
Optimisation Techniques for

Combining Constraint Solvers

Stephan Kepser

CIS, Universit�at M�unchen

Oettingenstr. 67

80538 M�unchen, Germany

kepser@cis.uni-muenchen.de

J�orn Richts

Theoretische Informatik

RWTH Aachen

52056 Aachen, Germany

richts@informatik.rwth-aachen.de

Abstract

In recent years, techniques that had been developed for the combi-

nation of uni�cation algorithms for equational theories were extended to

combining constraint solvers. These techniques inherited an old de�cit

that was already present in the combination of equational theories which

makes them rather unsuitable for practical use: The underlying combi-

nation algorithms are highly non-deterministic. This paper is concerned

with the practical problem of how to optimise the combination method of

Baader and Schulz. We present an optimisation method, called the deduc-

tive method, which uses speci�c algorithms for the components to reach

certain decisions deterministically. We also give a strategy how to select

an order of non-deterministic decisions. Run time tests of our implemen-

tation indicate that the optimised combination method yields combined

decision procedures that are e�cient enough to be used in practice.

1 Introduction

One idea behind constraint solving is to use specialised formalisms and infer-

ence mechanisms to solve domain-speci�c tasks. In many applications, however,

one is faced with a complex combination of di�erent problems. Therefore con-

straint solvers tailored to solving a single problem can only be applied, if it is

possible to combine them with others. Concrete examples of the combination

of constraint solvers can be found, e.g., in [9, 8]. In a recent paper [3], Baader

and Schulz present a general method for the combination of constraint systems.

Their method is applicable to a large class of structures, the so-called quasi-

free structures. Quasi-free structures comprise many important in�nite non-

numerical solution domains such as (quotient) term algebras [13], rational tree

algebras [7], vector spaces, hereditarily �nite wellfounded and non-wellfounded

lists, sets [1] and multi sets as well as certain types of feature structures [16].

The combined solution domain the authors present in [3], the so called free

�

This work was funded by the \Schwerpunkt Deduktion" of the Deutsche Forschungsge-

meinschaft (DFG) and was supported by the Esprit working group 22457 { CCL II of the

European Union.

1

amalgamated product, has the characterising property of being the most gen-

eral combination in the sense that every other combined domain contains a

homomorphic image of it.

The question of how to combine specialised methods was �rst discussed in

the �eld of uni�cation theory (see [4] for an overview). Equational uni�ca-

tion algorithms, which can be seen as an instance of constraint solvers, were

built into resolution-based theorem provers and rewriting engines to improve

their handling of equality. Since the uni�cation problems occurring in these

applications usually contain function symbols from various equational theories,

the question of how to combine equational uni�cation algorithms became im-

portant. For algorithms that compute complete sets of uni�ers for equational

theories over disjoint signatures, this problem was solved by Schmidt-Schau�

[14] and Boudet [5]. With the development of constraint-based approaches to

theorem proving and rewriting, the interest in combining uni�cation algorithms

extended towards combinations of decision procedures, for which Baader and

Schulz [2] �nally presented a general algorithm.

As a generalisation of the one given in [2], the algorithm for combining

constraint solvers in [3] inherits the old weakness of being so highly non-

deterministic that it is of very limited practical use. The aim of this paper

is to provide optimisation techniques for the combination algorithm by Baader

and Schulz that make the combination of constraint solvers practically usable,

that are yet general enough to be applicable to a large class of constraint solvers.

The method we propose is the so called deductive method which is based on

the insight that many decisions of the combination algorithm do not really need

to be made non-deterministically, but can rather be deduced on the base of the

constraint domains involved, the input problem and other decisions made ear-

lier. In our deductive combination method the component solvers are consulted

to gain information on what further steps can be made deterministically. This

obviously requires component solvers capable of doing so. The strength of this

combination method lies in the interchange of information between the compo-

nent algorithms. The impact of this interchange is highlighted by the fact that,

although developed for the more general case, our combination algorithm turns

out to be an implementation of the PTIME combination algorithm given in

[15, 12] for a special subclass of constraint solvers. We also present a selection

strategy for choosing the next non-deterministic decision. In order to detect

unsolvability of a single component faster, we �rst make all non-deterministic

decisions relative to one component before we proceed to the next one. The run

time tests we present in this paper show the enormous e�ect of our optimisation

methods making us con�dent that combination of constraint solvers is feasible

in practice.

In this paper, we present our combination method as an algorithm for com-

bining constraint solvers, but our optimisation techniques are nevertheless use-

ful for the special case of equational uni�cation. Moreover our method can be

directly extended to compute complete sets of uni�ers.

2

2 Preliminaries

Quasi-free Structures and the Free Amalgamated Product

A signature � consists of a set �

F

of function symbols and a disjoint set �

P

of

predicate symbols (not containing \="), each of �xed arity. �-structures over

the carrier set A are denoted by A

�

. �-terms (t; t

1

; : : :) and atomic �-formulae

(of the form t

1

= t

2

, or of the form p(t

1

; : : : ; t

n

)) are built as usual from � and a

countable set of variables V. A �-formula ' is written in the form '(v

1

; : : : ; v

n

)

in order to indicate that the set Var(') of free variables of ' is a subset of

fv

1

; : : : ; v

n

g. A mapping � : V ! A from the set of variables to the carrier set

of A

�

is called an assignment. A constraint problem over signature � is a set of

atomic �-formulae. An assignment � is a solution for a constraint problem � in

A

�

i� '(�(v

1

); : : : ; �(v

n

)) becomes true in A

�

for all formulae '(v

1

; : : : ; v

n

) 2 �.

�-homomorphisms and �-endomorphisms are de�ned as usual, see e.g., [13].

With End

A

�

we denote the monoid of all endomorphisms of A

�

, with compo-

sition as operation.

We will now introduce the solution domains for constraint solving we con-

sider here, namely quasi-free structures. Quasi-free structures, a generalisation

of free structures, were introduced by Baader and Schulz [3]. We consider a

�xed �-structure A

�

.

Let A

0

; A

1

be subsets of A

�

. Then A

0

stabilises A

1

i� all elements m

1

and

m

2

of End

A

�

that coincide on A

0

also coincide on A

1

. For A

0

� A the stable

hull of A

0

is the set SH

A

(A

0

) := fa 2 A j A

0

stabilises fagg:

SH

A

(A

0

) is always a �-substructure of A

�

, and A

0

� SH

A

(A

0

). The stable

hull of A

0

can be larger than the �-subalgebra generated by A

0

.

The set X � A is an atom set for A

�

if every mapping X ! A can be

extended to an endomorphism.

De�nition 2.1 A countably in�nite �-structure A

�

is a quasi-free structure i�

A

�

has an in�nite atom set X where every a 2 A is stabilised by a �nite subset

of X. We denote this quasi-free structure by (A

�

;X).

The class of quasi-free structures contains many important non-numerical

in�nite solution domains. For example, all free structures (see, e.g., [13]), ratio-

nal tree algebras ([7]), feature structures with arity ([16]), domains with nested,

�nite or rational lists (rational lists are used in Prolog III, see [8]), and domains

with nested, �nite or rational sets ([1]). In each case, we have to take the

non-ground variant since we assume the existence of a countably in�nite set of

atoms. For details we refer to [3].

A fundamental property of quasi-free structures is the following: for each

a 2 A there exists a unique minimal �nite set Y � X such that a 2 SH

A

(Y).

The stabiliser of a 2 A, Stab

A

(a), is the unique minimal �nite subset Y of

X such that a 2 SH

A

(Y). The stabiliser of A

0

� A is the set Stab

A

(A

0

) :=

S

a2A

0

Stab

A

(a).

We extend the notions regular and collapse-free, known from equational

uni�cation, to quasi-free structures.

De�nition 2.2 A quasi-free structure (A

�

;X) is called collapse-free, i� every

endomorphism maps non-atoms to non-atoms, i.e., m(a) 2 A n X for all m 2

3

End

A

�

and all a 2 A nX. The quasi-free structure (A

�

;X) is regular, i� for all

m 2 End

A

�

and all a 2 A : Stab

A

(m(a)) = Stab

A

(m(Stab

A

(a))).

In [3], Baader and Schulz present a combined solution domain of two or

more quasi-free structures, the so-called free amalgamated product, which is

characterised amongst all considerable combined solution domains as being the

most general in the sense that every domain contains a homomorphic image of it.

The authors also provide a construction method to obtain the free amalgamated

product of arbitrary quasi-free structures. If (A

�

1

1

;X); : : : ; (A

�

n

n

;X) are n quasi-

free structures over disjoint signatures, we write A

�

1

1

 : : :
 A

�

n

n

for their free

amalgamated product. If the quasi-free structures one combines are quotient

term algebras of equational theories over disjoint signatures, then their free

amalgamated product is the quotient term algebra of the theory over the union

of the axiom sets.

In this paper, we investigate \mixed" constraint problems. For i = 1; : : : ; n

(n � 2), let �

i

be pairwise disjoint signatures and let (A

�

i

i

;X) be a quasi-free

structure over signature �

i

. A \mixed" constraint problem is a conjunction of

atomic formulae over the joined signature �

1

[: : : [�

n

. A constraint problem

� is in decomposed form, if � has the form

S

n

i=1

�

i

where each �

i

is a pure

constraint problem over the signature �

i

. Any constraint problem � can be

transformed into a constraint problem in decomposed form that is solvable, i�

the original problem is solvable, by a simple deterministic preprocessing step

(variable abstraction, see [2]). In the following, we will therefore always assume

that a constraint problem is in decomposed form

S

n

i=1

�

i

.

Only variables occurring in more than one component system �

i

have to

be considered by the combination algorithm. Hence we de�ne the set of shared

variables U := fx j 9i; j : i 6= j; x 2 Var(�

i

) \ Var(�

j

)g. The combination

algorithm presented in the next section imposes some restrictions on the shared

variables in order to prevent conicts between the solutions of the component

structures (like a variable being assigned to di�erent elements by solutions of

di�erent structures). The solutions of the component problems �

i

have to obey

these so-called linear constant restrictions.

De�nition 2.3 A linear constant restriction L = (�;Lab; <

L

) for variables U

consists of a partition

1

� of U , a labelling function Lab : U=

�

! f�

1

; : : : ;�

n

g

and a linear order <

L

on U=

�

. We use Lab(x) and x <

L

y instead of Lab([x]

�

)

and [x]

�

<

L

[y]

�

.

An assignment � is a solution for the constraint problem with linear constant

restrictions (�

i

; L) in (A

�

i

i

;X), i� it is a solution for �

i

and for each x; y 2 U :

� �(x) = �(y) if x �

�

y,

� �(x) 2 X if Lab(x) 6= �

i

, and

� �(x) =2 Stab

A

(�(y)) if Lab(x) 6= �

i

;Lab(y) = �

i

; y <

L

x.

By item two, all variables that receive a label di�erent from �

i

are treated

as constants by �. By item three, the use of these constants in � is further

restricted in order to prevent cycles. Two linear constant restrictions L

1

and

L

2

over U are called equivalent, if they have identical partitions and labelling

1

The equivalence relation induced by � is denoted by �

�

, [x]

�

is the equivalence class of

a variable x, and U=

�

is the set of all equivalence classes of variables in U .

4

functions and their orders di�er at most in ordering variables of identical label.

This de�nition induces an equivalence relation on all linear constant restrictions

for a given set of variables U . If L

1

and L

2

are equivalent and an assignment �

solves (�; L

1

), then � also solves (�; L

2

).

The Original Combination Algorithm

In the following we describe the combination algorithm given by Baader and

Schulz in [3], where one can �nd the details. Here we give a straightforward

generalisation of this algorithm to the case where more than two structures

are combined. Additionally, we include basic optimisations similar to those

described in [2].

Let � be a constraint problem in decomposed form. We assume the con-

straints in � are connected by shared variables, i.e., there is no partition

� = �

0

[�

00

where �

0

and �

00

do not have variables in common. Otherwise �

0

and

�

00

can be solved separately. The algorithm consists of three non-deterministic

steps which result in a linear constant restriction for the constraint problem.

Step 1: Variable identi�cation Non-deterministically choose a partitioning

� of U .

Step 2: Labelling Non-deterministically choose a labelling function Lab :

U=

�

! f�

1

; : : : ;�

n

g.

Step 3: Ordering Non-deterministically choose a linear order <

L

on U=

�

.

L = (�;Lab; <

L

) constitutes a linear constant restriction. Note that for

each equivalence class of linear constant restrictions, it su�ces to choose

just one member. The output tuple determined by these three steps is

((�

1

; L); : : : ; (�

n

; L)).

Theorem 2.4 The input problem � has a solution in the free amalgamated

product A

�

1

1

 : : :
 A

�

n

n

, if and only if there exists an output tuple ((�

1

; L);

: : : ; (�

n

; L)) such that for each i = 1; : : : ; n, the constraint problem with linear

constant restriction (�

i

; L) has a solution in A

�

i

i

.

Decision Sets

The original algorithm makes all non-deterministic decisions �rst, and only

thereafter it calls the component algorithms to determine whether the input

problem with the thus chosen constant restriction is solvable. Our optimisa-

tions interleave these two parts. Hence we have to deal with linear constant

restrictions which are only partially speci�ed, i.e., restrictions representing the

choices already made but making no statements about the decisions still open.

In order to describe these partial constant restrictions and to have a framework

for describing our optimisations on a formal level we introduce the notion of

decision sets. A decision describes a single non-deterministic choice. There

exist �ve di�erent types of decisions.

De�nition 2.5 Let U be the set of variables. A decision is an expression of the

form x

:

= y, x 6 _= y, x

_

� y, x _7! �

i

, or x 6 _7! �

i

, where x; y 2 U and 1 � i � n.

The decision x

_

< y is used as an abbreviation for x

_

� y; x 6 _= y.

5

We speak about sets of decisions (for a set of variables U) which are|as

usual|read conjunctively. In order to represent the two options when making

a non-deterministic choice, we de�ne the negation of a decision.

De�nition 2.6 Let d be a decision. Its negation :d is de�ned as follows:

:x

:

= y := x 6 _= y, :x 6 _= y := x

:

= y,

:x _7! �

j

:= x 6 _7! �

j

, :x 6 _7! �

j

:= x _7! �

j

,

:x

_

� y := y

_

< x.

These rules of negation reect the three non-deterministic steps of the al-

gorithm: Two variables have to be identi�ed or treated as di�erent variables;

each variable has to be treated as a variable or like a constant in a particular

component system; and two variables with distinct labels have to be ordered in

one way or the other. In the following we formally de�ne this correspondence

between sets of decisions and linear constant restrictions.

De�nition 2.7 Let U be a set of variables. A linear constant restriction L =

(�;Lab; <

L

) over U satis�es a decision set D, if the following holds:

x �

�

y if x

:

= y 2 D; x 6�

�

y if x 6 _= y 2 D;

Lab(x) = �

i

if x _7! �

i

2 D; Lab(x) 6= �

i

if x 6 _7! �

i

2 D;

x <

L

y or x �

�

y if x

_

� y 2 D:

The set of linear constant restrictions satisfying D is denoted by L(D). A set

D is called inconsistent if L(D) = ;.

So, the decisions are interpreted by a linear constant restriction in a straight-

forward way. We can now use decision sets to represent constraint problems

with partially speci�ed linear constant restrictions.

De�nition 2.8 A constraint problem with decision set (�;D) consists of a con-

straint problem � together with a set of decisions D. An assignment � is a

solution of (�;D) if � is a solution of (�; L) for some L 2 L(D).

Since decision sets represent linear constant restrictions, they inherit some

properties like

_

< representing an ordering. This is reected by the following

de�nition.

De�nition 2.9 A decision set D is called closed if D = fd j every L 2

L(D) satis�es fdgg.

This de�nition implies that for each decision setD there is exactly one closed

set which is equivalent to D; this set is called the closure of D. This closure

can be computed e�ciently; one has to consider that

:

= denotes a congruence,

_

< stands for an ordering, and x _7! �

i

represents a functional relation. For

example, a closure always contains x

:

= x for all variables x 2 U , the two

decisions x

:

= y 2 D and y

_

< z 2 D imply that x

_

< z is in the closure of D,

and the closure of fx _7! �

i

g contains x 6 _7! �

j

for all i 6= j. In the following we

will always assume that sets of decisions are closed, i.e., when adding decisions

to a set we assume that the closure is formed immediately.

We need a criterion when a set of decisions already represents one linear

constant restriction, i.e., when no more decisions have to be made.

De�nition 2.10 A set of decisions D is complete, if all linear constant restric-

tion in L(D) are equivalent.

6

From this de�nition and the one above it follows that there is a one-to-one

correspondence between the equivalence classes of linear constant restrictions

over U and closed and complete sets of decisions for U . In order to test incon-

sistency and completeness of decision sets by an algorithm, we need a syntactic

formulation of these properties. This is provided by the following lemma.

Lemma 2.11

1. A closed set of decisions D is inconsistent i� d 2 D and :d 2 D for some

decision d.

2. A closed and consistent set of decisions D (for variables U) is complete

i� for all x; y 2 U

either x

:

= y 2 D or x 6 _= y 2 D, and

either x

_

< y 2 D or y

_

< x 2 D if x _7! �

i

; y 6 _7! �

i

2 D, and

x _7! �

i

2 D for one �

i

.

3 Deductive Method

In this section we will show how information deduced from the component

systems and their individual structures can be used to prune the search space.

The power of the method lies in the interchange of this information between

the components.

Interchanging Decisions

A severe disadvantage of the original combination algorithm is that all non-

deterministic decisions are made blindfoldedly without respecting the require-

ments that the component structures may impose. For example, if a com-

ponent structure A

i

is collapse-free and the problem contains an equation

x = f(: : : y : : :) where f 2 �

i

, then x must receive label �

i

. If A

i

is also

regular then the problem is unsolvable if y 6 _7! �

i

2 D and x

_

< y 2 D. Hence

the algorithm can choose x _7! �

i

2 D deterministically and take into account

that y 6 _7! �

i

2 D implies y

_

< x 2 D.

As the example shows, some decisions that have been deduced earlier in

one component can be used to deduce new decisions in another one. This

possible interplay between di�erent structures suggests to use a method where

component algorithms computing new decisions are called alternately in the be-

ginning of the combination algorithm and whenever a non-deterministic choice

has been made: Starting with some initial decisions, each component algorithm

computes new decisions; these new decisions are added to the current set of

decisions, which is used when calling the other component algorithms. When

this process comes to an end because no new decisions can be deduced, the next

non-deterministic choice has to be made by the combination algorithm. After

this choice the process of computing new consequences can be started again.

At any step of computing the consequences, a component algorithm may return

that its subproblem has become unsolvable with the current set of decisions.

Thereby, unsolvable branches of the search tree can be detected earlier.

Obviously, this method requires new component algorithms that are capable

of computing consequences implied by the component structures, the problem,

7

and the decisions computed so far. A structure for which such an algorithm

does not exist can still be used in this method, but it cannot contribute to

the deductive process. It is clearly the quality of the deductive component

algorithms that decides the amount of optimisation achieved. The optimisations

of our component algorithms go quite beyond using only syntactic properties of

structures as in the example above. The goal is to deduce as much information

as is possible with a reasonable e�ort.

The Algorithm

First we de�ne the task of the new deductive component algorithms. Their

input is a pure constraint problem and a set of decisions which need not be

complete. The result is a set of decisions that follows from the constraint

problem and the input decisions. If the input is unsolvable, the result may also

be an inconsistent set of decisions.

De�nition 3.1 Let (�;D) be a constraint problem with decision set. The

decision set C is a consequence of (�;D), i� C is contained in every complete

decision set D

0

� D with (�;D

0

) is solvable, i.e.,

C �

\

fD

0

j D � D

0

;D

0

is complete; and (�;D

0

) is solvableg:

2

Note that C = ; is always a consequence and that the consequence need

not be inconsistent if (�;D

0

) is unsolvable for all complete extensions D

0

of

D. Therefore, the standard algorithms for constraint solving with linear con-

stant restrictions must be called in the end when a complete set of decisions is

reached. See Section 4 for a discussion on how deductive component algorithms

co-operate with standard ones.

Now we can describe the combination algorithm. The termination condition

in case of success is that the set of decisions is complete, as given in Lemma 2.11.

In the following, D denotes the current set of decisions, initialised with D := ;.

Repeat

Deduce consequences:

Repeat

For each system i,

call the component algorithm of system i to calculate

new consequences C of (�

i

;D),

set the new current set of decisions D := D [C.

Until D is inconsistent or no component algorithm computes new decisions.

If D is consistent and not complete

Select next choice:

Select a decision d =2 D such that D [fdg is consistent.

Non-deterministically choose either

D := D [fdg or

D := D [f:dg.

Until D is inconsistent or complete.

Return D.

2

T

fg is the (inconsistent) set of all decisions over U .

8

Proposition 3.2 The input problem � is solvable, i� the algorithm computes

a consistent set D such that for each i = 1; : : : ; n the constraint problem with

decision set (�

i

;D) is solvable.

Again, testing (�

i

;D) for solvability can be performed by the component al-

gorithms used in the original combination algorithm. Since a consequence is

a decision that is contained in every solvable complete decision set, it is clear

that we prune those branches of the search space that are unsolvable. Hence

correctness of the algorithm is an immediate consequence of the correctness of

the original combination algorithm in Theorem 2.4.

The deductive method additionally allows to reduce certain redundancies in

the search space. We can prune some solvable branches that would only lead to

redundant solutions. For example, let �

1

= fx = a; y = ag and �

2

= fz = x+yg

where + is associative and commutative. Clearly, Lab(x) = Lab(y) = �

1

and

Lab(z) = �

2

. And the order must be such that x and y are below z. But there

are two di�erent partitions that lead to a solution: We can identify x and y

or leave them di�erent. The resulting solution looks the same in both cases.

Hence we compute only one partition. Other, more complicated examples occur

in ordering decisions. It turns out, that sometimes it is useful to order variables

of the same label to avoid the computation of superuous orders that only lead

to redundant solutions. A longer discussion of this side issue would be beyond

the limited scope of this paper.

Deterministic Combination

It is interesting to observe that there exists a class of constraint systems for

which the deductive combination algorithm has PTIME complexity. In [15],

Schulz gives a general description of a PTIME combination algorithm for certain

equational theories. This algorithm is extended to the combination of quasi-free

structures in [12]. The class of structures that are deterministically combinable

is quite restricted. Currently, only unitary regular collapse-free structures are

known to belong to it.

Although our deductive component algorithm is designed for the general

case, it turns out to be an implementation of the deterministic algorithm when

applied to component algorithms satisfying the conditions imposed in [15] and

[12]. Our component algorithms for uni�cation in the empty theory, for rational

tree algebras, and for feature structures meet these conditions. Thus, when ap-

plied to these structures, our combination algorithm runs without backtracking.

This deterministic behaviour shows the great impact of interchanging decisions

between component algorithms.

4 Component Algorithms

In order to prune the search space signi�cantly, new component algorithms are

needed for the deductive method. When designing these algorithms one should

take into account the special way in which they are called. Constraint solvers

are usually designed to work incrementally (e.g., [8]). But standard uni�ca-

9

tion algorithms are \one shot" algorithms: they are started only once with all

information they need given and compute �nal results. Deductive component

algorithms must be able to cope with partial information and deliver a mean-

ingful but not necessarily the �nal result. More importantly, when receiving

new information the algorithms should not restart computation from scratch

but rather continue on the base of their prior internal states. Otherwise, the

search space would be partially shifted from the combination algorithm to the

deductive component algorithms. The same holds for the standard component

algorithms for problems with linear constant restrictions that perform a com-

plete test at the end of the combination algorithm: they should take into account

the information already computed by the corresponding deductive component

algorithms.

Note that there is no need for completeness in the deductive component

algorithm: the algorithm need not compute all decisions implied by the input

and it need not return an inconsistent set if the problem is unsolvable. Thus

an algorithm returning always the empty set would be correct, though it would

not contribute to the deductive process. This, however, enables us to use every

structure that is suitable for the original algorithm. In the other extreme it

might not be advisable to compute new decisions at any cost; there should be

a careful consideration between optimisations of the combination algorithm re-

sulting from new decisions and a higher complexity of the deductive component

algorithm.

We have developed deductive component algorithms for the free theory,

A, AC, and ACI and for rational trees and feature structures. A detailed

description of these algorithms would be beyond the limited space of this paper.

In the following, we outline the ideas underlying the algorithms for the free

theory, a theory in which one can deduce many decisions, and for ACI as a

more complicated example.

Syntactic Uni�cation

The deductive algorithm for the free theory is based on the quasi-linear al-

gorithm described in [4] where terms and uni�ers are represented as directed

acyclic graphs. We assume that the reader is familiar with this representation.

When the deductive component algorithm is called for the �rst time, the dag

is built, which is then used again for all further calls of this component algo-

rithm. Decisions of the form x 6 _= y, x _7! �

i

, x 6 _7! �

i

, or x

_

� y do not initiate

any computation. Only identi�cation decisions x

:

= y cause a call of the corre-

sponding uni�cation procedure, which updates the existing dag. The decision

set to be returned by the component algorithm can be computed from the dag:

x

:

= y is returned if x and y are identi�ed in the dag; x _7! �

Free

is returned

if x is connected to a non-variable term; x

_

< y is returned if x can be reached

from y. Additionally x 6 _= y is returned if x and y are certainly not uni�able.

The algorithm does not test real uni�ability of x and y since it would be too

costly to do this for all pairs of variables; instead it tests if the variables are

connected to non-variable terms with di�erent topsymbol. The dag is also used

by the decision procedure for problems with linear constant restrictions. This

10

algorithm works exactly like the deductive component algorithm, except that

it does not compute a decision set but returns solvable or unsolvable.

The deductive algorithm for rational trees works similar to this algorithm.

It does not perform an occur-check and it returns x

_

< y only if x can be reached

from y and y has been labelled by another structure.

The Theory ACI

In the theory of Abelian monoids, ACI, the binary function symbol + is associa-

tive, commutative and idempotent. In [11], an algorithm was given that decides

solvability of ACI -uni�cation with constants. The main idea is to set up Horn

clauses which describe the solvability of the equations. The Horn clauses are

built from propositional variables P

x;a

which are true i� the constant a does not

occur in a solution for the variable x. A clause P

x;a

^ P

y;a

) False means that

the problem is unsolvable if a does neither appear in x nor in y, or equivalently:

if we can deduce that a does not occur in x, then it must appear in y.

We extend the algorithm given in [11] for our situation where the set of

variables and constants is not �xed in the beginning. By this, we prevent that

new Horn clauses have to be set up when a new labelling decision is made. Let

V

ACI

be the set of variables in �

ACI

; note that there are no constants in �

ACI

.

We introduce a new constant �x for each variable x 2 V

ACI

and construct two

types of Horn clauses:

�

^

y2V

ACI

P

x;�y

) False for each variable x 2 V

ACI

;

� P

x

1

;�y

^ : : : ^ P

x

k

;�y

, P

u

1

;�y

^ : : : ^ P

u

l

;�y

for each y 2 V

ACI

and each equation x

1

+ : : : + x

k

= u

1

+ : : :+ u

l

2 �

ACI

:

The �rst type of clauses guarantees that the solution for each variable contains

at least one constant. The second type represents the equations of �

ACI

: if a

constant does not appear on the left hand side, it must not appear on the right

hand side, and vice versa. A decision x 6 _7! �

ACI

introduces the Horn clauses

P

x;�x

) False and) P

x;�y

for each y 2 V

ACI

with y 6= x, i.e., the propositional

variables are set to False and True, respectively. The e�ect of these clauses is

that �x is the only constant that appears in x, i.e., x is identi�ed with �x and

is treated like a constant by the algorithm. A decision x

_

< y causes the atom

P

x;�y

to be set to True.

The constraint problem with linear constant restrictions is solvable i� the

set of Horn clauses is solvable. This can be tested e�ciently by an algorithm

which constructs a graph from the Horn clauses and propagates True and False

through this graph (see [11]). The set of Horn clauses (and the corresponding

constraint problem) is unsolvable if True meets False during this propagation.

New decisions can be deduced from the atoms mapped to True or False: x _7!

�

ACI

is returned if P

x;�y

is set to False and x 6 _= y has been already deduced or

if P

x;�y

and P

x;�z

have been set to False for three di�erent variables x, y, and z.

The decision x

_

< y is returned if P

x;�y

has been set to False with x 6= y.

Like the dag for syntactic uni�cation, the Horn clauses and the state of the

propositional variables are stored and used again for each further call of the

11

component algorithm; only when a new identi�cation decision x

:

= y is deduced

by another component algorithm, the clauses have to be set up anew.

5 A Selection Strategy for Non-deterministic Deci-

sions

The deductive method is a method to calculate the consequences of a non-

deterministic decision, once it is made. It does not state, how to select the

next non-deterministic decision. In this section, we will describe a strategy

for selecting the next decision called the iterative strategy. It is based on the

insight that trying to �nd a set of decisions for the whole problem is best done

by looking at one component at a time. We assume that the component systems

are linearly ordered by some heuristics. One such heuristic is to place the more

deterministic systems in front. The �rst non-deterministic choices are made for

the �rst system only. And one proceeds to the next system after all choices for

the �rst system are made and a set of decisions is found with which the �rst

component problem is solvable. Suppose all decisions for the �rst k systems

are already made. The next non-deterministic choice is made for system k+1,

if there is one left. These choices are made locally, that means the decisions

are made only on variables of system k + 1, the labelling determines solely, if

the variable will be assigned to the current system, or not; and an order is

determined only between two variables, if one belongs to the current system

while the other does not. Implicitly, we have already given a priority order

of the decisions: �rst identi�cation or discrimination decisions, then labelling

decisions and �nally ordering decisions for the current system. It should be

clear that after each non-deterministic decision the deductive process is started

to deduce its consequences.

The main e�ect of this selection strategy is that we proceed to non-

deterministic choices for the next system only after we found a set of choices

with which all previous systems are solvable. This leads to earlier detection of

failure, when one component problem is unsolvable. As a side e�ect, the search

space is reduced in that certain superuous non-deterministic choices such as

the ordering of two variables that do not occur together in at least one system

are never made due to localisation of choices.

6 Tests

The combination method and component algorithms for the free theory, A,

AC, and ACI as well as for rational tree algebras and feature structures are

implemented

3

in Common Lisp using the Keim toolkit [10]. In the following

we show some results of our optimisations. As already stated, the constraint

solvers for rational tree algebras and feature structures are such that one can

combine them even deterministically. Hence we do not present any test data for

3

The implementation can be found at http://www-lti.informatik.rwth-aachen.de/

Forschung/unimok.html.

12

them. In order to test our algorithms with examples that occur in practice we

used the reveal theorem prover [6]. For some example theorems, we collected

all uni�cation problems that are generated and solved by reveal while proving

this theorem. These theorems (and the corresponding set of uni�cation prob-

lems) contain free function symbols and constants and one or two AC-symbols.

Table 1 gives an overview of the run time for some sets of uni�cation prob-

lems. The �rst six lines contain all uni�cation problems that have to be solved

by reveal during the proof search or completion of the respective example. All

examples except the �rst one contain two AC-symbols and several free symbols.

The last three examples, containing several AC- and ACI -symbols, are added

to demonstrate the potential of the iterative selection strategy. In order to see

the e�ect of the iterative selection strategy on its own, we integrated it into the

original algorithm (column `it'). An empty cell in the columns indicates that

the algorithm was aborted after one hour.

Time in seconds Bktrk

Example Size i+d ded i+d- ded- it orig i+d ded

Abelian group 29 3.7 3.7 5.0 5.0 11.6 17.2 4 4

Boolean ring 51 3.2 3.2 4.8 4.8 3.5 3.3 0 0

Boolean algebra 122 15.8 15.7 20.5 24.5 12 12

exboolston 87 12 12 948 997 17 14

exgrobner 1002 154 155 1442 1488 65 66

exuqsl2 404 109 108 74 74

AC*{ACI* 1 1 16 101 74 385 15 16 103

AC*{ACI* 2 1 31 407 393 841 13 205

AC*{ACI* 3 1 67 557 248 22 192

Legend: Size: Number of problems; i+d: Integration of Iterative and Deductive Method;

ded: Deductive Method; i+d-: Iterative & Deductive Method, but AC-component replaced

by one that uses only collapse-freeness and regularity; ded-: Deductive Method, but AC-

component replaced by one that uses only collapse-freeness and regularity; it: Iterative se-

lection strategy in original algorithm; orig: Original unoptimised algorithm; Bktrk: Number

of backtracking steps.

Table 1: Run time of some example sets

We want to emphasise the di�erences between column `ded' and `ded-'.

Column `ded-' shows the run time of the algorithm when using only syntactic

properties as described in [2]; a comparison with column `ded' demonstrates the

power of the deductive method and the deductive component algorithms. The

run time decreases dramatically for most examples and some examples even

cannot be solved in suitable time when using only syntactic properties.

The use of the iterative selection strategy does not lead to a performance

increase in the deductive algorithm in the �rst six example sets, because these

examples are too simple. They contain too few component theories. The last

three examples show that the use of the iterative selection strategy can lead

to a speed-up by more than one order of magnitude. The equations in these

examples contain several AC and ACI -function symbols besides free function

symbols. It is a general observation that the iterative selection strategy is

13

advantageous, if the number of systems is large or the deductive component

algorithms do not deduce many decisions.

7 Related Work and Conclusion

The work that is most closely related to ours is the one by Boudet [5]. He

presents an optimised algorithm for the combination of �nitary equational the-

ories. Our method is hence considerably more general, we are neither restricted

to equational theories nor to structures for which minimal complete sets of so-

lutions must be �nite. But since combining uni�cation algorithms is such an

important instance of our methods, we want to compare the two approaches a

bit more detailed. Boudet's algorithm computes a complete set of uni�ers for

each theory, subsequently treats arisen conicts between the theories (like one

variable getting assigned to di�erent terms in di�erent systems), and repeats

these two steps until all conicts have been solved. Thus there is an important

di�erence in the way the non-determinism inherent in most constraint prob-

lems is handled. Our algorithm prophylactically makes a choice for all possible

conict situations before solving the component systems. { We showed that

many of these choices can be made deterministically, but some have to be made

non-deterministically. { Boudet follows another approach: his algorithm only

makes a non-deterministic choice if a conict actually arises. But as a drawback

his approach introduces another source of non-determinism: in order to detect

actual conicts, the algorithm has to compute complete sets of uni�ers for the

component systems and it has to choose one of the uni�ers non-deterministically

if the computed set contains more than one solution. The set of uni�ers can

by very large, e.g., doubly-exponential in the number of variables of the input

problem for AC.

Both algorithms have to perform several rounds of computation for the

component systems, i.e., consequences (in our algorithm) or complete sets of

uni�ers (in Boudet's algorithm) have to be computed more than once for each

component system. In our algorithm the constraint problem to be solved by a

component has the same size in each round. In Boudet's algorithm the compu-

tation of a complete set of uni�ers is based on the uni�er found in the previous

round. This means that the uni�cation problem to be solved by a component

theory can grow in each round, e.g., the number of variables in an AC-uni�er

can be exponential in the number of variables of the input problem. This can

result in a higher worst-case complexity of Boudet's algorithm: It may well

be non-elementary. And that, though the inherent complexity of combination

is in NP. Our algorithm on the other hand has singly exponential complexity.

Despite its high worst-case complexity, Boudet's algorithm performs quite well

in many practical examples. It seems to be a promising line of research to try

to integrate some of our optimisation ideas into Boudet's algorithm.

We presented an optimised algorithm for combining constraint solvers. Our

empirical analysis indicates that the combined constraint solvers obtained this

way can indeed be used in practice. It should be noted, however, that some

of the non-determinism is inherent in the combination problem, which means

14

that even the best optimisation methods cannot avoid this complexity, unless

the structures to be combined are severely restricted, as pointed out in the

subsection on deterministic combination.

Acknowledgments: We would like to thank Franz Baader and Klaus Schulz

for helpful discussions and comments on drafts of this paper.

References

[1] P. Aczel. Non-wellfounded Sets. Number 14 in CSLI Lecture Notes. CSLI, Stanford

University, USA, 1988.

[2] F. Baader and K. U. Schulz. Uni�cation in the union of disjoint equational theo-

ries: Combining decision procedures. Journal of Symbolic Computation, 21:211{

243, 1996.

[3] F. Baader and K. U. Schulz. Combination of constraint solvers for free and quasi-

free structures. Theoretical Computer Science, 192:107{161, 1998.

[4] F. Baader and J. H. Siekmann. Uni�cation theory. In D. M. Gabbay, C. J.

Hogger, and J. A. Robinson, editors, Handbook of Logic in Arti�cial Intelligence

and Logic Programming, volume 2, Deduction Methodologies. Clarendon Press,

Oxford, 1994.

[5] A. Boudet. Combining uni�cation algorithms. Journal of Symbolic Computation,

16(6):597{626, 1993.

[6] T. Chen and S. Anantharaman. STORM: A many-to-one associative-commutative

matcher. In J. Hsiang, editor, Rewriting Techniques and Applications, Proceedings

of RTA-95, pages 414{419, Kaiserslautern, 1995. Springer LNCS 914.

[7] A. Colmerauer. Equations and inequations on �nite and in�nite trees. In Pro-

ceedings of the International Conference on Fifth Generation Computer Systems,

pages 85{99, Tokyo, 1984. North-Holland Publishing Company.

[8] A. Colmerauer. An introduction to PROLOG III. Commun. ACM, 33:69{99,

1990.

[9] A. Dovier, A. Policriti, and G. Rossi. Integrating lists, multisets, and sets in a

logic programming framework. In F. Baader and K. U. Schulz, editors, Frontiers

of Combining Systems, Proceedings of FroCoS'96. Kluwer Academic Publishers,

1996.

[10] X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Richts, and J. Siek-

mann. KEIM: A Toolkit for Automated Deduction. In A. Bundy, editor, Auto-

mated Deduction | CADE-12, Proceedings, pages 807{810, Nancy, 1994. Springer

LNAI 814.

[11] D. Kapur and P. Narendran. Complexity of uni�cation problems with associative-

commutative operators. Journal of Automated Reasoning, 9:261{288, 1992.

[12] S. Kepser. Combination of Constraint Systems. PhD thesis, CIS, Univer-

sit�at M�unchen, 1998. Available at ftp://ftp.cis.uni-muenchen.de/pub/

kepser/ccl/diss.ps.gz.

[13] A. I. Mal'cev. The Metamathematics of Algebraic Systems, volume 66 of Studies

in Logic. North-Holland Publishing Company, 1971.

[14] M. Schmidt-Schau�. Uni�cation in a combination of arbitrary disjoint equational

theories. Journal of Symbolic Computation, 8(1,2):51{99, 1989.

[15] K. U. Schulz. Combining uni�cation- and disuni�cation algorithms|tractable

and intractable instances. Research Report CIS-Rep-96-99, CIS, LMU Munich,

Germany, 1996.

[16] G. Smolka and R. Treinen. Records for logic programming. Journal for Logic

Programming, 18(3):229{258, 1994.

15

