsumeg’ with respect tof iff C M —D M

2. Obviously, a roleR is transitive iffInv(R) is transitive. ~ C7 M VYU.C'r is unsatisfiable.
We therefore define a functiofrans which returnstrue iff o
R is a transitive role. More preciselfrans(R) = true iff The proof of Lemma 3 is similar to the ones that can be
Re R, orlnv(R) € R;. found in[Schild, 1991; Baader, 1990Most importantly, it

3. For a set of role inclusion axion®®, R+ := (R U must be shown that, (a) if &{ZF-conceptC' is satisfiable

{lnv(R) C Inv(S) | RC S € R}, E) is called arole  With respect to a terminology, thenC', 7 have aconnected
hierarchy, where & is the transitive-reflexive closure af ~ Model, and (b) ify is reachable from via a role path (pos-
overr-. sibly involving inverse roles), thefi,y) € UZ. These are
easy consequences of the semantics and the definition of

In [Baader, 1990; Schild, 1991; Baadet al, 1993,

theinternalisationof terminological axioms is introduced, a Theorem 4 Satisfiability and subsumption OfSHZF-

technique that reduces reasoning with respect to a (possibly, e nts (resps7/7-concepts) with respect to terminologies
cyclic) terminologyto satisfiability of concepts. lfHorrocks, oo™ 00 nomially reducible to (un)satisfiability &FHZ.E-
1994, we saw how role hierarchies can be used for this re- oncepts (resgsHZ-concepts)
duction. In the presence of inverse roles, this reduction must '
be slightly modified. . .
oy 3 Reasoning forSZ Logics

Definition 2 A terminology7 is a finite set of general con- In this section, we present two tableaux algorithms: the first
cept inclusion axioms] = {Cy C Dy,...,C,, C D,}, decides satisfiability ofSHZF-concepts, and can be used



for all SHZF reasoning problems (see Theorem 4); the secbefinition 7 A completion tregfor a SHZJF-conceptD is

ond decides satisfiability (and hence subsumptionydf  a tree where each nodeof the tree is labelled with a set

concepts in BPACE In this paper we only sketch most of L(z) C sul(D) and each edgér,y) is labelled with a set

the proofs. For details on th&HZF-algorithm, please re- L((z,y)) of (possibly inverse) roles occurring §ul( D).

fer to [Horrocks & Sattler, 1999 for details on theSZ- and Given a completion tree, a nogés called anR-successor

STN -algorithm, please refer fa{orrockset al., 1994. of a nodez iff y is a successor of andS € L((z,y)) for
Please note thaSHZF no longer has the finite model someS with S & R. A nodey is called anR-neighbourof z

property: for example the following concept, wheReis a  iff y is anR-successor af, or if z is anlnv(R)-successor of

transitive super-role of", is satisfiable, but each of its mod- y. Predecessors and ancestors are defined as usual.

els has an infinite domain. A node isblockediff it is directly or indirectly blocked. A

_ _ _ noderz is directly blockedff none of its ancestors are blocked,
~CN3F.CN<1IFAVR .(3F.(CN<1F)) and it has ancestons, y andy’ such that

The correctness of the algorithms can be proved by show- 1. z is a successor of andy is a successor gf and
ing that they create Eableayfor a concept iff it is satisfi- 2. L(z) = L(y) andL(z') = L(y') and
able. For ease of construction, we assume all concepts to be3 L@, 7)) = L((y'y))
in negation normal fornfNNF), that is, negation occurs only ‘ =~
in front of concept names. An§HZ.F-concept can easily be In this case we will say that blocksz.
transformed to an equivalent one in NNF by pushing nega- A nodey is indirectly blockediff one of its ancestors is
tions inwarddHollunderet al,, 1994. blocked, or—in order to avoid wasted expansion after an ap-
plication of the<-rule—it is a successor of a nodeand

Definition 5 Let D be aSHZF-concept in NNFRp the  £((z,9)) = 0. o _ _
set of roles occurring ifD together with their inverses, and _ Foranoder, L(z) is said to contain alashiff {4,-A} C

sub(D) the subconcepts dd. ThenT = (S, 4, €) is atab- ~ ©~(z) or{>2R, <15} C L(z) forrolesk ES. A completion
leaufor D iff S is a set of individualsf, : S — 25¢0(P) maps tree is callectlash-fredff none of its nodes contains a clash;

each individual to a set of concep&; Rp — 25%S maps itis calledcompletaff none of the expansion rules in Figure 2

each role to a set of pairs of individuals, and there is som& applicable. _ .
individual s € S such thatD € L(s). Furthermore, for all For as#ZJ-conceptD, the algorithm starts with a com-

s,t €8S,C,E € sub(D), andR, S € Rp, it holds that: pIetlon_ tree consisting of a single noqiewnh L(z) = {D}.
i It applies the expansion rules, stopping when a clash occurs,
1. if C € L(s), then-C ¢ L(s), and answersD is satisfiable” iff the completion rules can be
2. ifCNE € L(s), thenC € L(s) andE € L(s), applied in such a way that they yield a complete and clash-
3. if CUE € L(s), thenC € L(s) or E € L(s), free completion tree.
4. !f VE.C € L(s) and(s,t) € 8(_R)’ thenC’ € L(t), The soundness and completeness of the tableaux algorithm
5. if 3R.C" € L(s), then there is some € S such that s an immediate consequence of Lemmas 6 and 8.

(s,t) € E&(R) andC € L(¢t),

ifvS.C € L(s) and(s,?) € E(R) forsomeR ESWith | emma 8 Let D be anSHZ.F-concept.
Trans(R), thenVR.C € L(t),

(s, t) € E(R) iff (t,s) € E(Inv(R)).
if (z,y) € &(R) andR ES, then(z, y) € &(S), 2. If_the expansionrules can be applied)csqch that they
if <IR € L(s), thent{t | (s,t') € E(R)} < 1, yield a complete and clash-free completion tree, then

if >2R € L(s), thent{t | (s,#') € E(R)} > 2 has a tableau.
g o > — If D has a tableau, then the expansion rules can be ap-

. 3.
Tableaux forSZ-concepts are defined analogously and  pjied to D such that they yield a complete and clash-free
must satisfy Properties 1-7, where, due to the absence of a  completion tree.

role hierarchy, is the identity.

o

1. The tableaux algorithm terminates when started With

© © N

1

©

Before we sketch the ideas of the proof, we will discuss

Due to the close relationship between models and tableauye gifferent expansion rules and their correspondence to the
the following lemma can be easily proved by induction ONjanguage constructors.

the structure of concepts. As a consequence, an algorithm The - |- 3- andV-rules are the standardZC tableaux
that constructs (if possible) a tableau for an input concept is ﬁjles[Schiat-SchauB & Smolka, 19pTrheV  -rule is used

decision procedure for satisfiability of concepts. to handle transitive roles, where tlig-clause deals with the
role hierarchy. SefHorrocks & Sattler, 199Kfor details.
Lemma 6 A SHZF-concept (respSZ-concept)D is satis- The functional restriction rules merit closer consideration.
fiable iff D has a tableau. In order to guarantee the satisfaction gfaR-constraint, the
N >-rule creates two successors and uses a fresh atomic concept
3.1 Reasoning iNSHIF A to prohibit identification of these successors by ¢heule. P
In the following, we give an algorithm that, givens¢{Z F- If a nodez has two or moreR-neighbours and contains a

conceptD, decides the existence of a tableaux far functional restriction<1R, then the<-rule merges two of the



2. there is arf-neighboury of z with C' ¢ L(y)
then L(y) — L(y) U{C}

V' -rule: if 1.VS.C € L(z), z is not indirectly blocked,

2. there is somé with Trans(R) andR E S, and
3. z has anR-neighboury with VR.C ¢ L(y)
then L(y) — L(y) U{VR.C}

>-rule: if 1. (> 2 R) € L(z), z is not blocked, and

2. there is nak-neighboury of z with A € L(y)
then create two new nodgs, y» with
L((z,y)) = Lz, y2)) = {R},
L(y1) = {A} andL(y2) = {~A}

<-rule: if 1. (< 1 R) € L(z), z is not indirectly blocked,

2. z has twoR-neighbourgy andz
s.t.y is not an ancestor af,
then 1.L(z) — L(z) U L(y) and
2. if z is an ancestor of
thenL((z,z)) — L((z,2)) U Inv(L((z,y)))
elseL((z,2)) — L((z,2)) UL((z,y))
3.L(z,y) — 0

Figure 2: The complete tableaux expansion rulesSfaiZ F

neighbourandthe edges connecting them with Labelling

such thatx is directly blocked byy. Since a path on which

M-rule: if 1. C4 N C> € L(x), x is not indirectly blocked, and
2.{C1,Cs} € L(x) nodes are blocked cannot become longer, paths are of length
then L(z) — L(z) U{C1,Ca} at most2?™m”,
U-rule: if 1.Cy U C> € L(z), z is not indirectly blocked, and 2. SoundnessA complete and clash-free tr@&for D in-
2.{C,Co}NL(z) =0 duces the existence of a tablealix= (S, L, €) for D as fol-
then, for some”' € {C1, C>}, L(z) — L(z) U{C} lows. Individuals inS correspond tgathsin T from the root
J-rule: if 1.35.C € L(x), z is not blocked, and node to some node that is not blocked. Instead of going to a
2. z has noS-neighboury with C' € L(y) directly blocked node, these paths jump back to the blocking
then create a new nodewith node, which yields paths of arbitrary length. Thus, if block-
~ L((z,y) = {S}andL(y) = {C} ing occurs, this construction yields an infinite tableau. This
V-rule: if 1.VS.C € L(), = is not indirectly blocked, and rather complicated tableau construction is necessary due to

the presence of functional restrictions; its validity is ensured
by the blocking condition, which considers both the blocked
node and its predecessor.

3. CompletenessA tableauT = (S, L, &) for D can be
used to “steer” the application of the non-deterministiand
<-rules in a way that yields a complete and clash-free tree.

The following theorem is an immediate consequence of
Lemma 8, Lemma 6, and Lemma 3.

Theorem 9 The tableaux algorithm is a decision procedure
for the satisfiability and subsumption &f#{ZF-concepts
with respect to terminologies.

3.2 APS,AcE-algorithm for ST

To obtain a P8acEe-algorithm forSZ, theSHZF algorithm

is modified as follows: (a) ASZ does not allow for func-
tional restrictions, thex- and the<-rule can be omitted;
blocking no longer involves two pairs of nodes with identical
labels but only two nodes with “similar” labels. (b) Due to
the absence of role hierarchies, edge labels can be restricted
to roles (instead of sets of roles). (c) To obtain aPRS&E

edges with sets of roles allows a single node to be both agigorithm, we employ a refined blocking strategy which ne-
R andS-successor of even if R andS are not comparable cessitates a second lal#lfor each node. In the following,

by . Finally, contradicting functional restrictions are takenwe will describe and motivate this blocking technique; de-
care of by the definition of a clash.

We now sketch the main ideas behind the proof ofin [Horrockset al., 1999.
Lemma 8:

tailed proofs as well as a similar result 82\ can be found

Please note that using naively using a cut rule does

1. Termination: Letm = |sul(D)| andn = |Rp|. Ter- ot yield a PSp_ace alg_orithm: A cut rult_a similar to the
mination is a consequence of the following properties of theone presented ifDe Giacomo & Massacci, 1998non-
expansion rules: deterministically) guesses which constraints will _be_ propa-

(a) The expansion rules never remove nodes from the tre@ated “up” the completion tree by universal restrictions on
or concepts from node labels. Edge labels can only bdverted roles. FosT this technique may lead to paths of
changed by the<-rule which either expands them or sets Plynomial length due to equality blocking. A way to avoid
them tof: in the latter case the node below thdabelled these long paths would be to stop the investigation of a path at

edge is blocked. (b) Successors are only generated for cof@Me Polynomial bound. However, to prove the correctness
cepts of the formHR.C' and >2R. For a noder, each of of this approach, it would be necessary to establish a “short-

these concepts triggers the generation of at most two succe@th-model” property similar to Lemma 12. Furthermore, we
sors. If for one of these successgrthe <-rule subsequently Pelieve that our algorithm is better suited for an implementa-
causes.((z, y)) to be changed t@, thenz will have some tion since it makes less use of don't-know non-determinism.
R-neighbourz with £(z) D L(y). This, together with the

definition of a clash, implies that the concept that led to theDefinition 10 A completion treefor a SZ conceptD is a
generation ofy will not trigger another rule application. Ob- tree where each node of the tree is labelled with two sets
viously, the out-degree of the tree is bounded2my. (c) B(z) C L(z) C subD) and each edgér,y) is labelled
Nodes are labelled with non-empty subsetssof(D) and  with a (possibly inverse) rol& ({z,y)) occurring insub(D).
edges with subsets &, so there are at mogt™" different R-neighbours, -successors, and -predecessors are defined
possible labellings for a pair of nodes and an edge. Thereforas in Definition 7. Due to the absence of role hierarchies,

on a path of length at lea8®™” there must be 2 nodesy is the identity orR..



N-rule: if1.C1NCs € L(z) and
2. {01,02} ,@ ﬁ;(l‘)
thenl(z) — L(z) U {C1, C2}
U-rule: if 1.C1UCy € L(z) and
2. {01,02} n L(ac) = [Z)
thenL(z) — L(z) U {C} for someC € {C1, C>}
if 1.VS.C € L(z) and
2. there is arb-successoy of z with C' ¢ B(y)
thenL(y) — L(y) U {C} and
B(y) — B(y) U {C} or
2'. there is arf-predecessay of z with C' ¢ L(y)
thenL(y) — L(y) U {C}.
Vi-rule:if 1.VS.C € L(z) andTrans(S) and
2. there is arf-succ.y of z with VS.C' ¢ B(y)
thenL(y) — L(y) U {VS.C} and
B(y) — B(y) U {vS.C}or
2'. there is arf-predecy of z with VS.C ¢ L(y)
thenL(y) — L(y) U {VS.C}.

V-rule:

F-rule:
is applicable to any of its ancestors, and
2. z has noS-neighboury with C' € L(y)
then create a new nodewith
L((z,y)) = SandL(y) = B(y) = {C}

Figure 3: Tableaux expansion rules §f
A nodez is blockediff for an ancestoy, y is blocked or

Bz) CL(y) and L(x)/Inv(S) = L(y)/ Inv(S),

where 2’ is the predecessor of, L({z',z)) = S, and

L(z)/Inv(S) = {¥VInv(S).C € L(z)}.
For a noder, L(z) is said to contain alashiff {A4,-~A} C

if 1.35.C € L(z), z is not blocked and no other rule

again) and subset-blocking is sufficient, it is possible to give
a polynomial bound on the length of paths.

For SZ, dynamic blocking was introduced [rorrocks &
Sattler, 1999 Here blocks must be established on the basis
of label equality since value restrictions can now constrain
successors as well as predecessors. Unfortunately, this may
lead to completion trees with exponentially long paths be-
cause there are exponentially many possibilities to label sets
on such a path. Due to the non-deterministicule, these
exponentially many sets may actually occur.

This non-determinism is not problematical {§rbecause
disjunctions need not be completely decomposed to yield a
subset-blocking situation. For an opting&l algorithm, the
additional labelB was introduced to enable a sort of subset-
blocking which is independent of thig-non-determinism.
Intuitively, B(z) is the restriction of{(z) to those non-
decomposed concepts thaimust satisfy, whereas(z) con-
tains boolean decompositions of these concepts as well as
those that are imposed by value restrictions in descendants.
If z is blocked byy, then all concepts iB(x) are eventually
decomposed i (y) (if no clash occurs). However, in order
to substituter by y, z's constraints on predecessors must be
at least as strong ags; this is taken care of by the second
blocking condition.

Let us consider a pathy,...,x, where all edges are
labelled R with Trans(R), the only kind of paths along
which the length of the longest concept in the labels
might not decrease. If no rules can be applied, we have
L(.’I}H_l)/ Inv(R) - L(.’I}z)/ Inv(R) andB(mZ) - B($i+1) U
{C;} (where3R.C; triggered the generation af, ;). This

L(z). A completion tree to which none of the expansion ruleslimits the number of labels and guarantees blocking after a

given in Figure 3 is applicable is calledmplete

For anSZ-conceptD, the algorithm starts with a comple-

tion tree consisting of a single nodewith B(z) = L(z) =

polynomial number of steps.

Lemma 12 The paths of a completion tree for a concépt

{D}. It applies the expansion rules in Figure 3, stoppinghave a length of at most* wherem = |sul(D)).

when a clash occurs, and answers s satisfiable” iff the

completion rules can be applied in such a way that they yield Finally, a slight modification of the expansion rules given

a complete and clash-free completion tree.

in Figure 3 yields a PSACE algorithm. This modification
is necessary because the original algorithm must keep the

As for SHZF, correctness of the algorithm is proved by whole completion tree in its memory—which needs expo-
first showing that aSZ-concept is satisfiable iff it has a tab- nential space even though the length of its paths is polyno-

leau, and next proving th8Z-analogue of Lemma 8.

Theorem 11 The tableaux algorithm is a decision procedure

for satisfiability and subsumption &fZ-concepts.

mially bounded. The original algorithm may not forget about

branches because restrictions which are pushmdardsin

the tree might make it necessary to revisit paths which have

been considered before. We solve this problem as follows:
Whenever thé&/- or theV_ -rule is applied to a node and

Since blocking plays a major role both in the proof of The-its predecessoy (Case 2' of these rules), we delete all suc-
orem 11 and in the following complexity considerations, weC€SSors ofy from the completion tree. While this makes
will discuss it here in more detail. Blocking is necessary toit N€cessary to restart the generation of successorg, fior
guarantee the termination of the algorithm. For DLs such a§hakes it possible to implement the algorithm in a depth-first
ALC, termination is mainly due to the fact that the expansiorfn@nner which facilitates the re-use of space.

rules can only add new concepts that are strictly smaller than This modification does not affect the proof of soundness

the concept that triggered their application.

and completeness for the algorithm, but of course we have

For S this is no longer true: theé, -rule can introduce new O ré-prove terminatiofHorrockset al, 1999 as it formerly

concepts that are the same size as the triggering concept. fgliéd on the fact that we never removed any nodes from the
ensure termination, nodes labelled with a subset of the lab&ompletion tree. Summing up we get:

of an ancestor arblocked Since rules can be applied “top-

down” (successors are only generated if no other rules aréheorem 13 The modified algorithm is a FCE decision
applicable, and the labels of inner leaves are never touchdfocedure for satisfiability and subsumption®f-concepts.
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4 The Undecidability of Unrestricted SHZN
We are currently working on an algorithm fS{ZN based .A .B .A S® 58 59 59

on theSHZF-algorithm already presented. Like earlier DLs X1 X2 X1
that combine a hierarchy of (transitive and non-transitive) Y2 Ya Ya M

roles with some form of number restrictiofBlorrocks & .C .D .C

Sattler, 1999; Horrockst al., 1994, SHZN will only allow X X2 X < 1 v v
simple roles in restrictions. The justification for this limita- V1| =~ Y| =~ Y] oo T
tion has been partly on the grounds of a doubtful semantics ° ° °

(of functional roles) and partly to simplify decision proce- X Xz X

dures. In this section we will show that, at least with respect . N . .

to SHTN, allowing arbitrary roles inSHZA number re- Figure 4: Visualisation of the grid and role hierarchy.
strictions leads to undecidability. For convenience, we will
refer toSHZN with arbitrary roles in number restrictions as

andY o X successors. A complete specification of the grid is
given by the following axioms:

SHIN™.
The undecidability proof uses a reduction of the domino A C -BN-CnN-DN3X;.BN3Y;.CN<K3Si1,
problem [Berger, 196 adapted from[Baader & Sattler, BC-AN-CnN-DMN3X,.An3Y;.D N <38,

1994. This problem asks if, for a set of domino types, there CC-AnN-BnN-DMN3X;.DMN3Y5.AM <3512,
exists atiling of anIN? grid such that each point of the grid is DC-AN-BMN-Cn3X,.CMN3Ys.BM<35.
covered with one of the domino types, and adjacent dominoes

are “compatible” with respect to some predefined criteria. It Only remains to add axioms which encode the local
P P P compatibility conditions (as described i[Baader & Sattler,

L ) ) 1994) and to assert thatl is subsumed by the disjunction
Definition 14 A domino systenD = (D, H, V) consists of  of all domino types. The concept is now satisfiable w.r.t.
anon-empty set of domino typés = {D,... , D}, andof  the various axioms (which can be internalised as described in

sets of horizontally and vertically matching paHsg _D X Lemma 3) iff there is a compatible tiling of the grid.
D andV C D x D. The problem is to determine if, for a

givenD, there exists &ling of anIN x IN grid such that each . .
point of the grid is covered with a domino type inhand all 5 Discussion
horizontally and vertically adjacent pairs of domino types areA new DL system is being implemented based onSREZN
in H andV respectively, i.e., a mapping: N x N — D  algorithm we are currently developing from tk&H7Z.F-
such that for alin,n € IN, (t(m,n),t(m + 1,n)) € H and  algorithm described in Section 3.1. Pending the completion
(t(m,n),t(m,n+1)) € V. of this project, the existing FaCT systdidorrocks, 1998
has been modified to deal with inverse roles usingth& 7

This problem can be reduced to the satisfiability ofblocking strategy, we will refer to the modified FaCT system
SHIN*-concepts, and the undecidability of the dominoas I-FaCT.
problem implies undecidability of satisfiability SFHZN - I-FaCT has been used to conduct some initial experi-
concepts. ments with a terminology representing (fragments of) data-

Ensuring that a given point satisfies the compatibility con-base schemata and inter schema assertions from a data ware-
ditions is simple for most logics (using value restrictions andhousing applicatiofCalvaneset al., 19984 (a slightly sim-
boolean connectives), and applying such conditions throughplified version of the proposed encoding was used to gen-
out the grid is also simple in a logic such&&ZN " which  erateSHZF terminologies). I-FaCT is able to classify this
can deal with arbitrary axioms. The crucial difficulty is repre- terminology, which contains 19 concepts and 42 axioms, in
senting thdN x IN grid using “horizontal” and “vertical’ roles less than 0.1s of (266MHz Pentium) CPU time. In contrast,
X andY’, and in particular forcing the coincidence &fo Y eliminating inverse roles using an embedding techn[@ad-
andY o X successors. This can be accomplisheSHZN * vaneseet al, 19984 gives an equisatisfiable FaCT terminol-
using an alternating pattern of two horizontal rol€s and  ogy with an additional 84 axioms, but one which FaCT is
X5, and two vertical role§; andY3, with disjoint primitive  unable to classify in 12 hours of CPU time.
conceptsd, B, C, andD being used to identify pointsinthe  An extension of the embedding technique can be used
grid with different combinations of successors. The coinci-to eliminate number restriction®e Giacomo & Lenzerini,
dence ofX o Y andY o X successors can then be enforced1994, but requires a target logic which supports the transitive
using number restrictions on transitive super-roles of each oflosureof roles, i.e..conversePDL. The even larger number
the four possible combinations &f andY roles. A visual-  of axioms which this embedding would introduce makes it
isation of the resulting grid and a suitable role hierarchy isunlikely that tractable reasoning could be performed on the
shown in Figure 4, wherSﬁ‘j. are transitive roles. resulting terminology. Moreover, we are not aware of any al-

The alternation o andY” roles in the grid means that one gorithm forconversePDL which does not employ a so-called
of the transitive super-role$;; connects each poirft:, y) to  cut rule [De Giacomo & Massacci, 1998the application of
the points(z + 1,y), (z,y + 1) and(z + 1,y + 1), and to  which introduces considerable additional non-determinism.
no other points. A number restriction of the ford3.S;; can It seems inevitable that this would lead to a further degra-
thus be used to enforce the necessary coincidenéeéof”™  dation in empirical tractability.



In order to fully capture the above mentioned encoding off Hollunder & Baader, 1991B. Hollunder and F. Baader.
database schemata, it would be necessary not only to extend Qualifying number restrictions in concept languages. In
our results toSHZN but to SHZQ by addingqualifying Proc. of KR-9] pages 335-346, Boston, MA, USA, 1991.
number restrictiongHollunder & Baader, 1991 The exten- [Horrockset al, 1994 I. Horrocks, U. Sattler, and S. To-
sion of theSHZF algorithm, and tests of its behaviour in = \iog A .i3$Acee.1Igorithm for .decidiné ALCIR;—

applications, will also be part of future work. satisfiability. Technical Report 98-08, LuFg Theoret-
ical Computer Science, RWTH Aachen, 1998. See
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