Complexity of Terminological Reasoning
Revisited

Carsten Lutz

RWTH Aachen, LuFG Theoretical Computer Science
Ahornstr. 55, 52074 Aachen

Abstract. TBoxes in their various forms are key components of knowl-
edge representation systems based on description logics (DLs) since they
allow for a natural representation of terminological knowledge. Largely
due to a classical result given by Nebel [15], complexity analyses for DLs
have, until now, mostly failed to take into account the most basic form
of TBoxes, so-called acyclic TBoxes. In this paper, we concentrate on
DLs for which reasoning without TBoxes is PSPACE-complete, and show
that there exist logics for which the complexity of reasoning remains in
PSPACE if acyclic TBoxes are added and also logics for which the com-
plexity increases. This demonstrates that it is necessary to take acyclic
TBoxes into account for complexity analyses.

1 Introduction

A core feature of description logics is their ability to represent and reason
about terminological knowledge. Terminological knowledge is stored in so-called
TBoxes which mainly come in two flavours. So-called acyclic TBoxes are sets
of concept definitions that can be thought of as non-recursive macro defini-
tions whereas general TBoxes allow to state equivalence of arbitrary, complex
concepts. In this paper, we consider the complexity of reasoning with acyclic
TBoxes.! Surprisingly, although computational complexity of reasoning is a ma-
jor topic in description logic research, most complexity results available concen-
trate either on reasoning without TBoxes or on reasoning with general TBoxes
(see, e.g., [7], [8], [9], and [10]).

There are two main reasons for this. The first reason is that acyclic TBoxes
are a properly subsumed by general TBoxes. However, for many DLs, reasoning
with acyclic TBoxes can be expected to be less complex than reasoning with
general TBoxes, and, hence, it is interesting to know the exact complexity of
reasoning with them. Moreover, there exist description logics for which reasoning
with general TBoxes is undecidable but reasoning with acyclic TBoxes is not.
In this case, it is obviously desirable to determine the complexity of reasoning
with acyclic TBoxes.

! Hence, when talking of TBoxes, we generally refer to acyclic TBoxes unless otherwise
noted.



The second reason can be understood historically. Early DL systems used
unfolding to reduce reasoning with acyclic TBoxes to reasoning with concepts.
Unfolding a concept C w.r.t. a TBox 7 means iteratively replacing concept
names in C' by their definitions given in 7. For example, the result of unfolding
the concept Man M Imarried-to. Wife w.r.t. the TBox

{Man = —Female, Wife = Female N Married}

yields —Female M dmarried-to.(Female M Married). In his seminal paper, Nebel
showed that, in the worst case, unfolding may result in an exponential blow-
up of the concept size [15]. Since the complexity of reasoning with description
logics is usually not EXPSPACE-hard, this result shows that unfolding is not an
adequate means for treating TBoxes. Nebel also showed that in realistic, practical
applications, the worst case is almost never encountered. Largely due to these
results (and possibly misunderstandings of these results), complexity analyses
of reasoning with acyclic TBoxes have long been neglected: First, one could
(wrongly) think that reasoning with acyclic TBoxes is necessarily EXPSPACE-
hard, and that it is sensible to consider only general TBoxes since this—given the
misunderstanding—does not seem to make things harder. Second, since the worst
case seems not to occur in most practical applications, one could be tempted to
think that unfolding is a proper tool for DL systems and that it is not rewarding
to search for better alternatives. Last, if one is only interested in decidability of
concepts w.r.t. acyclic TBoxes, unfolding is a technique which is easy to use and
always applicable.

For many DLs, reasoning without TBoxes is PSPACE-complete (see, e.g., [9],
[12], [18]). Although the complexity of reasoning with acyclic TBoxes is rarely
addressed formally, it is “common knowledge” in the DL community that, if
reasoning without TBoxes is in PSPACE, then taking into account TBoxes does
“usually” not increase complexity. This knowledge has been exploited for efficient
practical reasoning with TBoxes [5], but has, to the best of our knowledge, never
been used to obtain theoretical complexity results. This is even more surprising
since Nebel showed that there exist DLs for which reasoning w.r.t. TBoxes is
harder than reasoning with concepts, only (in Nebel’s case, complexity moved
from P to NP) [15].

In this paper, we focus on logics for which “pure concept satisfiability” (i.e.,
concept satisfiability w.r.t. the empty TBox) is PSPACE-complete and explore
the impact of TBoxes on the complexity of the basic DL reasoning tasks satisfi-
ability and subsumption. It turns out that there exist logics for which reasoning
remains in PSPACE and also DLs for which reasoning gets significantly harder.
In the first part of this paper, we focus on ALC, the basic description logic for
which pure concept satisfiability is in PSPACE [17]. The “common knowledge”
mentioned above is used to demonstrate how a pure ALC concept satisfiabil-
ity algorithm using the so-called trace technique [17] can be modified to take
into account TBoxes such that the resulting algorithm can still be executed in
polynomial space. Roughly speaking, TBoxes have to be converted to a nor-
mal form which allows the tracing algorithm to operate exclusively on concept



names (instead of concept expressions). Using the presented modification tech-
nique, it is proved that satisfiability of ALC concepts w.r.t. acyclic TBoxes is
still PSPACE-complete.

In the second part of this paper, we show that this technique does not al-
ways work: there exist description logics for which pure concept satisfiability
is PSPACE-complete but the extension by TBoxes makes reasoning harder. We
identify ALCF, i.e., the extension of ALC with features, feature agreement and
feature disagreement, to be such a logic. Pure concept satisfiability is known
to be PSPACE-complete for this logic [11]. Using a reduction of a constrained
version of the domino problem, it is proved that satisfiability of ALCF concepts
w.r.t. TBoxes is NExpT1ME-hard. Applying the modification technique from the
first part to an existing algorithm, it is shown that it is also in NEXPTIME and
hence NEXPTIME-complete.

2 Description Logics

In this section, the description logic ALC.F is introduced (see also [11]). All logics
considered in this paper are fragments of ALCF.

Definition 1. Let No, Ng, and Ny be disjoint sets of concept, role, and feature
names. A composition f1---f, of features is called a feature chain. The set of
ALCF concepts is the smallest set such that

1. every concept name is a concept (atomic concepts), and

2. if C and D are concepts, R is a role or feature, and u; and us are feature
chains, then the following expressions are also concepts: -C, CM D, CUD,
VR.C, dR.C, uilus, and uitus.

Let A be a concept name and C be a concept. Then A = C is a concept defi-
nition. Let T be a finite set of concept definitions. A concept name A directly
uses a concept name B in T if there is a concept definition A = C in T such
that B appears in C. Let uses be the transitive closure of “directly uses”. T is
called acyclic if there is no concept name A such that A uses itself in T. If T is
acyclic, and, furthermore, the left-hand sides of all concept definitions in T are
unique, then T is called a TBox.

Let Ry,...,R, be features or roles. We will use VR, ...R,.C (3R;...R,.C)
as an abbreviation for VR|.VR; ...VR,.C (3R;.3Rs ...3R,.C"). ALCF concepts
which do not contain features are called ALC concepts. Next, we define the
semantics of the language introduced.

Definition 2. An interpretation Z = (Az,-) is a pair (Az,T). Az is called
the domain and - the interpretation function. The interpretation function maps

— each concept name C to a subset CT of Az,
— each role name R to a subset RT of A7 x Az, and
— each feature name f to a partial function f* from Az to Az.



Ifu=f1--f is a feature chain, then u” is defined as the composition f¥o-- -Off
of the partial functions f¥,. .. ,f%. Let the symbols C, D, R, u1, and u2 be de-
fined as in Definition 1. The interpretation function can inductively be extended
to complex concepts as follows:

(cnD) .=ctnD?
(CuD)t .=ctuD*
() .=A7\ C*
T.={a€eA7r|3bec Az: (a,b) € R Nb € CT}

)

(3R.C)

(VR.C)T :={a € Az |Vb: (a,b) € RT - b e CT}

Y i={a€Ar|3be Ar: ul(a) =bAul(a) =0}
Vo i={a€ Az |3b1, by € Az: by #ba A

ui (@) = b1 Aug(a) = bs}

An interpretation T is a model of a TBox T iff it satisfies AT = CT for all
concept definitions A = C in T. A concept C subsumes a concept D w.r.t. a
TBox T (written D <7 C) iff D¥ C C7 for all models T of T. A concept C is
satisfiable w.r.t. a TBox T iff there exists a model T of T such that CT # ().

Subsumption can be reduced to satisfiability since D <7 C iff the concept
D N —(C is unsatisfiable w.r.t. 7. Satisfiability can be reduced to subsumption
since C' is unsatisfiable w.r.t. 7 iff C <7+ L, where L is an abbreviation for
AN —A.

Sometimes, generalized concept definitions called “general concept inclu-
sions” (GCIs) are considered. A GCI has the form C C D, where both C' and
D are (possibly complex) concepts. An interpretation Z is a model for a GCI
C C D iff C* C D”. TBoxes containing GCIs are called generalized. In this
paper, we will not admit generalized TBoxes unless explicitly mentioned.

2.1 Extending Completion Algorithms

Most satisfiability algorithms for description logics are so-called completion algo-
rithms, which check the satisfiability of concepts by trying to explicitly construct
a canonical model. Completion algorithms are described by a rule set and a strat-
egy to apply these rules. The rules operate on constraint systems, i.e., partial
descriptions of models. Constraints are comprised of objects, concepts and roles.
In the following, we will present a completion algorithm for deciding satisfiability
of ALC concepts w.r.t. the empty TBox which was first described in [17]. We
will then show how this algorithm can be modified to handle TBoxes. Both the
original algorithm and its extension can be executed in polynomial space. The
modification scheme presented is also applicable to a variety of other description
logics.

The algorithm requires ALC concepts to be in negation normal form. A
concept is in negation normal form (NNF') iff negation occurs only in front of



atomic concepts. It is easy to see that any ALC concept can be converted into
an equivalent one in NNF in linear time by exhaustively applying the following
rewrite rules:

— =(CN D)= (-Cu-D), =(CUD)— (~CMN=D), -~C—C
- —|(E|R.C) —VR.-C, —I(VR.C) — 3R.AC

Definition 3. Let O 4 be a set of object names. For a,b € O, an ALC concept
C, and R € Ng, the expressions a:C and (a,b): R are ALC constraints. A finite
set of constraints S is called an ALC constraint system. Interpretations can be
extended to constraint systems by mapping every object name to an element of
Az. The unique name assumption is not imposed, i.e. a* = bL may hold even
if a and b are distinct object names. An interpretation T satisfies a constraint

a:C iff a2 € C?, and (a,b):R iff (a”,bT) € RL.

An interpretation is a model of a constraint system S iff it satisfies all con-
straints in S.

To decide the satisfiability of an ALC concept C' in NNF (w.r.t. the empty TBox),
the algorithm starts with the constraint system Sy := {a : C'} and repeatedly
applies completion rules. If a constraint system is found which does not contain a
contradiction and to which no completion rule is applicable, then this constraint
system has a model, which implies the existence of a model for C' w.r.t. the
empty TBox. If no such constraint system can be found, C' is unsatisfiable. One
of the completion rules is nondeterministic, i.e., there is more than one possible
outcome of a rule application. Hence, the described completion algorithm is a
nondeterministic decision procedure, i.e., it returns satisfiable iff there is a way
to make the nondeterministic decisions such that a positive result is obtained.

Definition 4. The following completion rules replace a given constraint system
S nondeterministically by a constraint system S'. S’ is called a descendant of
S. An object a € O4 is called fresh in S if a is not used in S. In the following,
C and D denote concepts, R a role, and a and b object names from O 4.

R The conjunction rule.
Ifa:CNDeS, {a:C, a:D}YZ S, then S":=SU{a:C, a:D}

R  The (nondeterministic) disjunction rule.
Ifa:CUD € S, {a:C,a:D}NS =0, then S':=SU{a:C} v &' :=SU{a:D}

R3C The exists restriction rule.
If a:3R.C € S, and there is no b € O4 such that {(a,b):R, b:C} C S,
then S' := S U{(a,b):R, b:C} where b € Oy is fresh in S.

RY C The value restriction rule.
If a:VR.C € S and there is a b € O 4 such that (a,b): R€ SAb:C ¢ S,
then S' :=SU{b:C}

A constraint system S is called contradictory iff {a : C,a : =C} C S for some



define procedure sat(S)
while a rule r from {RM,RU} is applicable to S
S == apply(S,r)
if S is contradictory then
return unsatisfiable
forall ¢:3R.D € S do
Let b be an object name from O4.
if sat({b: D} U {b:E | a:VR.E € S}) = unsatisfiable then
return unsatisfiable
return satisfiable

Fig. 1. The algorithm for deciding satisfiability of ALC concepts w.r.t. the empty
TBox.

a € Oy and C € N¢. A constraint system to which no completion rules are
applicable is called complete.

Let apply be a function which takes a constraint system S and a completion rule
r as argument, applies r once to an arbitrary set of constraints in S matching r’s
premise and returns the resulting constraint system. The algorithm for deciding
satisfiability of ALC concepts is given in Figure 1. It takes a constraint system
{z : C'} as input and returns satisfiable if C' is satisfiable w.r.t. the empty TBox
and unsatisfiable otherwise. In order to describe the space requirements of the
sat algorithm, a formal notion of the size of concepts is introduced.

Definition 5. For a concept C, the size of C' (denoted by ||C||) is defined as
the number of symbols (operators, concept and role names) it contains. For a
TBox T, the size of T (denoted by ||T||) is defined as the sum of the sizes of
the right-hand sides of all concept definitions in T . The role depth of a concept
C' is the nesting depth of exists and value restrictions in C'.

In [17], it is proved that the described algorithm is correct and can be executed
in polynomial space.2 The latter is a consequence of the following facts:

— The recursion depth of sat is bounded by the role depth.

— In each recursion step, the constraints in the constraint system S involve a
single object, only. For each object, there can be at most O(||C||) constraints.
The size of each constraint is bounded by ||C]|.

As already argued in the introduction, using unfolding to generalize sat to
TBoxes is not a good choice since the space requirements of the resulting al-
gorithm would no longer be polynomial. However, there exists a better strategy
for dealing with TBoxes, which is described in the following.

In order to allow for a succinct definition of the extended algorithm, we need
to introduce a special form of TBoxes.

2 Schmidt-SchauBl and Smolka present the algorithm in a different form. In the form
presented here, the algorithm first appeared in [4].



Definition 6. A TBox T is called simple iff it satisfies the following require-
ments:

— The right-hand side of each concept definition in T contains exactly one
operator.

— If the right hand side of a concept definition in T is —A, then A does not
occur on the left hand side of any concept definition in T .

The following lemma shows that restricting ourselves to simple TBoxes is not a
limitation.

Lemma 1. Any TBox T can be converted into a simple one T' in linear time,
such that T' is equivalent to T in the following sense: Any model for T' can be
extended to a model for T and vice versa.

Proof: The conversion can be done in three steps as follows.

1. eliminate non-atomic negation. (i) convert the right-hand sides of all concept
definitions in 7 to NNF. (ii) For each definition A = C in T, add a new
definition A = nnf(~C), where nnf(=C) denotes the result of converting ~C'
to NNF. (iii) For every atomic concept A occurring on the left-hand side of
a concept definition in 7, replace every occurrence of —A in 7 with A.

2. break up concepts. Exhaustively apply the following rewrite rules. In the
following, C' denotes a non-atomic concept and D an arbitrary concept.

- A=CnD —» A=AND, A'=C (and analogous for L)

- A=DnC —» A=DnA', A'=C (and analogous for L)

- A=3RC — A=3R.A", A =C (and analogous for V)
In all cases, A’ is a concept name not yet used in 7. Please note that if a
definition A = —C is in T, then, due to the first step, C' is atomic and does
not occur on the left-hand side of a concept definition.

3. eliminate redundant names. For each concept definition A = A’, where both
A and A’ are atomic, replace every occurrence of A’ in 7 with A. Remove
the definition from 7.

The correctness of the above procedure is easily seen. The loosened form of
equivalence is necessary since 7' contains additional atomic concepts, and, fur-
thermore, some “redundant” atomic concepts from 7 may not exist in 7'. Let T
be a TBox and 7' be the result of applying the above procedure. The first step
can be performed in linear time since NNF conversion needs linear time and the
number of concept definitions is at most doubled. Since the number of rewrite
rule applications in the second step is bounded by the number of operators in
T, this step can also be performed in linear time. This obviously also holds for
the third step. O

From the above result, it immediately follows that, for any TBox 7, there
exists an equivalent simple one 7' such that ||7’|| is of order O(||T|]). We will
now modify the sat algorithm to decide the satisfiability of an atomic concept
A w.r.t. a simple TBox 7. Using the modified algorithm, it is also possible
to decide the satisfiability of non-atomic concepts C w.r.t. TBoxes 7: Add a



definition A = C to T (where A is a new concept name in 7)), convert the
resulting TBox to simple form and start the algorithm with (A4, 7") where T is
the newly obtained TBox. The modified algorithm works on constraint systems
of a restricted form. In constraints of the form a : C; C' must be a concept name
(which may be the left-hand side of a concept definition in 7).

Definition 7. Let A be an atomic concept and T be a simple ALC TBox. Mak-
ing use of the existing sat algorithm, an algorithm tbsat, which returns satisfiable
if A is satisfiable w.r.t. T and unsatisfiable otherwise, is given as follows.

1. Modify the completion rules of sat as follows: In the premise of each com-
pletion rule, substitute “a : C € S” by “a: A€ Sand A=C € T”. E.g.,
in the conjunction rule, “a : C D € S” is replaced by “a: A€ S and A =
cnDeT”.

2. Start the sat algorithm with the initial constraint system {x : A}, where x is
an arbitrary object name. Use the modified rules for the sat run.

Unlike unfolding, the described algorithm has the advantage that it can be exe-
cuted in polynomial space.

Proposition 1. The tbsat algorithm is sound and complete and can be executed
in polynomial space.

Proof: Let (A, T) be an input to tbsat and let C' be the result of unfolding A
w.r.t. 7. Please note that C is in NNF since 7T is in simple form. The correctness
of tbsat can be proved by showing that a run of tbsat on input (A4, 7") yields the
same result as a run of sat on input C. This, in turn, can be proved by induction
over the number of recursion steps. It is important to note that, at every point
in the computation where a nondeterministic decision has to be made (deciding
which rule to apply or deciding which consequence of the RLU rule to use), the
available choices are exactly the same for both algorithms.

It is an immediate consequence of the following facts that the tbsat algorithm
can be executed in polynomial space.

— The recursion depth of tbsat is bounded by || 7||. This is the case since (i) runs
of tbsat on (A4, T) are equivalent to runs of sat on C' and (ii) the role depth
of C'is bounded by ||T]|.> The second point can be seen as follows: Assume
that the role depth of C' exceeds ||T||. This means that the right hand side
of a concept definition A’ = 3R.D or A’ =VR.D in T contributes to the role
depth more than once. From this, however, it follows that unfolding D w.r.t.
T yields a concept containing A’ which is a contradiction to the acyclicity
of T.

— In each recursion step, the constraints in the constraint system S involve a
single object, only. The number of constraints per object is bounded by the
number of definitions in 7 and the maximum size of constraints is constant.

a

% Le., although unfolding may lead to an exponential blow-up in concept size [15], the
role depth is “preserved”.



The following theorem is an immediate consequence of the above result.

Theorem 1. Deciding satisfiability of ALC concepts w.r.t. acyclic TBozes is
PSPACE-complete.

The use of the presented modification scheme is not limited to ALC. In order
to give an intuition of when the proposed modification can be applied to yield
a PSPACE algorithm, let us summarize why the modification is successful in the
case of ALC. As a prerequisite, a completion algorithms is needed which uses
tracing, i.e., which performs depth-first search over role successors. In the case of
ALC, the recursion depth of this algorithm is bounded by the role depth of the
input concept C. As opposed to the concept size, the role depth is “preserved
by unfolding”, i.e., if a concept C' is unfolded w.r.t. a TBox 7, then the role
depth of the unfolded concept C' is linear in ||C]|+||T||. This fact is used to
argue that the recursion depth of the modified algorithm is linear in the size of
its input.

The other important point in the proof of Proposition 1 is that the ALC
tracing algorithm considers constraints for only one object per recursion step
and so does the modified algorithm. What is important here is, again, that
the number of objects considered in a single recursion step is describable by a
function which is “preserved by unfolding” (the constant 1 in the case of ALC).

For a formalization of “preservation by unfolding”, the notion of a u-stable
function (where “u” stands for unfolding) is introduced. A function f mapping
concepts to natural numbers is called u-stable w.r.t. a description logic £ iff the
following holds: There exists an integer k such that, for all atomic concepts A
and all £ TBoxes T, if C' is the result of unfolding A w.r.t. T, then f(C) is of
order O(||T||*). As was shown in the proof of Proposition 1, the role-depth of
concepts is an example for a u-stable function. An example for a function which
is not u-stable is the size of concepts (as Nebel proved [15]). A rule of thumb
can now be formulated as follows:

The described modification can be applied to completion algorithms A
which decide satisfiability for a logic £ w.r.t. the empty TBoz. Assume
that A performs depth-first search over role-successors and can be exe-
cuted in polynomial space. If A expands the constraints of a(C) objects
per recursion step and A’s recursion depth is bounded by 3(C), where
C is the input concept and o and [ are functions which are u-stable
w.r.t. L, then the modified algorithm can be expected to be executable in
polynomial space.

This rule of thumb can, e.g., be applied to the description logic ALCNR
(see [9]). ALCN'R extends ALC by (unqualified) number restrictions? and role
conjunction.

Conjecture. Deciding the satisfiability of ACCN'R concept w.r.t. TBozes is a
PSPACE-complete problem.

* We follow Donini et al. and assume unary coding of numbers.



Why is the rule of thumb applicable to ALCNR? Donini et al. [9] give a PSPACE
algorithm for deciding satisfiability of ALCN'R concepts w.r.t. empty TBoxes
which performs depth-first search over role successors. Its recursion depth is
bounded by the role depth of the input concept C. In each recursion step, con-
straints for at most ex(C) + 1 objects are expanded where ex(C') is the number
of distinct existentially quantified subconcepts of C. It is easy to prove that
ex(+) is a u-stable function. Assume that C is the result of unfolding an atomic
concept A w.r.t. a TBox T and that ex(C) > ||T||. It follows that there exists
a concept definition By = dR.B; in T such that By uses an atomic concept Bs
(where possibly B; = Bs) and that Bs can be replaced by different concepts
during unfolding. This, however, is a contradiction to the definition of TBoxes,
since the uniqueness of left-hand sides of concept definitions is mandatory.

3 ALCZF and TBoxes: The Lower Bound

Given the modification scheme for satisfiability algorithms described in the pre-
vious section, it is a natural question to ask if there are any relevant description
logics for which reasoning w.r.t. the empty TBox is in PSPACE but reasoning
w.r.t. TBoxes is not. In the following, we will answer this question to the af-
firmative by showing that the hardness of reasoning with the logic ALCF [11]
moves from PSPACE to NEXPTIME if TBoxes are admitted.

A domino problem is given by a finite set of tile types. All tile types are of
the same size, each type has a quadratic shape and colored edges. Of each type,
an unlimited number of tiles is available. The problem is to arrange these tiles
to cover a torus® of exponential size without holes or overlapping, such that
adjacent tiles have identical colors on their common edge (rotation of the tiles
is not allowed). Please note that this is a restricted version of the (undecidable)
general domino problem where a tiling of the first quadrant of the plane is asked
for.

Definition 8. Let D = (D, H,V') be a domino system, where D is a finite set of
tile types and H,V C D x D. Let U(s,t) be the torus Zs x Z:, where Z,, denotes
the set {0,...,n—1}. Let w = wy, ..., wy_1 be an n-tuple of tiles (with n < s).
We say that D tiles U(s,t) with initial condition w iff there exists a mapping
7:U(s,t) = D such that for all (z,y) € U(s,t):

—if r(z,y) =d and 7(z &, 1,y) = d' then (d,d') € H
—ifr(z,y) =d and 7(z,y & 1) =d' then (d,d') €V
— 7(i,0) = w; for 0 <i< n.

T
T

where @,, denotes addition modulo n.

Borger et al. show that it is NEXPTIME-complete to decide if, for a given domino
system D and a given n-tuple w, D tiles U(2",2") with initial condition w
[6]. In the following, we will reduce this domino problem to satisfiability of
ALCF concepts w.r.t. TBoxes. We will first give an informal explanation of

% i.e., a rectangular grid whose edges are “glued” together



Treeop = B"yla™ N
Ja. Treer M 38.Trees

Nag"'y4ga"!
Treer = Ja. Trees M 3B. Trees

Mgyl e

Treen—1 = Ja. Tree, T 38.Treey,

MaylB
Tree, = Grid,

Fig. 2. The ALCF reduction TBox 7 [D,w,n]: Tree definition. Substitute («, 3,7) by
(f,9,y) or (u,v, ).

how the reduction works and then formally prove its correctness. For the sake
of readability, the reduction TBox T[D,w,n] is split into two figures. Models
of the reduction TBox represent solutions of instances of the domino problem.
To be more precise, models of C w.r.t. T[D,w,n] (Figure 3) encode a grid of
size 2™ which has the form of a torus and is properly tiled by D. The nodes
of the grid are represented by domain objects, horizontal edges are represented
by the feature 2 and vertical edges by the feature y. Please note that the grid
may “collapse”, i.e., the 2™ x 2™ nodes are not necessarily distinct. Nevertheless,
models of C' w.r.t. T[D,w,n] define a tiling of the full 2™ x 2" torus.

The first task is to enforce two cyclic feature chains of length 2™, which will
be edges of the grid. This is done by defining a binary tree of depth n whose
leaf nodes are connected by a cyclic feature chain. The corresponding concept
Treey can be found in Figure 2. Please note that since two trees are needed, the
TBox in the Figure has to be instantiated twice, where (a, 3,7) is substituted
by (f,¢9,v) and (u,v,x), respectively. The first instantiation yields a y chain (of
length 2™) and the second one an z chain.

Consider the concept C' in Figure 3, which glues together all the necessary
building parts. It refers to the Treey concept to build up two trees and it enforces
the identification of the “beginning” nodes in the two (cyclic) leaf chains. The
next task is to build the remaing grid which is done by the Grid; concepts in
Figure 3. The features di,...,d, are diagonals in the grid (each d; spans 2!
“orid cells”) and play a central role in the grid definition. The use of these
diagonals allows the definition of the (exponentially sized) grid by a TBox of
polynomial size. First observe that each object on the two cyclic feature chains
(row 0 and column 0 of the torus to be defined) is in the extension of Grid,
and hence also of Gridy. Because of this, each object on the chains has dy, =z,
and y fillers such that the d; filler coincides with the zy and yz filler. Together
with the cyclicity of the initial feature chains, this properly defines row 1 and



Grido = zylyz N zyld. N Tile
Grid, = Grido M d1 d1dd> dd1.Gridg

GTidn_l = G?"idn_Q [l dn_1 dn_1\|,dn [l adn_1.GTidn_2
Gridy, = Gridp—1 N 3dy,.Gridp-1

Tite= U Dy [T [1 —~(DynDy)
deD

deD d'eD\{d}
[1(Dg—»3z. LI Dy

deD (d,d"yeH
de‘D( d y (ddnev ¢ )

Init = 3u".(Dwy M3z.(Dyw, N...M3z.(Dyw, , M 3Iz.Dy, ,)...))

C = Treeo(f, g,y) M Treeo(u, v, z) N f*Lu™ M Init

Fig. 3. The ALCF reduction TBox T[D, w,n]: Grid definition and tiling.

column 1 of the torus. Since the objects on the initial chains are in the extension
of Gridy, the objects on row 1 and column 1, which are d; fillers of objects
on the initial chains, are in the extension of Gridy. Hence, we can repeat the
argument for row/column 1 and conclude the proper definition of row/column
2. Now observe that the objects on row/column 2 are ds fillers of the objects on
the initial chain. Hence, they are in the extension of both the Gridg and Grid,
concept and we can repeat the entire argument from above to derive the existence
of rows/columns 3 and 4. This “doubling” can be repeated n times because of
the existence of the features dy, ..., d, and yields rows/columns 0,...,2" of the
torus. The cyclicity of the initial feature chains ensures that the edges of the
grid are properly “glued” to form a torus, i.e., that row/column 2" coincides
with row/column 0. Figure 4 shows a clipping from a grid as enforced by the
reduction TBox.

The grid represents the structure to be tiled. The final task is to define the
tiling itself. Domino types are represented by atomic concepts Dy. Because of
the definition of Gridy, each node in the grid is in the extension of the concept
Tile. The Tile concept ensures that, horizontally as well as vertically, the tiling
condition is satisfied (we use C' — D as an abbreviation for =C U D). The Init
concept enforces the initial condition w. In the following, a formal proof of the
correctness of the reduction is given.

Proposition 2. Satisfiability and subsumption of ALCF concepts w.r.t. TBozxes
is NEXPTIME-hard.



(f,9) tree y| y
N dg dg

d1 d1

(u, v) tree

Fig. 4. Clipping of a model of the reduction concept C.

Proof:

(=) Let Z be a model of C w.r.t. T[D,w,n]. To prove that D tiles U(2",2")

with initial condition w, it needs to be shown that there is a mapping 7 as
introduced in Definition 8.
As argued above, there exist 2" x 2™ (not necessarily distinct) objects a; ; in
Az which form a torus w.r.t. the features = and y, i.e., #7(a; ;) = Ai@on1),j
and yI(ai’j) = aj,(j@on1)- All Objects in the torus are in the extension of the
Tile concept. This concept encodes the properties required for 7 in Defini-
tion 8. Hence, T can be defined as follows: 7 := {(i,4,d) | a;; € Dq}. This
function is well-defined since the Tile concept ensures that none of the a; ;
is in the extension of two concepts Dy and Dy, where d # d'.

(<) Assume that the domino system D tiles U(2",2") with initial condition w
(which is of length n). This means that there exists a mapping 7 as defined
in Definition 8. In the following, we define a model for C' w.r.t. T[D,w,n].
The model has the form as discussed above: There are two binary trees
of depth n whose leaf nodes are connected by a feature chain. These two
chains of length 2" are edges of a grid of size 2" x 2™. The edges of the
grid are “glued” together. Let the interpretation 7 be defined as follows:

AI:{ai,j|0§i,j<2"}U{bi’j,ci’j|0§i<n,0§j<2i}

fz(bo,o) = b1,0, QI(bo,o) =b, Uz(bo,o) ‘= C1,0, UI(bo,o) =011
Vi,jwhere0<i<n—1,0<j<2:
FE(big) = bisry,2i), 97 (bis) = biisr),2j41)

w (i) 1= Clit),(25), V7 (Cij) = Clis),(2541)

VO <i<2mt:
fI(b(n—l),i) = Q0,(24)» !}I(b(n—1),i) 1= Q0,(2i41)
W (c(no1),i) = a@iy0. v (Cno1),i) i= Q(2i41),0



VO S Z,_] < 2n : J?I(ai’j) =a iDon 1)7]', yI(ai’j) = ai7(]~@2n 1)
VO<i,7<2"1<k<n: dk (ai’j) = A(ian 2k 1) (jDan 26 1)
Vd e D: D :={a,, | (z,y) =d}

It is straightforward to verify that Z is in fact a model for C w.r.t. T[D,w, n]:
The b;; objects form a tree of depth n where edges are labelled with f and
g. The n-th level of the tree consists of the objects ag,...,ap,2». Similarly,
the ¢; ; objects form a u,v-tree where the n-th level consists of the objects
ap,0,---,a2n o and the root is the object by o. The a;; objects make up a
grid w.r.t. the features z and y (and diagonals d;) which satisfies the Tile
concept since the extension of the Dy concepts is defined through the tiling
7. Hence, it can be concluded that the object by is an instance of C' w.r.t.
T[D,w,n).

It is easy to verify that the size of 7[D,w,n] is of order O(n?). Hence, the
reduction can be performed in polynomial time. O
In contrast to agreements on roles (called “role value maps”), agreements on

features are frequently believed to “not harm” w.r.t. decidability and complexity.
The presented reduction indicates that this is not always the case. Furthermore, if
TBoxes are extended with GCls, the given reduction can easily be extended to an
undecidability proof. Consider the following TBox:

D=T

TEzylyz

T C Tile

where Tile is defined as in Figure 3. It induces a (possibly) infinite grid and
satisfiability of D implies a complete tiling of the first quadrant.® Hence, decid-
ability of ALCF with GCIs contradicts the undecidability of the general domino
problem. For the reduction TBox, only the operators atomic negation, conjunc-
tion, disjunction, feature agreement and existential quantification over features
is required. The result just obtained is already known in feature logic (see [2,
Theorem 6.3], where it was proved by a reduction of the word problem for finitely
presented groups).

4 ALCF and TBoxes: The Upper Bound

In order to prove that the satisfiability of ALCF concepts w.r.t. TBoxes is a
NEXPTIME-complete problem, it remains to be shown that the satisfiability of
ALCF concepts w.r.t. TBoxes can be decided in nondeterministic exponential
time.

® The induced grid may also have the form of a torus since we don’t enforce distinct
nodes. In this case, however, a tiling of the torus induces a periodic tiling of the first
quadrant.



In [14], a completion algorithm for deciding satisfiability of ALCF (D) con-
cepts w.r.t. empty TBoxes is given which can be executed in polynomial space.
ALCF (D) is the extension of ALCF by so-called concrete domains. By remov-
ing the completion rules and clash conditions dealing with the concrete domain,
we will adapt this algorithm to ALCF. Furthermore, we will show that an ex-
tension of the obtained algorithm to TBoxes as described in Section 2.1 can be
executed in exponential time. The algorithm operates on constraint systems of
the following form.

Definition 9. Let f be a feature and a and b elements of O o. Then, the follow-
ing expressions are ALCF constraints:

All ALC constraints, (a,b):f, a#b

A finite set of ACCF constraints is called an ALCF constraint system. An in-
terpretation for ALCF constraint systems is defined identically to interpretations
for ALC constraint systems. An interpretation satisfies a constraint

(a,b):f iff (aT,0%) € f* and
a#b iff ot # 0T

A constraint system S is said to contain a fork (for a feature f) if it contains the
two constraints (a, b):f and (a,c):f. A fork can be eliminated by replacing all
occurrences of ¢ in S with b. During rule application, it is assumed that forks are
eliminated as soon as they appear (as an integral part of the rule application)
with the proviso that newly generated object are replaced by older ones.

Before the algorithm itself is described, we introduce the set of completion
rules. In order to provide a succinct description of the rules, two auxiliary func-
tions need to be defined. For an object a € O 4 and a feature chain u, succg(a, u)
denotes the object b that can be found by following u starting from a in S. If no
such object exists, succs(a, u) denotes the special object € that cannot be part
of any constraint system. Let a,b € O4 and v = f; --- f be a feature chain. The
function chain is defined as follows:

chaing(a,b,u) := {(a,c1):f1,...,(ck—1,0):fr}
where the cq1,...,cr_1 € O4 are distinct and fresh in S.

We now give the completion rules for the algorithm.

Definition 10. The following completion rules replace a given constraint sys-
tem S nondeterministically by a constraint system S’. In the following, C' denotes
a concepts, Ra role, f a feature, u; and us feature chains, and a and b object
names from Oy.

RN, R As in Definition 4

Rr3C The role exists restriction rule. .
If a:3R.C € S and there is no b € Oa such that {(a,b):R, b:C} C S
Then S":= SU{(a,b):R, b:C} where b € O4 is fresh in S.



RfAC The feature exists restriction rule (may create forks).
If a:3f.C € S and there is no b € O4 such that {(a,b):f, b:C} C S
Then S":= SU{(a,b):f, b:C} where b € Oy is fresh in S.

RV C The role value restriction rule. .
If a:VR.C € S and there is a b € O 4 such that (a,b): R€ SAb:C ¢ S
Then S":=SU{b:C}

RV C The feature value restriction rule.
If a:Vf.C € S and there is a b € O such that (a,b): f € SAb:C ¢ S
Then S":=SU{b:C}

R| The agreement rule (may create forks).
If a:uilus € S, there is no b € O4 such that succs(a,u1) = succs(a, uz) = b
Then So := S U chaing(a, b, u1) where b € O4 is fresh in S.

S’ := So U chaing,(a, b, us)

Rt The disagreement rule (may create forks).
If a:u1tus € S and there are no by,bs € O 4 such that
succs(a, ur) = by, succs(a, us) = ba and by #bs € S
Then Sop := S U chaing(a, by, u1) and S’ := Sy U chaing,(a, by, us) U {by # b2}
where by, bs € O4 are distinct and fresh in S.

An ALCF constraint system S is called contradictory iff any of the following
clash triggers apply:

— Primitive clash: a:C € S, a:-C €S
— Agreement clash: a Za € S

The algorithm expects the input concept C to be in negation normal form.
Conversion to NNF can be done in linear time by applying the rules given in
Section 2.1 together with the following rules:

- _|(U/1\L'U/2) — Vui.L UVus. L U ugTus
- —|(U,1TUQ) = Vui.L UVus. L Uugdus

We are now ready to give the satisfiability algorithm itself.

Definition 11. The function sat decides the satisfiability of ACCF concepts in
NNF w.r.t. the empty TBox. To decide the satisfiability of the concept C, sat
takes the input {z:C'}.

define procedure sat(S)
S’ := feature-complete(S)
if S’ contains a clash then
return inconsistent

forall a:3R.D € S’, where Risa role, do
Let b be an object name from O 4.
if sat({b: D} U {b:E | a:VR.E € S'}) = inconsistent then

return inconsistent
return consistent



define procedure feature-complete(.S)
while a rule r from {RN, RU, RAC, RV C, R|, R1} is applicable to S do
S := apply(S,r)
return S

The correctness of the described algorithm can be easily seen: It corresponds
to the algorithm given in [14] for deciding satisfiability of ALCF (D) concepts
with all rules and clash triggers concerning the concrete part left out. Since the
original algorithm is correct for ALCF (D), it is obviously also correct for ALCF.
Furthermore, it can easily be verified that, if the original algorithm is started
on an ALCF concept, no concrete domain operators or “concrete objects” are
introduced during the algorithm run, and, hence, neither concrete domain related
completion rules nor concrete domain related clash rules apply. Thus, they can
savely be left away.

Proposition 3. The sat algorithm is sound, complete, and terminates.

We now investigate the extension of sat to TBoxes as described in Section 2.1.
The extended algorithm is called tbsat and takes a pair (A, 7T) as input, where A
is an atomic concept and 7T is an ALCF TBox in simple form. tbsat is also capable
of deciding satisfiability of non-atomic concepts w.r.t. TBoxes (see Section 2.1).
The correctness of tbsat follows from the correctness of the original algorithm
and the fact that a run of tbsat on (A,7T) is equivalent to a run of sat on C,
where C is the result of unfolding A w.r.t. 7 (see Section 2.1). It remains to
determine the runtime of the extended algorithm.

Proposition 4. The algorithm tbsat can be executed in exrponential time.

Proof: Let (A, T) be an input to tbsat. Let n denote || 7]|. It needs to be shown
that the number of rule applications performed by tbsat is exponential in 7.
This is a consequence of the next two claims, since each completion rule can be
applied at most once per constraint (for the RVC rule, this holds for the (a,b) : R
constraints)

1. Let p be the number of objects created during a tbsat run. p is exponential
in n.

2. For each objects a, there may exist at most exponentially many constraints
which refer to a.

In the following, we can savely ignore constraints of the form a # b since they
do not appear in the premise of any completion rule.

The validity of claim 1 can be seen as follows: The recursion depth of tbsat
is bounded by n since the recursion depth of sat is bounded by the role depth
of its input (same argument as in the proof of Proposition 1). In each recursion
step, at most n recursive calls are made. Hence, by (implicit) application of the
Rr3C rule, at most n™ = 27*l9(n) < 2n’ objects are generated. For each such
object, the feature-complete function is called which may generate new objects by



application of the Rf3C, R, and R? rules. feature-complete generates a structure
which has the form of a tree in which some nodes may coincide. Outdegree and
depth of this tree-like structure are bounded by n: The outdegree is bounded by
the number of distinct features in 7 since there may be at most one successor per
feature; the depth of the structure is bounded by n since in sat runs, its depth is
bounded by the role depth (see again the argument in the proof of Proposition 1).
Hence, the total number of objects generated is bounded by 27" % 27" which is
obviously exponential in n.

Concerning point 2, fix an object a in a constraint system S considered by
tbsat. It is easy to see that there may be at most n constraints of the form
a : C—one for each concept definition in 7. Furthermore, there may be at most
n constraints of the form (a,a’) : f, since there cannot be more than one filler
per feature (please note that constraints (a,a’) : R are never explicitly created).
There may, however, be n constraints (a’,a) : f per object a’. Since the number of
objects is exponentially bounded (point 1), the number of (a’,a) : f constraints
is also exponentially bounded. O

Combining Propositions 2 and 4, we obtain the following result.

Theorem 2. Deciding the satisfiability of ACCF concepts w.r.t. acyclic TBoxes
is NEXPTIME-complete.

5 Conclusion

TBoxes are an important component of knowledge representation systems using
description logics. However, for most DLs, the exact complexity of reasoning
with acyclic TBoxes has never been determinded. This paper concentrates on
logics for which satisfiability w.r.t. the empty TBox is in PSPACE and investi-
gates how the presence of acyclic TBoxes influences the complexity of reasoning.
In the first part of the paper, using the logic ALC, it is demonstrated how com-
pletion algorithms for deciding “pure” concept satisfiability can be modified to
take into account TBoxes such that the resulting algorithm can still be exe-
cuted in polynomial space. Using the modified algorithm, it is proved that, for
ALC, satisfiability w.r.t. acyclic TBoxes is in PSPACE. We claim that the given
modification scheme can be applied to a variety of other description logics, too,
and give a rule of thumb for when the resulting algorithm can be executed in
polynomial space.

In the second part, it is proved that, for the logic ALCF, satisfiability
w.r.t. acyclic TBoxes is NEXPTIME-complete. In contrast, satisfiability of “pure”
ALCF concepts is known to be PSPACE-complete and the satisfiability of ALCF
concepts w.r.t. general TBoxes is known to be undecidable. It is suprising that
the complexity of reasoning moves up several steps in the complexity hierarchy
if TBoxes are added. ALCF is a common description logic appearing as a frag-
ment of several more expressive DLs such as, e.g., the temporal logic T L-ALCF
[1] or the logic ALCF(D) for reasoning with concrete domains [14]. Hence, sat-
isfiability w.r.t. acyclic TBoxes is NEXPTIME-hard for these logics, too.



For the description logic ALC(D), similar complexity results as for ALCF can
be obtained. The logic ALC(D) can be parameterized with a so-called concrete
domain D, and, hence, the complexity of reasoning with ALC(D) depends on
the complexity of reasoning with the concrete domain D. On the one hand,
satisfiability of ALC(D) concepts w.r.t. the empty TBox is PSPACE-complete
provided that reasoning with the concrete domain D is in PSPACE [14]. On
the other hand, there exist concrete domains D for which reasoning is in NP
such that satisfiability of ALC (D) concepts w.r.t. acyclic TBoxes is NEXpPTIME-
complete [13].

Acknowledgments I am indebted to Franz Baader who provided most of the
ideas underlying Section 2.1. The work in this paper was supported by the “Foun-
dations of Data Warehouse Quality” (DWQ) European ESPRIT IV Long Term
Research (LTR) Project 22469.

References

1. A. Artale and E. Franconi. A temporal description logic for reasoning about actions
and plans. Journal of Artificial Intelligence Research (JAIR), (9), 1998.

2. F. Baader, H.-J. Biirckert, B. Nebel, W. Nutt, and G. Smolka. On the expressivity
of feature logics with negation, functional uncertainty, and sort equations. Journal
of Logic, Language and Information, 2:1-18, 1993.

3. F.Baader and P. Hanschke. A scheme for integrating concrete domains into concept
languages. In Proceedings of IJCAI-91, pages 452-457, Sydney, Australia, August
24-30, 1991. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1991.

4. F. Baader and B. Hollunder.set A terminological knowledge representation system
with complete inference algorithms. In Processings of PDK’91, volume 567 of
LNAI pages 67-86, Kaiserslautern, Germany, July 1-3, 1991. Springer-Verlag,
Berlin — Heidelberg — New York, 1991.

5. F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi. An empirical
analysis of optimization techniques for terminological representation systems — or:
Making KRIS get a move on. Journal of Applied Intelligence, 4:109-132, 1994.

6. E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer-Verlag, Berlin, 1997.

7. D. Calvanese. Reasoning with inclusion axioms in description logics: Algorithms
and complexity. In Proceedings of ECAI’96, Budapest, Hungary, pages 303-307,
1996.

8. D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expres-
sive description logics. In Handbook of Automated Reasoning. Elsevier Science
Publishers (North-Holland), Amsterdam, 1999. To appear.

9. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134(1):1-58, 10 Apr. 1997.

10. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description
logics. In G. Brewka, editor, Foundation of Knowledge Representation, pages 191—
236. CSLI-Publications, 1996.

11. B. Hollunder and W. Nutt. Subsumption algorithms for concept languages. DFKI
Research Report RR-90-04, German Research Center for Artificial Intelligence,
Kaiserslautern, 1990.



12.

13.

14.

15.

16.

17.

18.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proceedings of LPAR’99, LNCS, Thilisi, Georgia, 1999. Springer-Verlag,
Berlin — Heidelberg — New York, 1999.

C. Lutz. On the complexity of terminological reasoning. LTCS-Report 99-04,
LuFG Theoretical Computer Science, RWTH Aachen, Germany, 1999.

C. Lutz. Reasoning with concrete domains. In Proceedings of IJCAI-99, Stockholm,
Sweden, July 31 — August 6, 1999. Morgan Kaufmann Publ. Inc., San Mateo, CA,
1999.

B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence,
43:235-249, 1990.

B. Nebel. Terminological cycles: Semantics and computational properties. In J. F.
Sowa, editor, Principles of Semantic Networks — Ezxplorations in the Representa-
tion of Knowledge, chapter 11, pages 331-361. Morgan Kaufmann Publ. Inc., San
Mateo, CA, 1991.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1):1-26, 1991.

S. Tobies. A PSpace algorithm for graded modal logic. In Proceedings of CADE-16,
LNCS, 1999. Springer-Verlag, Berlin — Heidelberg — New York, 1999.



