
A Suggestion for an n-ary Description Logic

C. Lutz, U. Sattler, and S. Tobies

LuFG Theoretische Informatik, RWTH Aachen, Germany

fclu, sattler, tobiesg@cantor.informatik.rwth-aachen.de

1 Motivation

A restriction most Description Logics (DLs) have in com-

mon with most Modal Logics is their restriction to unary

and binary predicates. To our knowledge, the only DLs

that overcome these restrictions and allow for arbitrary

n-ary relations are NaryKandor

[

8

]

and the very ex-

pressive DL DLR

[

2

]

.

In the �eld of Modal Logics, there are two generali-

sations that allow for n-ary predicates: Polyadic Modal

Logics

[

9

]

and the more expressive Guarded Fragment

[

1

]

, which was shown to be ExpTime-complete in

[

5

]

and

for which a resolution based decision procedure exists

[

3

]

. Unfortunately, when extended by operators that are

standard in DLs such as number restrictions, features,

or transitive roles, this logic becomes undecidable.

In this paper, we present a new DL, GF1

�

, that was

designed to meet three goals:

� It should allow for n-ary relations,

� \concept" subsumption and satis�ability should be

in PSpace, and

� it should allow the extension with number restric-

tions and/or transitive roles (without losing decid-

ability).

GF1

�

is a fragment of the �rst Guarded Fragment,

which in turn is a fragment of �rst order logic. Quan-

ti�ed variables in the �rst Guarded Fragment must be

guarded, i.e., formulae are restricted to those of the form

9x:(R(x; y) ^ �(x)) and 8x:(R(x; y)) �(x));

where x; y are variable vectors, R is an atom (the so-

called guard), and � is a formulae of the �rst guarded

fragment with free variables x.

GF1

�

is obtained from the �rst guarded fragment

by restricting the way in which variables may occur in

guards: The variables of each atom are divided into two

parts, and all quanti�ed variables must �ll exactly one

of these parts. It can easily be seen that GF1

�

extends

both ALCI and polyadic Modal Logics. For example, we

can describe unmarried women whose parents are mar-

ried and who have only married brothers by the following

GF1

�

-formula.

F(x) ^ :[9h:M(x; h)](>) ^

[9m; f:P(x;m; f)](M(m; f) ^

[8x

0

:P(x

0

;m; f)](F(x

0

) _

[9w:M(w; x

0

)](F(w))))

In this preliminary report, we present a PSpace

tableaux algorithm for GF1

�

, which we believe can be

extended to handle, for example, number restrictions.

2 Preliminaries

In this Section, we introduce GF1

�

, explain the syntac-

tic restrictions, de�ne inference problems, and explain

why we believe GF1

�

to be a DL.

De�nition 1 Let X be a set of variables. The set

free(�) � X denotes the set of variables that occur free

in a formula �. For a variable vector x 2 X

n

, var(x)

denotes the set of variables occurring in x.

Let N

P

be a set of predicate names. We assume each

predicate name to come with an arity n > 0 and a

\grouping" (i; j) of its parameters with n = i + j. A

predicate P with grouping (i; j) is written as P

(i;j)

. The

set of GF1

�

-formulae is inductively de�ned as follows:

1. P

(i;j)

(x) is a GF1

�

-formula (a so-called atom) for

a vector x 2 X

i+j

,

2. GF1

�

is closed under the boolean connectives ^, _,

and :,

3. If P

(i;j)

, Q

(j;i)

are predicates, � is a GF1

�

-formula,

x 2 X

i

, y 2 X

j

are non-empty variable vectors with

var(x) = free(�) and var(x) \ var(y) = ;, then

[9x:P

(i;j)

(x; y)](�); [9x:Q

(j;i)

(y; x)](�);

[8x:P

(i;j)

(x; y)](�); [8x:Q

(j;i)

(y; x)](�)

are GF1

�

-formulae with free variables var(y).

The atoms P

(i;j)

(x; y), Q

(j;i)

(y; x) are called guard-

atoms because they restrict quanti�cation to those x

satisfying the guard atom.

Let us comment on the syntactic restrictions imposed

by this de�nition:

� For a formula [9x:G(x; y)](�), the free variables of

� must be exactly x. Formulae of the �rst Guarded

Fragment are also subject to this restriction.

� Each (sub-)formula has at least one free variable.

� The variables in a guard atom may only appear in

two di�erent patterns. Together with the previous

constraint this implies that, for each predicate P

(i;j)

appearing in a guard, we have i; j > 0, and hence

no unary predicate may appear as a guard.

� The way in which variables are grouped in a

variable vector is not restricted. For example,

[9x:P

(3;2)

(x; x; x; z; y)](�(x)) is a GF1

�

-formulae.

The reasons for these restrictions will become appar-

ent in Section 3 and will be further discussed in Section 4.

Roughly spoken, without these restrictions, rather com-

plex blocking conditions were necessary to ensure termi-

nation of the tableaux algorithm to be devised.

Semantics, interpretations I = (�

I

; �

I

), and models

are de�ned just as for standard �rst order logic, where

[9x:P (x; y)](�) stands for 9x:P (x; y) ^ �, and, dually,

[8x:P (x; y)](�) is to be read as 8x:P (x; y)! �.

A GF1

�

-formula � with free(�) = fx

1

; : : : ; x

n

g is sat-

is�able i� the (closed) �rst order formula 9x

1

; : : : ; x

n

:�

is satis�able. A GF1

�

-formula �

1

is subsumed by a

GF1

�

-formula �

2

(written �

1

v �

2

) i� free(�

1

) =

free(�

2

) = fx

1

; : : : ; x

n

g and � := [8x

1

; : : : ; x

n

:�

1

](�

2

)

is valid. If �

1

is complex, then � is clearly not a GF1

�

-

formula. However, � is valid i�

�

0

:= [9x

1

; : : : ; x

n

:R

(1;n)

new

(y; x

1

; : : : ; x

n

)](�

1

^ :�

2

)

is not satis�able, where R

(1;n)

new

is a predicate that does

not occur in �

1

or �

2

. Obviously, �

0

is in GF1

�

. Hence

an algorithm deciding satis�ability of GF1

�

-formulae

can be used to decide subsumption of GF1

�

-formulae.

Is GF1

�

a Description Logic?

In our understanding, the main characteristics of a DL,

besides decidability of the relevant inference problems,

is locality, namely concepts capture properties of an in-

dividual that can be determined by looking at the pred-

icates holding for that individual and for those other in-

dividuals the �rst is related to via some predicate. Due

to the guarded quanti�cation this is the case for GF1

�

.

However, our syntax involves (explicitly quanti�ed)

variables|which is not in the spirit of DLs. For exam-

ple, this makes it easy to distinguish between children of

married parents whose mother is a doctor

C(x) ^ [9m; f:P(x;m; f)](M(m; f) ^ D(m))

and those whose father is a doctor

C(x) ^ [9m; f:P(x;m; f)](M(m; f) ^ D(f)):

Nevertheless, one can think of a variable free syntax for

GF1

�

that makes these \identi�cation" of variables ex-

plicit. The work on a concise variable-free syntax is part

of future work.

3 A Tableaux Algorithm for GF1

�

We present a tableaux algorithm which is similar to the

standard tableaux algorithm for ALC

[

7

]

. Given a GF1

�

-

formula �, it tries to construct a model for �. It works

on closed formulae|so-called constraints|that are ob-

tained from (subformulae of) � by appropriately substi-

tuting free variables by constant symbols and applying

completion rules.

De�nition 2 Let A be a set of constants

1

. If �

is a GF1

�

-formula with free(�) = fx

1

; : : : ; x

n

g and

fa

1

; : : : ; a

n

g � A , then �[x

1

=a

1

; : : : ; x

n

=a

n

] is obtained

by replacing all occurrences of x

i

by a

i

. For a bet-

ter readability, we will use �[x=a] as a shorthand for

�[x

1

=a

1

; : : : ; x

n

=a

n

].

GF1

�

-formulae where all free occurrences of variables

are substituted by constants are called constraints, and

a constraint system is a �nite set of constraints. Con-

stants b are said to be fresh for a constraint system S if

none of the b

i

occurs in S.

All formulae are supposed to be in negation normal form,

that is, negation is pushed inwards to occur only in front

of predicate symbols by making use of de Morgan's laws

and the equivalences :[9x:�

1

](�

2

) , [8x:�

1

](:�

2

) and

:[8x:�

1

](�

2

), [9x:�

1

](:�

2

).

A constraint system S is said to contain a clash i�

fP (a);:P (a)g � S for some predicate name P and con-

stants a, and clash-free otherwise. A constraint system

S is said to be complete i� none of the rules given in

Figure 1 can be applied to S.

Given a GF1

�

-formula �

0

with free(�

0

) =

fx

1

; : : : ; x

n

g to be tested for satis�ability, the al-

gorithm starts with S

0

= f�

0

[x

1

=a

1

; : : : ; x

n

=a

n

]g and

applies, successively, the completion rules given in Fig-

ure 1. It answers \�

0

is satis�able" i� the completion

rules can be applied in such a way that they yield a

complete and clash-free constraint system, and \�

0

is

unsatis�able" otherwise. The following lemma proves

that this tableaux algorithm is sound, complete, and

terminating.

1

which are interpreted as some objects in the interpreta-

tion domain|we do not impose the unique name assumption.

1. Conjunction: If (�

1

^ �

2

) 2 S and f�

1

; �

2

g 6� S, then

S ! S [f�

1

; �

2

g

2. Disjunction: If (�

1

_ �

2

) 2 S and f�

1

; �

2

g \ S = ;, then

S ! S [f�

i

g for some i 2 f1; 2g

3. Existential Restriction: If [9x

1

; : : : ; x

n

:�

1

](�

2

) 2 S and there are no constants b such that

f�

1

[x=b]; �

2

[x=b]g � S, then choose n fresh constants b 2 A

n

and

S ! S [f�

1

[x=b]; �

2

[x=b]g

4. Universal Restriction: If [8x

1

; : : : ; x

n

:�

1

](�

2

) 2 S and there are constants b such that �

1

[x=b] 2 S

and �

2

[x=b] 62 S, then

S ! S [f�

2

[x=b]g

Figure 1: The completion rules for GF1

�

.

Lemma 3 Let �

0

be a GF1

�

-formula with free(�

0

) =

fx

1

; : : : ; x

n

g and S

0

= f�

0

[x

1

=a

1

; : : : ; x

n

=a

n

]g. If S is

obtained by applying the completion rules in Figure 1 to

S

0

, then

1. If I is a model of S and a Rule i can be applied to

S, then the Rule i can be applied to S such that it

yields S

0

that is also satis�ed by I.

2. If S contains a clash, then S cannot have a model.

3. If S is clash-free and complete, then �

0

has a model.

4. The tableaux algorithm terminates.

5. For a signature N

P

of bounded arity and formu-

lae with a bounded number of free variables, the

number n

a

of constraints containing a constant a is

polynomially bounded by j�

0

j.

Proof: 1. This is obvious for Rules 1, 3, and 4. The non-

determinism in Rule 2 was the reason for the somewhat

complicated formulation in this point, but is obvious as

well.

2. Obvious.

3. Given a complete and clash-free constraint system

S, a model I of S can be de�ned as follows:

�

I

:= fa 2 A j a occurs in Sg

I j= P (a) i� P (a) 2 S

By induction on the structure of formulae, it can be eas-

ily proved that I satis�es all formulae in S:

� By de�nition and since S is clash-free, I satis�es

atoms P

(n)

(a) 2 S and negated atoms :P

(n)

(a) 2

S.

� Since S is complete, neither Rule 1 nor Rule 2 can be

applied. Thus by induction, I satis�es constraints

of the form �

1

^ �

2

and �

1

_ �

2

.

� If [9x:�

1

](�

2

) 2 S, then f�

1

[x=b]; �

2

[x=b]g � S since

S is complete. By induction, I satis�es �

1

[x=b] and

�

2

[x=b], and hence it satis�es [9x:�

1

](�

2

).

� Suppose [8x

1

; : : : ; x

n

:�

1

](�

2

) is in S but not satis-

�ed by I. Hence there is some b 2 (�

I

)

n

such that

I j= �

1

[x=b] and I 6j= �

I

2

[x=b]. By the de�nition of

GF1

�

-formulae, �

1

is an atom, thus I j= �

1

[x=b]

implies �

1

[x=b] 2 S. Since S is complete, Rule 4

cannot be applied to S, hence �

2

[x=b] 2 S. By

induction, we have I j= �

2

[x=b], contradicting the

assumption.

Since no rule removes constraints, we have �

0

2 S and

hence I is a model of �

0

.

4. Termination is proved as for standardALC tableaux

algorithms. First, we need some technical abbreviations:

By depth(�), we refer to the maximum quanti�er depth

in �. We start by showing that the algorithm constructs

a tree-like structure: De�ne, for a constant a, the set

node(a) to be the set of all those constants a

0

such that

a

0

was generated together with a by Rule 3 or by instanti-

ating the initial formula. node(b) is said to be a successor

of node(a) i� the constants in node(b) were introduced

for some existential constraint containing constants in

node(a). We say that a constraint � is uni-node (resp.

bi-node) i� all constants occurring in � are of the same

node (resp. are of two successive nodes).

Claim: Let S be obtained by the application of the

completion algorithm to S

0

. Then each constraint is

either uni-node or occurs as a guard atom and is bi-node.

This can be proved by induction on the number of

rule applications. For S

0

, this is obvious. The constants

in constraints added by the application of Rule 1 or 2

also occur in the constraint which triggered the rule ap-

plication. Hence the uni-node property is preserved by

these rules. Since constraints of the form [9x:�

1

](�

2

)

are not guard atoms, Rule 3 is applied to uni-node con-

straints only. When applied to [9x:�

1

](�

2

), Rule 3 intro-

duces new constants b that are, by de�nition, of the same

node, and hence �

2

[x=b] is uni-node. Since [9x:�

1

](�

2

) is

uni-node and b are variables of a single node, the guard

atom �

1

[x=b] is bi-node. Now let us consider Rule 4

on � = [8x:�

1

](�

2

) with �

1

[x=b] 2 S. By induction,

the claim holds for �

1

[x=b]. If �

1

[x=b] is uni-node, then

clearly �

2

[x=b] is uni-node. If �

1

[x=b] is a bi-node guard

atom P (b; a) or P (a; b) then, due to the syntax restric-

tion of GF1

�

, either b was introduced by Rule 3 for an

existential constraint containing a or vice versa. In both

cases, all constants in b are of the same node and hence

�

2

[x=b] is uni-node.

As a consequence of this claim and the fact that con-

stants introduced by Rule 3 are new, the nodes of a con-

straint system form a tree (where each node is connected

via exactly one guard constraint with its predecessor).

Termination is then a consequence of the fact that this

tree is labelled with a bounded number of constraints

(see (a)), built in a monotone way (see (b)), and that it

is of bounded depth (see (c)) and width (see (d)):

(a) Uni-node constraints are instantiated sub-formulae

of �

0

. Since node(a) never changes after a was gen-

erated, there are only �nitely many uni-node con-

straints in which a constant in node(a) might occur.

(b) No rule removes constraints|each rule adds con-

straints.

(c) If Rule 3 or 4 adds a constraint �

2

[x=b] for some � =

[9x:�

1

](�

2

) or � = [8x:�

1

](�

2

), then depth(�

2

) <

depth(�). Hence if a node node(b) is a successor

of some node(a), then the maximum depth of con-

straints on node(b) is strictly smaller than the one

on node(a). As a consequence, the depth of the tree

(i.e., the maximum number of successive nodes) is

bounded by the depth of �

0

.

(d) The precondition of Rule 3 ensures that, for each

existential constraint on node(a), at most one suc-

cessor of node(a) is generated. Since there are only

�nitely many constraints on a node, each node has

only �nitely many successors.

5. (For a signature N

P

of bounded arity and formulae

with a bounded number of free variables, the number

n

a

of constraints containing a constant a is polynomially

bounded by j�

0

j.) Let N

P

be a signature with maximum

arity k, let ` be an upper bound for the number of free

variables, and let K be the maximum of ` and k. Then

the root node contains at most ` constants and each

non-root node contains at most k � 1 constants (since

there must be at least one free variable in a guard atom).

Taken together, each node contains at mostK constants.

Hence, for a subformula � of �

0

with `

0

< k free variables

and a node node(a), there are at mostK

`

0

constraints on

node(a) that are instantiations of �. Since the number

of subformulae of �

0

is bounded by the length of �

0

, we

have that there are at most K

K

� j�

0

j constraints on a

node, which is linear in j�

0

j for a �xed K.

As an immediate consequence of Lemma 3, we have

that the algorithm always stops, that a complete and

clash-free constraint system de�nes a model of �

0

, and

that the rules can be applied in such a way to a satis-

�able constraint system that they yield a clash-free and

complete constraint system.

Just like for ALC, a naive implementation of this algo-

rithm needs exponential space: It constructs a tree-like

structure (of linear depth) that can be exponential in the

size of the input. It is easy to see that a trace technique

[

7

]

with a reset-restart mechanism similar to the one de-

scribed in

[

6

]

makes it possible to investigate the whole

tree while only keeping a single path (of length linear in

j�

0

j) in memory at a time. If the number of constraints

on each constant is polynomially bounded, this yields a

PSpace algorithm for GF1

�

Hence we have:

Theorem 4 The tableaux algorithm is a decision proce-

dure for the satis�ability of GF1

�

-formulae. For a signa-

ture N

P

of bounded arity and formulae with a bounded

number of free variables, it can be implemented to run

in polynomial space.

Let us comment on the two bounds we used to obtain

a PSpace result: To have predicates of bounded arity

is natural in the �eld of DL|where the arity is usually

restricted to 2. Moreover, this bound is necessary be-

cause otherwise exponentially many constraints may be

generated for a single node: Consider the following for-

mula �

n

where G

n

is a predicate name of arity n+1 and

grouping (1; n). The tableaux algorithm|when applied

to �

n

|does not generate a node other than the root

node, but generates a constraint for each permutation

of the constants a

1

; : : : ; a

n

(recall that each permuta-

tion can be written as a product of transpositions). The

number of permutations is exponential in n and hence

in the size of �

n

.

�

n

:= G

n

(x

1

; x

1

; x

2

; : : : ; x

n

) ^

[8y:G

n

(x

1

; y)](G

n

(y

1

; y

2

; y

1

; y

3

; y

4

; : : : ; y

n

)) ^

[8y:G

n

(x

1

; y)](G

n

(y

1

; y

1

; y

3

; y

2

; y

4

; : : : ; y

n

)) ^

(1)

.

.

.

[8y:G

n

(x

1

; y)](G

n

(y

1

; y

1

; : : : ; y

i+1

; y

i

; : : : ; y

n

)) ^

.

.

.

[8y:G

n

(x

1

; y)](G

n

(y

1

; y

1

; y

2

; y

3

; : : : ; y

n

; y

n�1

)) ^

|

(2)

^

1�i;j;�n

[8y:G

n

(x

i

; y)](G

n

(y

j

; y))

When started for �

n

, the tableaux algorithm instanti-

ates x

1

; : : : ; x

n

with fresh constants a

1

; : : : ; a

n

. Rule

1 unfolds the conjunction and makes Rule 4 via con-

straints (1) applicable to G(a

1

; a

1

; : : : ; a

n

). Succes-

sive applications of Rule 4 to this constraint gen-

erate n � 1 constraints G(a

1

; a

2

; a

1

; a

3

; : : : ; a

n

); : : : ;

G(a

1

; a

1

; a

2

; : : : ; a

n

; a

n�1

)|one for each transposition of

adjacent constants. To each of these constraints, Rule 4

can be applied via constraints (1), which leads to a set of

constraints containing an element for each permutation

of a

1

; : : : ; a

n

that is generated by two successive trans-

positions. In this second step, the application of Rule

4 to the constraints G(a

1

; a

2

; a

1

; : : :) creates constraints

that do not start with a

1

but with a

2

instead. In order

to make these constraints also trigger the application

of Rule 4 via constraints (1), the constraint (2) of �

n

adds constraints with arbitrary �rst constants. Succes-

sive application of Rule 4 will then lead to the generation

of constraints G(a

1

; a

i

1

; : : : ; a

i

n

) where a

i

1

; : : : ; a

i

n

is a

permutation of a

1

; : : : ; a

n

that is generated by a sequence

of transpositions of adjacent elements. Since each per-

mutation can be generated in this manner, the tableaux

algorithm consumes exponential space if no bound on

the arity of predicates is assumed.

Given a signature of bounded arity, it is natural to also

bound the number of free variables: Without bound-

ing this number, it would only be possible to have an

unbounded number of free variables on top level (i.e.,

an unbounded number of constants in the root node),

whereas all other nodes would be bounded by the max-

imum arity of the predicates. Moreover, in most DLs,

this number is restricted to 1.

4 Discussion and future work

Motivation for the syntactic restriction of GF1

�

:

If the grouping of parameters in guard atoms is dropped,

it is no longer guaranteed that a simple tableaux algo-

rithm would only generate �nite tree structures as de-

scribed in Lemma 3, and blocking techniques were neces-

sary to prevent the algorithm from generating an in�nite

branching tree. For example, when applied to the follow-

ing formula, the tableaux algorithm yields an in�nitely

branching tree of depth one, whose nodes are connected

by an in�nite B path. This is due to the use of the pa-

rameters in F which does not correspond to the group-

ing principle. The �rst parameter in F is duplicated so

that it can be (universally) quanti�ed on depth 1 and

(existentially) on depth 3. When v is instantiated with

a, the tableaux algorithm generates constraints of the

form F (a; a; b

1

; b

2

); F (a; a; b

2

; b

3

); F (a; a; b

3

; b

4

); : : : and

B(b

1

; b

2

); B(b

2

; b

3

); B(b

3

; b

4

).

F (v; v;m; k) ^ B(v;m) ^

[8v

0

;m

0

; k

0

:F (v; v

0

;m

0

; k

0

)](B(m

0

; k

0

) ^

[9k

00

:F (v

0

; v

0

; k

0

; k

00

)](A(k

0

)))

Please note that this in�nite branching is not caused

by using an atom as both guard and non-guard, but

solely due to using di�erent patterns of quanti�ed/free

variables in the same guard atom F .

Relation with other DLs: The expressive power of

GF1

�

is orthogonal to DLR

[

2

]

: On the one hand, DLR

allows for number restrictions and boolean operations on

its analogue to guard atoms. On the other hand, GF1

�

allows for formulae with more than one free variable.

When compared with NaryKandor

[

8

]

again GF1

�

falls short in the sense that it does not allow for num-

ber restrictions, but NaryKandor does not allow for

negation and no complete algorithm for subsumption is

known.

Extensions: We believe that the tableaux algorithm

presented here can be easily extended to number restric-

tions by adding appropriate extensions of the standard

rules for number restrictions and by extending the no-

tion of a clash. Please note that this is not true for the

full Guarded Fragment because it becomes undecidable

when extended with number restrictions

[

5

]

. Another

interesting extension is the one with transitive roles (bi-

nary relations) and/or axioms. It was shown in

[

4

]

that

the Guarded Fragment extended with transitive rela-

tions, even when restricted to two variables, becomes

undecidable. The investigation of these extensions is on-

going work.

References

[

1

]

H. Andr�eka, J. van Benthem, and I. N�emeti. Modal

languages and bounded fragments of predicate logic.

J. of Philosophical Logic, 27(3):217{274, 1998.

[

2

]

D. Calvanese, G. De Giacomo, and M. Lenzerini.

Conjunctive query containment in description logics

with n-ary relations. In Proc. of DL'97, 1997.

[

3

]

H. Ganzinger and H. de Nivelle. A superposition

decision procedure for the guarded fragment with

equality. In Proc. of LICS-99, 1999.

[

4

]

H. Ganzinger, Chr. Meyer, and M. Veanes. The two-

variable guarded fragment with transitive relations.

In Proc. 14th IEEE Symposium on Logic in Com-

puter Science. IEEE Computer Society Press, 1999.

To appear in LICS'99.

[

5

]

E. Gr�adel. On the restraining power of guards. Jour-

nal of Symbolic Logic, 1998. to appear.

[

6

]

I. Horrocks, U. Sattler, and S. Tobies. A PSpace-

algorithm for deciding ALCNI

R

+
-satis�ability.

LTCS-Report 98-08, LuFg Theoretical Computer

Science, RWTH Aachen, Germany, 1998.

[

7

]

M. Schmidt-Schau� and G. Smolka. Attributive con-

cept descriptions with complements. Arti�cial Intel-

ligence, 48(1):1{26, 1991.

[

8

]

James G. Schmolze. Terminological knowledge rep-

resentation systems suporting N-ary terms. In Proc.

of KR-89. Morgan Kaufmann, 1989.

[

9

]

J. van Benthem. Polyadic quanti�ers. Linguistics

and Philosophy, 12(4), 1989.

