
Complexity of Terminologial Reasoning

Revisited

Carsten Lutz

RWTH Aahen, LuFG Theoretial Computer Siene

Ahornstr. 55, 52074 Aahen

Abstrat. TBoxes in their various forms are key omponents of knowl-

edge representation systems based on desription logis (DLs) sine they

allow for a natural representation of terminologial knowledge. Largely

due to a lassial result given by Nebel

[

15

℄

, omplexity analyses for DLs

have, until now, mostly failed to take into aount the most basi form

of TBoxes, so-alled ayli TBoxes. In this paper, we onentrate on

DLs for whih reasoning without TBoxes is PSpae-omplete, and show

that there exist logis for whih the omplexity of reasoning remains in

PSpae if ayli TBoxes are added and also logis for whih the om-

plexity inreases. This demonstrates that it is neessary to take ayli

TBoxes into aount for omplexity analyses.

1 Introdution

A ore feature of desription logis is their ability to represent and reason

about terminologial knowledge. Terminologial knowledge is stored in so-alled

TBoxes whih mainly ome in two avours. So-alled ayli TBoxes are sets

of onept de�nitions that an be thought of as non-reursive maro de�ni-

tions whereas general TBoxes allow to state equivalene of arbitrary, omplex

onepts. In this paper, we onsider the omplexity of reasoning with ayli

TBoxes.

1

Surprisingly, although omputational omplexity of reasoning is a ma-

jor topi in desription logi researh, most omplexity results available onen-

trate either on reasoning without TBoxes or on reasoning with general TBoxes

(see, e.g.,

[

7

℄

,

[

8

℄

,

[

9

℄

, and

[

10

℄

).

There are two main reasons for this. The �rst reason is that ayli TBoxes

are a properly subsumed by general TBoxes. However, for many DLs, reasoning

with ayli TBoxes an be expeted to be less omplex than reasoning with

general TBoxes, and, hene, it is interesting to know the exat omplexity of

reasoning with them. Moreover, there exist desription logis for whih reasoning

with general TBoxes is undeidable but reasoning with ayli TBoxes is not.

In this ase, it is obviously desirable to determine the omplexity of reasoning

with ayli TBoxes.

1

Hene, when talking of TBoxes, we generally refer to ayli TBoxes unless otherwise

noted.

The seond reason an be understood historially. Early DL systems used

unfolding to redue reasoning with ayli TBoxes to reasoning with onepts.

Unfolding a onept C w.r.t. a TBox T means iteratively replaing onept

names in C by their de�nitions given in T . For example, the result of unfolding

the onept Man u 9married-to:Wife w.r.t. the TBox

fMan

:

= :Female ; Wife

:

= Female uMarriedg

yields :Female u 9married-to:(Female uMarried). In his seminal paper, Nebel

showed that, in the worst ase, unfolding may result in an exponential blow-

up of the onept size

[

15

℄

. Sine the omplexity of reasoning with desription

logis is usually not ExpSpae-hard, this result shows that unfolding is not an

adequate means for treating TBoxes. Nebel also showed that in realisti, pratial

appliations, the worst ase is almost never enountered. Largely due to these

results (and possibly misunderstandings of these results), omplexity analyses

of reasoning with ayli TBoxes have long been negleted: First, one ould

(wrongly) think that reasoning with ayli TBoxes is neessarily ExpSpae-

hard, and that it is sensible to onsider only general TBoxes sine this|given the

misunderstanding|does not seem to make things harder. Seond, sine the worst

ase seems not to our in most pratial appliations, one ould be tempted to

think that unfolding is a proper tool for DL systems and that it is not rewarding

to searh for better alternatives. Last, if one is only interested in deidability of

onepts w.r.t. ayli TBoxes, unfolding is a tehnique whih is easy to use and

always appliable.

For many DLs, reasoning without TBoxes is PSpae-omplete (see, e.g.,

[

9

℄

,

[

12

℄

,

[

18

℄

). Although the omplexity of reasoning with ayli TBoxes is rarely

addressed formally, it is \ommon knowledge" in the DL ommunity that, if

reasoning without TBoxes is in PSpae, then taking into aount TBoxes does

\usually" not inrease omplexity. This knowledge has been exploited for eÆient

pratial reasoning with TBoxes

[

5

℄

, but has, to the best of our knowledge, never

been used to obtain theoretial omplexity results. This is even more surprising

sine Nebel showed that there exist DLs for whih reasoning w.r.t. TBoxes is

harder than reasoning with onepts, only (in Nebel's ase, omplexity moved

from P to NP)

[

15

℄

.

In this paper, we fous on logis for whih \pure onept satis�ability" (i.e.,

onept satis�ability w.r.t. the empty TBox) is PSpae-omplete and explore

the impat of TBoxes on the omplexity of the basi DL reasoning tasks satis�-

ability and subsumption. It turns out that there exist logis for whih reasoning

remains in PSpae and also DLs for whih reasoning gets signi�antly harder.

In the �rst part of this paper, we fous on ALC, the basi desription logi for

whih pure onept satis�ability is in PSpae

[

17

℄

. The \ommon knowledge"

mentioned above is used to demonstrate how a pure ALC onept satis�abil-

ity algorithm using the so-alled trae tehnique

[

17

℄

an be modi�ed to take

into aount TBoxes suh that the resulting algorithm an still be exeuted in

polynomial spae. Roughly speaking, TBoxes have to be onverted to a nor-

mal form whih allows the traing algorithm to operate exlusively on onept

names (instead of onept expressions). Using the presented modi�ation teh-

nique, it is proved that satis�ability of ALC onepts w.r.t. ayli TBoxes is

still PSpae-omplete.

In the seond part of this paper, we show that this tehnique does not al-

ways work: there exist desription logis for whih pure onept satis�ability

is PSpae-omplete but the extension by TBoxes makes reasoning harder. We

identify ALCF , i.e., the extension of ALC with features, feature agreement and

feature disagreement, to be suh a logi. Pure onept satis�ability is known

to be PSpae-omplete for this logi

[

11

℄

. Using a redution of a onstrained

version of the domino problem, it is proved that satis�ability of ALCF onepts

w.r.t. TBoxes is NExpTime-hard. Applying the modi�ation tehnique from the

�rst part to an existing algorithm, it is shown that it is also in NExpTime and

hene NExpTime-omplete.

2 Desription Logis

In this setion, the desription logi ALCF is introdued (see also

[

11

℄

). All logis

onsidered in this paper are fragments of ALCF .

De�nition 1. Let N

C

, N

R

, and N

F

be disjoint sets of onept, role, and feature

names. A omposition f

1

� � � f

n

of features is alled a feature hain. The set of

ALCF onepts is the smallest set suh that

1. every onept name is a onept (atomi onepts), and

2. if C and D are onepts, R is a role or feature, and u

1

and u

2

are feature

hains, then the following expressions are also onepts: :C , C uD, C tD,

8R:C, 9R:C, u

1

#u

2

, and u

1

"u

2

.

Let A be a onept name and C be a onept. Then A

:

= C is a onept de�-

nition. Let T be a �nite set of onept de�nitions. A onept name A diretly

uses a onept name B in T if there is a onept de�nition A

:

= C in T suh

that B appears in C . Let uses be the transitive losure of \diretly uses". T is

alled ayli if there is no onept name A suh that A uses itself in T . If T is

ayli, and, furthermore, the left-hand sides of all onept de�nitions in T are

unique, then T is alled a TBox.

Let R

1

; : : : ; R

n

be features or roles. We will use 8R

1

: : : R

n

:C (9R

1

: : : R

n

:C)

as an abbreviation for 8R

1

:8R

2

: : :8R

n

:C (9R

1

:9R

2

: : : 9R

n

:C). ALCF onepts

whih do not ontain features are alled ALC onepts. Next, we de�ne the

semantis of the language introdued.

De�nition 2. An interpretation I = (�

I

; �

I

) is a pair (�

I

; �

I

). �

I

is alled

the domain and �

I

the interpretation funtion. The interpretation funtion maps

{ eah onept name C to a subset C

I

of �

I

,

{ eah role name R to a subset R

I

of �

I

��

I

, and

{ eah feature name f to a partial funtion f

I

from �

I

to �

I

.

If u = f

1

� � � f

k

is a feature hain, then u

I

is de�ned as the omposition f

I

1

Æ� � �Æf

I

k

of the partial funtions f

I

1

; : : : ; f

I

k

. Let the symbols C , D, R, u

1

, and u

2

be de-

�ned as in De�nition 1. The interpretation funtion an indutively be extended

to omplex onepts as follows:

(C uD)

I

:= C

I

\ D

I

(C tD)

I

:= C

I

[D

I

(:C)

I

:= �

I

n C

I

(9R:C)

I

:= fa 2 �

I

j 9b 2 �

I

: (a ; b) 2 R

I

^ b 2 C

I

g

(8R:C)

I

:= fa 2 �

I

j 8b : (a ; b) 2 R

I

! b 2 C

I

g

(u

1

#u

2

)

I

:= fa 2 �

I

j 9b 2 �

I

: u

I

1

(a) = b ^ u

I

2

(a) = bg

(u

1

"u

2

)

I

:= fa 2 �

I

j 9b

1

; b

2

2 �

I

: b

1

6= b

2

^

u

I

1

(a) = b

1

^ u

I

2

(a) = b

2

g

An interpretation I is a model of a TBox T i� it satis�es A

I

= C

I

for all

onept de�nitions A

:

= C in T . A onept C subsumes a onept D w.r.t. a

TBox T (written D �

T

C) i� D

I

� C

I

for all models I of T . A onept C is

satis�able w.r.t. a TBox T i� there exists a model I of T suh that C

I

6= ;.

Subsumption an be redued to satis�ability sine D �

T

C i� the onept

D u :C is unsatis�able w.r.t. T . Satis�ability an be redued to subsumption

sine C is unsatis�able w.r.t. T i� C �

T

?, where ? is an abbreviation for

A u :A.

Sometimes, generalized onept de�nitions alled \general onept inlu-

sions" (GCIs) are onsidered. A GCI has the form C v D , where both C and

D are (possibly omplex) onepts. An interpretation I is a model for a GCI

C v D i� C

I

� D

I

. TBoxes ontaining GCIs are alled generalized. In this

paper, we will not admit generalized TBoxes unless expliitly mentioned.

2.1 Extending Completion Algorithms

Most satis�ability algorithms for desription logis are so-alled ompletion algo-

rithms, whih hek the satis�ability of onepts by trying to expliitly onstrut

a anonial model. Completion algorithms are desribed by a rule set and a strat-

egy to apply these rules. The rules operate on onstraint systems, i.e., partial

desriptions of models. Constraints are omprised of objets, onepts and roles.

In the following, we will present a ompletion algorithm for deiding satis�ability

of ALC onepts w.r.t. the empty TBox whih was �rst desribed in

[

17

℄

. We

will then show how this algorithm an be modi�ed to handle TBoxes. Both the

original algorithm and its extension an be exeuted in polynomial spae. The

modi�ation sheme presented is also appliable to a variety of other desription

logis.

The algorithm requires ALC onepts to be in negation normal form. A

onept is in negation normal form (NNF) i� negation ours only in front of

atomi onepts. It is easy to see that any ALC onept an be onverted into

an equivalent one in NNF in linear time by exhaustively applying the following

rewrite rules:

{ :(C u D)! (:C t :D), :(C t D)! (:C u :D), ::C ! C

{ :(9R:C)! 8R::C , :(8R:C)! 9R::C

De�nition 3. Let O

A

be a set of objet names. For a; b 2 O

A

, an ALC onept

C, and R 2 N

R

, the expressions a :C and (a ; b) :R are ALC onstraints. A �nite

set of onstraints S is alled an ALC onstraint system. Interpretations an be

extended to onstraint systems by mapping every objet name to an element of

�

I

. The unique name assumption is not imposed, i.e. a

I

= b

I

may hold even

if a and b are distint objet names. An interpretation I satis�es a onstraint

a :C i� a

I

2 C

I

; and (a ; b) :R i� (a

I

; b

I

) 2 R

I

:

An interpretation is a model of a onstraint system S i� it satis�es all on-

straints in S.

To deide the satis�ability of anALC onept C in NNF (w.r.t. the empty TBox),

the algorithm starts with the onstraint system S

0

:= fa : Cg and repeatedly

applies ompletion rules. If a onstraint system is found whih does not ontain a

ontradition and to whih no ompletion rule is appliable, then this onstraint

system has a model, whih implies the existene of a model for C w.r.t. the

empty TBox. If no suh onstraint system an be found, C is unsatis�able. One

of the ompletion rules is nondeterministi, i.e., there is more than one possible

outome of a rule appliation. Hene, the desribed ompletion algorithm is a

nondeterministi deision proedure, i.e., it returns satis�able i� there is a way

to make the nondeterministi deisions suh that a positive result is obtained.

De�nition 4. The following ompletion rules replae a given onstraint system

S nondeterministially by a onstraint system S

0

. S

0

is alled a desendant of

S. An objet a 2 O

A

is alled fresh in S if a is not used in S. In the following,

C and D denote onepts, R a role, and a and b objet names from O

A

.

Ru The onjuntion rule.

If a :C u D 2 S; fa :C ; a :Dg 6� S, then S

0

:= S [fa :C ; a :Dg

Rt The (nondeterministi) disjuntion rule.

If a :C tD 2 S; fa :C ; a :Dg\S = ;, then S

0

:= S [fa :Cg _ S

0

:= S [fa :Dg

R9C The exists restrition rule.

If a :9R:C 2 S; and there is no b 2 O

A

suh that f(a; b) :R; b :C g � S,

then S

0

:= S [f(a ; b) :R ; b :Cg where b 2 O

A

is fresh in S.

R8C The value restrition rule.

If a :8R:C 2 S and there is a b 2 O

A

suh that (a; b) : R 2 S ^ b : C =2 S,

then S

0

:= S [fb :C g

A onstraint system S is alled ontraditory i� fa : C; a : :Cg � S for some

de�ne proedure sat(S)

while a rule r from fRu;Rtg is appliable to S

S := apply(S; r)

if S is ontraditory then

return unsatis�able

forall a :9R:D 2 S do

Let b be an objet name from O

A

.

if sat(fb :Dg [fb :E j a :8R:E 2 Sg) = unsatis�able then

return unsatis�able

return satis�able

Fig. 1. The algorithm for deiding satis�ability of ALC onepts w.r.t. the empty

TBox.

a 2 O

A

and C 2 N

C

. A onstraint system to whih no ompletion rules are

appliable is alled omplete.

Let apply be a funtion whih takes a onstraint system S and a ompletion rule

r as argument, applies r one to an arbitrary set of onstraints in S mathing r's

premise and returns the resulting onstraint system. The algorithm for deiding

satis�ability of ALC onepts is given in Figure 1. It takes a onstraint system

fx : Cg as input and returns satis�able if C is satis�able w.r.t. the empty TBox

and unsatis�able otherwise. In order to desribe the spae requirements of the

sat algorithm, a formal notion of the size of onepts is introdued.

De�nition 5. For a onept C, the size of C (denoted by jjCjj) is de�ned as

the number of symbols (operators, onept and role names) it ontains. For a

TBox T , the size of T (denoted by jjT jj) is de�ned as the sum of the sizes of

the right-hand sides of all onept de�nitions in T . The role depth of a onept

C is the nesting depth of exists and value restritions in C.

In

[

17

℄

, it is proved that the desribed algorithm is orret and an be exeuted

in polynomial spae.

2

The latter is a onsequene of the following fats:

{ The reursion depth of sat is bounded by the role depth.

{ In eah reursion step, the onstraints in the onstraint system S involve a

single objet, only. For eah objet, there an be at most O(jjCjj) onstraints.

The size of eah onstraint is bounded by jjCjj.

As already argued in the introdution, using unfolding to generalize sat to

TBoxes is not a good hoie sine the spae requirements of the resulting al-

gorithm would no longer be polynomial. However, there exists a better strategy

for dealing with TBoxes, whih is desribed in the following.

In order to allow for a suint de�nition of the extended algorithm, we need

to introdue a speial form of TBoxes.

2

Shmidt-Shau� and Smolka present the algorithm in a di�erent form. In the form

presented here, the algorithm �rst appeared in

[

4

℄

.

De�nition 6. A TBox T is alled simple i� it satis�es the following require-

ments:

{ The right-hand side of eah onept de�nition in T ontains exatly one

operator.

{ If the right hand side of a onept de�nition in T is :A, then A does not

our on the left hand side of any onept de�nition in T .

The following lemma shows that restriting ourselves to simple TBoxes is not a

limitation.

Lemma 1. Any TBox T an be onverted into a simple one T

0

in linear time,

suh that T

0

is equivalent to T in the following sense: Any model for T

0

an be

extended to a model for T and vie versa.

Proof: The onversion an be done in three steps as follows.

1. eliminate non-atomi negation. (i) onvert the right-hand sides of all onept

de�nitions in T to NNF. (ii) For eah de�nition A

:

= C in T , add a new

de�nition A

:

= nnf(:C), where nnf(:C) denotes the result of onverting :C

to NNF. (iii) For every atomi onept A ourring on the left-hand side of

a onept de�nition in T , replae every ourrene of :A in T with A.

2. break up onepts. Exhaustively apply the following rewrite rules. In the

following, C denotes a non-atomi onept and D an arbitrary onept.

{ A

:

= C uD ! A

:

= A

0

uD; A

0

:

= C (and analogous for t)

{ A

:

= D u C ! A

:

= D u A

0

; A

0

:

= C (and analogous for t)

{ A

:

= 9R:C ! A

:

= 9R:A

0

; A

0

:

= C (and analogous for 8)

In all ases, A

0

is a onept name not yet used in T . Please note that if a

de�nition A

:

= :C is in T , then, due to the �rst step, C is atomi and does

not our on the left-hand side of a onept de�nition.

3. eliminate redundant names. For eah onept de�nition A

:

= A

0

, where both

A and A

0

are atomi, replae every ourrene of A

0

in T with A. Remove

the de�nition from T .

The orretness of the above proedure is easily seen. The loosened form of

equivalene is neessary sine T

0

ontains additional atomi onepts, and, fur-

thermore, some \redundant" atomi onepts from T may not exist in T

0

. Let T

be a TBox and T

0

be the result of applying the above proedure. The �rst step

an be performed in linear time sine NNF onversion needs linear time and the

number of onept de�nitions is at most doubled. Sine the number of rewrite

rule appliations in the seond step is bounded by the number of operators in

T , this step an also be performed in linear time. This obviously also holds for

the third step. ut

From the above result, it immediately follows that, for any TBox T , there

exists an equivalent simple one T

0

suh that jjT

0

jj is of order O(jjT jj). We will

now modify the sat algorithm to deide the satis�ability of an atomi onept

A w.r.t. a simple TBox T . Using the modi�ed algorithm, it is also possible

to deide the satis�ability of non-atomi onepts C w.r.t. TBoxes T : Add a

de�nition A

:

= C to T (where A is a new onept name in T), onvert the

resulting TBox to simple form and start the algorithm with (A; T

0

) where T

0

is

the newly obtained TBox. The modi�ed algorithm works on onstraint systems

of a restrited form. In onstraints of the form a : C, C must be a onept name

(whih may be the left-hand side of a onept de�nition in T).

De�nition 7. Let A be an atomi onept and T be a simple ALC TBox. Mak-

ing use of the existing sat algorithm, an algorithm tbsat, whih returns satis�able

if A is satis�able w.r.t. T and unsatis�able otherwise, is given as follows.

1. Modify the ompletion rules of sat as follows: In the premise of eah om-

pletion rule, substitute \a : C 2 S" by \a : A 2 S and A

:

= C 2 T ". E.g.,

in the onjuntion rule, \a : C uD 2 S" is replaed by \a : A 2 S and A

:

=

C uD 2 T ".

2. Start the sat algorithm with the initial onstraint system fx : Ag, where x is

an arbitrary objet name. Use the modi�ed rules for the sat run.

Unlike unfolding, the desribed algorithm has the advantage that it an be exe-

uted in polynomial spae.

Proposition 1. The tbsat algorithm is sound and omplete and an be exeuted

in polynomial spae.

Proof: Let (A; T) be an input to tbsat and let C be the result of unfolding A

w.r.t. T . Please note that C is in NNF sine T is in simple form. The orretness

of tbsat an be proved by showing that a run of tbsat on input (A; T) yields the

same result as a run of sat on input C. This, in turn, an be proved by indution

over the number of reursion steps. It is important to note that, at every point

in the omputation where a nondeterministi deision has to be made (deiding

whih rule to apply or deiding whih onsequene of the Rt rule to use), the

available hoies are exatly the same for both algorithms.

It is an immediate onsequene of the following fats that the tbsat algorithm

an be exeuted in polynomial spae.

{ The reursion depth of tbsat is bounded by jjT jj. This is the ase sine (i) runs

of tbsat on (A; T) are equivalent to runs of sat on C and (ii) the role depth

of C is bounded by jjT jj.

3

The seond point an be seen as follows: Assume

that the role depth of C exeeds jjT jj. This means that the right hand side

of a onept de�nition A

0

:

= 9R:D or A

0

:

= 8R:D in T ontributes to the role

depth more than one. From this, however, it follows that unfolding D w.r.t.

T yields a onept ontaining A

0

whih is a ontradition to the ayliity

of T .

{ In eah reursion step, the onstraints in the onstraint system S involve a

single objet, only. The number of onstraints per objet is bounded by the

number of de�nitions in T and the maximum size of onstraints is onstant.

ut

3

I.e., although unfolding may lead to an exponential blow-up in onept size

[

15

℄

, the

role depth is \preserved".

The following theorem is an immediate onsequene of the above result.

Theorem 1. Deiding satis�ability of ALC onepts w.r.t. ayli TBoxes is

PSpae-omplete.

The use of the presented modi�ation sheme is not limited to ALC. In order

to give an intuition of when the proposed modi�ation an be applied to yield

a PSpae algorithm, let us summarize why the modi�ation is suessful in the

ase of ALC. As a prerequisite, a ompletion algorithms is needed whih uses

traing, i.e., whih performs depth-�rst searh over role suessors. In the ase of

ALC, the reursion depth of this algorithm is bounded by the role depth of the

input onept C. As opposed to the onept size, the role depth is \preserved

by unfolding", i.e., if a onept C is unfolded w.r.t. a TBox T , then the role

depth of the unfolded onept C

0

is linear in jjCjj+ jjT jj. This fat is used to

argue that the reursion depth of the modi�ed algorithm is linear in the size of

its input.

The other important point in the proof of Proposition 1 is that the ALC

traing algorithm onsiders onstraints for only one objet per reursion step

and so does the modi�ed algorithm. What is important here is, again, that

the number of objets onsidered in a single reursion step is desribable by a

funtion whih is \preserved by unfolding" (the onstant 1 in the ase of ALC).

For a formalization of \preservation by unfolding", the notion of a u-stable

funtion (where \u" stands for unfolding) is introdued. A funtion f mapping

onepts to natural numbers is alled u-stable w.r.t. a desription logi L i� the

following holds: There exists an integer k suh that, for all atomi onepts A

and all L TBoxes T , if C is the result of unfolding A w.r.t. T , then f(C) is of

order O(jjT jj

k

). As was shown in the proof of Proposition 1, the role-depth of

onepts is an example for a u-stable funtion. An example for a funtion whih

is not u-stable is the size of onepts (as Nebel proved

[

15

℄

). A rule of thumb

an now be formulated as follows:

The desribed modi�ation an be applied to ompletion algorithms A

whih deide satis�ability for a logi L w.r.t. the empty TBox. Assume

that A performs depth-�rst searh over role-suessors and an be exe-

uted in polynomial spae. If A expands the onstraints of �(C) objets

per reursion step and A's reursion depth is bounded by �(C), where

C is the input onept and � and � are funtions whih are u-stable

w.r.t. L, then the modi�ed algorithm an be expeted to be exeutable in

polynomial spae.

This rule of thumb an, e.g., be applied to the desription logi ALCNR

(see

[

9

℄

). ALCNR extends ALC by (unquali�ed) number restritions

4

and role

onjuntion.

Conjeture. Deiding the satis�ability of ALCNR onept w.r.t. TBoxes is a

PSpae-omplete problem.

4

We follow Donini et al. and assume unary oding of numbers.

Why is the rule of thumb appliable to ALCNR? Donini et al.

[

9

℄

give a PSpae

algorithm for deiding satis�ability of ALCNR onepts w.r.t. empty TBoxes

whih performs depth-�rst searh over role suessors. Its reursion depth is

bounded by the role depth of the input onept C. In eah reursion step, on-

straints for at most ex(C) + 1 objets are expanded where ex(C) is the number

of distint existentially quanti�ed subonepts of C. It is easy to prove that

ex(�) is a u-stable funtion. Assume that C is the result of unfolding an atomi

onept A w.r.t. a TBox T and that ex(C) � jjT jj. It follows that there exists

a onept de�nition B

0

:

= 9R:B

1

in T suh that B

0

uses an atomi onept B

2

(where possibly B

1

= B

2

) and that B

2

an be replaed by di�erent onepts

during unfolding. This, however, is a ontradition to the de�nition of TBoxes,

sine the uniqueness of left-hand sides of onept de�nitions is mandatory.

3 ALCF and TBoxes: The Lower Bound

Given the modi�ation sheme for satis�ability algorithms desribed in the pre-

vious setion, it is a natural question to ask if there are any relevant desription

logis for whih reasoning w.r.t. the empty TBox is in PSpae but reasoning

w.r.t. TBoxes is not. In the following, we will answer this question to the af-

�rmative by showing that the hardness of reasoning with the logi ALCF

[

11

℄

moves from PSpae to NExpTime if TBoxes are admitted.

A domino problem is given by a �nite set of tile types. All tile types are of

the same size, eah type has a quadrati shape and olored edges. Of eah type,

an unlimited number of tiles is available. The problem is to arrange these tiles

to over a torus

5

of exponential size without holes or overlapping, suh that

adjaent tiles have idential olors on their ommon edge (rotation of the tiles

is not allowed). Please note that this is a restrited version of the (undeidable)

general domino problem where a tiling of the �rst quadrant of the plane is asked

for.

De�nition 8. Let D = (D;H; V) be a domino system, where D is a �nite set of

tile types and H;V � D�D. Let U(s; t) be the torus Z

s

�Z

t

, where Z

n

denotes

the set f0; : : : ; n� 1g. Let w = w

0

; : : : ; w

n�1

be an n-tuple of tiles (with n � s).

We say that D tiles U(s; t) with initial ondition w i� there exists a mapping

� : U(s; t)! D suh that for all (x; y) 2 U(s; t):

{ if �(x; y) = d and �(x �

s

1; y) = d

0

then (d; d

0

) 2 H

{ if �(x; y) = d and �(x; y �

t

1) = d

0

then (d; d

0

) 2 V

{ �(i; 0) = w

i

for 0 � i < n.

where �

n

denotes addition modulo n.

B�orger et al. show that it is NExpTime-omplete to deide if, for a given domino

system D and a given n-tuple w, D tiles U(2

n

; 2

n

) with initial ondition w

[

6

℄

. In the following, we will redue this domino problem to satis�ability of

ALCF onepts w.r.t. TBoxes. We will �rst give an informal explanation of

5

i.e., a retangular grid whose edges are \glued" together

Tree

0

:

= �

n

#�

n

u

9�:Tree

1

u 9�:Tree

1

u ��

n�1

#��

n�1

Tree

1

:

= 9�:Tree

2

u 9�:Tree

2

u ��

n�2

#��

n�2

.

.

.

Tree

n�1

:

= 9�:Tree

n

u 9�:Tree

n

u �#�

Tree

n

:

= Grid

n

Fig. 2. The ALCF redution TBox T [D; w; n℄: Tree de�nition. Substitute (�; �;) by

(f; g; y) or (u; v; x).

how the redution works and then formally prove its orretness. For the sake

of readability, the redution TBox T [D; w; n℄ is split into two �gures. Models

of the redution TBox represent solutions of instanes of the domino problem.

To be more preise, models of C w.r.t. T [D; w; n℄ (Figure 3) enode a grid of

size 2

n

whih has the form of a torus and is properly tiled by D. The nodes

of the grid are represented by domain objets, horizontal edges are represented

by the feature x and vertial edges by the feature y. Please note that the grid

may \ollapse", i.e., the 2

n

�2

n

nodes are not neessarily distint. Nevertheless,

models of C w.r.t. T [D; w; n℄ de�ne a tiling of the full 2

n

� 2

n

torus.

The �rst task is to enfore two yli feature hains of length 2

n

, whih will

be edges of the grid. This is done by de�ning a binary tree of depth n whose

leaf nodes are onneted by a yli feature hain. The orresponding onept

Tree

0

an be found in Figure 2. Please note that sine two trees are needed, the

TBox in the Figure has to be instantiated twie, where (�; �;) is substituted

by (f; g; y) and (u; v; x), respetively. The �rst instantiation yields a y hain (of

length 2

n

) and the seond one an x hain.

Consider the onept C in Figure 3, whih glues together all the neessary

building parts. It refers to the Tree

0

onept to build up two trees and it enfores

the identi�ation of the \beginning" nodes in the two (yli) leaf hains. The

next task is to build the remaing grid whih is done by the Grid

i

onepts in

Figure 3. The features d

1

; : : : ; d

n

are diagonals in the grid (eah d

i

spans 2

i�1

\grid ells") and play a entral rôle in the grid de�nition. The use of these

diagonals allows the de�nition of the (exponentially sized) grid by a TBox of

polynomial size. First observe that eah objet on the two yli feature hains

(row 0 and olumn 0 of the torus to be de�ned) is in the extension of Grid

n

and hene also of Grid

0

. Beause of this, eah objet on the hains has d

1

, x,

and y �llers suh that the d

1

�ller oinides with the xy and yx �ller. Together

with the yliity of the initial feature hains, this properly de�nes row 1 and

Grid

0

:

= xy#yx u xy#d

1

u Tile

Grid

1

:

= Grid

0

u d

1

d

1

#d

2

u 9d

1

:Grid

0

.

.

.

Grid

n�1

:

= Grid

n�2

u d

n�1

d

n�1

#d

n

u 9d

n�1

:Grid

n�2

Grid

n

:

= Grid

n�1

u 9d

n

:Grid

n�1

Tile

:

= t

d2D

D

d

u u

d2D

u

d

0

2Dnfdg

:(D

d

uD

d

0

)

u

d2D

(D

d

! 9x : t

(d;d

0

)2H

D

d

0

)

u

d2D

(D

d

! 9y: t

(d;d

0

)2V

D

d

0

)

Init

:

= 9u

n

:(D

w

0

u 9x :(D

w

1

u : : : u 9x :(D

w

n�2

u 9x :D

w

n�1

) : : :))

C

:

= Tree

0

(f ; g ; y) u Tree

0

(u; v ; x) u f

n

#u

n

u Init

Fig. 3. The ALCF redution TBox T [D; w; n℄: Grid de�nition and tiling.

olumn 1 of the torus. Sine the objets on the initial hains are in the extension

of Grid

1

, the objets on row 1 and olumn 1, whih are d

1

�llers of objets

on the initial hains, are in the extension of Grid

0

. Hene, we an repeat the

argument for row/olumn 1 and onlude the proper de�nition of row/olumn

2. Now observe that the objets on row/olumn 2 are d

2

�llers of the objets on

the initial hain. Hene, they are in the extension of both the Grid

0

and Grid

1

onept and we an repeat the entire argument from above to derive the existene

of rows/olumns 3 and 4. This \doubling" an be repeated n times beause of

the existene of the features d

1

; : : : ; d

n

and yields rows/olumns 0; : : : ; 2

n

of the

torus. The yliity of the initial feature hains ensures that the edges of the

grid are properly \glued" to form a torus, i.e., that row/olumn 2

n

oinides

with row/olumn 0. Figure 4 shows a lipping from a grid as enfored by the

redution TBox.

The grid represents the struture to be tiled. The �nal task is to de�ne the

tiling itself. Domino types are represented by atomi onepts D

d

. Beause of

the de�nition of Grid

0

, eah node in the grid is in the extension of the onept

Tile. The Tile onept ensures that, horizontally as well as vertially, the tiling

ondition is satis�ed (we use C ! D as an abbreviation for :C t D). The Init

onept enfores the initial ondition w. In the following, a formal proof of the

orretness of the redution is given.

Proposition 2. Satis�ability and subsumption of ALCF onepts w.r.t. TBoxes

is NExpTime-hard.

d

1

d

1

d

1

x x x

x

x

y

y

y

d

2

d

2

d

1

(f; g) tree

(u; v) tree

Fig. 4. Clipping of a model of the redution onept C .

Proof:

()) Let I be a model of C w.r.t. T [D; w; n℄. To prove that D tiles U(2

n

; 2

n

)

with initial ondition w, it needs to be shown that there is a mapping � as

introdued in De�nition 8.

As argued above, there exist 2

n

�2

n

(not neessarily distint) objets a

i;j

in

�

I

whih form a torus w.r.t. the features x and y, i.e., x

I

(a

i;j

) = a

(i�

2

n

1);j

and y

I

(a

i;j

) = a

i;(j�

2

n

1)

. All objets in the torus are in the extension of the

Tile onept. This onept enodes the properties required for � in De�ni-

tion 8. Hene, � an be de�ned as follows: � := f(i; j; d) j a

i;j

2 D

d

g. This

funtion is well-de�ned sine the Tile onept ensures that none of the a

i;j

is in the extension of two onepts D

d

and D

d

0

, where d 6= d

0

.

(() Assume that the domino system D tiles U(2

n

; 2

n

) with initial ondition w

(whih is of length n). This means that there exists a mapping � as de�ned

in De�nition 8. In the following, we de�ne a model for C w.r.t. T [D; w; n℄.

The model has the form as disussed above: There are two binary trees

of depth n whose leaf nodes are onneted by a feature hain. These two

hains of length 2

n

are edges of a grid of size 2

n

� 2

n

. The edges of the

grid are \glued" together. Let the interpretation I be de�ned as follows:

�

I

= fa

i;j

j 0 � i; j < 2

n

g [fb

i;j

;

i;j

j 0 � i < n; 0 � j < 2

i

g

f

I

(b

0;0

) := b

1;0

; g

I

(b

0;0

) := b

1;1

; u

I

(b

0;0

) :=

1;0

; v

I

(b

0;0

) :=

1;1

8i; j where 0 < i < n� 1; 0 � j < 2

i

:

f

I

(b

i;j

) := b

(i+1);(2j)

; g

I

(b

i;j

) := b

(i+1);(2j+1)

u

I

(

i;j

) :=

(i+1);(2j)

; v

I

(

i;j

) :=

(i+1);(2j+1)

80 � i < 2

n�1

:

f

I

(b

(n�1);i

) := a

0;(2i)

; g

I

(b

(n�1);i

) := a

0;(2i+1)

;

u

I

(

(n�1);i

) := a

(2i);0

; v

I

(

(n�1);i

) := a

(2i+1);0

80 � i; j < 2

n

: x

I

(a

i;j

) := a

(i�

2

n

1);j

; y

I

(a

i;j

) := a

i;(j�

2

n

1)

80 � i; j < 2

n

; 1 � k � n : d

I

k

(a

i;j

) := a

(i�

2

n

2

k�1

);(j�

2

n

2

k�1

)

8d 2 D : D

I

d

:= fa

x;y

j �(x; y) = dg

It is straightforward to verify that I is in fat a model for C w.r.t. T [D; w; n℄:

The b

i;j

objets form a tree of depth n where edges are labelled with f and

g. The n-th level of the tree onsists of the objets a

0;0

; : : : ; a

0;2

n

. Similarly,

the

i;j

objets form a u; v-tree where the n-th level onsists of the objets

a

0;0

; : : : ; a

2

n

;0

and the root is the objet b

0;0

. The a

i;j

objets make up a

grid w.r.t. the features x and y (and diagonals d

i

) whih satis�es the Tile

onept sine the extension of the D

d

onepts is de�ned through the tiling

� . Hene, it an be onluded that the objet b

0;0

is an instane of C w.r.t.

T [D; w; n℄.

It is easy to verify that the size of T [D; w; n℄ is of order O(n

2

). Hene, the

redution an be performed in polynomial time. ut

In ontrast to agreements on roles (alled \role value maps"), agreements on

features are frequently believed to \not harm" w.r.t. deidability and omplexity.

The presented redution indiates that this is not always the ase. Furthermore, if

TBoxes are extended with GCIs, the given redution an easily be extended to an

undeidability proof. Consider the following TBox:

D

:

= >

> v xy#yx

> v Tile

where Tile is de�ned as in Figure 3. It indues a (possibly) in�nite grid and

satis�ability of D implies a omplete tiling of the �rst quadrant.

6

Hene, deid-

ability of ALCF with GCIs ontradits the undeidability of the general domino

problem. For the redution TBox, only the operators atomi negation, onjun-

tion, disjuntion, feature agreement and existential quanti�ation over features

is required. The result just obtained is already known in feature logi (see

[

2,

Theorem 6.3

℄

, where it was proved by a redution of the word problem for �nitely

presented groups).

4 ALCF and TBoxes: The Upper Bound

In order to prove that the satis�ability of ALCF onepts w.r.t. TBoxes is a

NExpTime-omplete problem, it remains to be shown that the satis�ability of

ALCF onepts w.r.t. TBoxes an be deided in nondeterministi exponential

time.

6

The indued grid may also have the form of a torus sine we don't enfore distint

nodes. In this ase, however, a tiling of the torus indues a periodi tiling of the �rst

quadrant.

In

[

14

℄

, a ompletion algorithm for deiding satis�ability of ALCF(D) on-

epts w.r.t. empty TBoxes is given whih an be exeuted in polynomial spae.

ALCF(D) is the extension of ALCF by so-alled onrete domains. By remov-

ing the ompletion rules and lash onditions dealing with the onrete domain,

we will adapt this algorithm to ALCF . Furthermore, we will show that an ex-

tension of the obtained algorithm to TBoxes as desribed in Setion 2.1 an be

exeuted in exponential time. The algorithm operates on onstraint systems of

the following form.

De�nition 9. Let f be a feature and a and b elements of O

A

. Then, the follow-

ing expressions are ALCF onstraints:

All ALC onstraints; (a ; b) : f ; a 6= b

A �nite set of ALCF onstraints is alled an ALCF onstraint system. An in-

terpretation for ALCF onstraint systems is de�ned identially to interpretations

for ALC onstraint systems. An interpretation satis�es a onstraint

(a ; b) : f i� (a

I

; b

I

) 2 f

I

and

a 6= b i� a

I

6= b

I

:

A onstraint system S is said to ontain a fork (for a feature f) if it ontains the

two onstraints (a ; b) : f and (a ;) : f . A fork an be eliminated by replaing all

ourrenes of in S with b. During rule appliation, it is assumed that forks are

eliminated as soon as they appear (as an integral part of the rule appliation)

with the proviso that newly generated objet are replaed by older ones.

Before the algorithm itself is desribed, we introdue the set of ompletion

rules. In order to provide a suint desription of the rules, two auxiliary fun-

tions need to be de�ned. For an objet a 2 O

A

and a feature hain u, su

S

(a ; u)

denotes the objet b that an be found by following u starting from a in S. If no

suh objet exists, su

S

(a ; u) denotes the speial objet � that annot be part

of any onstraint system. Let a; b 2 O

A

and u = f

1

� � � f

k

be a feature hain. The

funtion hain is de�ned as follows:

hain

S

(a ; b; u) := f(a;

1

) : f

1

; : : : ; (

k�1

; b) : f

k

g

where the

1

; : : : ;

k�1

2 O

A

are distint and fresh in S.

We now give the ompletion rules for the algorithm.

De�nition 10. The following ompletion rules replae a given onstraint sys-

tem S nondeterministially by a onstraint system S

0

. In the following, C denotes

a onepts,

^

R a role, f a feature, u

1

and u

2

feature hains, and a and b objet

names from O

A

.

Ru , Rt As in De�nition 4

Rr9C The role exists restrition rule.

If a :9

^

R:C 2 S and there is no b 2 O

A

suh that f(a; b) :

^

R; b :C g � S

Then S

0

:= S [f(a ; b) :

^

R ; b :C g where b 2 O

A

is fresh in S.

Rf9C The feature exists restrition rule (may reate forks).

If a :9f :C 2 S and there is no b 2 O

A

suh that f(a ; b) : f ; b :C g � S

Then S

0

:= S [f(a ; b) : f ; b :Cg where b 2 O

A

is fresh in S.

Rr8C The role value restrition rule.

If a :8

^

R:C 2 S and there is a b 2 O

A

suh that (a; b) :

^

R 2 S ^ b : C =2 S

Then S

0

:= S [fb :C g

Rf8C The feature value restrition rule.

If a :8f:C 2 S and there is a b 2 O

A

suh that (a; b) : f 2 S ^ b : C =2 S

Then S

0

:= S [fb :C g

R# The agreement rule (may reate forks).

If a :u

1

#u

2

2 S, there is no b 2 O

A

suh that su

S

(a ; u

1

) = su

S

(a ; u

2

) = b

Then S

0

:= S [hain

S

(a ; b; u

1

) where b 2 O

A

is fresh in S.

S

0

:= S

0

[hain

S

0

(a ; b; u

2

)

R" The disagreement rule (may reate forks).

If a :u

1

"u

2

2 S and there are no b

1

; b

2

2 O

A

suh that

su

S

(a ; u

1

) = b

1

; su

S

(a ; u

2

) = b

2

and b

1

6= b

2

2 S

Then S

0

:= S [hain

S

(a ; b

1

; u

1

) and S

0

:= S

0

[hain

S

0

(a ; b

2

; u

2

) [fb

1

6= b

2

g

where b

1

; b

2

2 O

A

are distint and fresh in S.

An ALCF onstraint system S is alled ontraditory i� any of the following

lash triggers apply:

{ Primitive lash: a :C 2 S; a ::C 2 S

{ Agreement lash: a 6= a 2 S

The algorithm expets the input onept C to be in negation normal form.

Conversion to NNF an be done in linear time by applying the rules given in

Setion 2.1 together with the following rules:

{ :(u

1

#u

2

)! 8u

1

:? t 8u

2

:? t u

1

"u

2

{ :(u

1

"u

2

)! 8u

1

:? t 8u

2

:? t u

1

#u

2

We are now ready to give the satis�ability algorithm itself.

De�nition 11. The funtion sat deides the satis�ability of ALCF onepts in

NNF w.r.t. the empty TBox. To deide the satis�ability of the onept C , sat

takes the input fx :C g.

de�ne proedure sat(S)

S

0

:= feature-omplete(S)

if S

0

ontains a lash then

return inonsistent

forall a :9

^

R:D 2 S

0

, where

^

R is a role, do

Let b be an objet name from O

A

.

if sat(fb :Dg [fb :E j a :8

^

R:E 2 S

0

g) = inonsistent then

return inonsistent

return onsistent

de�ne proedure feature-omplete(S)

while a rule r from fRu;Rt;Rf9C;Rf8C;R#;R"g is appliable to S do

S := apply(S; r)

return S

The orretness of the desribed algorithm an be easily seen: It orresponds

to the algorithm given in

[

14

℄

for deiding satis�ability of ALCF(D) onepts

with all rules and lash triggers onerning the onrete part left out. Sine the

original algorithm is orret for ALCF(D), it is obviously also orret for ALCF .

Furthermore, it an easily be veri�ed that, if the original algorithm is started

on an ALCF onept, no onrete domain operators or \onrete objets" are

introdued during the algorithm run, and, hene, neither onrete domain related

ompletion rules nor onrete domain related lash rules apply. Thus, they an

savely be left away.

Proposition 3. The sat algorithm is sound, omplete, and terminates.

We now investigate the extension of sat to TBoxes as desribed in Setion 2.1.

The extended algorithm is alled tbsat and takes a pair (A; T) as input, where A

is an atomi onept and T is anALCF TBox in simple form. tbsat is also apable

of deiding satis�ability of non-atomi onepts w.r.t. TBoxes (see Setion 2.1).

The orretness of tbsat follows from the orretness of the original algorithm

and the fat that a run of tbsat on (A; T) is equivalent to a run of sat on C,

where C is the result of unfolding A w.r.t. T (see Setion 2.1). It remains to

determine the runtime of the extended algorithm.

Proposition 4. The algorithm tbsat an be exeuted in exponential time.

Proof: Let (A; T) be an input to tbsat. Let n denote jjT jj. It needs to be shown

that the number of rule appliations performed by tbsat is exponential in n.

This is a onsequene of the next two laims, sine eah ompletion rule an be

applied at most one per onstraint (for the R8C rule, this holds for the (a; b) : R

onstraints)

1. Let � be the number of objets reated during a tbsat run. � is exponential

in n.

2. For eah objets a, there may exist at most exponentially many onstraints

whih refer to a.

In the following, we an savely ignore onstraints of the form a 6= b sine they

do not appear in the premise of any ompletion rule.

The validity of laim 1 an be seen as follows: The reursion depth of tbsat

is bounded by n sine the reursion depth of sat is bounded by the role depth

of its input (same argument as in the proof of Proposition 1). In eah reursion

step, at most n reursive alls are made. Hene, by (impliit) appliation of the

Rr9C rule, at most n

n

= 2

n�log(n)

� 2

n

2

objets are generated. For eah suh

objet, the feature-omplete funtion is alled whih may generate new objets by

appliation of the Rf9C, R#, and R" rules. feature-omplete generates a struture

whih has the form of a tree in whih some nodes may oinide. Outdegree and

depth of this tree-like struture are bounded by n: The outdegree is bounded by

the number of distint features in T sine there may be at most one suessor per

feature; the depth of the struture is bounded by n sine in sat runs, its depth is

bounded by the role depth (see again the argument in the proof of Proposition 1).

Hene, the total number of objets generated is bounded by 2

n

2

� 2

n

2

whih is

obviously exponential in n.

Conerning point 2, �x an objet a in a onstraint system S onsidered by

tbsat. It is easy to see that there may be at most n onstraints of the form

a : C|one for eah onept de�nition in T . Furthermore, there may be at most

n onstraints of the form (a; a

0

) : f , sine there annot be more than one �ller

per feature (please note that onstraints (a; a

0

) : R are never expliitly reated).

There may, however, be n onstraints (a

0

; a) : f per objet a

0

. Sine the number of

objets is exponentially bounded (point 1), the number of (a

0

; a) : f onstraints

is also exponentially bounded. ut

Combining Propositions 2 and 4, we obtain the following result.

Theorem 2. Deiding the satis�ability of ALCF onepts w.r.t. ayli TBoxes

is NExpTime-omplete.

5 Conlusion

TBoxes are an important omponent of knowledge representation systems using

desription logis. However, for most DLs, the exat omplexity of reasoning

with ayli TBoxes has never been determinded. This paper onentrates on

logis for whih satis�ability w.r.t. the empty TBox is in PSpae and investi-

gates how the presene of ayli TBoxes inuenes the omplexity of reasoning.

In the �rst part of the paper, using the logi ALC, it is demonstrated how om-

pletion algorithms for deiding \pure" onept satis�ability an be modi�ed to

take into aount TBoxes suh that the resulting algorithm an still be exe-

uted in polynomial spae. Using the modi�ed algorithm, it is proved that, for

ALC, satis�ability w.r.t. ayli TBoxes is in PSpae. We laim that the given

modi�ation sheme an be applied to a variety of other desription logis, too,

and give a rule of thumb for when the resulting algorithm an be exeuted in

polynomial spae.

In the seond part, it is proved that, for the logi ALCF , satis�ability

w.r.t. ayli TBoxes isNExpTime-omplete. In ontrast, satis�ability of \pure"

ALCF onepts is known to be PSpae-omplete and the satis�ability of ALCF

onepts w.r.t. general TBoxes is known to be undeidable. It is suprising that

the omplexity of reasoning moves up several steps in the omplexity hierarhy

if TBoxes are added. ALCF is a ommon desription logi appearing as a frag-

ment of several more expressive DLs suh as, e.g., the temporal logi T L-ALCF

[

1

℄

or the logi ALCF(D) for reasoning with onrete domains

[

14

℄

. Hene, sat-

is�ability w.r.t. ayli TBoxes is NExpTime-hard for these logis, too.

For the desription logiALC(D), similar omplexity results as for ALCF an

be obtained. The logi ALC(D) an be parameterized with a so-alled onrete

domain D, and, hene, the omplexity of reasoning with ALC(D) depends on

the omplexity of reasoning with the onrete domain D. On the one hand,

satis�ability of ALC(D) onepts w.r.t. the empty TBox is PSpae-omplete

provided that reasoning with the onrete domain D is in PSpae

[

14

℄

. On

the other hand, there exist onrete domains D for whih reasoning is in NP

suh that satis�ability of ALC(D) onepts w.r.t. ayli TBoxes is NExpTime-

omplete

[

13

℄

.

Aknowledgments I am indebted to Franz Baader who provided most of the

ideas underlying Setion 2.1. The work in this paper was supported by the \Foun-

dations of Data Warehouse Quality" (DWQ) European ESPRIT IV Long Term

Researh (LTR) Projet 22469.

Referenes

1. A. Artale and E. Franoni. A temporal desription logi for reasoning about ations

and plans. Journal of Arti�ial Intelligene Researh (JAIR), (9), 1998.

2. F. Baader, H.-J. B�urkert, B. Nebel, W. Nutt, and G. Smolka. On the expressivity

of feature logis with negation, funtional unertainty, and sort equations. Journal

of Logi, Language and Information, 2:1{18, 1993.

3. F. Baader and P. Hanshke. A sheme for integrating onrete domains into onept

languages. In Proeedings of IJCAI-91, pages 452{457, Sydney, Australia, August

24{30, 1991. Morgan Kaufmann Publ. In., San Mateo, CA, 1991.

4. F. Baader and B. Hollunder.set A terminologial knowledge representation system

with omplete inferene algorithms. In Proessings of PDK'91, volume 567 of

LNAI, pages 67{86, Kaiserslautern, Germany, July 1{3, 1991. Springer-Verlag,

Berlin { Heidelberg { New York, 1991.

5. F. Baader, B. Hollunder, B. Nebel, H.-J. Pro�tlih, and E. Franoni. An empirial

analysis of optimization tehniques for terminologial representation systems { or:

Making KRIS get a move on. Journal of Applied Intelligene, 4:109{132, 1994.

6. E. B�orger, E. Gr�adel, and Y. Gurevih. The Classial Deision Problem. Perspe-

tives in Mathematial Logi. Springer-Verlag, Berlin, 1997.

7. D. Calvanese. Reasoning with inlusion axioms in desription logis: Algorithms

and omplexity. In Proeedings of ECAI'96, Budapest, Hungary, pages 303{307,

1996.

8. D. Calvanese, G. De Giaomo, M. Lenzerini, and D. Nardi. Reasoning in expres-

sive desription logis. In Handbook of Automated Reasoning. Elsevier Siene

Publishers (North-Holland), Amsterdam, 1999. To appear.

9. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The omplexity of onept

languages. Information and Computation, 134(1):1{58, 10 Apr. 1997.

10. F. M. Donini, M. Lenzerini, D. Nardi, and A. Shaerf. Reasoning in desription

logis. In G. Brewka, editor, Foundation of Knowledge Representation, pages 191{

236. CSLI-Publiations, 1996.

11. B. Hollunder and W. Nutt. Subsumption algorithms for onept languages. DFKI

Researh Report RR-90-04, German Researh Center for Arti�ial Intelligene,

Kaiserslautern, 1990.

12. I. Horroks, U. Sattler, and S. Tobies. Pratial reasoning for expressive desription

logis. In Proeedings of LPAR'99, LNCS, Tbilisi, Georgia, 1999. Springer-Verlag,

Berlin { Heidelberg { New York, 1999.

13. C. Lutz. On the omplexity of terminologial reasoning. LTCS-Report 99-04,

LuFG Theoretial Computer Siene, RWTH Aahen, Germany, 1999.

14. C. Lutz. Reasoning with onrete domains. In Proeedings of IJCAI-99, Stokholm,

Sweden, July 31 { August 6, 1999. Morgan Kaufmann Publ. In., San Mateo, CA,

1999.

15. B. Nebel. Terminologial reasoning is inherently intratable. Arti�ial Intelligene,

43:235{249, 1990.

16. B. Nebel. Terminologial yles: Semantis and omputational properties. In J. F.

Sowa, editor, Priniples of Semanti Networks { Explorations in the Representa-

tion of Knowledge, hapter 11, pages 331{361. Morgan Kaufmann Publ. In., San

Mateo, CA, 1991.

17. M. Shmidt-Shau� and G. Smolka. Attributive onept desriptions with omple-

ments. Arti�ial Intelligene, 48(1):1{26, 1991.

18. S. Tobies. A PSpae algorithm for graded modal logi. In Proeedings of CADE-16,

LNCS, 1999. Springer-Verlag, Berlin { Heidelberg { New York, 1999.

