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Abstract

Description logics are formalisms for the represen-
tation of and reasoning about conceptual knowl-
edge on an abstract level. Concrete domains allow
the integration of description logic reasoning with
reasoning about concrete objects such as numbers,
time intervals, or spatial regions. The importance
of this combined approach, especially for building
real-world applications, is widely accepted. How-
ever, the complexity of reasoning with concrete do-
mains has never been formally analyzed and effi-
cient algorithms have not been developed. This pa-
per closes the gap by providing a tight bound for
the complexity of reasoning with concrete domains
and presenting optimal algorithms.

1 Introduction

Description logics are knowledge representation and reason-
ing formalisms dealing with conceptual knowledge on an ab-
stract logical level. However, for a variety of applications, it
is essential to integrate the abstract knowledge with knowl-
edge of a more concrete nature. Examples of such “concrete
knowledge” include all kinds of numerical data as well as
temporal and spatial information. Important application ar-
eas which have been found to depend on integrated reasoning
with concrete knowledge are, e.g., mechanical engineering
[Baader and Hanschke, 1993], reasoning about aggregation
in databases[Baader and Sattler, 1998], as well as temporal
and spatial reasoning (see[Haarslevet al., 1998] and[Lutz,
1998]). Many description logic systems such as e.g. CLASSIC
andKRIS (see[Borgidaet al., 1989], [Baader and Hollun-
der, 1991], resp.), provide interfaces that allow the attachment
of external reasoning facilities which deal with concrete in-
formation. Surprisingly, the complexity of combined reason-
ing with abstract and concrete knowledge has, to the best of
our knowledge, never been formally analyzed and provably
optimal algorithms have not been developed. Recent efficient
implementations of expressive description logics like FACT
(see[Horrocks, 1998]) concentrate on logics for which rea-
soning is “empirically tractable”. The starting point for devel-
oping these efficient implementations are usually algorithms
which are optimal w.r.t. worst case complexity. An important

reason why these systems fail to integrate concrete knowl-
edge is that no complexity results and no efficient algorithms
are available.

Baader and Hanschke[1991] extend description logics by
concrete domains, a theoretically well-founded approach to
integrated reasoning with abstract and concrete knowledge.
On basis of the well-known description logicALC, they de-
fine the description logicALC(D), which can be param-
eterized by a concrete domainD. In this paper, we ex-
tendALC(D) by the operators feature agreement and fea-
ture disagreement. This leads to the new logicALCF(D),
which combinesALC(D) with the logic ALCF [Hollun-
der and Nutt, 1990]. Algorithms for deciding the concept
satisfiability and ABox consistency problems for the logic
ALCF(D) are given. Furthermore, the complexity of rea-
soning withALCF(D) is formally analyzed. Since reason-
ing with ALCF(D) involves a satisfiability check for the
concrete domain, the complexity of the combined formal-
ism depends on the complexity of reasoning in the con-
crete domain. The proposed algorithms are proved to need
polynomial space which implies that, first, reasoning with
ALCF(D) is PSPACE-complete provided that reasoning with
the concrete domain is in PSPACE, and, second, the devised
algorithms are optimal. The obtained complexity results carry
over to the description logicALC(D). The algorithmic tech-
niques introduced in this paper are vital for efficient imple-
mentations of bothALCF(D) andALC(D).

As a simple example illustrating the expressivity of
ALCF(D), consider the conceptMan u wife#boss u

9wage; (wife wage): >. In this example,Man is a primi-
tive concept,wife andwageare features (i.e., single valued
roles), and> is a concrete predicate. The given concept de-
scribes the set of men whose boss coincides with their wife
and who, furthermore, have a higher wage than their wife. In
this example, the wage of a person is knowledge of a con-
crete type while being a man is knowledge of a more abstract
nature. The coincidence of wife and boss is described using
the feature agreement operator# and cannot be expressed in
ALC(D). The syntax used is defined in the next section.

2 The Description LogicALCF(D)
In this section, the description logicALCF(D) is introduced.
We start the formal specification by recalling the definitionof
a concrete domain given in[Baader and Hanschke, 1991].



Definition 1. A concrete domainD is a pair (�
D

;�

D

),
where�

D

is a set called the domain, and�
D

is a set of pred-
icate names. Each predicate nameP in �

D

is associated with
an arityn and ann-ary predicatePD

� �

n

D

. A concrete
domainD is calledadmissibleiff (1) the set of its predicate
names is closed under negation and contains a name>

D

for
�

D

and (2) the satisfiability problem for finite conjunctions
of predicates is decidable.

On the basis of concrete domains, the syntax ofALCF(D)
concepts can be defined.

Definition 2. Let C, R, and F be disjoint sets of concept,
role, and feature names1. A compositionf

1

f
2

� � � f
n

of fea-
tures is called afeature chain. Any element ofC is a con-
cept. If C andD are concepts,R is a role or feature,P 2 �

D

is a predicate name with arityn, andu
1

, : : : ,u
n

are feature
chains, then the following expressions are also concepts:

� :C (negation),CuD (conjunction),CtD (disjunction),
8R:C (value restriction),9R:C (exists restriction),

� 9u
1

; : : : ; u
n

:P (predicate operator)

� u
1

#u
2

(feature agreement),u
1

"u
2

(feature disagree-
ment).

A simple feature is a feature chain of length one. For a feature
chainu = f

1

� � � f
n

, 9u:C and8u:C will be used as abbrevi-
ations for9f

1

: : : : 9f
n

:C and8f
1

: : : :8f
n

:C, respectively. As
usual, a set theoretic semantics is given.

Definition 3. An interpretation I = (�

I

; �

I

) consists
of a set�

I

(the abstract domain) and an interpretation
function �I . The sets�

D

and�
I

must be disjoint. The
interpretation function maps each concept nameC to a
subsetCI of �

I

, each role nameR to a subsetRI of
�

I

� �

I

, and each feature namef to a partial functionf I

from �

I

to �

D

[ �

I

, where f I(a) = x will be written
as (a; x) 2 f I . If u = f

1

� � � f
k

is a feature chain, thenuI

is defined as the compositionf I
1

Æ � � � Æ f I
k

of the partial
functionsf I

1

; : : : ; f I
k

. Let the symbolsC, D, R, P, andu
1

,
: : : ,u

n

be defined as in Definition 2. Then the interpretation
function can be extended to complex concepts as follows:

(Cu D)I := CI \ DI

(Ct D)I := CI [ DI

(:C)I := �

I

n CI

(9R:C)I := fa 2 �

I

j 9b 2 �

I

:

(a; b) 2 RI ^ b 2 CIg

(8R:C)I := fa 2 �

I

j 8b: (a; b) 2 RI ! b 2 CIg

(9u
1

; : : : ; u
n

:P)I := fa 2 �

I

j 9x
1

; : : : ; x
n

2 �

D

:

(a; x
1

) 2 uI
1

^ � � � ^ (a; x
n

) 2 uI
n

^

(x
1

; : : : ; x
n

) 2 P

D

g

1In the following, the notionrole (feature) is used synonymously
for role name (feature name).

(u
1

"u
2

)

I

:= fa 2 �

I

j 9b
1

; b
2
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I

: b

1

6= b

2

^

(a; b
1

) 2 uI
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)

I

:= fa 2 �

I

j 9b 2 �

I

: (a; b) 2 uI
1

^

(a; b) 2 uI
2

g

An interpretationI is a modelof a conceptC iff CI 6= ;.
A conceptC is satisfiableiff there exists a modelI of C. A
conceptC subsumesa conceptD (written D � C) iff DI

�

CI for all interpretationsI.

Subsumption can be reduced to satisfiability sinceD � C iff
the conceptD u :C is unsatisfiable. Please note that the fea-
ture agreement and feature disagreement operators consider
only objects from�

I

and no objects from�
D

. Agreement
and disagreement over concrete objects can be expressed by
using a concrete domain which includes an equality predicate.
Using disjunction, “global” agreement and disagreement over
both the concrete and the abstract domain can then also be ex-
pressed (see[Lutz, 1998]). This approach was chosen since
global agreement and disagreement are not considered to be
very “natural” operators. We will now introduce the asser-
tional formalism ofALCF(D).

Definition 4. Let O
D

and O
A

be disjoint sets of ob-
ject names. Elements ofO

D

are calledconcrete objects
and elements ofO

A

are calledabstract objects. If C,
R, f , and P are defined as in Definition 2,a and b
are elements ofO

A

and x, x
1

, : : : ,x
n

are elements of
O
D

, then the following expressions areassertional axioms:

a:C; (a; b) :R; (a; x) : f ; a 6= b; (x
1

; : : : ; x
n

) :P

A finite set of assertional axioms is called anALCF(D)
ABox. An interpretation for the concept language can
be extended to the assertional language by mapping
every object name fromO

A

to an element of�
I

and every object name fromO
D

to an element of
�

D

. The unique name assumption is not imposed, i.e.
aI = bI may hold even ifa and b are distinct ob-
ject names. An interpretation satisfies an assertional axiom

a:C iff aI 2 CI ;

(a; b) :R iff (aI ; bI) 2 RI ;

(a; x) : f iff (aI ; xI) 2 f I ;

a 6= b iff aI 6= bI ;

(x
1

; : : : ; x
n

) :P iff (xI
1

; : : : ; xI
n

) 2 P

D

:

An interpretation is amodelof an ABoxA iff it satisfies all
assertional axioms inA. An ABox is consistentiff it has a
model.

Satisfiability of concepts, as introduced in Definition 3, can
be reduced to ABox consistency since a conceptC is satisfi-
able iff the ABoxfa:Cg is consistent. In the next section, an
algorithm for deciding the consistency ofALCF(D) ABoxes
is presented.

3 Algorithms
Completion algorithms, also known as tableau algorithms,
are frequently used to decide concept satisfiability and ABox



consistency for various description logics. Completion algo-
rithms work on (possibly generalized) ABoxes and are char-
acterized by a set of completion rules and a strategy to apply
these rules to the assertional axioms of an ABox. The algo-
rithm starts with an initial ABoxA

0

whose consistency is to
be decided. If the satisfiability of a conceptC is to be decided,
the ABoxfa:Cg is considered. The algorithm repeatedly ap-
plies completion rules adding new axioms, and, by doing so,
makes all knowledge implicitly contained in the ABox ex-
plicit. If the algorithm succeeds to construct an ABox which
is complete (i.e., to which no more completion rules are appli-
cable) and which does not contain an obvious contradiction,
thenA

0

has a model. Otherwise,A
0

does not have a model.
In [Hollunder and Nutt, 1990], a completion algorithm for

deciding the satisfiability ofALCF concepts is given which
can be executed in polynomial space. In[Baader and Han-
schke, 1991], an algorithm for deciding the consistency of
ALC(D) (i.e.,ALCF(D) without feature agreement and dis-
agreement) ABoxes is given. However, this algorithm needs
exponential space in the worst case. This is due to the fact that
the algorithm collectsall axioms of the form(x

1

; : : : ; x
n

) :P
(concrete domain axioms) obtained during rule application,
conjoins them into one big conjunction, and finally tests
for satisfiability w.r.t. the concrete domain. Unfortunately, the
size of this conjunction may be exponential in the size ofA

0

(see[Lutz, 1998] for an example). To obtain a polynomial
space algorithm for deciding the consistency ofALCF(D)
ABoxes, the concrete domain satisfiability test has to be bro-
ken up into independent “chunks” of polynomial size.

The completion algorithm for deciding the consistency of
ALCF(D) ABoxes is developed in two steps: First, an algo-
rithm for deciding the satisfiability ofALCF(D) concepts is
devised. Second, an algorithm is given which reduces ABox
consistency to concept satisfiability by constructing a num-
ber of “reduction concepts” for a given ABoxA

0

. A similar
reduction can be found in[Hollunder, 1994].

Before giving a formal description of the completion
algorithms themselves, the completion rules are defined. To
define the rules in a succinct way, the functionssucc

A

and
chain

A

are introduced. LetA be an ABox. For an object
a 2 O

A

and a feature chainu, succ
A

(a; u) denotes the object
b that can be found by followingu starting froma in A. If
no such object exists,succ

A

(a; u) denotes the special object
� that cannot be part of any ABox. An object namea 2 O

A

is calledfresh in A if a is not used inA. Let a be an object
from O

A

, x be an object fromO
D

, and u = f
1

� � � f
k

be
a feature chain. The functionchain is defined as follows:

chain
A

(a; x; u) := f(a; c
1

) : f
1

; : : : ; (c
k�1

; x) : f
k

g

where thec
1

; : : : ; c
k�1

2 O
A

are distinct and fresh inA.

Now, the set of completion rules can be formulated. Please
note that the completion rule Rt is nondeterministic, i.e.,
there is more than one possible outcome of a rule application.

Definition 5. The followingcompletion rulesreplace a given
ABox A nondeterministically by an ABoxA0. An ABox A
is said to contain afork (for a featuref ) iff it contains the
two axioms(a; b) : f and(a; c) : f or the two axioms(a; x) : f
and(a; y) : f , whereb; c 2 O

A

andx; y 2 O
D

. A fork can be
eliminated by replacing all occurrences ofc in A with b, or

of x with y, resp. It is assumed that forks are eliminated as
soon as they appear (as part of the rule application) with the
proviso that newly generated objects are replaced by older
ones and not vice versa. In the following,C andD denote
concepts,R̂ a role,f a feature,P a predicate name from�

D

with arity n, u
1

, : : : ,u
n

feature chains,a andb objects from
O
A

, andx
1

; : : : ; x

n

objects fromO
D

.
Ru The conjunction rule.
If a:Cu D 2 A; fa:C; a:Dg 6� A

thenA0

= A [ fa:C; a:Dg

Rt The (nondeterministic) disjunction rule.
If a:Ct D 2 A; fa:C; a:Dg \ A = ;

thenA0

= A [ fa:Cg _ A

0

= A [ fa:Dg

Rr9C, Rf9C The role/feature exists restriction rule.
If a:9R̂:C 2 A; �b 2 O

A

: f(a; b) : R̂; b:Cg � A

thenA0

= A [ f(a; b) : R̂ ; b:Cg whereb 2 O
A

is fresh inA.
This is the Rr9C rule. To obtain Rf9C, replaceR̂by f .

Rr8C, Rf8C The role/feature value restriction rule.
If a:8 ^

R:C 2 A; 9b 2 O

A

: (a; b) :

^

R 2 A ^ b : C =2 A

thenA0

= A [ fb:Cg
This is the Rr8C rule. To obtain Rf8C, replaceR̂by f .

R9P The predicate exists restriction rule (may create forks).
If a:9u

1

; : : : ; u
n

:P 2 A; �x
1

; : : : ; x
n

2 O
D

:

(succ
A

(a; u
1

) = x
1

^ : : : ^ succ
A

(a; u
n

) = x
n

^

(x
1

; : : : ; x
n

) :P 2 A)

thenC
0

:= A [ f(x
1

; : : : ; x
n

) :Pg
where thex

i

2 O
D

are distinct and fresh inA.
C

1

:= chain
C

0

(a; x
1

; u
1

); : : : ; C

n

:= chain
C

n�1

(a; x
n

; u
n

)

A

0

=

S

i=0:::n

C

i

R# The agreement rule (may create forks).
If a:u

1

#u
2

2 A; �b 2 O
A

: succ
A

(a; u
1

) = succ
A

(a; u
2

) = b
thenC = A [ chain

A

(a; b; u
1

) whereb 2 O
A

is fresh inA.
A

0

= C [ chain
C

(a; b; u
2

)

R" The disagreement rule (may create forks).
If a:u

1

"u
2

2 A; �b
1

; b
2

2 O
A

:

(succ
A

(a; u
1

) = b
1

^ succ
A

(a; u
2

) = b
2

^ b

1

6= b

2

2 A)

thenC = A [ chain
A

(a; b
1

; u
1

)

A

0

= C [ chain
C

(a; b
2

; u
2

) [ fb

1

6= b

2

g

whereb
1

; b
2

2 O
A

are distinct and fresh inA.

Rule applications that generate new objects are called
generating. All other rule applications are callednon-
generating. All applications of the Rr9C rule are generating.
Application of the rules Rf9C, R9P, R#, R" are usually
generating but may be non-generating if fork elimination
takes place.

A formalized notion of contradictory and of complete
ABoxes is introduced in the following.

Definition 6. Let the same naming conventions be given as
in Definition 5. An ABoxA is calledconcrete domain sat-
isfiable iff there exists a mappingÆ from O

D

to �

D

, such
that

V

(x
1

;:::;x
n

):P2A(Æ(x1); : : : ; Æ(xn)) 2 P

D is true inD. An
ABox A is calledcontradictoryif it is not concrete domain
satisfiable or one of the followingclash triggersis applicable.

� Primitive clash: fa:C; a::Cg � A

� Feature domain clash: f(a; x) : f ; (a; b) : f g � A



define proceduresat(A)

A

0

:= feature-omplete(A)

if A0 contains a clashthen
return inconsistent

C := f� 2 A

0

j � is of the form(x
1

; : : : ; x
n

) :Pg
if satis�able?(D,C) = no then

return inconsistent
forall a :9R̂:D 2 A

0, whereR̂ is a role,do
Let b be an object name fromO

A

.
if sat(fb :Dg [ fb :E j a :8R̂:E 2 A

0

g)

returnsinconsistentthen
return inconsistent

return consistent

define procedurefeature-omplete(A)

while a ruler from the setfRu;Rt;Rf9C;Rf8C;
R9P;R#;R"g is applicable toA, do

A := A [ apply(A; r)
return A

Figure 1: Thesat algorithm.

� All domain clash: f(a; x) : f ; a:8f :Cg � A

� Agreement clash: a 6= a 2 A

An ABox to which no completion rule is applicable is called
complete.

We are now ready to define the completion algorithm
sat for deciding the satisfiability ofALCF(D) concepts.
Sat takes an ABoxfa : Cg as input, whereC has to be
in negation normal form, i.e., negation is allowed only
in front of concept names. Conversion to NNF can be
done by exhaustively applying appropriate rewrite rules
to push negation inwards. We only give the conversion
rules needed for the new constructors feature agreement
and feature disagreement, and refer to[Lutz, 1998] for the
ALC(D) rule set. For a feature chainu = f

1

� � � f

k

, set
�(u) := 9f

1

:>

D

t 9f

1

f

2

:>

D

t : : : t 9f

1

� � � f

k�1

:>

D

.

:(u
1

#u
2

)) u
1

"u
2

t 9u
1

:>

D

t 9u
2

:>

D

t 8u
1

:? t 8u
2

:?

t �(u

1

) t �(u

2

)

:(u
1

"u
2

)) u
1

#u
2

t 9u
1

:>

D

t 9u
2

:>

D

t 8u
1

:? t 8u
2

:?

t �(u

1

) t �(u

2

)

Any ALCF(D) concept can be converted into an equivalent
concept in NNF in linear time. Some comments about the
application of nondeterministic completion rules are in order.
The application of the nondeterministic rule Rt yields more
than one possible outcome. It is not specified which possibil-
ity is chosen in a given run of a completion algorithm. This
means that the algorithms to be specified are nondeterministic
algorithms. Such algorithms returns a positive result if there
is anyway to make the nondeterministic decisions such that
a positive result is obtained.

The satisfiability algorithm makes use of two auxiliary
functions which will be described only informally. The func-
tion apply takes two arguments, an ABoxA and a comple-
tion rule r. It appliesr once to arbitrary axioms fromA
matchingr’s premise and (nondeterministically) returns the
new axioms generated by the rule application. The function
satis�able? takes as arguments a concrete domainD and a set

define procedureABox-ons(A)

eliminate forks inA (see Definition 5)
A := preproess(A)

C := f� 2 A j � is of the form(x
1

; : : : ; x
n

) :Pg
if A contains a clashthen

return inconsistent
if satis�able?(D,C) = no then

return inconsistent
forall a :9R̂:D 2 A, whereR̂ is a role,do

Let b be an object name fromO
A

.
if sat(fb : (D u u

a:8R:E2A
E)g)

returnsinconsistentthen
return inconsistent

return consistent

define procedurepreproess(A)

while a ruler from the setfRu;Rt;Rr8C;Rf9C;
Rf8C;R9P;R#;R"g is applicable toA, do

A := A [ apply(A; r)
return A

Figure 2: TheABox-ons algorithm.

C of concrete domain axioms. It returnsyesif the conjunction
of all axioms inC is satisfiable w.r.t.D andnootherwise. The
sat algorithm is given in figure 1. Based onsat, we define the
ABox-ons algorithm for deciding ABox consistency. This
algorithm can be found in figure 2.

A formal correctness proof for the algorithms is omitted
for the sake of brevity and can be found in[Lutz, 1998]. A
short, informal discussion of the employed strategies is given
instead. Thesat algorithm performs depth-first search over
role successors. This technique, first introduced by Schmidt-
Schauß and Smolka[1991] for the logicALC, allows to keep
only a polynomial fragment (called “trace”) of the model in
memory, although the total size of the model may be expo-
nential. Tracing algorithms usually expand the axioms be-
longing to a single object, only, and make a recursive call
for each role successor of this object. This is not feasible in
the case ofALCF(D) since more than a single object may
have to be considered when checking concrete domain sat-
isfiability. The central idea to overcome this problem is to
expand axioms not for single objects but for “clusters” of ob-
jects which are connected by features. This is done by the
feature-omplete function. During cluster expansion, chunks
of concrete domain axioms are collected. Any such chunk
can separately be checked for satisfiability. To see this, itis
important to note that roles are not allowed inside the pred-
icate operator, and thus concrete domain axioms cannot in-
volve objects from different clusters (which are connectedby
roles). A similar strategy is employed forALCF in [Hollun-
der and Nutt, 1990]. TheABox-ons reduces ABox consis-
tency to satisfiability by performing preprocessing on the ini-
tial ABox and then constructing a reduction concept for each
role successor of any object in the resulting ABox. In the next
section, the complexity of both algorithms is analyzed.

4 Complexity of Reasoning
To characterize space requirements, a formal notion for the
size of an ABox is introduced.



Definition 7. The size jjCjj of a conceptC is defined
inductively. Let C and D be concepts,A a concept
name, R a role or feature,u = f

1

� � � f
k

a feature
chain, and let u

1

; : : : ; u
n

also be feature chains.
jjAjj = jj:Ajj = 1 jjf

1

� � � f
k

jj = k

jjCu Djj = jjCt Djj = jjCjj+ jjDjj+2

jj8R:Cjj = jj9R:Cjj = jjCjj+1

jj9u
1

; : : : ; u
n

:Pjj = jju
1

jj+ � � �+ jju
n

jj+1

jju
1

#u
2

jj = jju
1

"u
2

jj = jju
1

jj+ jju
2

jj+1

The size of an axiom� is jjCjj if � is of the formx :C and 1
otherwise. The size of an ABoxA is the sum of the sizes of
all axioms inA.
For the analysis of the space needed bysat, two lemmata are
needed.
Lemma 8. For any inputA, the functionfeature-omplete

constructs an ABoxA0 with jjA0jj � jjAjj

2

+ jjAjj.
Proof: The upper bound for the size ofA0 is a consequence
of the following two points:

1. feature-omplete generates no more thanjjAjj new ax-
ioms.

2. For each axiom�, we havejj�jj � jjAjj.
The second point is obvious, but the first one needs to be
proven. The rules Rr9C and Rr8C will not be considered
since they are not applied byfeature-omplete. For all other
completion rules, the most important observation is that they
can be applied at most once per axioma : C. This is also
true for axiomsa : 8f :C and the Rf8C rule since there is at
most one axiom(a; b) : f per featuref and objecta. We make
the simplifying assumption that the premise of the Rf8C rule
doesonly contain the axioma : 8f :C, i.e., that it is applied
to everyaxiom of this form regardless if there is an axiom
(a; b) : f or not. This may result in too high an estimation of
the number of generated axioms but not in one that is too low.
We now prove the first point from above by showing that, for
each axiom� in A, no more thanjj�jj axioms are generated
by feature-omplete.

No new axioms are generated for axioms of the form
(a; b) :R, (a; x) : f , a 6= b, and(x

1

; : : : ; x
n

) :P since they do
not appear in the premise of any completion rule (please re-
call the simplification we made about Rf8C). The remaining
axioms are of the forma :C. For these axioms, the property
in question can be proved by induction on the structure ofC.

For the induction start, letC be 9u
1

; : : : ; u
n

:P, u
1

#u
2

,
u
1

"u
2

, 9R̂:C, 8R̂:C, or a concept name. In any of these cases,
it is trivial to verify that at mostjjCjj new axioms may be gen-
erated. For the induction step, we need to make a case distinc-
tion according to the form ofC. Let C be of the formD u E.
The application of the Ru rule generates two axiomsa : D
anda : E. By induction hypothesis, from these two axioms,
at mostjjDjj andjjEjj axioms may be generated, respectively.
Hence, froma : D u E, at mostjjDjj+ jjEjj+2 = jjD u Ejj
new axioms may be generated. The cases for the remaining
operatorsDtE, 9f :C, and8f :C are analogous. Because of the
simplifying assumptions made, the8f :C case does not need a
special treatment.

Lemma 9. For any inputA
0

, the recursion depth ofsat is
bounded byjjA

0

jj.

Proof: Therole depthof a conceptC is the maximum nesting
depth of exists and value restrictions inC. The role depth
of an ABoxA is the maximum role depth of all concepts
occurring inA. As an immediate consequence of the way
in which the input ABoxes of recursive calls are constructed,
we have that the role depth of the arguments ABoxes strictly
decreases with recursion depth.

The space requirements ofsat can now be settled.

Proposition 10. For any inputA
0

, sat can be executed in
space polynomial injjA

0

jj, provided that this also holds for
the functionsatis�able?.

Proof: We will first analyze the maximum size of the argu-
ments passed tosat in recursive calls. The argument tosat
is an ABox which contains axiomsa : C for a single object
a. It is obvious that there can be at most as many such ax-
ioms per object as there are distinct (sub)concepts appearing
in A

0

. This number is bounded byjjA
0

jj. Furthermore, the
size of any axiom is at mostjjA

0

jj. It follows that the max-
imum size of arguments given in a recursive call isjjA

0

jj

2.
Using feature-omplete, the argument ABox is extended by
new axioms. Combining the argument size with the result
from Lemma 8, we find that the maximum size of ABoxes
constructed during recursive calls isjjA

0

jj

4

+ jjA

0

jj

2. To-
gether with Lemma 9, it follows thatsat can be executed in
jjA

0

jj

5

+ jjA

0

jj

3 space.

This result completes the analysis of thesat algorithm. The
ABox-ons algorithm performs some preprocessing on the in-
put ABox and then repeatedly callssat. Its space require-
ments are investigated in the next Proposition.

Proposition 11. Started on inputA, ABox-ons can be ex-
ecuted in space polynomial injjAjj, provided that this also
holds for the functionsatis�able?.

Proof: It was already proven thatsat can be executed in poly-
nomial space if this also holds forsatis�able?. Thus, it re-
mains to be shown that, for an ABoxA, the size ofA0 :=
preproess(A) is polynomial in jjAjj. We will only give a
sketch of the proof, for the full version see[Lutz, 1998]. Ob-
jects are calledold if they are used inA andnewif they are
used inA0 but not inA. The proof relies on the fact that the
preproess function is identical to thefeature-omplete func-
tion except thatpreproess does also apply the Rr8C rule. An
upper bound for the number of Rr8C applications performed
by preproess can be given as follows: If Rr8C is applied to
axiomsa : 8R̂:C and(a; b) : R̂, then botha andb are old ob-
jects. This is the case sincepreproess does not apply Rr9C,
and, hence, no new axioms of the form(a; b) : R̂, whereR̂ is
a role, are generated. Furthermore, there are at mostjjAjj old
objects which means that the number of Rr8C applications is
bounded byjjAjj2. Together with Lemma 8, it can be shown
thatjjA0jj is of orderO(jjAjjk).



The results just obtained allows us to determine the formal
complexity of reasoning with concrete domains.

Theorem 12. Provided that the satisfiability test of the con-
crete domainD is in PSPACE, the following problems are
PSPACE-complete:

1. Consistency ofALCF(D) ABoxes.

2. Satisfiability and subsumption ofALCF(D) concepts.

3. Satisfiability and subsumption ofALC(D) concepts.

4. Consistency ofALC(D) andALCF ABoxes.

If the satisfiability test ofD is in a complexity classX with
PSPACE � X, then all of the above problems arePSPACE-
hard.

Proof: (1) SinceALC is a proper subset ofALCF(D)
and the satisfiability problem forALC is PSPACE-complete
[Schmidt-Schauß and Smolka, 1991], deciding the consis-
tency ofALCF(D) ABoxes is PSPACE-hard. It remains to
be shown that it is in PSPACE if this is also the case for the
concrete domain satisfiability test. This follows from Propo-
sition 11 together with the well-known fact that PSPACE =
NPSPACE [Savitch, 1970]. (2) is true since satisfiability as
well as subsumption can be reduced to ABox consistency, cf.
Section 2. (3) and (4) hold sinceALC is a proper subset of
both logicsALC(D) andALCF which are in turn proper sub-
sets ofALCF(D).

Examples of useful concrete domains for which the satisfia-
bility test is in PSPACE are given in[Lutz, 1998].

5 Conclusions and Future Work
We have presented optimal algorithms for deciding the con-
cept satisfiability and the ABox consistency problems for the
logicALCF (D). In contrast to existing decision procedures,
the devised algorithms can be executed in polynomial space
provided that this does also hold for the concrete domain sat-
isfiability test. Based on this result, it was proven that rea-
soning withALCF(D) is a PSPACE-complete problem. The
rule application strategy used by the proposed algorithm is
vital for efficient implementations of description logics with
concrete domains. An interesting new result in this context
is that in the case ofALC(D) andALCF , satisfiability w.r.t.
TBoxes is a NEXPTIME-hard problem[Lutz, 1998]. As fu-
ture work, we will consider the combination of concrete do-
mains with more expressive description logics. Furthermore,
the logicALCF(D) seems to be a promising candidate for
the reduction of some temporal description logics in order to
obtain complexity results for them.
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