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Abstra
t. TBoxes in their various forms are key 
omponents of knowl-

edge representation systems based on des
ription logi
s (DLs) sin
e they

allow for a natural representation of terminologi
al knowledge. Largely

due to a 
lassi
al result given by Nebel
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, 
omplexity analyses for DLs

have, until now, mostly failed to take into a

ount the most basi
 form

of TBoxes, so-
alled a
y
li
 TBoxes. In this paper, we 
on
entrate on

DLs for whi
h reasoning without TBoxes is PSpa
e-
omplete, and show

that there exist logi
s for whi
h the 
omplexity of reasoning remains in

PSpa
e if a
y
li
 TBoxes are added and also logi
s for whi
h the 
om-

plexity in
reases. This demonstrates that it is ne
essary to take a
y
li


TBoxes into a

ount for 
omplexity analyses.

1 Introdu
tion

A 
ore feature of des
ription logi
s is their ability to represent and reason

about terminologi
al knowledge. Terminologi
al knowledge is stored in so-
alled

TBoxes whi
h mainly 
ome in two 
avours. So-
alled a
y
li
 TBoxes are sets

of 
on
ept de�nitions that 
an be thought of as non-re
ursive ma
ro de�ni-

tions whereas general TBoxes allow to state equivalen
e of arbitrary, 
omplex


on
epts. In this paper, we 
onsider the 
omplexity of reasoning with a
y
li


TBoxes.

1

Surprisingly, although 
omputational 
omplexity of reasoning is a ma-

jor topi
 in des
ription logi
 resear
h, most 
omplexity results available 
on
en-

trate either on reasoning without TBoxes or on reasoning with general TBoxes

(see, e.g.,
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,
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,
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, and
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).

There are two main reasons for this. The �rst reason is that a
y
li
 TBoxes

are a properly subsumed by general TBoxes. However, for many DLs, reasoning

with a
y
li
 TBoxes 
an be expe
ted to be less 
omplex than reasoning with

general TBoxes, and, hen
e, it is interesting to know the exa
t 
omplexity of

reasoning with them. Moreover, there exist des
ription logi
s for whi
h reasoning

with general TBoxes is unde
idable but reasoning with a
y
li
 TBoxes is not.

In this 
ase, it is obviously desirable to determine the 
omplexity of reasoning

with a
y
li
 TBoxes.

1

Hen
e, when talking of TBoxes, we generally refer to a
y
li
 TBoxes unless otherwise

noted.



The se
ond reason 
an be understood histori
ally. Early DL systems used

unfolding to redu
e reasoning with a
y
li
 TBoxes to reasoning with 
on
epts.

Unfolding a 
on
ept C w.r.t. a TBox T means iteratively repla
ing 
on
ept

names in C by their de�nitions given in T . For example, the result of unfolding

the 
on
ept Man u 9married-to:Wife w.r.t. the TBox

fMan

:

= :Female ; Wife

:

= Female uMarriedg

yields :Female u 9married-to:(Female uMarried ). In his seminal paper, Nebel

showed that, in the worst 
ase, unfolding may result in an exponential blow-

up of the 
on
ept size
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. Sin
e the 
omplexity of reasoning with des
ription

logi
s is usually not ExpSpa
e-hard, this result shows that unfolding is not an

adequate means for treating TBoxes. Nebel also showed that in realisti
, pra
ti
al

appli
ations, the worst 
ase is almost never en
ountered. Largely due to these

results (and possibly misunderstandings of these results), 
omplexity analyses

of reasoning with a
y
li
 TBoxes have long been negle
ted: First, one 
ould

(wrongly) think that reasoning with a
y
li
 TBoxes is ne
essarily ExpSpa
e-

hard, and that it is sensible to 
onsider only general TBoxes sin
e this|given the

misunderstanding|does not seem to make things harder. Se
ond, sin
e the worst


ase seems not to o

ur in most pra
ti
al appli
ations, one 
ould be tempted to

think that unfolding is a proper tool for DL systems and that it is not rewarding

to sear
h for better alternatives. Last, if one is only interested in de
idability of


on
epts w.r.t. a
y
li
 TBoxes, unfolding is a te
hnique whi
h is easy to use and

always appli
able.

For many DLs, reasoning without TBoxes is PSpa
e-
omplete (see, e.g.,
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,
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). Although the 
omplexity of reasoning with a
y
li
 TBoxes is rarely

addressed formally, it is \
ommon knowledge" in the DL 
ommunity that, if

reasoning without TBoxes is in PSpa
e, then taking into a

ount TBoxes does

\usually" not in
rease 
omplexity. This knowledge has been exploited for eÆ
ient

pra
ti
al reasoning with TBoxes
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, but has, to the best of our knowledge, never

been used to obtain theoreti
al 
omplexity results. This is even more surprising

sin
e Nebel showed that there exist DLs for whi
h reasoning w.r.t. TBoxes is

harder than reasoning with 
on
epts, only (in Nebel's 
ase, 
omplexity moved

from P to NP)
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.

In this paper, we fo
us on logi
s for whi
h \pure 
on
ept satis�ability" (i.e.,


on
ept satis�ability w.r.t. the empty TBox) is PSpa
e-
omplete and explore

the impa
t of TBoxes on the 
omplexity of the basi
 DL reasoning tasks satis�-

ability and subsumption. It turns out that there exist logi
s for whi
h reasoning

remains in PSpa
e and also DLs for whi
h reasoning gets signi�
antly harder.

In the �rst part of this paper, we fo
us on ALC, the basi
 des
ription logi
 for

whi
h pure 
on
ept satis�ability is in PSpa
e

[
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. The \
ommon knowledge"

mentioned above is used to demonstrate how a pure ALC 
on
ept satis�abil-

ity algorithm using the so-
alled tra
e te
hnique
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an be modi�ed to take

into a

ount TBoxes su
h that the resulting algorithm 
an still be exe
uted in

polynomial spa
e. Roughly speaking, TBoxes have to be 
onverted to a nor-

mal form whi
h allows the tra
ing algorithm to operate ex
lusively on 
on
ept



names (instead of 
on
ept expressions). Using the presented modi�
ation te
h-

nique, it is proved that satis�ability of ALC 
on
epts w.r.t. a
y
li
 TBoxes is

still PSpa
e-
omplete.

In the se
ond part of this paper, we show that this te
hnique does not al-

ways work: there exist des
ription logi
s for whi
h pure 
on
ept satis�ability

is PSpa
e-
omplete but the extension by TBoxes makes reasoning harder. We

identify ALCF , i.e., the extension of ALC with features, feature agreement and

feature disagreement, to be su
h a logi
. Pure 
on
ept satis�ability is known

to be PSpa
e-
omplete for this logi
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. Using a redu
tion of a 
onstrained

version of the domino problem, it is proved that satis�ability of ALCF 
on
epts

w.r.t. TBoxes is NExpTime-hard. Applying the modi�
ation te
hnique from the

�rst part to an existing algorithm, it is shown that it is also in NExpTime and

hen
e NExpTime-
omplete.

2 Des
ription Logi
s

In this se
tion, the des
ription logi
 ALCF is introdu
ed (see also

[

11

℄

). All logi
s


onsidered in this paper are fragments of ALCF .

De�nition 1. Let N

C

, N

R

, and N

F

be disjoint sets of 
on
ept, role, and feature

names. A 
omposition f

1

� � � f

n

of features is 
alled a feature 
hain. The set of

ALCF 
on
epts is the smallest set su
h that

1. every 
on
ept name is a 
on
ept ( atomi
 
on
epts), and

2. if C and D are 
on
epts, R is a role or feature, and u

1

and u

2

are feature


hains, then the following expressions are also 
on
epts: :C , C uD, C tD,

8R:C, 9R:C, u

1

#u

2

, and u

1

"u

2

.

Let A be a 
on
ept name and C be a 
on
ept. Then A

:

= C is a 
on
ept de�-

nition. Let T be a �nite set of 
on
ept de�nitions. A 
on
ept name A dire
tly

uses a 
on
ept name B in T if there is a 
on
ept de�nition A

:

= C in T su
h

that B appears in C . Let uses be the transitive 
losure of \dire
tly uses". T is


alled a
y
li
 if there is no 
on
ept name A su
h that A uses itself in T . If T is

a
y
li
, and, furthermore, the left-hand sides of all 
on
ept de�nitions in T are

unique, then T is 
alled a TBox.

Let R

1

; : : : ; R

n

be features or roles. We will use 8R

1

: : : R

n

:C (9R

1

: : : R

n

:C)

as an abbreviation for 8R

1

:8R

2

: : :8R

n

:C (9R

1

:9R

2

: : : 9R

n

:C). ALCF 
on
epts

whi
h do not 
ontain features are 
alled ALC 
on
epts. Next, we de�ne the

semanti
s of the language introdu
ed.

De�nition 2. An interpretation I = (�

I

; �

I

) is a pair (�

I

; �

I

). �

I

is 
alled

the domain and �

I

the interpretation fun
tion. The interpretation fun
tion maps

{ ea
h 
on
ept name C to a subset C

I

of �

I

,

{ ea
h role name R to a subset R

I

of �

I

��

I

, and

{ ea
h feature name f to a partial fun
tion f

I

from �

I

to �

I

.



If u = f

1

� � � f

k

is a feature 
hain, then u

I

is de�ned as the 
omposition f

I

1

Æ� � �Æf

I

k

of the partial fun
tions f

I

1

; : : : ; f

I

k

. Let the symbols C , D, R, u

1

, and u

2

be de-

�ned as in De�nition 1. The interpretation fun
tion 
an indu
tively be extended

to 
omplex 
on
epts as follows:

(C uD)

I

:= C

I

\ D

I

(C tD)

I

:= C

I

[ D

I

(:C )

I

:= �

I

n C

I

(9R:C )

I

:= fa 2 �

I

j 9b 2 �

I

: (a ; b) 2 R

I

^ b 2 C

I

g

(8R:C )

I

:= fa 2 �

I

j 8b : (a ; b) 2 R

I

! b 2 C

I

g

(u

1

#u

2

)

I

:= fa 2 �

I

j 9b 2 �

I

: u

I

1

(a) = b ^ u

I

2

(a) = bg

(u

1

"u

2

)

I

:= fa 2 �

I

j 9b

1

; b

2

2 �

I

: b

1

6= b

2

^

u

I

1

(a) = b

1

^ u

I

2

(a) = b

2

g

An interpretation I is a model of a TBox T i� it satis�es A

I

= C

I

for all


on
ept de�nitions A

:

= C in T . A 
on
ept C subsumes a 
on
ept D w.r.t. a

TBox T (written D �

T

C) i� D

I

� C

I

for all models I of T . A 
on
ept C is

satis�able w.r.t. a TBox T i� there exists a model I of T su
h that C

I

6= ;.

Subsumption 
an be redu
ed to satis�ability sin
e D �

T

C i� the 
on
ept

D u :C is unsatis�able w.r.t. T . Satis�ability 
an be redu
ed to subsumption

sin
e C is unsatis�able w.r.t. T i� C �

T

?, where ? is an abbreviation for

A u :A.

Sometimes, generalized 
on
ept de�nitions 
alled \general 
on
ept in
lu-

sions" (GCIs) are 
onsidered. A GCI has the form C v D , where both C and

D are (possibly 
omplex) 
on
epts. An interpretation I is a model for a GCI

C v D i� C

I

� D

I

. TBoxes 
ontaining GCIs are 
alled generalized. In this

paper, we will not admit generalized TBoxes unless expli
itly mentioned.

2.1 Extending Completion Algorithms

Most satis�ability algorithms for des
ription logi
s are so-
alled 
ompletion algo-

rithms, whi
h 
he
k the satis�ability of 
on
epts by trying to expli
itly 
onstru
t

a 
anoni
al model. Completion algorithms are des
ribed by a rule set and a strat-

egy to apply these rules. The rules operate on 
onstraint systems, i.e., partial

des
riptions of models. Constraints are 
omprised of obje
ts, 
on
epts and roles.

In the following, we will present a 
ompletion algorithm for de
iding satis�ability

of ALC 
on
epts w.r.t. the empty TBox whi
h was �rst des
ribed in
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. We

will then show how this algorithm 
an be modi�ed to handle TBoxes. Both the

original algorithm and its extension 
an be exe
uted in polynomial spa
e. The

modi�
ation s
heme presented is also appli
able to a variety of other des
ription

logi
s.

The algorithm requires ALC 
on
epts to be in negation normal form. A


on
ept is in negation normal form (NNF ) i� negation o

urs only in front of



atomi
 
on
epts. It is easy to see that any ALC 
on
ept 
an be 
onverted into

an equivalent one in NNF in linear time by exhaustively applying the following

rewrite rules:

{ :(C u D)! (:C t :D), :(C t D)! (:C u :D), ::C ! C

{ :(9R:C )! 8R::C , :(8R:C )! 9R::C

De�nition 3. Let O

A

be a set of obje
t names. For a; b 2 O

A

, an ALC 
on
ept

C, and R 2 N

R

, the expressions a :C and (a ; b) :R are ALC 
onstraints. A �nite

set of 
onstraints S is 
alled an ALC 
onstraint system. Interpretations 
an be

extended to 
onstraint systems by mapping every obje
t name to an element of

�

I

. The unique name assumption is not imposed, i.e. a

I

= b

I

may hold even

if a and b are distin
t obje
t names. An interpretation I satis�es a 
onstraint

a :C i� a

I

2 C

I

; and (a ; b) :R i� (a

I

; b

I

) 2 R

I

:

An interpretation is a model of a 
onstraint system S i� it satis�es all 
on-

straints in S.

To de
ide the satis�ability of anALC 
on
ept C in NNF (w.r.t. the empty TBox),

the algorithm starts with the 
onstraint system S

0

:= fa : Cg and repeatedly

applies 
ompletion rules. If a 
onstraint system is found whi
h does not 
ontain a


ontradi
tion and to whi
h no 
ompletion rule is appli
able, then this 
onstraint

system has a model, whi
h implies the existen
e of a model for C w.r.t. the

empty TBox. If no su
h 
onstraint system 
an be found, C is unsatis�able. One

of the 
ompletion rules is nondeterministi
, i.e., there is more than one possible

out
ome of a rule appli
ation. Hen
e, the des
ribed 
ompletion algorithm is a

nondeterministi
 de
ision pro
edure, i.e., it returns satis�able i� there is a way

to make the nondeterministi
 de
isions su
h that a positive result is obtained.

De�nition 4. The following 
ompletion rules repla
e a given 
onstraint system

S nondeterministi
ally by a 
onstraint system S

0

. S

0

is 
alled a des
endant of

S. An obje
t a 2 O

A

is 
alled fresh in S if a is not used in S. In the following,

C and D denote 
on
epts, R a role, and a and b obje
t names from O

A

.

Ru The 
onjun
tion rule.

If a :C u D 2 S; fa :C ; a :Dg 6� S, then S

0

:= S [ fa :C ; a :Dg

Rt The (nondeterministi
) disjun
tion rule.

If a :C tD 2 S; fa :C ; a :Dg\S = ;, then S

0

:= S [fa :Cg _ S

0

:= S [fa :Dg

R9C The exists restri
tion rule.

If a :9R:C 2 S; and there is no b 2 O

A

su
h that f(a; b) :R; b :C g � S,

then S

0

:= S [ f(a ; b) :R ; b :Cg where b 2 O

A

is fresh in S.

R8C The value restri
tion rule.

If a :8R:C 2 S and there is a b 2 O

A

su
h that (a; b) : R 2 S ^ b : C =2 S,

then S

0

:= S [ fb :C g

A 
onstraint system S is 
alled 
ontradi
tory i� fa : C; a : :Cg � S for some



de�ne pro
edure sat(S)

while a rule r from fRu;Rtg is appli
able to S

S := apply(S; r)

if S is 
ontradi
tory then

return unsatis�able

forall a :9R:D 2 S do

Let b be an obje
t name from O

A

.

if sat(fb :Dg [ fb :E j a :8R:E 2 Sg) = unsatis�able then

return unsatis�able

return satis�able

Fig. 1. The algorithm for de
iding satis�ability of ALC 
on
epts w.r.t. the empty

TBox.

a 2 O

A

and C 2 N

C

. A 
onstraint system to whi
h no 
ompletion rules are

appli
able is 
alled 
omplete.

Let apply be a fun
tion whi
h takes a 
onstraint system S and a 
ompletion rule

r as argument, applies r on
e to an arbitrary set of 
onstraints in S mat
hing r's

premise and returns the resulting 
onstraint system. The algorithm for de
iding

satis�ability of ALC 
on
epts is given in Figure 1. It takes a 
onstraint system

fx : Cg as input and returns satis�able if C is satis�able w.r.t. the empty TBox

and unsatis�able otherwise. In order to des
ribe the spa
e requirements of the

sat algorithm, a formal notion of the size of 
on
epts is introdu
ed.

De�nition 5. For a 
on
ept C, the size of C (denoted by jjCjj) is de�ned as

the number of symbols (operators, 
on
ept and role names) it 
ontains. For a

TBox T , the size of T (denoted by jjT jj) is de�ned as the sum of the sizes of

the right-hand sides of all 
on
ept de�nitions in T . The role depth of a 
on
ept

C is the nesting depth of exists and value restri
tions in C.

In

[
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, it is proved that the des
ribed algorithm is 
orre
t and 
an be exe
uted

in polynomial spa
e.

2

The latter is a 
onsequen
e of the following fa
ts:

{ The re
ursion depth of sat is bounded by the role depth.

{ In ea
h re
ursion step, the 
onstraints in the 
onstraint system S involve a

single obje
t, only. For ea
h obje
t, there 
an be at most O(jjCjj) 
onstraints.

The size of ea
h 
onstraint is bounded by jjCjj.

As already argued in the introdu
tion, using unfolding to generalize sat to

TBoxes is not a good 
hoi
e sin
e the spa
e requirements of the resulting al-

gorithm would no longer be polynomial. However, there exists a better strategy

for dealing with TBoxes, whi
h is des
ribed in the following.

In order to allow for a su

in
t de�nition of the extended algorithm, we need

to introdu
e a spe
ial form of TBoxes.

2

S
hmidt-S
hau� and Smolka present the algorithm in a di�erent form. In the form

presented here, the algorithm �rst appeared in

[

4

℄

.



De�nition 6. A TBox T is 
alled simple i� it satis�es the following require-

ments:

{ The right-hand side of ea
h 
on
ept de�nition in T 
ontains exa
tly one

operator.

{ If the right hand side of a 
on
ept de�nition in T is :A, then A does not

o

ur on the left hand side of any 
on
ept de�nition in T .

The following lemma shows that restri
ting ourselves to simple TBoxes is not a

limitation.

Lemma 1. Any TBox T 
an be 
onverted into a simple one T

0

in linear time,

su
h that T

0

is equivalent to T in the following sense: Any model for T

0


an be

extended to a model for T and vi
e versa.

Proof: The 
onversion 
an be done in three steps as follows.

1. eliminate non-atomi
 negation. (i) 
onvert the right-hand sides of all 
on
ept

de�nitions in T to NNF. (ii) For ea
h de�nition A

:

= C in T , add a new

de�nition A

:

= nnf(:C), where nnf(:C) denotes the result of 
onverting :C

to NNF. (iii) For every atomi
 
on
ept A o

urring on the left-hand side of

a 
on
ept de�nition in T , repla
e every o

urren
e of :A in T with A.

2. break up 
on
epts. Exhaustively apply the following rewrite rules. In the

following, C denotes a non-atomi
 
on
ept and D an arbitrary 
on
ept.

{ A

:

= C uD ! A

:

= A

0

uD; A

0

:

= C (and analogous for t)

{ A

:

= D u C ! A

:

= D u A

0

; A

0

:

= C (and analogous for t)

{ A

:

= 9R:C ! A

:

= 9R:A

0

; A

0

:

= C (and analogous for 8)

In all 
ases, A

0

is a 
on
ept name not yet used in T . Please note that if a

de�nition A

:

= :C is in T , then, due to the �rst step, C is atomi
 and does

not o

ur on the left-hand side of a 
on
ept de�nition.

3. eliminate redundant names. For ea
h 
on
ept de�nition A

:

= A

0

, where both

A and A

0

are atomi
, repla
e every o

urren
e of A

0

in T with A. Remove

the de�nition from T .

The 
orre
tness of the above pro
edure is easily seen. The loosened form of

equivalen
e is ne
essary sin
e T

0


ontains additional atomi
 
on
epts, and, fur-

thermore, some \redundant" atomi
 
on
epts from T may not exist in T

0

. Let T

be a TBox and T

0

be the result of applying the above pro
edure. The �rst step


an be performed in linear time sin
e NNF 
onversion needs linear time and the

number of 
on
ept de�nitions is at most doubled. Sin
e the number of rewrite

rule appli
ations in the se
ond step is bounded by the number of operators in

T , this step 
an also be performed in linear time. This obviously also holds for

the third step. ut

From the above result, it immediately follows that, for any TBox T , there

exists an equivalent simple one T

0

su
h that jjT

0

jj is of order O(jjT jj). We will

now modify the sat algorithm to de
ide the satis�ability of an atomi
 
on
ept

A w.r.t. a simple TBox T . Using the modi�ed algorithm, it is also possible

to de
ide the satis�ability of non-atomi
 
on
epts C w.r.t. TBoxes T : Add a



de�nition A

:

= C to T (where A is a new 
on
ept name in T ), 
onvert the

resulting TBox to simple form and start the algorithm with (A; T

0

) where T

0

is

the newly obtained TBox. The modi�ed algorithm works on 
onstraint systems

of a restri
ted form. In 
onstraints of the form a : C, C must be a 
on
ept name

(whi
h may be the left-hand side of a 
on
ept de�nition in T ).

De�nition 7. Let A be an atomi
 
on
ept and T be a simple ALC TBox. Mak-

ing use of the existing sat algorithm, an algorithm tbsat, whi
h returns satis�able

if A is satis�able w.r.t. T and unsatis�able otherwise, is given as follows.

1. Modify the 
ompletion rules of sat as follows: In the premise of ea
h 
om-

pletion rule, substitute \a : C 2 S" by \a : A 2 S and A

:

= C 2 T ". E.g.,

in the 
onjun
tion rule, \a : C uD 2 S" is repla
ed by \a : A 2 S and A

:

=

C uD 2 T ".

2. Start the sat algorithm with the initial 
onstraint system fx : Ag, where x is

an arbitrary obje
t name. Use the modi�ed rules for the sat run.

Unlike unfolding, the des
ribed algorithm has the advantage that it 
an be exe-


uted in polynomial spa
e.

Proposition 1. The tbsat algorithm is sound and 
omplete and 
an be exe
uted

in polynomial spa
e.

Proof: Let (A; T ) be an input to tbsat and let C be the result of unfolding A

w.r.t. T . Please note that C is in NNF sin
e T is in simple form. The 
orre
tness

of tbsat 
an be proved by showing that a run of tbsat on input (A; T ) yields the

same result as a run of sat on input C. This, in turn, 
an be proved by indu
tion

over the number of re
ursion steps. It is important to note that, at every point

in the 
omputation where a nondeterministi
 de
ision has to be made (de
iding

whi
h rule to apply or de
iding whi
h 
onsequen
e of the Rt rule to use), the

available 
hoi
es are exa
tly the same for both algorithms.

It is an immediate 
onsequen
e of the following fa
ts that the tbsat algorithm


an be exe
uted in polynomial spa
e.

{ The re
ursion depth of tbsat is bounded by jjT jj. This is the 
ase sin
e (i) runs

of tbsat on (A; T ) are equivalent to runs of sat on C and (ii) the role depth

of C is bounded by jjT jj.

3

The se
ond point 
an be seen as follows: Assume

that the role depth of C ex
eeds jjT jj. This means that the right hand side

of a 
on
ept de�nition A

0

:

= 9R:D or A

0

:

= 8R:D in T 
ontributes to the role

depth more than on
e. From this, however, it follows that unfolding D w.r.t.

T yields a 
on
ept 
ontaining A

0

whi
h is a 
ontradi
tion to the a
y
li
ity

of T .

{ In ea
h re
ursion step, the 
onstraints in the 
onstraint system S involve a

single obje
t, only. The number of 
onstraints per obje
t is bounded by the

number of de�nitions in T and the maximum size of 
onstraints is 
onstant.

ut

3

I.e., although unfolding may lead to an exponential blow-up in 
on
ept size

[

15

℄

, the

role depth is \preserved".



The following theorem is an immediate 
onsequen
e of the above result.

Theorem 1. De
iding satis�ability of ALC 
on
epts w.r.t. a
y
li
 TBoxes is

PSpa
e-
omplete.

The use of the presented modi�
ation s
heme is not limited to ALC. In order

to give an intuition of when the proposed modi�
ation 
an be applied to yield

a PSpa
e algorithm, let us summarize why the modi�
ation is su

essful in the


ase of ALC. As a prerequisite, a 
ompletion algorithms is needed whi
h uses

tra
ing, i.e., whi
h performs depth-�rst sear
h over role su

essors. In the 
ase of

ALC, the re
ursion depth of this algorithm is bounded by the role depth of the

input 
on
ept C. As opposed to the 
on
ept size, the role depth is \preserved

by unfolding", i.e., if a 
on
ept C is unfolded w.r.t. a TBox T , then the role

depth of the unfolded 
on
ept C

0

is linear in jjCjj+ jjT jj. This fa
t is used to

argue that the re
ursion depth of the modi�ed algorithm is linear in the size of

its input.

The other important point in the proof of Proposition 1 is that the ALC

tra
ing algorithm 
onsiders 
onstraints for only one obje
t per re
ursion step

and so does the modi�ed algorithm. What is important here is, again, that

the number of obje
ts 
onsidered in a single re
ursion step is des
ribable by a

fun
tion whi
h is \preserved by unfolding" (the 
onstant 1 in the 
ase of ALC).

For a formalization of \preservation by unfolding", the notion of a u-stable

fun
tion (where \u" stands for unfolding) is introdu
ed. A fun
tion f mapping


on
epts to natural numbers is 
alled u-stable w.r.t. a des
ription logi
 L i� the

following holds: There exists an integer k su
h that, for all atomi
 
on
epts A

and all L TBoxes T , if C is the result of unfolding A w.r.t. T , then f(C) is of

order O(jjT jj

k

). As was shown in the proof of Proposition 1, the role-depth of


on
epts is an example for a u-stable fun
tion. An example for a fun
tion whi
h

is not u-stable is the size of 
on
epts (as Nebel proved

[

15

℄

). A rule of thumb


an now be formulated as follows:

The des
ribed modi�
ation 
an be applied to 
ompletion algorithms A

whi
h de
ide satis�ability for a logi
 L w.r.t. the empty TBox. Assume

that A performs depth-�rst sear
h over role-su

essors and 
an be exe-


uted in polynomial spa
e. If A expands the 
onstraints of �(C ) obje
ts

per re
ursion step and A's re
ursion depth is bounded by �(C ), where

C is the input 
on
ept and � and � are fun
tions whi
h are u-stable

w.r.t. L, then the modi�ed algorithm 
an be expe
ted to be exe
utable in

polynomial spa
e.

This rule of thumb 
an, e.g., be applied to the des
ription logi
 ALCNR

(see

[

9

℄

). ALCNR extends ALC by (unquali�ed) number restri
tions

4

and role


onjun
tion.

Conje
ture. De
iding the satis�ability of ALCNR 
on
ept w.r.t. TBoxes is a

PSpa
e-
omplete problem.

4

We follow Donini et al. and assume unary 
oding of numbers.



Why is the rule of thumb appli
able to ALCNR? Donini et al.

[

9

℄

give a PSpa
e

algorithm for de
iding satis�ability of ALCNR 
on
epts w.r.t. empty TBoxes

whi
h performs depth-�rst sear
h over role su

essors. Its re
ursion depth is

bounded by the role depth of the input 
on
ept C. In ea
h re
ursion step, 
on-

straints for at most ex(C) + 1 obje
ts are expanded where ex(C) is the number

of distin
t existentially quanti�ed sub
on
epts of C. It is easy to prove that

ex(�) is a u-stable fun
tion. Assume that C is the result of unfolding an atomi



on
ept A w.r.t. a TBox T and that ex(C) � jjT jj. It follows that there exists

a 
on
ept de�nition B

0

:

= 9R:B

1

in T su
h that B

0

uses an atomi
 
on
ept B

2

(where possibly B

1

= B

2

) and that B

2


an be repla
ed by di�erent 
on
epts

during unfolding. This, however, is a 
ontradi
tion to the de�nition of TBoxes,

sin
e the uniqueness of left-hand sides of 
on
ept de�nitions is mandatory.

3 ALCF and TBoxes: The Lower Bound

Given the modi�
ation s
heme for satis�ability algorithms des
ribed in the pre-

vious se
tion, it is a natural question to ask if there are any relevant des
ription

logi
s for whi
h reasoning w.r.t. the empty TBox is in PSpa
e but reasoning

w.r.t. TBoxes is not. In the following, we will answer this question to the af-

�rmative by showing that the hardness of reasoning with the logi
 ALCF

[

11

℄

moves from PSpa
e to NExpTime if TBoxes are admitted.

A domino problem is given by a �nite set of tile types. All tile types are of

the same size, ea
h type has a quadrati
 shape and 
olored edges. Of ea
h type,

an unlimited number of tiles is available. The problem is to arrange these tiles

to 
over a torus

5

of exponential size without holes or overlapping, su
h that

adja
ent tiles have identi
al 
olors on their 
ommon edge (rotation of the tiles

is not allowed). Please note that this is a restri
ted version of the (unde
idable)

general domino problem where a tiling of the �rst quadrant of the plane is asked

for.

De�nition 8. Let D = (D;H; V ) be a domino system, where D is a �nite set of

tile types and H;V � D�D. Let U(s; t) be the torus Z

s

�Z

t

, where Z

n

denotes

the set f0; : : : ; n� 1g. Let w = w

0

; : : : ; w

n�1

be an n-tuple of tiles (with n � s).

We say that D tiles U(s; t) with initial 
ondition w i� there exists a mapping

� : U(s; t)! D su
h that for all (x; y) 2 U(s; t):

{ if �(x; y) = d and �(x �

s

1; y) = d

0

then (d; d

0

) 2 H

{ if �(x; y) = d and �(x; y �

t

1) = d

0

then (d; d

0

) 2 V

{ �(i; 0) = w

i

for 0 � i < n.

where �

n

denotes addition modulo n.

B�orger et al. show that it is NExpTime-
omplete to de
ide if, for a given domino

system D and a given n-tuple w, D tiles U(2

n

; 2

n

) with initial 
ondition w

[

6

℄

. In the following, we will redu
e this domino problem to satis�ability of

ALCF 
on
epts w.r.t. TBoxes. We will �rst give an informal explanation of

5

i.e., a re
tangular grid whose edges are \glued" together
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Fig. 2. The ALCF redu
tion TBox T [D; w; n℄: Tree de�nition. Substitute (�; �; 
) by

(f; g; y) or (u; v; x).

how the redu
tion works and then formally prove its 
orre
tness. For the sake

of readability, the redu
tion TBox T [D; w; n℄ is split into two �gures. Models

of the redu
tion TBox represent solutions of instan
es of the domino problem.

To be more pre
ise, models of C w.r.t. T [D; w; n℄ (Figure 3) en
ode a grid of

size 2

n

whi
h has the form of a torus and is properly tiled by D. The nodes

of the grid are represented by domain obje
ts, horizontal edges are represented

by the feature x and verti
al edges by the feature y. Please note that the grid

may \
ollapse", i.e., the 2

n

�2

n

nodes are not ne
essarily distin
t. Nevertheless,

models of C w.r.t. T [D; w; n℄ de�ne a tiling of the full 2

n

� 2

n

torus.

The �rst task is to enfor
e two 
y
li
 feature 
hains of length 2

n

, whi
h will

be edges of the grid. This is done by de�ning a binary tree of depth n whose

leaf nodes are 
onne
ted by a 
y
li
 feature 
hain. The 
orresponding 
on
ept

Tree

0


an be found in Figure 2. Please note that sin
e two trees are needed, the

TBox in the Figure has to be instantiated twi
e, where (�; �; 
) is substituted

by (f; g; y) and (u; v; x), respe
tively. The �rst instantiation yields a y 
hain (of

length 2

n

) and the se
ond one an x 
hain.

Consider the 
on
ept C in Figure 3, whi
h glues together all the ne
essary

building parts. It refers to the Tree

0


on
ept to build up two trees and it enfor
es

the identi�
ation of the \beginning" nodes in the two (
y
li
) leaf 
hains. The

next task is to build the remaing grid whi
h is done by the Grid

i


on
epts in

Figure 3. The features d

1

; : : : ; d

n

are diagonals in the grid (ea
h d

i

spans 2

i�1

\grid 
ells") and play a 
entral rôle in the grid de�nition. The use of these

diagonals allows the de�nition of the (exponentially sized) grid by a TBox of

polynomial size. First observe that ea
h obje
t on the two 
y
li
 feature 
hains

(row 0 and 
olumn 0 of the torus to be de�ned) is in the extension of Grid

n

and hen
e also of Grid

0

. Be
ause of this, ea
h obje
t on the 
hains has d

1

, x,

and y �llers su
h that the d

1

�ller 
oin
ides with the xy and yx �ller. Together

with the 
y
li
ity of the initial feature 
hains, this properly de�nes row 1 and
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Fig. 3. The ALCF redu
tion TBox T [D; w; n℄: Grid de�nition and tiling.


olumn 1 of the torus. Sin
e the obje
ts on the initial 
hains are in the extension

of Grid

1

, the obje
ts on row 1 and 
olumn 1, whi
h are d

1

�llers of obje
ts

on the initial 
hains, are in the extension of Grid

0

. Hen
e, we 
an repeat the

argument for row/
olumn 1 and 
on
lude the proper de�nition of row/
olumn

2. Now observe that the obje
ts on row/
olumn 2 are d

2

�llers of the obje
ts on

the initial 
hain. Hen
e, they are in the extension of both the Grid

0

and Grid

1


on
ept and we 
an repeat the entire argument from above to derive the existen
e

of rows/
olumns 3 and 4. This \doubling" 
an be repeated n times be
ause of

the existen
e of the features d

1

; : : : ; d

n

and yields rows/
olumns 0; : : : ; 2

n

of the

torus. The 
y
li
ity of the initial feature 
hains ensures that the edges of the

grid are properly \glued" to form a torus, i.e., that row/
olumn 2

n


oin
ides

with row/
olumn 0. Figure 4 shows a 
lipping from a grid as enfor
ed by the

redu
tion TBox.

The grid represents the stru
ture to be tiled. The �nal task is to de�ne the

tiling itself. Domino types are represented by atomi
 
on
epts D

d

. Be
ause of

the de�nition of Grid

0

, ea
h node in the grid is in the extension of the 
on
ept

Tile. The Tile 
on
ept ensures that, horizontally as well as verti
ally, the tiling


ondition is satis�ed (we use C ! D as an abbreviation for :C t D). The Init


on
ept enfor
es the initial 
ondition w. In the following, a formal proof of the


orre
tness of the redu
tion is given.

Proposition 2. Satis�ability and subsumption of ALCF 
on
epts w.r.t. TBoxes

is NExpTime-hard.
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Fig. 4. Clipping of a model of the redu
tion 
on
ept C .

Proof:

()) Let I be a model of C w.r.t. T [D; w; n℄. To prove that D tiles U(2

n

; 2

n

)

with initial 
ondition w, it needs to be shown that there is a mapping � as

introdu
ed in De�nition 8.

As argued above, there exist 2

n

�2

n

(not ne
essarily distin
t) obje
ts a

i;j

in

�

I

whi
h form a torus w.r.t. the features x and y, i.e., x

I

(a

i;j

) = a

(i�

2

n

1);j

and y

I

(a

i;j

) = a

i;(j�

2

n

1)

. All obje
ts in the torus are in the extension of the

Tile 
on
ept. This 
on
ept en
odes the properties required for � in De�ni-

tion 8. Hen
e, � 
an be de�ned as follows: � := f(i; j; d) j a

i;j

2 D

d

g. This

fun
tion is well-de�ned sin
e the Tile 
on
ept ensures that none of the a

i;j

is in the extension of two 
on
epts D

d

and D

d

0

, where d 6= d

0

.

(() Assume that the domino system D tiles U(2

n

; 2

n

) with initial 
ondition w

(whi
h is of length n). This means that there exists a mapping � as de�ned

in De�nition 8. In the following, we de�ne a model for C w.r.t. T [D; w; n℄.

The model has the form as dis
ussed above: There are two binary trees

of depth n whose leaf nodes are 
onne
ted by a feature 
hain. These two


hains of length 2

n

are edges of a grid of size 2

n

� 2

n

. The edges of the

grid are \glued" together. Let the interpretation I be de�ned as follows:

�

I

= fa

i;j

j 0 � i; j < 2

n

g [ fb

i;j

; 


i;j

j 0 � i < n; 0 � j < 2

i

g

f

I

(b

0;0

) := b

1;0

; g

I

(b

0;0

) := b

1;1

; u

I

(b

0;0

) := 


1;0

; v

I

(b

0;0

) := 


1;1

8i; j where 0 < i < n� 1; 0 � j < 2

i

:

f

I

(b

i;j

) := b

(i+1);(2j)

; g

I

(b

i;j

) := b

(i+1);(2j+1)

u

I

(


i;j

) := 


(i+1);(2j)

; v

I

(


i;j

) := 


(i+1);(2j+1)

80 � i < 2

n�1

:

f

I

(b

(n�1);i

) := a

0;(2i)

; g

I

(b

(n�1);i

) := a

0;(2i+1)

;

u

I

(


(n�1);i

) := a

(2i);0

; v

I

(


(n�1);i

) := a

(2i+1);0



80 � i; j < 2

n

: x

I

(a

i;j

) := a

(i�

2

n

1);j

; y

I

(a

i;j

) := a

i;(j�

2

n

1)

80 � i; j < 2

n

; 1 � k � n : d

I

k

(a

i;j

) := a

(i�

2

n

2

k�1

);(j�

2

n

2

k�1

)

8d 2 D : D

I

d

:= fa

x;y

j �(x; y) = dg

It is straightforward to verify that I is in fa
t a model for C w.r.t. T [D; w; n℄:

The b

i;j

obje
ts form a tree of depth n where edges are labelled with f and

g. The n-th level of the tree 
onsists of the obje
ts a

0;0

; : : : ; a

0;2

n

. Similarly,

the 


i;j

obje
ts form a u; v-tree where the n-th level 
onsists of the obje
ts

a

0;0

; : : : ; a

2

n

;0

and the root is the obje
t b

0;0

. The a

i;j

obje
ts make up a

grid w.r.t. the features x and y (and diagonals d

i

) whi
h satis�es the Tile


on
ept sin
e the extension of the D

d


on
epts is de�ned through the tiling

� . Hen
e, it 
an be 
on
luded that the obje
t b

0;0

is an instan
e of C w.r.t.

T [D; w; n℄.

It is easy to verify that the size of T [D; w; n℄ is of order O(n

2

). Hen
e, the

redu
tion 
an be performed in polynomial time. ut

In 
ontrast to agreements on roles (
alled \role value maps"), agreements on

features are frequently believed to \not harm" w.r.t. de
idability and 
omplexity.

The presented redu
tion indi
ates that this is not always the 
ase. Furthermore, if

TBoxes are extended with GCIs, the given redu
tion 
an easily be extended to an

unde
idability proof. Consider the following TBox:

D

:

= >

> v xy#yx

> v Tile

where Tile is de�ned as in Figure 3. It indu
es a (possibly) in�nite grid and

satis�ability of D implies a 
omplete tiling of the �rst quadrant.

6

Hen
e, de
id-

ability of ALCF with GCIs 
ontradi
ts the unde
idability of the general domino

problem. For the redu
tion TBox, only the operators atomi
 negation, 
onjun
-

tion, disjun
tion, feature agreement and existential quanti�
ation over features

is required. The result just obtained is already known in feature logi
 (see

[

2,

Theorem 6.3

℄

, where it was proved by a redu
tion of the word problem for �nitely

presented groups).

4 ALCF and TBoxes: The Upper Bound

In order to prove that the satis�ability of ALCF 
on
epts w.r.t. TBoxes is a

NExpTime-
omplete problem, it remains to be shown that the satis�ability of

ALCF 
on
epts w.r.t. TBoxes 
an be de
ided in nondeterministi
 exponential

time.

6

The indu
ed grid may also have the form of a torus sin
e we don't enfor
e distin
t

nodes. In this 
ase, however, a tiling of the torus indu
es a periodi
 tiling of the �rst

quadrant.



In

[

14

℄

, a 
ompletion algorithm for de
iding satis�ability of ALCF(D) 
on-


epts w.r.t. empty TBoxes is given whi
h 
an be exe
uted in polynomial spa
e.

ALCF(D) is the extension of ALCF by so-
alled 
on
rete domains. By remov-

ing the 
ompletion rules and 
lash 
onditions dealing with the 
on
rete domain,

we will adapt this algorithm to ALCF . Furthermore, we will show that an ex-

tension of the obtained algorithm to TBoxes as des
ribed in Se
tion 2.1 
an be

exe
uted in exponential time. The algorithm operates on 
onstraint systems of

the following form.

De�nition 9. Let f be a feature and a and b elements of O

A

. Then, the follow-

ing expressions are ALCF 
onstraints:

All ALC 
onstraints; (a ; b) : f ; a 6= b

A �nite set of ALCF 
onstraints is 
alled an ALCF 
onstraint system. An in-

terpretation for ALCF 
onstraint systems is de�ned identi
ally to interpretations

for ALC 
onstraint systems. An interpretation satis�es a 
onstraint

(a ; b) : f i� (a

I

; b

I

) 2 f

I

and

a 6= b i� a

I

6= b

I

:

A 
onstraint system S is said to 
ontain a fork (for a feature f ) if it 
ontains the

two 
onstraints (a ; b) : f and (a ; 
) : f . A fork 
an be eliminated by repla
ing all

o

urren
es of 
 in S with b. During rule appli
ation, it is assumed that forks are

eliminated as soon as they appear (as an integral part of the rule appli
ation)

with the proviso that newly generated obje
t are repla
ed by older ones.

Before the algorithm itself is des
ribed, we introdu
e the set of 
ompletion

rules. In order to provide a su

in
t des
ription of the rules, two auxiliary fun
-

tions need to be de�ned. For an obje
t a 2 O

A

and a feature 
hain u, su



S

(a ; u)

denotes the obje
t b that 
an be found by following u starting from a in S. If no

su
h obje
t exists, su



S

(a ; u) denotes the spe
ial obje
t � that 
annot be part

of any 
onstraint system. Let a; b 2 O

A

and u = f

1

� � � f

k

be a feature 
hain. The

fun
tion 
hain is de�ned as follows:


hain

S

(a ; b; u) := f(a; 


1

) : f

1

; : : : ; (


k�1

; b) : f

k

g

where the 


1

; : : : ; 


k�1

2 O

A

are distin
t and fresh in S.

We now give the 
ompletion rules for the algorithm.

De�nition 10. The following 
ompletion rules repla
e a given 
onstraint sys-

tem S nondeterministi
ally by a 
onstraint system S

0

. In the following, C denotes

a 
on
epts,

^

R a role, f a feature, u

1

and u

2

feature 
hains, and a and b obje
t

names from O

A

.

Ru , Rt As in De�nition 4

Rr9C The role exists restri
tion rule.

If a :9

^

R:C 2 S and there is no b 2 O

A

su
h that f(a; b) :

^

R; b :C g � S

Then S

0

:= S [ f(a ; b) :

^

R ; b :C g where b 2 O

A

is fresh in S.



Rf9C The feature exists restri
tion rule (may 
reate forks).

If a :9f :C 2 S and there is no b 2 O

A

su
h that f(a ; b) : f ; b :C g � S

Then S

0

:= S [ f(a ; b) : f ; b :Cg where b 2 O

A

is fresh in S.

Rr8C The role value restri
tion rule.

If a :8

^

R:C 2 S and there is a b 2 O

A

su
h that (a; b) :

^

R 2 S ^ b : C =2 S

Then S

0

:= S [ fb :C g

Rf8C The feature value restri
tion rule.

If a :8f:C 2 S and there is a b 2 O

A

su
h that (a; b) : f 2 S ^ b : C =2 S

Then S

0

:= S [ fb :C g

R# The agreement rule (may 
reate forks).

If a :u

1

#u

2

2 S, there is no b 2 O

A

su
h that su



S

(a ; u

1

) = su



S

(a ; u

2

) = b

Then S

0

:= S [ 
hain

S

(a ; b; u

1

) where b 2 O

A

is fresh in S.

S

0

:= S

0

[ 
hain

S

0

(a ; b; u

2

)

R" The disagreement rule (may 
reate forks).

If a :u

1

"u

2

2 S and there are no b

1

; b

2

2 O

A

su
h that

su



S

(a ; u

1

) = b

1

; su



S

(a ; u

2

) = b

2

and b

1

6= b

2

2 S

Then S

0

:= S [ 
hain

S

(a ; b

1

; u

1

) and S

0

:= S

0

[ 
hain

S

0

(a ; b

2

; u

2

) [ fb

1

6= b

2

g

where b

1

; b

2

2 O

A

are distin
t and fresh in S.

An ALCF 
onstraint system S is 
alled 
ontradi
tory i� any of the following


lash triggers apply:

{ Primitive 
lash: a :C 2 S; a ::C 2 S

{ Agreement 
lash: a 6= a 2 S

The algorithm expe
ts the input 
on
ept C to be in negation normal form.

Conversion to NNF 
an be done in linear time by applying the rules given in

Se
tion 2.1 together with the following rules:

{ :(u

1

#u

2

)! 8u

1

:? t 8u

2

:? t u

1

"u

2

{ :(u

1

"u

2

)! 8u

1

:? t 8u

2

:? t u

1

#u

2

We are now ready to give the satis�ability algorithm itself.

De�nition 11. The fun
tion sat de
ides the satis�ability of ALCF 
on
epts in

NNF w.r.t. the empty TBox. To de
ide the satis�ability of the 
on
ept C , sat

takes the input fx :C g.

de�ne pro
edure sat(S)

S

0

:= feature-
omplete(S)

if S

0


ontains a 
lash then

return in
onsistent

forall a :9

^

R:D 2 S

0

, where

^

R is a role, do

Let b be an obje
t name from O

A

.

if sat(fb :Dg [ fb :E j a :8

^

R:E 2 S

0

g) = in
onsistent then

return in
onsistent

return 
onsistent



de�ne pro
edure feature-
omplete(S)

while a rule r from fRu;Rt;Rf9C;Rf8C;R#;R"g is appli
able to S do

S := apply(S; r)

return S

The 
orre
tness of the des
ribed algorithm 
an be easily seen: It 
orresponds

to the algorithm given in

[
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for de
iding satis�ability of ALCF(D) 
on
epts

with all rules and 
lash triggers 
on
erning the 
on
rete part left out. Sin
e the

original algorithm is 
orre
t for ALCF(D), it is obviously also 
orre
t for ALCF .

Furthermore, it 
an easily be veri�ed that, if the original algorithm is started

on an ALCF 
on
ept, no 
on
rete domain operators or \
on
rete obje
ts" are

introdu
ed during the algorithm run, and, hen
e, neither 
on
rete domain related


ompletion rules nor 
on
rete domain related 
lash rules apply. Thus, they 
an

savely be left away.

Proposition 3. The sat algorithm is sound, 
omplete, and terminates.

We now investigate the extension of sat to TBoxes as des
ribed in Se
tion 2.1.

The extended algorithm is 
alled tbsat and takes a pair (A; T ) as input, where A

is an atomi
 
on
ept and T is anALCF TBox in simple form. tbsat is also 
apable

of de
iding satis�ability of non-atomi
 
on
epts w.r.t. TBoxes (see Se
tion 2.1).

The 
orre
tness of tbsat follows from the 
orre
tness of the original algorithm

and the fa
t that a run of tbsat on (A; T ) is equivalent to a run of sat on C,

where C is the result of unfolding A w.r.t. T (see Se
tion 2.1). It remains to

determine the runtime of the extended algorithm.

Proposition 4. The algorithm tbsat 
an be exe
uted in exponential time.

Proof: Let (A; T ) be an input to tbsat. Let n denote jjT jj. It needs to be shown

that the number of rule appli
ations performed by tbsat is exponential in n.

This is a 
onsequen
e of the next two 
laims, sin
e ea
h 
ompletion rule 
an be

applied at most on
e per 
onstraint (for the R8C rule, this holds for the (a; b) : R


onstraints)

1. Let � be the number of obje
ts 
reated during a tbsat run. � is exponential

in n.

2. For ea
h obje
ts a, there may exist at most exponentially many 
onstraints

whi
h refer to a.

In the following, we 
an savely ignore 
onstraints of the form a 6= b sin
e they

do not appear in the premise of any 
ompletion rule.

The validity of 
laim 1 
an be seen as follows: The re
ursion depth of tbsat

is bounded by n sin
e the re
ursion depth of sat is bounded by the role depth

of its input (same argument as in the proof of Proposition 1). In ea
h re
ursion

step, at most n re
ursive 
alls are made. Hen
e, by (impli
it) appli
ation of the

Rr9C rule, at most n

n

= 2

n�log(n)

� 2

n

2

obje
ts are generated. For ea
h su
h

obje
t, the feature-
omplete fun
tion is 
alled whi
h may generate new obje
ts by



appli
ation of the Rf9C, R#, and R" rules. feature-
omplete generates a stru
ture

whi
h has the form of a tree in whi
h some nodes may 
oin
ide. Outdegree and

depth of this tree-like stru
ture are bounded by n: The outdegree is bounded by

the number of distin
t features in T sin
e there may be at most one su

essor per

feature; the depth of the stru
ture is bounded by n sin
e in sat runs, its depth is

bounded by the role depth (see again the argument in the proof of Proposition 1).

Hen
e, the total number of obje
ts generated is bounded by 2

n

2

� 2

n

2

whi
h is

obviously exponential in n.

Con
erning point 2, �x an obje
t a in a 
onstraint system S 
onsidered by

tbsat. It is easy to see that there may be at most n 
onstraints of the form

a : C|one for ea
h 
on
ept de�nition in T . Furthermore, there may be at most

n 
onstraints of the form (a; a

0

) : f , sin
e there 
annot be more than one �ller

per feature (please note that 
onstraints (a; a

0

) : R are never expli
itly 
reated).

There may, however, be n 
onstraints (a

0

; a) : f per obje
t a

0

. Sin
e the number of

obje
ts is exponentially bounded (point 1), the number of (a

0

; a) : f 
onstraints

is also exponentially bounded. ut

Combining Propositions 2 and 4, we obtain the following result.

Theorem 2. De
iding the satis�ability of ALCF 
on
epts w.r.t. a
y
li
 TBoxes

is NExpTime-
omplete.

5 Con
lusion

TBoxes are an important 
omponent of knowledge representation systems using

des
ription logi
s. However, for most DLs, the exa
t 
omplexity of reasoning

with a
y
li
 TBoxes has never been determinded. This paper 
on
entrates on

logi
s for whi
h satis�ability w.r.t. the empty TBox is in PSpa
e and investi-

gates how the presen
e of a
y
li
 TBoxes in
uen
es the 
omplexity of reasoning.

In the �rst part of the paper, using the logi
 ALC, it is demonstrated how 
om-

pletion algorithms for de
iding \pure" 
on
ept satis�ability 
an be modi�ed to

take into a

ount TBoxes su
h that the resulting algorithm 
an still be exe-


uted in polynomial spa
e. Using the modi�ed algorithm, it is proved that, for

ALC, satis�ability w.r.t. a
y
li
 TBoxes is in PSpa
e. We 
laim that the given

modi�
ation s
heme 
an be applied to a variety of other des
ription logi
s, too,

and give a rule of thumb for when the resulting algorithm 
an be exe
uted in

polynomial spa
e.

In the se
ond part, it is proved that, for the logi
 ALCF , satis�ability

w.r.t. a
y
li
 TBoxes isNExpTime-
omplete. In 
ontrast, satis�ability of \pure"

ALCF 
on
epts is known to be PSpa
e-
omplete and the satis�ability of ALCF


on
epts w.r.t. general TBoxes is known to be unde
idable. It is suprising that

the 
omplexity of reasoning moves up several steps in the 
omplexity hierar
hy

if TBoxes are added. ALCF is a 
ommon des
ription logi
 appearing as a frag-

ment of several more expressive DLs su
h as, e.g., the temporal logi
 T L-ALCF

[

1

℄

or the logi
 ALCF(D) for reasoning with 
on
rete domains

[
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. Hen
e, sat-

is�ability w.r.t. a
y
li
 TBoxes is NExpTime-hard for these logi
s, too.



For the des
ription logi
ALC(D), similar 
omplexity results as for ALCF 
an

be obtained. The logi
 ALC(D) 
an be parameterized with a so-
alled 
on
rete

domain D, and, hen
e, the 
omplexity of reasoning with ALC(D) depends on

the 
omplexity of reasoning with the 
on
rete domain D. On the one hand,

satis�ability of ALC(D) 
on
epts w.r.t. the empty TBox is PSpa
e-
omplete

provided that reasoning with the 
on
rete domain D is in PSpa
e

[
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. On

the other hand, there exist 
on
rete domains D for whi
h reasoning is in NP

su
h that satis�ability of ALC(D) 
on
epts w.r.t. a
y
li
 TBoxes is NExpTime-


omplete

[
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.
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