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Abstract

Description logics are formalisms for the represen-
tation of and reasoning about conceptual knowl-
edge on an abstract level. Concrete domains allow
the integration of description logic reasoning with
reasoning about concrete objects such as numbers,
time intervals, or spatial regions. The importance
of this combined approach, especially for building
real-world applications, is widely accepted. How-
ever, the complexity of reasoning with concrete do-
mains has never been formally analyzed and effi-
cient algorithms have not been developed. This pa-
per closes the gap by providing a tight bound for
the complexity of reasoning with concrete domains
and presenting optimal algorithms.

Introduction

stract logical level. However, for a variety of applicatsit

is essential to integrate the abstract knowledge with know
edge of a more concrete nature. Examples of such
knowledge” include all kinds of nhumerical data as well as
temporal and spatial information. Important application a

eas which have been found to depend on integrated reasoniﬁrée
with concrete knowledge are, e.g., mechanical engineerin
[Baader and Hanschke, 1993easoning about aggregation

in databasefBaader and Sattler, 19B8s well as temporal

and spatial reasoning (sédaarslevet al., 1999 and[Lutz,
1999). Many description logic systems such as e.ga€sIC

andKRZS (see[Borgidaet al, 1989, [Baader and Hollun-
der, 199], resp.), provide interfaces that allow the attachmen
of external reasoning facilities which deal with concrete i

formation. Surprisingly, the complexity of combined reaso

ing with abstract and concrete knowledge has, to the best
our knowledge, never been formally analyzed and provab
optimal algorithms have not been developed. Recent efficie

implementations of expressive description logics likeCH

(see[Horrocks, 1998 concentrate on logics for which rea-

soning is “empirically tractable”. The starting point fakl-
oping these efficient implementations are usually algorgh We start the formal specification by recalling the definitadn
which are optimal w.r.t. worst case complexity. An impottan a concrete domain given [Baader and Hanschke, 1991

reason why these systems fail to integrate concrete knowl-
edge is that no complexity results and no efficient algorgthm
are available.

Baader and Hanschk&991 extend description logics by
concrete domains, a theoretically well-founded approach t
integrated reasoning with abstract and concrete knowledge
On basis of the well-known description logi€C, they de-
fine the description logicALC(D), which can be param-
eterized by a concrete domaid. In this paper, we ex-
tend ALC(D) by the operators feature agreement and fea-
ture disagreement. This leads to the new lodi€C F (D),
which combinesALC(D) with the logic ALCF [Hollun-
der and Nutt, 1990 Algorithms for deciding the concept
satisfiability and ABox consistency problems for the logic
ALCF(D) are given. Furthermore, the complexity of rea-
soning with ALCF (D) is formally analyzed. Since reason-
ing with ALCF(D) involves a satisfiability check for the
concrete domain, the complexity of the combined formal-
ism depends on the complexity of reasoning in the con-
crete domain. The proposed algorithms are proved to need

polynomial space which implies that, first, reasoning with

ALCF (D) is PSace-complete provided that reasoning with

(the concrete domain is in PSCE, and, second, the devised
f'aégorithms are optimal. The obtained complexity resultsyca

over to the description logiglLC(D). The algorithmic tech-
nigues introduced in this paper are vital for efficient imple
ntations of bottd LC F (D) and ALC(D).
As a simple example illustrating the expressivity of
%EC}‘(D), consider the concepglan M wife/boss T
Jwage (wife wagg. >. In this exampleMan is a primi-
tive conceptwife andwageare features (i.e., single valued
roles), and> is a concrete predicate. The given concept de-
scribes the set of men whose boss coincides with their wife
nd who, furthermore, have a higher wage than their wife. In
his example, the wage of a person is knowledge of a con-
crete type while being a man is knowledge of a more abstract

e feature agreement operatoand cannot be expressed in

i'_‘ature. The coincidence of wife and boss is described using

r,(élEC'(D). The syntax used is defined in the next section.

2 The Description Logic ALCF(D)
In this section, the description logitLC F (D) is introduced.



Definition 1. A concrete domainD is a pair (Ap, ®p), (uptup)t := {ae Az |3by,by € Az: by by A
whereAp is a set called the domain, adg is a set of pred- T T

icate names. Each predicate nafia ®p is associated with (@by) €uy A (aby) €y}
an arityn and ann-ary predicateP” C AZ. A concrete (ulu)? :={aec Az [T e Az: (a,b) e ul A
domain®D is calledadmissibléff (1) the set of its predicate (a,b) € ul}

names is closed under negation and contains a neméor ’ 2

Ap and (2) the satisfiability problem for finite conjunctions An interpretationZ is a modelof a concep(C iff C* # 0.
of predicates is decidable. A conceptC is satisfiableiff there exists a model of C. A
conceptC subsumea concepD (written D < C) iff D” C
C? for all interpretations.

Subsumption can be reduced to satisfiability sibcg C iff
Definition 2. Let C, R, andF be disjoint sets of concept, the concepb r—Cis unsatisfiable. Please note that the fea-
role, and feature namesA compositionf;f, - --f,, of fea-  ture agreement and feature disagreement operators conside
tures is called deature chain Any element ofC is acon-  only objects fromA7 and no objects fron\p. Agreement

cept If C andD are conceptRRis a role or featurel € ®p and disagreement over concrete objects can be expressed by
is a predicate name with arity, andu,, ... ,u, are feature Usinga concrete domain which includes an equality preelicat

chains, then the following expressions are also concepts: ~Using disjunction, “global” agreement and disagreemeat ov
both the concrete and the abstract domain can then also be ex-

e —C (negation)CrD (conjunction)CLD (disjunction),  pressed (sefLutz, 1998). This approach was chosen since

VR.C (value restriction)R.C (exists restriction), global agreement and disagreement are not considered to be
very “natural” operators. We will now introduce the asser-
tional formalism ofALCF (D).

e ujlu, (feature agreement)y; Tu, (feature disagree- Definition4. Let Op and O4 be disjoint sets of ob-
ment). ject names. Elements ddp are calledconcrete objects
and elements o0, are calledabstract objects If C,
R, f, and P are defined as in Definition 2a and b
are elements ofO4 and x, x;, ... ,X, are elements of
Op, then the following expressions aassertional axioms

. . . . a:Ca (aab):Rv (a,X)Zf, a,;éb’ (Xla---ax'n):P
Definition 3. An interpretation Z = (Arz,-Z) consists o ] . )
of a setAz (the abstract domain) and an interpretationA finite set of assertional axioms is called abCCF(D)
function -Z. The setsAp and A7 must be disjoint. The ABOX An interpretation for the concept language can
interpretation function maps each concept na@edo a Pe extended to the assertional language by mapping
subsetC” of Az, each role nameR to a subsetR” of €very object name fromO4 to an element of Az
A7 x Az, and each feature nanfieo a partial functiof? ~ @nd every object name fronDp to an element of
from Az to Ap U Az, wherefZ(a) = x will be written Ap. The unique name assumption is not imposed, i.e.

On the basis of concrete domains, the syntaxddiC 7 (D)
concepts can be defined.

e duy,...,u,.P (predicate operator)

A simple feature is a feature chain of length one. For a featur
chainu = f, ---f,, 3u.C andVu.C will be used as abbrevi-
ations for3f,....3f,.C andvf,....Vf,,.C, respectively. As
usual, a set theoretic semantics is given.

as(a,x) € fZ. If u = f,---fy is a feature chain, thee” & = b” may hold even ifa and b are distinct ob-
functionsf?,...,fZ. Let the symbol<C, D, R, P, anduy, a:C iff a’ e C7,

... U, be defined as in Definition 2. Then the interpretation
function can be extended to complex concepts as follows:

(a,b):R iff (al,b?) e RE,
(a,x):f iff (a’,x?) e f7,
a#b iff al #b’,

(X1y...,%,):P iff (xF,...,xt) € PP,

(cnD)? :=cfnD?
(CubD)? :=cfub?

(-C)% .= A7\ C? . o e
An interpretation is anodelof an ABox A iff it satisfies all
(ARC)T :={a€ A7z |Tbe Az: assertional axioms itl. An ABox is consistentff it has a
(a,b) e R Abe CT} model.

Satisfiability of concepts, as introduced in Definition 3nca
(VRC)” :={a€ Az |¥b: (ab) e R" 2 beC™} g reduced to ABox consistency since a con€x satisfi-
(Aup,...,up.P) :={ac Az |Ix;,..., %, € Ap: able iff the ABox{a:C} is consistent. In the next section, an
. 7 algorithm for deciding the consistency dfZC 7 (D) ABoxes
(@X)) €Uy A+ A(a,Xy) E U, A is presented.
(Xla"'axn) € PD}
3 Algorithms

!In the following, the notionole (featurd is used synonymously ~Completion algorithms, also known as tableau algorithms,
for role name (feature name). are frequently used to decide concept satisfiability andABo



consistency for various description logics. Completiagoal of = with y, resp. It is assumed that forks are eliminated as
rithms work on (possibly generalized) ABoxes and are charsoon as they appear (as part of the rule application) with the
acterized by a set of completion rules and a strategy to applgroviso that newly generated objects are replaced by older
these rules to the assertional axioms of an ABox. The algoenes and not vice versa. In the following,andD denote
rithm starts with an initial ABox4, whose consistency is to conceptsR a role,f a featureP a predicate name frorp
be decided. If the satisfiability of a concépis to be decided, with arity n, uy, ... ,u, feature chainsa andb objects from
the ABox{a:C} is considered. The algorithm repeatedly ap-O 4, andz;, .. ., z,, objects fromOp,.
plies completion rules adding new axioms, and, by doing SORm The conjunction rule.
makes all knowledge implicitly contained in the ABox eX- |fa.cnD e A, {a:C, a:D} Z A
plicit. If the algorithm succeeds to construct an ABox whichthen 4’ = AU {a:C, a:D}
is complete (i.e., to which no more completion rules areiappl
cable) and which does not contain an obvious contradlctlonIf a:CUD € A {a:C, aD}NA=0
then.4, has a model. Otherwisel, does not have a model. thenA' = AU{a:C} v A' = AU {a:D}
In [Hollunder and Nutt, 1990a completion algorithm for — ’ - e
deciding the satisfiability ofACCF concepts is given which Rr3C, Rf3C The role/feature exists restriction rule.
can be executed in polynomial space. [Baader and Han- fa:3RC€ A, #b€0a: {(ab):R b:C} C A _
schke, 199], an algorithm for deciding the consistency of thenA’ = AU {(a,b):R, b:C} whereb € Oy is fresh inA.
ALC(D) (i.e., ALCF(D) without feature agreement and dis- This is the RBC rule. To obtain REC, replacer by f.
agreement) ABoxes is given. However, this algorithm need®rvC, RfvC The role/feature value restriction rule.
exponential space in the worst case. Thisis due to the factthif a:VR.C € A, Ib€ Oa: (a,b): R€ AAb:C ¢ A
the algorithm collectsll axioms of the form(x;,...,x,):P  thenA’ = AU {b:C}
(concrete domain axio®btained during rule application, This is the R¥C rule. To obtain RC, replaceR by f.
conjoins them into one big conjunctienand finally test:  Rr3p The predicate exists restriction rule (may create forks).
for satisfiability w.r.t. the concrete domain. Unforturigtéhe  f 5.3y, . u,Pec A, #xi,...,x. € Op:
size of this conjunction may be exponential in the sizelgf (succa(a,ui) =Xi A ... ASUCCA(R, Un) = Xn A
(see[Lutz, 1998 for an example). To obtain a polynomial (= y ).pe A)
space algorithm for deciding the consistency£C7(D)  thenc, := AU {(x,...,%.):P}
ABoxes, the concrete domain satisfiability test has to be bro  \here thex; € Op are distinct and fresh int.
ken up into independent “chunks” of polynomial size. Cy := chairg, (8, X1, 1), .. ., Cn = chaire, _, (a, X, Un)
The completion algorithm for deciding the consistency of 4/ _ U i
ALCF (D) ABoxes is developed in two steps: First, an algo-in The agreement rule (may create forks)
rithm for deciding the satisfiability afl LC F(D) concepts is If 2 LU ge A FbeOy: Syucc (au) = -succ (au) = b
devised. Second, an algorithm is given which reduces ABO)§heﬁCI— f4U chain @ bAui )whgref) el 0. is fr:sh’inil -
consistency to concept satisfiability by constructing a aum n - ¢ U chai “ ’b’ ! A :
ber of “reduction concepts” for a given ABaxy. A similar = C U chaire(a, b, uz)
reduction can be found iiHollunder, 1994 R? The disagreement rule (may create forks).
Before giving a formal description of the completion If @:uitux € A, Bbi, by € Oa:
algorithms themselves, the completion rules are defined. To (SucGa(a,u1) = bi Asucci(a, Uz) = b2 Abr # by € A)
define the rules in a succinct way, the functianggy and  thenC = AU chaing(a, by, ur)
chainy are introduced. Le#d be an ABox. For an object A’ =CUchaire(a,ba,uz) U {b1 # b2}
a € 04 and a feature chaim, succ, (a, u) denotes the object whereb:, b, € O.4 are distinct and fresh inl.
b that can be found by following starting froma in A. If Rule applications that generate new objects are called
no such object existsuccy (a, u) denotes the special object generating All other rule applications are calledon-
e that cannot be part of any ABox. An object nam& O,4  generating All applications of the REC rule are generating.
is calledfreshin A if a is not used ind. Leta be an object Application of the rules RIC, RIP, R|, Rt are usually
from O4, = be an object fromOp, andu = f,---f;, be  generating but may be non-generating if fork elimination
a feature chain. The functiochainis defined as follows:  takes place.

RL The (nondeterministic) disjunction rule.

1=0...n

chaing(a,x,u) := {(a,¢1):f1,..., (Ck—1,X):T1} A formalized notion of contradictory and of complete
where thec, ..., ¢,y € O4 are distinct and fresh inl. ABoxes is introduced in the following.

Now, the set of completion rules can be formulated. Pleas@efinition 6. Let the same naming conventions be given as
note that the completion rulelRis nondeterministic, i.e., in Definition 5. An ABox A is calledconcrete domain sat-
there is more than one possible outcome of a rule applicationsfiable iff there exists a mapping from Op to Ap, such
Definition 5. The followingcompletion ruleseplace agiven thatAy, e (8(x1),.-.,d(x,)) € PP is true inD. An
ABox A nondeterministically by an ABoxd’. An ABox .4  ABox A is calledcontradictoryif it is not concrete domain

is said to contain dork (for a featuref) iff it contains the  satisfiable or one of the followingash triggerss applicable.
two axioms(a,b) : f and(a, c): f or the two axiomga, x) : f I . )

and(a,y):f, whereb,c € O4 andz,y € Op. A fork can be * Primitive clash {a:C, a:~C} C A
eliminated by replacing all occurrencesin A with b, or e Feature domain clash{(a, x):f, (a,b):f} C A



define proceduresat(.A) define procedureABox-cons(.A)

A’ := feature-complete(A) eliminate forks inA (see Definition 5)
if A" contains a clasthen A := preprocess(.A)
return inconsistent C :={a € A|aisofthe form(xy,...,%,):P}
C:={a € A | aisofthe form(xi,...,%,):P} if A contains a clasthen
if satisfiable?(D,C) = nothen return inconsistent
return inconsistent if satisfiable?(D,C) = nothen
forall a:3RD € A', whereRis a role,do return inconsistent
Letb be an object name fro 4. forall a:3dRD € A, whereRis arole,do
if sat({b:D} U {b:E | a:VRE € A'}) Letb be an object name froi@ 4.
returnsinconsistenthen if sat({b:(D M WR|_E|€A E)})

return inconsistent

. returnsinconsistenthen
return consistent

return inconsistent

define procedurefeature-complete(.A) return consistent
while a ruler from the sef{ R, RL, RfAC, RfYC define
: 1, RU, ) ) procedurepreprocess(.A)
R_HP, R{, RT}I is applicable to4, do while a ruler from the se{RM, RU, RVC, Rf3C,
A= AU apply(A,r) RfYC, R3P, R|, Rt} is applicable to4, do
return A A= AU apply(A,r)
return A

Figure 1: Thesat algorithm.

i Figure 2: TheABox-cons algorithm.
e All domain clash {(a,x):f, a:Vf.C} C A

e Agreementclashu #a € A C of concrete domain axioms. It returyasif the conjunction
An ABox to which no completion rule is applicable is called Of all axiomsinC is satisfiable w.r.tD andnootherwise. The
complete sat algorithm is given in figure 1. Based eat, we define the

. : ... ABox-cons algorithm for deciding ABox consistency. This
We are now ready to define the completion algor'thmalgorithm can be found in figure 2.

sat for deciding the satisfiability ofALCF(D) concepts. A formal correctness proof for the algorithms is omitted
Sat takes an ABoxl{c; : C} as mput,_whgrd:”has to bel for the sake of brevity and can be found[irutz, 1998. A
In Pegatlofn hormaf form 1.€., Cr1egat|or_1 IS a ﬁmid on yb short, informal discussion of the employed strategiesvsmi
'dnonr:ng Oefﬁgggt?\fe?argesi in ogve"rz'onaig rewritgarr]uleeinStead' Thesat algorithm performs depth-first search over
¢ hy tion i y dpp yV\? pFI) P! th '®Srole successors. This technique, first introduced by Schimid
0 push negation Inwards. = We only give the Conversions .,z and Smola.991 for the logic.ALC, allows to keep
rules needed_ for the new constructors feature agreeme%Iy a polynomial fragment (called “trace”) of the model in
Zrzjcf%atur(? dlsagreFementf, and refﬁ'[l.mti’ 1994 for the memory, although the total size of the model may be expo-
: (._) rElIJe WS’ELu Hor a _I?a“ilre ¢ uag‘ - ‘fl i ka’ Sl nential. Tracing algorithms usually expand the axioms be-
(w) = 3fi.To UIfifo.To ... U3fi -+ fior. To. longing to a single object, only, and make a recursive call
- ] ‘ ] ] for each role successor of this object. This is not feasible i
(U dt) = Ly LISt Tp LIS Tp LIV L LIV L the case ofALCF(D) since more than a single object may

U A(ur) U Au2) have to be considered when checking concrete domain sat-
(Ui tu) = Ul U3u. Tp U Tp UVU. L U Vup. L isfiability. The central idea to overcome this problem is to
LA (ur) U A(us) expand axioms not for single objects but for “clusters” of ob

. _ jects which are connected by features. This is done by the

Any ALCF(D) concept can be converted into an equ'Valem]feature-complete function. During cluster expansion, chunks
concept in NNF in linear time. Some comments about they concrete domain axioms are collected. Any such chunk
application of nondeterministic completion rules are id@t 5 separately be checked for satisfiability. To see this, it
The application of the nondeterministic rule/Ryields more  jmportant to note that roles are not allowed inside the pred-
_tha_n one pos§|ble outcome. Itis not spec_:lfled Whl_ch pOSSIbllicate operator, and thus concrete domain axioms cannot in-
ity is chosen in a given run of a completion algorithm. This g e objects from different clusters (which are connedgd
means that the algorithms to be specified are nondeterministro|es)_ A similar strategy is employed fetZCF in [Hollun-
algorithms. Such algorithms returns a positive resultéi€h  ger and Nutt, 1990 The ABox-cons reduces ABox consis-
is anyway to make the_nondeterm|n|st|c decisions such tha{ency to satisfiability by performing preprocessing on thie i
a positive result is obtained. .. tial ABox and then constructing a reduction concept for each

The satisfiability algorithm makes use of two auxiliary ygle successor of any objectin the resulting ABox. In thetnex

functions which will be described only informally. The func  gection, the complexity of both algorithms is analyzed.
tion apply takes two arguments, an ABo% and a comple- ’

tion rule r. It appliesr once to arbitrary axioms frorod . .
matchingr’s premise and (nondeterministically) returns the4 Complexity of Reasoning

new axioms generated by the rule application. The functiorfo characterize space requirements, a formal notion for the
satisfiable? takes as arguments a concrete donfaend a set  size of an ABox is introduced.



Definition 7. The size ||C|| of a conceptC is defined
inductively. Let C and D be concepts,A a concept
name, R a role or feature,u fi---f, a feature
chain, and letuy,...,u, also be feature chains.

Al = [[-All =1 Ifr---fill = &
ICMD|| = [[CUDI| = |C|| +[|DI[ +2
IVRC|| = |IFRC]| = [IC|| +1
[13ui, ..., Uy Pl = [Jur|| + -+ [Jun]|] +1
[urdte ]| = [Jurtuz|| = fJur[[ +[|uz]] +1
The size of an axiom is ||C|| if «is of the formz:C and 1

otherwise. The size of an ABaA is the sum of the sizes of
all axioms inA.

For the analysis of the space neededdty two lemmata are
needed.

Lemma 8. For any inputA, the functionfeature-complete
constructs an ABoxl’ with [|A’|| < || Al|* + [|A]l.

Proof: The upper bound for the size gf is a consequence
of the following two points:

1. feature-complete generates no more thajM|| new ax-
ioms.

2. For each axiom, we havd|a|| < ||A]||.

The second point is obvious, but the first one needs to b
proven. The rules RIC and RWC will not be considered
since they are not applied Byature-complete. For all other
completion rules, the most important observation is they th
can be applied at most once per axiam C. This is also
true for axiomsa : Vf.C and the R¥C rule since there is at
most one axionfa, b) :f per featurd and objec. We make
the simplifying assumption that the premise of th&Rfrule
doesonly contain the axionu : Vf.C, i.e., that it is applied
to everyaxiom of this form regardless if there is an axiom
(a,b) :f or not. This may result in too high an estimation of

the number of generated axioms but not in one that is too Iovxb

We now prove the first point from above by showing that, for
each axiomx in .4, no more tharj|a|| axioms are generated
by feature-complete.

Lemma 9. For any input.4y, the recursion depth ofat is
bounded by|Ao]|.

Proof: Therole depthof a concepC is the maximum nesting
depth of exists and value restrictions @ The role depth

of an ABox A is the maximum role depth of all concepts
occurring inA. As an immediate consequence of the way
in which the input ABoxes of recursive calls are constructed
we have that the role depth of the arguments ABoxes strictly
decreases with recursion depth. ]

The space requirements«it can now be settled.

Proposition 10. For any input.4g, sat can be executed in
space polynomial ith|.Ao||, provided that this also holds for
the functiorsatisfiable?.

Proof: We will first analyze the maximum size of the argu-
ments passed teat in recursive calls. The argument ¢ot

is an ABox which contains axioms: C for a single object

a. It is obvious that there can be at most as many such ax-
ioms per object as there are distinct (sub)concepts apypeari
in Ag. This number is bounded byA,||. Furthermore, the
size of any axiom is at mostA4,||. It follows that the max-
imum size of arguments given in a recursive cal)|id, ||*.
gsing feature-complete, the argument ABox is extended by
new axioms. Combining the argument size with the result
from Lemma 8, we find that the maximum size of ABoxes
constructed during recursive calls |isto||* + || Ao||>. To-
gether with Lemma 9, it follows thatt can be executed in

|| 4ol |” + ||4o]|* space. -
This result completes the analysis of #a algorithm. The
ABox-cons algorithm performs some preprocessing on the in-
put ABox and then repeatedly calist. Its space require-
ments are investigated in the next Proposition.

roposition 11. Started on input4, ABox-cons can be ex-
ecuted in space polynomial in4||, provided that this also
holds for the functioratisfiable?.

No new axioms are generated for axioms of the formproof: It was already proven thaat can be executed in poly-

(a,b):R (a,x):f,a # b, and(xy,...,X,) : P since they do

not appear in the premise of any completion rule (please remains to be shown that, for an ABoA, the size of4’ :

call the simplification we made about¥&). The remaining

axioms are of the forna: C. For these axioms, the property

in question can be proved by induction on the structur€@.of
For the induction start, leC be Juy,...,u,.P, ujluy,

u; tus, IR.C, VR.C, or a concept name. In any of these cases

itis trivial to verify that at most|C|| new axioms may be gen-

nomial space if this also holds featisfiable?. Thus, it re-

preprocess(.A) is polynomial in||.A]|. We will only give a
sketch of the proof, for the full version sfieutz, 1994. Ob-

jects are calleald if they are used ind andnewif they are

used inA’ but not inA. The proof relies on the fact that the
preprocess function is identical to théeature-complete func-
tion except thapreprocess does also apply the REC rule. An

erated. For the induction step, we need to make a case distingpper bound for the number of RE applications performed

tion according to the form of. Let C be of the formD M E.
The application of the R rule generates two axionss: D

by preprocess can be given as follows: If RIC is applied to
axiomsa : VR.C and(a, b) : R, then bothe andb are old ob-

anda: E. By induction_ hypothesis, from these two axi(_)ms, jects. This is the case sinpeeprocess does not apply RIC,
at most |D|| and||E|| axioms may be generated, respectively.and, hence, no new axioms of the fofm ) : R, whereR is

Hence, froma: D M E, at most||D|| + ||E|| +2 = ||D N E||

arole, are generated. Furthermore, there are at jjpé$told

new axioms may be generated. The cases for the remainingbjects which means that the number of/Rrapplications is

operator®LE, 3f.C, andvf.C are analogous. Because of the
simplifying assumptions made, thé.C case does not need a
special treatment. ]

bounded by{|A||*. Together with Lemma 8, it can be shown
that||.A'|| is of orderO(]|A|[*).
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PSPACE C X, then all of the above problems aRSPACE- tems.
hard. [Baader and Sattler, 19p&. Baader and U. Sattler. Descrip-
Proof: (1) Since ALC is a proper subset ofALCF(D) tion logics with concrete domains and aggregation. In

and the satisfiability problem fad£C is PSPACE-complete Henri Prade, editorfProc. of ECAI-98 Brighton, August
[Schmidt-SchauB and Smolka, 199#eciding the consis- 23-28, 1998. John Wiley & Sons, New York, 1998.

tency of ACCF(D) ABoxes is P®ACE-hard. It remains to  [Borgidaet al, 1989 A. Borgida, R.J. Brachman, D.L.
be shown that it is in PSA\CE if this is also the case for the McGuiness, and L. Alpern Resnick. CLASSIC: A struc-
concrete domain satisfiability test. This follows from Poep tural data model for objects. IRroc. of 1989 ACM SIG-
sition 11 tf)gether with g1e well-known fact that P&E = MOD, pages 59-67, Portland, OR, 1989.

NP SPACE [Savitch, 1970 (2) is true since satisfiability as ..

well as subsumption can be reduced to ABox consistency, C][_HaAargle\et_a:_., 19?8 V. H_?r?rslev, C.t Lu(;z, an_d R. I\/(Ijollerl.
Section 2. (3) and (4) hold sincéLC is a proper subset of form?r?cnprtla(()jri]ca(t)gslc\]c\)/\lljlrnalcg??_roe ?c aﬁ?zég?n aStatirOne-
both logicsALC(D) and ALC F which are in turn proper sub- 1998 gl' P ' 9 P 0

sets of ACCF(D). n - 10 appear.

. : . .._[Hollunder and Nutt, 1990B. Hollunder and W. Nutt. Sub-
Examples of useful concrete domains for which the satisfia- sumption algorithms for concept languages. DFKI Re-
bility test is in P$Ace are given inlLutz, 1994, search Report RR-90-04, German Research Center for Ar-
tificial Intelligence, Kaiserslautern, 1990.

5 Conclusions and Future Work . .

. _ o [Hollunder, 1994 B. Hollunder.Algorithmic Foundations of
We have prest_ented optimal aIgonthms for deciding the con- Terminological Knowledge Representation SysteRtsD
cept satisfiability and the ABox consistency problems ferth  hasis Universitat des Saarlandes, 1994.

logic ALCF (D). In contrast to existing decision procedures, . , .
the devised algorithms can be executed in polynomial spacdgiorrocks, 1998 1. Horrocks. Using an expressive descrip-
provided that this does also hold for the concrete domain sat  fion logic: Fact or fiction? In A.G. Cohn, L.K. Schu-
isfiability test. Based on this result, it was proven thatrea P€rt, and S.C. Shapiro, editoRsoc. of KR'9§ pages 636—
soning with ACCF(D) is a PSACE-complete problem. The 647, Trento, Italy, 1998. Morgan Kaufmann Publ. Inc., San
rule application strategy used by the proposed algorithm is Francicso, CA, 1998.

vital for efficient implementations of description logicsthv ~ [Lutz, 199§ C. Lutz. The complexity of reasoning with con-
concrete domains. An interesting new result in this context crete domains. LTCS-Report 99-01, LUFG Theoretical
is that in the case oflLC(D) and ALCF, satisfiability w.r.t. Computer Science, RWTH Aachen, Germany, 1999.

TBoxes is a N&PTIME-hard problenfLutz, 1998, As fu- [Lutz, 1999 C. Lutz. On the Complexity of Terminological
ture work, we will consider the combination of concrete do- Reasoning. LTCS-Report 99-04, LUFG Theoretical Com-

mains with more expressive description logics. Furtheemor ;
the logic ALCF(D) seems to be a promising candidate for puter Science, RWTH Aachen, Germany, 1999. To appear.

the reduction of some temporal description logics in order t [Sattler, 1996 U. Sattler. A concept language extended
obtain complexity results for them. with different kinds of transitive roles. In G. Gorz and
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