
A PSpace Algorithm for Graded Modal Logic

Stephan Tobies

?

LuFg Theoretical Computer Science, RWTH Aachen

E-mail: tobies@informatik.rwth-aachen.de

Abstract. We present a PSpace algorithm that decides satis�ability of

the graded modal logic Gr(K

R

)|a natural extension of propositional

modal logic K

R

by counting expressions|which plays an important

role in the area of knowledge representation. The algorithm employs

a tableaux approach and is the �rst known algorithm which meets the

lower bound for the complexity of the problem. Thus, we exactly �x the

complexity of the problem and refute a ExpTime-hardness conjecture.

This establishes a kind of \theoretical benchmark" that all algorithmic

approaches can be measured with.

c

 Springer-Verlag

http://www.springer.de/comp/lncs/index.html

1 Introduction

Propositional modal logics have found applications in many areas of computer

science. Especially in the area of knowledge representation, the description logic

(DL) ALC, which is a syntactical variant of the propositional (multi-)modal logic

K

R

[Sch91], forms the basis of a large number of formalisms used to represent

and reason about conceptual and taxonomical knowledge of the application do-

main. The graded modal logicGr(K

R

) extendsK

R

by graded modalities [Fin72],

i.e., counting expressions which allow to express statements of the form \there

are at least (at most) n accessible worlds that satisfy : : : ". This is especially

useful in knowledge representation because (a) humans tend to describe objects

by the number of other objects they are related to (a stressed person is a person

given at least three assignments that are urgent), and (b) qualifying number

restrictions (the DL's analogue for graded modalities [HB91]) are necessary for

modeling semantic data models [CLN94].

K

R

is decidable in PSpace and can be embedded into a decidable fragment of

predicate logic [AvBN98]. Hence, there are two general approaches for reasoning

with K

R

: dedicated decision procedures [Lad77,SSS91,GS96], and the transla-

tion into �rst order logic followed by the application of an existing �rst order

theorem prover [OS97,Sch97]. To compete with the dedicated algorithms, the

second approach has to yield a decision procedure and it has to be e�cient, be-

cause the dedicated algorithms usually have optimal worst-case complexity. For

K

R

, the �rst issue is solved and, regarding the complexity, experimental results

show that the algorithm competes well with dedicated algorithms [HS97]. Since

experimental result can only be partially satisfactory, a theoretical complexity

?

This work was supported by the DFG, Project No. GR 1324/3{1

result would be desirable, but there are no exact results on the complexity of

the theorem prover approach.

The situation for Gr(K

R

) is more complicated: Gr(K

R

) is known to be

decidable, but this result is rather recent [HB91], and the known PSpace up-

per complexity bound for Gr(K

R

) is only valid if we assume unary coding

of numbers in the input, which is an unnatural restriction. For binary coding

no upper bound is known and the problem has been conjectured to be Exp-

Time-hard [dHR95]. This coincides with the observation that a straightforward

adaption of the translation technique leads to an exponential blow-up in the size

of the �rst order formula. This is because it is possible to store the number n in

log

k

n-bits if numbers are represented in k-ary coding. In [OSH96] a translation

technique that overcomes this problem is proposed, but a decision procedure for

the target fragment of �rst order logic yet has to be developed.

In this work we show that reasoning forGr(K

R

) is not harder than reasoning

for K

R

by presenting an algorithm that decides satis�ability in PSpace, even

if the numbers in the input are binary coded. It is based on the tableaux algo-

rithms forK

R

and tries to prove the satis�ability of a given formula by explicitly

constructing a model for it. When trying to generalise the tableaux algorithms

for K

R

to deal with Gr(K

R

), there are some di�culties: (1) the straightfor-

ward approach leads to an incorrect algorithm; (2) even if this pitfall is avoided,

special care has to be taken in order to obtain a space-e�cient solution. As an

example for (1), we will show that the algorithm presented in [dHR95] to decide

satis�ability of Gr(K

R

) is incorrect. Nevertheless, this algorithm will be the

basis of our further considerations. Problem (2) is due to the fact that tableaux

algorithms try to prove the satis�ability of a formula by explicitly building a

model for it. If the tested formula requires the existence of n accessible worlds,

a tableaux algorithm will include them in the model it constructs, which leads

to exponential space consumption, at least if the numbers in the input are not

unarily coded or memory is not re-used. An example for a correct algorithm

which su�ers from this problem can be found in [HB91] and is briey presented

in this paper. Our algorithm overcomes this problem by organising the search

for a model in a way that allows for the re-use of space for each successor, thus

being capable of deciding satis�ability of Gr(K

R

) in PSpace.

2 Preliminaries

In this section we introduce the graded modal logic Gr(K

R

), the extension of

the multi-modal logic K

R

with graded modalities, �rst introduced in [Fin72].

De�nition 1 (Syntax and Semantics of Gr(K

R

)). Let P = fp

0

; p

1

; : : : g be

a set of propositional atoms and R a set of relation names. The set of Gr(K

R

)-

formulae is built according to the following rules:

1. every propositional atom is a Gr(K

R

)-formula, and

2. if �;

1

;

2

are Gr(K

R

)-formulae, n 2 IN, and R is a relation name, then

:�,

1

^

2

,

1

_

2

, hRi

n

�, and [R]

n

� are formulae.

The semantics of Gr(K

R

)-formulae is based on Kripke structures

M = (W

M

; fR

M

j R 2 Rg; V

M

);

where W

M

is a non-empty set of worlds, each R

M

�W

M

�W

M

is an accessi-

bility relation on worlds (for R 2 R), and V

M

is a valuation assigning subsets

of W

M

to the propositional atoms in P. For a Kripke structure M, an element

x 2 W

M

, and a Gr(K

R

)-formula, the model relation j= is de�ned inductively

on the structure of formulae:

M; x j= p i� x 2 V

M

(p) for p 2 P

M; x j= :� i� M; x 6j= �

M; x j=

1

^

2

i� M; x j=

1

and M; x j=

2

M; x j=

1

_

2

i� M; x j=

1

or M; x j=

2

M; x j= hRi

n

� i�]R

M

(x; �) > n

M; x j= [R]

n

� i�]R

M

(x;:�) � n

where]R

M

(x; �) := jfy 2 W

M

j (x; y) 2 R

M

and M; y j= �gj

The propositional modal logic K

R

is de�ned as the fragment of Gr(K

R

) in

which for all modalities n = 0 holds.

A formula is called satis�able i� there exists a structure M and a world

x 2W

M

such that M; x j= �.

By SAT(Gr(K

R

))and SAT(K

R

)we denote the sets of satis�able formulae

of Gr(K

R

) and K

R

, respectively.

As usual, the modalities hRi

n

� and [R]

n

� are dual:]R

M

(x; �) > n means

that inM more than n R-successors of x satisfy �;]R

M

(x;:�) � n means that

in M all but at most n R-successors satisfy �.

In the following we will only consider formulae in negation normal form

(NNF), a form in which negations have been pushed inwards and occur in front

of propositional atoms only. We will denote the NNF of :� by ��. The NNF

can always be generated in linear time and space by successively applying the

following equivalences from left to right:

:(

1

^

2

) � :

1

_ :

2

:hRi

n

 � [R]

n

:

:(

1

_

2

) � :

1

^ :

2

:[R]

n

 � hRi

n

:

3 Reasoning for Gr(K

R

)

Before we present our algorithm for deciding satis�ability ofGr(K

R

), for historic

and didactic reasons, we present two other solutions: an incorrect one [dHR95],

and a solution that is less e�cient [HB91].

From the fact that SAT(K

R

)is PSpace-complete [Lad77,HM92], it immedi-

ately follows, that SAT(Gr(K

R

))is PSpace-hard. The algorithms we will con-

sider decide the satis�ability of a given formula � by trying to construct a model

for �.

3.1 An incorrect algorithm

In [dHR95], an algorithm for deciding SAT(Gr(K

R

))is given, which, unfortu-

nately, is incorrect. Nevertheless, it will be the basis for our further considerations

and thus it is presented here. It will be referred to as the incorrect algorithm.

It is based on an algorithm given in [DLNN97] to decide the satis�ability of the

DL ALCNR, which basically is the restriction of Gr(K

R

), where, in formulae

of the form hRi

n

� or [R]

n

� with n > 0, necessarily � = p _ :p holds.

The algorithm for Gr(K

R

) tries to build a model for a formula � by ma-

nipulating sets of constraints with the help of so-called completion rules. This is

a well-known technique to check the satis�ability of modal formulae, which has

already been used to prove decidability and complexity results for other DLs (e.

g., [SSS91,HB91,BBH96]). These algorithms can be understood as variants of

tableaux algorithms which are used, for example, to decide satis�ability of the

modal logics K

R

, T

R

, or S4

R

in [HM92].

De�nition 2. Let V be a set of variables. A constraint system (c.s.) S is a

�nite set of expressions of the form `x j= �' and `Rxy', where � is a formula,

R 2 R, and x; y 2 V.

For a c.s. S, let]R

S

(x; �) be the number of variables y for which fRxy; y j=

�g � S. The c.s. [z=y]S is obtained from S by replacing every occurrence of y

by z; this replacement is said to be safe i�, for every variable x, formula �, and

relation symbol R with fx j= hRi

n

�;Rxy;Rxzg � S we have]R

[z=y]S

(x; �) > n.

A c.s. S is said to contain a clash i� for a propositional atom p, a formula

�, and m � n:

fx j= p; x j= :pg � S or fx j= hRi

m

�; x j= [R]

n

��g � S:

Otherwise it is called clash-free. A c.s. S is called complete i� none of the rules

given in Fig. 1 are applicable to S.

To test the satis�ability of a formula �, the incorrect algorithm works as

follows: It starts with the c.s. fx j= �g and successively and applies the rules

given in Fig. 1, stopping if a clash is occurs. Both the selection of the rule

to apply and the selection of the formula to add (in the the !

_

-rule) or the

variables to identify (in the !

�

-rule) are selected non-deterministically. The

algorithm answers \� is satis�able" i� the rules can be applied in a way that

yields a complete and clash-free c.s. The notion of safe replacement of variables

is needed to ensure the termination of the rule application [HB91].

Since we are interested in PSpace algorithms, non-determinism imposes no

problem due to Savitch's Theorem, which states that deterministic and non-

deterministic polynomial space coincide [Sav70].

To prove the correctness of a non-deterministic completion algorithm, it is

su�cient to prove three properties of the model generation process:

1. Termination: Any sequence of rule applications is �nite.

2. Soundness: If the algorithm terminates with a complete and clash-free c.s.

S, then the tested formula is satis�able.

!

^

-rule: if 1. x j=

1

^

2

2 S and

2. fx j=

1

; x j=

2

g 6� S

then S !

^

S [fx j=

1

; x j=

2

g

!

_

-rule: if 1. (x j=

1

_

2

) 2 S and

2. fx j=

1

; x j=

2

g \ S = ;

then S !

_

S [fx j= �g where � 2 f

1

;

2

g

!

>

-rule: if 1. x j= hRi

n

� 2 S and

2.]R

S

(x; �) � n

then S !

>

S [fRxy; y j= �g where y is a fresh variable.

!

�0

-rule: if 1. x j= [R]

0

�;Rxy 2 S and

2. y j= � 62 S

then S !

�0

S [fy j= �g

!

�

-rule: if 1. x j= [R]

n

�;]R

S

(x; �) > n > 0 and

2. Rxy;Rxz 2 S and

3. replacing y by z is safe in S

then S !

�

[z=y]S

Fig. 1. The incorrect completion rules for Gr(K

R

).

3. Completeness: If the formula is satis�able, then there is a sequence of rule

applications that yields a complete and clash-free c.s.

The error of the incorrect algorithm is, that is does not satisfy Property 2,

even though the converse is claimed:

Claim([dHR95]): Let � be a Gr(K

R

)-formula in NNF. � is satis�able

i� fx

0

j= �g can be transformed into a clash-free complete c.s. using the

rules from Figure 1.

Unfortunately, the if -direction of this claim is not true, which we will prove

by a simple counterexample. Consider the formula

� = hRi

2

p

1

^ [R]

1

p

2

^ [R]

1

:p

2

:

On the one hand, � is not satis�able. Assume M; x j= hRi

2

p

1

. This implies

the existence of at least three R-successors y

1

; y

2

; y

3

of x. For each of the y

i

either M; y

i

j= p

2

or M; y

i

6j= p

2

holds by the de�nition of j=. Without loss of

generality, there are two worlds y

i

1

; y

i

2

such that M; y

i

j

j= p

2

, which implies

M; x 6j= [R]

1

:p

2

and hence M; x 6j= �.

On the other hand, the c.s. S = fx j= �g can be turned into a complete

and clash-free c.s. using the rules from Fig. 1, as is shown in Fig. 2. Clearly this

invalidates the proof of the claim.

3.2 An alternative syntax

At this stage the reader may have noticed the cumbersome semantics of the [R]

n

modality, which origins from the wish that the duality �� � :�:� of K carries

fx j= �g !

^

� � � !

^

fx j= �; x j= hRi

2

p

1

; x j= [R]

1

p

2

; x j= [R]

1

:p

2

g

| {z }

=S

1

!

>

� � � !

>

S

1

[fRxy

i

; y

i

j= p

1

j i = 1; 2; 3g

| {z }

=S

2

S

2

is clash-free and complete, because]R

S

2

(x; p

1

) = 3 and]R

S

2

(x; p

2

) = 0.

Fig. 2. A run of the incorrect algorithm.

over to [R]

n

� � :hRi

n

:� in Gr(K

R

). This makes the semantics of [R]

n

and

hRi

n

un-intuitive. Not only does the n in a diamond modality mean \more than

n" while it means \less or equal than n" for a box modality. The semantics also

introduce a \hidden" negation.

To overcome these problems, we will replace these modalities by a syntax

inspired by the counting quanti�ers in predicate logic: the modalities hRi

�n

and

hRi

�n

with semantics de�ned by :

M; x j= hRi

�n

� i�]R

M

(x; �) � n;

M; x j= hRi

�n

� i�]R

M

(x; �) � n:

This modi�cation does not change the expressivity of the language, sinceM; x j=

hRi

n

� i� M; x j= hRi

�n�1

� and M; x j= [R]

n

� i� M; x j= hRi

�n

:�.

3.3 A correct but ine�cient solution

To understand the mistake of the incorrect algorithm, it is useful to known how

soundness is usually established for the kind of algorithms we consider. The

underlying idea is that a complete and clash-free c.s. induces a model for the

formula tested for satis�ability:

De�nition 3 (Canonical Structure). Let S be a c.s. The canonical structure

M

S

= (W

M

S

; fR

M

S

j R 2 Rg; V

M

S

) induced by S is de�ned as follows:

W

M

S

= fx 2 V j x occurs in Sg;

R

M

S

= f(x; y) 2 V

2

j Rxy 2 Sg;

V

M

S

(p) = fx 2 V j x j= p 2 Sg:

Using this de�nition, it is then easy to prove that the canonical structure

induced by a complete and clash-free c.s. is a model for the tested formula.

The mistake of the incorrect algorithm is due to the fact that it did not take

into account that, in the canonical model induced by a complete and clash-free

c.s., there are formulae satis�ed by the worlds even though these formulae do not

appear as constraints in the c.s. Already in [HB91], an algorithm very similar

!

^

-, !

_

-rule: see Fig. 1

!

choose

-rule: if 1. x j= hRi

./n

�;Rxy 2 S and

2. fy j= �; y j= ��g \ S = ;

then S !

choose

S [fy j= �g where � 2 f�;��g

!

�

-rule: if 1. x j= hRi

�n

� 2 S and

2.]R

S

(x; �) < n

then S !

�

S [fRxy; y j= �g where y is a new variable.

!

�

-rule: if 1. x j= hRi

�n

�;]R

S

(x; �) > n and

2. y 6= z; Rxy;Rxz; y j= �; z j= � 2 S and

3. the replacement of y by z is safe in S

then S !

�

[y=z]S

Fig. 3. The standard completion rules

to the incorrect one is presented which decides the satis�ability of ALCQ, a

notational variant of Gr(K

R

).

The algorithm essentially uses the same de�nitions and rules. The only dif-

ferences are the introduction of the!

choose

-rule and an adaption of the!

�

-rule

to the alternative syntax. The!

choose

-rule makes sure that all \relevant" formu-

lae that are implicitly satis�ed by a variable are made explicit in the c.s. Here,

relevant formulae for a variable y are those occuring in modalities in constraints

for variables x such that Rxy appears in the c.s. The complete rule set for the

modi�ed syntax of Gr(K

R

) is given in Fig. 3. The de�nition of clash has to be

modi�ed as well: A c.s. S contains a clash i�

{ fx j= p; x j= :pg � S for some variable x and a propositional atom p, or

{ x j= hRi

�n

� 2 S and]R

S

(x; �) > n for some variable x, relation R, formula

�, and n 2 IN.

The algorithm, which works like the incorrect algorithm but uses the expan-

sion rules from Fig. 3 and the de�nition of clash from above will be called the

standard algorithm; it is a decision procedure for SAT(Gr(K

R

)):

Theorem 1 ([HB91]). Let � be a Gr(K

R

)-formula in NNF. � is satis�able

i� fx

0

j= �g can be transformed into a clash-free complete c.s. using the rules

in Figure 3. Moreover, each sequence of these rule-applications is �nite.

While no complexity result is explicitly given in [HB91], it is easy to see that

a PSpace result could be derived from the algorithm using the trace technique,

employed in [SSS91] to show that satis�ability of ALC, the notational variant

for K

R

, is decidable in PSpace.

Unfortunately this is only true if we assume the numbers in the input to be

unary coded. The reason for this lies in the!

�

-rule, which generates n successors

for a formula of the form hRi

�n

�. If n is unary coded, these successors consume

at least polynomial space in the size of the input formula. If we assume binary

(or k-ary with k > 1) encoding, the space consumption is exponential in the

size of the input because a number n can be represented in log

k

n bits in k-

ary coding. This blow-up can not be avoided because the completeness of the

standard algorithm relies on the generation and identi�cation of these successors,

which makes it necessary to keep them in memory at one time.

4 An optimal solution

In the following, we will present the algorithm which will be used to prove the

following theorem; it contrasts the ExpTime-hardness conjecture in [dHR95].

Theorem 2. Satis�ability for Gr(K

R

) is PSpace-complete if numbers in the

input are represented using binary coding.

When aiming for a PSpace algorithm, it is impossible to generate all succes-

sors of a variable in a c.s. at a given stage because this may consume space that

is exponential in the size of the input concept. We will give an optimised rule set

for Gr(K

R

)-satis�ability that does not rely on the identi�cation of successors.

Instead we will make stronger use of non-determinism to guess the assignment of

the relevant formulae to the successors by the time of their generation. This will

make it possible to generate the c.s. in a depth �rst manner, which will facilitate

the re-use of space.

The new set of rules is shown in Fig. 4. The algorithm that uses these rules

is called the optimised algorithm. We use ./ as a placeholder for either � or �.

The de�nition of clash is taken from the standard algorithm. We do not need a

!

�

-rule.

At �rst glance, the !

�

-rule may appear to be complicated and therefor is

explained in more detail: Like the standard !

�

-rule, it is applicable to a c.s.

that contains the constraint x j= hRi

�n

� if there are not enough witnesses for

this constraint, i. e., if there are less than n R-successors y of x with y j= � 2 S.

The rule then adds a new witness y to S. Unlike the standard algorithm, the

optimised algorithm also adds additional constraints of the form y j= (�) to

S for each formula appearing in a constraint of the form x j= hRi

./n

 . Since

we have suspended the application of the !

�

-rule until no other rule applies to

x, by this time S contains all constraints of the form x j= hRi

./n

 it will ever

contain. This combines the e�ects of both the !

choose

- and the !

�

-rule of the

standard algorithm.

!

^

-, !

_

-rule: see Fig. 1

!

�

-rule: if 1. x j= hRi

�n

� 2 S, and

2.]R

S

(x; �) < n, and

3. neither the !

^

- nor the !

_

-rule apply to a constraint for x

then S !

�

S [fRxy; y j= �; y j= �

1

; : : : ; y j= �

k

g where

f

1

; : : : ;

k

g = f j x j= hRi

./m

 2 Sg, �

i

2 f

i

;�

i

g, and

y is a fresh variable.

Fig. 4. The optimised completion rules.

4.1 Correctness of the optimised algorithm

To establish the correctness of the optimised algorithm, we will show its termi-

nation, soundness, and completeness.

To analyse the memory usage of the algorithm it is very helpful to view a

c.s. as a graph: A c.s. S induces a labeled graph G(S) = (N;E;L) with

{ The set of nodes N is the set of variables appearing in S.

{ The edges E are de�ned by E := fxy j Rxy 2 S for some R 2 Rg.

{ L labels nodes and edges in the following way:

� For a node x 2 N : L(x) := f� j x j= � 2 Sg.

� For an edge xy 2 E: L(xy) := fR j Rxy 2 Sg.

It is easy to show that the graph G(S) for a c.s. S generated by the optimised

algorithm from an initial c.s. fx

0

j= �g is a tree with root x

0

, and for each edge

xy 2 E, the label L(xy) is a singleton. Moreover, for each x 2 N it holds that

L(x) � clos(�) where clos(�) is the smallest set of formulae satisfying

{ � 2 clos(�),

{ if

1

_

2

or

1

^

2

2 clos(�), then also

1

;

2

2 clos(�),

{ if hRi

./n

 2 clos(�), then also 2 clos(�),

{ if 2 clos(�), then also � 2 clos(�).

Without further proof we will us the fact that the number of elements of clos(�)

is bounded by 2� j�j where j�j denotes the length of �.

Termination First, we will show that the optimised algorithm always termi-

nates, i.e., each sequence of rule applications starting from a c.s. of the form

fx

0

j= �g is �nite. The next lemma will also be of use when we will consider the

complexity of the algorithm.

Lemma 1. Let � be a formula in NNF and S a c.s. that is generated by the

optimised algorithm starting from fx

0

j= �g.

{ The length of a path in G(S) is limited by j�j.

{ The out-degree of G(S) is bounded by jclos(�)j � 2

j�j

.

Proof. For a variable x 2 N , we de�ne `(x) as the maximum depth of nested

modalities in L(x). Obviously, `(x

0

) � j�j holds. Also, if xy 2 E then `(x) > `(y).

Hence each path x

1

; : : : ; x

k

in G(S) induces a sequence `(x

1

) > � � � > `(x

k

) of

natural numbers. G(S) is a tree with root x

0

, hence the longest path in G(S)

starts with x

0

and its length is bounded by j�j.

Successors in G(S) are only generated by the !

�

-rule. For a variable x this

rule will generate at most n successors for each hRi

�n

 2 L(x). There are at

most jclos(�)j such formulae in L(x). Hence the out-degree of x is bounded by

jclos(�)j � 2

j�j

, where 2

j�j

is a limit for the biggest number that may appears in

� if binary coding is used. ut

Corollary 1 (Termination). Any sequence of rule applications starting from

a c.s. S = fx

0

j= �g of the optimised algorithm is �nite.

Proof. The sequence of rules induces a sequence of trees. The depth and the

out-degree of these trees is bounded in j�j by Lemma 1. For each variable x the

label L(x) is a subset of the �nite set clos(�). Each application of a rule either

{ adds a constraint of the form x j= and hence adds an element to L(x), or

{ adds fresh variables to S and hence adds additional nodes to the tree G(S).

Since constraints are never deleted and variables are never identi�ed, an in�nite

sequence of rule application must either lead to an arbitrary large number of

nodes in the trees which contradicts their boundedness, or it leads to an in�nite

label of one of the nodes x which contradicts L(x) � clos(�). ut

Soundness and Completeness The following de�nition will be very helpful

to establish soundness and completeness of the optimised algorithm:

De�nition 4. A c.s. S is called satis�able i� there exists a Kripke structure

M = (W

M

; fR

M

j R 2 Rg; V

M

) and a mapping � : V ! W

M

such that the

following properties hold:

1. If y; z are distinct variables such that Rxy;Rxz 2 S, then �(y) 6= �(z).

2. If x j= 2 S then M; �(x) j= .

3. If Rxy 2 S then (�(x); �(y)) 2 R

M

.

In this case, M; � is called a model of S.

It easily follows from that de�nition, that a c.s. S that contains a clash can

not be satis�able and that the c.s. fx

0

j= �g is satis�able if and only if � is

satis�able.

Lemma 2 (Local Correctness). Let S; S

0

be c.s. generated by the optimised

algorithm from a c.s. of the form fx

0

j= �g.

1. If S

0

is obtained from S by application of the (deterministic) !

^

-rule, then

S is satis�able if and only if S

0

is satis�able.

2. If S

0

is obtained from S by application of the (non-deterministic) !

_

- or

!

�

-rule, then S is satis�able if S

0

is satis�able. Moreover, if S is satis�able,

then the rule can always be applied in such a way that it yields a c.s. S

0

that

is satis�able.

Proof. S ! S

0

for any rule ! implies S � S

0

, hence each model of S

0

is also a

model of S. Consequently, we must show only the other direction.

1. LetM; � be a model of S and let x j=

1

^

2

be the constraint that triggers

the application of the !

^

-rule. The constraint x j=

1

^

2

2 S implies

M; �(x) j=

1

^

2

. This implies M; �(x) j=

i

for i = 1; 2. Hence M; � is

also a model of S

0

= S [fx j=

1

; x j=

2

g.

2. Firstly, we consider the !

_

-rule. Let M; � be a model of S and let x j=

1

_

2

be the constraint that triggers the application of the !

_

-rule. x j=

1

_

2

2 S implies M; �(x) j=

1

_

2

. This implies M; �(x) j=

1

or

M; �(x) j=

2

. Without loss of generality we may assume M; �(x) j=

1

.

The !

_

-rule may choose � =

1

, which implies S

0

= S [fx j=

1

g and

hence M; � is a model for S

0

.

Secondly, we consider the !

�

-rule. Again let M; � be a model of S and let

x j= hRi

�n

� be the constraint that triggers the application of the !

�

-rule.

Since the!

�

-rule is applicable, we have]R

S

(x; �) < n. We claim that there

is a w 2W

M

with

(�(x); w) 2 R

M

;M; w j= �; and w 62 f�(y) j Rxy 2 Sg: (�)

Before we prove this claim, we show how it can be used to �nish the proof.

The world w is used to \select" a choice of the !

�

-rule that preserves satis-

�ability: Let f

1

; : : : ;

n

g be an enumeration of the set f j x j= hRi

./n

 2

Sg. We set

S

0

= S [fRxy; y j= �g [fy j=

i

jM; w j=

i

g [fy j= �

i

jM; w 6j=

i

g:

Obviously, M; �[y 7! w] is a model for S

0

(since y is a fresh variable and w

satis�es (�)), and S

0

is a possible result of the application of the !

�

-rule to

S.

We will now come back to the claim. It is obvious that there is a w with

(�(x); w) 2 R

M

andM; w j= � that is not contained in f�(y) j Rxy; y j= � 2 Sg,

because]R

M

(x; �) � n >]R

S

(x; �). Yet w might appear as the image of an

element y

0

such that Rxy

0

2 S but y

0

j= � 62 S.

Now, Rxy

0

2 S and y

0

j= � 62 S implies y

0

j= �� 2 S. This is due to the

fact that the constraint Rxy

0

must have been generated by an application of the

!

�

-rule because it has not been an element of the initial c.s. The application

of this rule was suspended until neither the !

^

- nor the !

_

-rule are applicable

to x. Hence, if x j= hRi

�n

� is an element of S by now, then it has already been

in S when the !

�

-rule that generated y

0

, was applied. The !

�

-rule guarantees

that either y

0

j= � or y

0

j= �� is added to S. Hence y

0

j= �� 2 S. This is a

contradiction to �(y

0

) = w because under the assumption that M; � is a model

of S this would imply M; w j= �� while we initially assumed M; w j= �. ut

From the local completeness of the algorithm we can immediately derive the

global completeness of the algorithm:

Lemma 3 (Completeness). If � 2 SAT(Gr(K

R

)) in NNF, then there is a

sequence of applications of the optimised rules starting with S = fx

0

j= �g that

results in a complete and clash-free c.s.

Proof. The satis�ability of � implies that also fx

0

j= �g is satis�able. By

Lemma 2 there is a sequence of applications of the optimised rules which pre-

serves the satis�ability of the c.s. By Lemma 1 any sequence of applications must

be �nite. No generated c.s. (including the last one) may contain a clash because

this would make them unsatis�able. ut

Note that since we have made no assumption about the order in which the

rules are applied (with the exception that is stated in the conditions of the !

�

-

rule), the selection of the constraints to apply a rule to as well as the selection

which rule to apply is \don't-care" non-deterministic, i.e., if a formula is sat-

is�able, then this can be proved by an arbitrary sequence of rule applications.

Without this property, the resulting algorithm certainly would be useless for

practical applications, because any deterministic implementation would have to

use backtracking on the selection of constraints and rules.

Lemma 4 (Soundness). Let � be a Gr(K

R

)-formula in NNF. If there is a

sequence of applications of the optimised rules starting with the c.s. fx

0

j= �g

that results in a complete and clash-free c.s., then � 2 SAT(Gr(K

R

)).

Proof. Let S be a complete and clash-free c.s. generated by applications of the

optimised rules. We will show that the canonical model M

S

together with the

identity function is a model for S. Since S was generated from fx

0

j= �g and

the rules do not remove constraints from the c.s., x

0

j= � 2 S. Thus M

S

is also

a model for � with M

S

; x

0

j= �.

By construction ofM

S

, Property 1 and 3 of De�nition 4 are trivially satis�ed.

It remains to show that x j= 2 S implies M; x j= , which we will show by

induction on the norm k � k of a formula . The norm k k for formulae in NNF

is inductively de�ned by:

kpk := k:pk := 0 for p 2 P

k

1

^

2

k := k

1

_

2

k := 1 + k

1

k+ k

2

k

khRi

./n

 k := 1 + k k

This de�nition is chosen such that it satis�es k k = k� k for every formula .

{ The �rst base case is = p for p 2 P . x j= p 2 S implies x 2 V

M

S

(p) and

henceM

S

; x j= p. The second base case is x j= :p 2 S. Since S is clash-free,

this implies x j= p 62 S and hence x 62 V

M

S

(p). This implies M

S

; x j= :p.

{ x j=

1

^

2

2 S implies x j=

1

; x j=

2

2 S. By induction, we have

M

S

; x j=

1

and M

S

; x j=

2

holds and hence M

S

; x j=

1

^

2

. The case

x j=

1

_

2

2 S can be handled analogously.

{ x j= hRi

�n

 2 S implies]R

S

(x;) � n because otherwise the !

�

-rule

would be applicable and S would not be complete. By induction, we have

M

S

; y j= for each y with y j= 2 S. Hence]R

M

S

(x;) � n and thus

M

S

; x j= hRi

�n

 .

{ x j= hRi

�n

 2 S implies]R

S

(x;) � n because S is clash-free. Hence it

is su�cient to show that]R

M

S

(x;) �]R

S

(x;) holds. On the contrary,

assume]R

M

S

(x;) >]R

S

(x;) holds. Then there is a variable y such that

Rxy 2 S andM

S

; y j= while y j= 62 S. For each variable y with Rxy 2 S

either y j= 2 S or y j= � 2 S. This implies y j= � 2 S and, by the

induction hypothesis, M

S

; y j= � holds which is a contradiction. ut

The following theorem is an immediate consequence of Lemma 1, 3, and 4:

Corollary 2. The optimised algorithm is a non-deterministic decision procedure

for SAT(Gr(K

R

)).

4.2 Complexity of the optimised algorithm

The optimised algorithm will enable us to prove Theorem 2. We will give a proof

by sketching an implementation of this algorithm that runs in polynomial space.

Lemma 5. The optimised algorithm can be implemented in PSpace

Proof. Let � be the Gr(K

R

)-formula to be tested for satis�ability. We can as-

sume � to be in NNF because the transformation of a formula to NNF can be

performed in linear time and space.

The key idea for the PSpace implementation is the trace technique[SSS91],

i.e., it is su�cient to keep only a single path (a trace) of G(S) in memory at a

given stage if the c.s. is generated in a depth-�rst manner. This has already been

the key to a PSpace upper bound for K

R

and ALC in [Lad77,SSS91,HM92].

To do this we need to store the values for]R

S

(x;) for each variable x in the

path, each R which appears in clos(�) and each 2 clos(�). By storing these

values in binary form, we are able to keep information about exponentially many

successors in memory while storing only a single path at a given stage.

Consider the algorithm in Fig. 5, where R

�

denotes the set of relation names

that appear in clos(�). It re-uses the space needed to check the satis�ability of a

successor y of x once the existence of a complete and clash-free \subtree" for the

constraints on y has been established. This is admissible since the optimised rules

will never modify change this subtree once is it completed. Neither do constraints

in this subtree have an inuence on the completeness or the existence of a clash

in the rest of the tree, with the exception that constraints of the form y j= for

R-successors y of x contribute to the value of]R

S

(x;). These numbers play a

role both in the de�nition of a clash and for the applicability of the !

�

-rule.

Hence, in order to re-use the space occupied by the subtree for y, it is necessary

and su�cient to store these numbers.

Let us examine the space usage of this algorithm. Let n = j�j. The algorithm

is designed to keep only a single path of G(S) in memory at a given stage. For

each variable x on a path, constraints of the form x j= have to be stored

for formulae 2 clos(�). The size of clos(�) is bounded by 2n and hence the

constraints for a single variable can be stored in O(n) bits. For each variable,

there are at most jR

�

j � jclos(�)j = O(n

2

) counters to be stored. The numbers

to be stored in these counters do not exceed the out-degree of x, which, by

Lemma 1, is bounded by jclos(�)j�2

j�j

. Hence each counter can be stored using

O(n

2

) bits when binary coding is used to represent the counters, and all counters

for a single variable require O(n

4

) bits. Due to Lemma 1, the length of a path

is limited by n, which yields an overall memory consumption of O(n

5

+ n

2

). ut

Theorem 2 now is a simple Corollary from the PSpace-hardness of K

R

,

Lemma 5, and Savitch's Theorem [Sav70].

5 Conclusion

We have shown that by employing a space e�cient tableaux algorithm satis�-

ability of Gr(K

R

) can be decided in PSpace, which is an optimal result with

Gr(K

R

)� SAT(�) := sat(x

0

; fx

0

j= �g)

sat(x; S):

allocate counters]R

S

(x;) := 0 for all R 2 R

�

and 2 clos(�).

while (the !

^

- or the !

_

-rule can be applied) and (S is clash-free) do

apply the !

^

- or the !

_

-rule to S.

od

if S contains a clash then return \not satis�able".

while (the !

�

-rule applies to x in S) do

S

new

:= fRxy; y j= �

0

; y j= �

1

; : : : ; y j= �

k

g

where

y is a fresh variable,

x j= hRi

�n

�

0

triggers an application of the !

�

-rule,

f

1

; : : : ;

k

g = f j x j= hRi

./n

 2 Sg, and

�

i

is chosen non-deterministically from f

i

;�

i

g

for each y j= 2 S

new

do increase]R

S

(x;)

if x j= hRi

�m

 2 S and]R

S

(x;) > m then return \not satis�able".

if sat(y; S

new

) = \not satis�able" then return \not satis�able"

od

remove the counters for x from memory.

return \satis�able"

Fig. 5. A non-deterministic PSpace decision procedure for SAT(Gr(K

R

)).

respect to worst-case complexity. It is possible to obtain an analogous result for

the DL ALCQR by applying similar techniques. ALCQR, which strictly extends

the expressivity of Gr(K

R

) by allowing for relation intersection R

1

\ � � � \ R

m

in the modalities, contains the DL ALCNR for which the upper complexity

bound with binary coding had also been an open problem [DLNN97]. While

the algorithm presented certainly is only optimal from the viewpoint of worst-

case complexity, it is relatively simple and will serve as the starting-point for

a number of optimisations leading to more practical implementations. It also

serves as a tool to establish the upper complexity bound of the problem and

thus shows that tableaux based reasoning for Gr(K

R

) can be done with opti-

mum worst-case complexity. This establishes a kind of \theoretical benchmark"

that all algorithmic approaches can be measured with.

Acknowledgments. I would like to thank Franz Baader and Ulrike Sattler for

valuable comments and suggestions.

References

[AvBN98] H. Andr�eka, J. van Benthem, and I. N�emeti Modal languages and bounded

fragments of predicate logic. Journal of Philosophical Logic, 27(3):217{274,

1998.

[BBH96] F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on con-

cepts. Arti�cial Intelligence, 88(1{2):195{213, 1996.

[CLN94] D. Calvanese, M. Lenzerini, and D. Nardi. A Uni�ed Framework for Class

Based Representation Formalisms. Proc. of KR-94, 1994.

[dHR95] W. Van der Hoek and M. De Rijke. Counting objects. Journal of Logic and

Computation, 5(3):325{345, June 1995.

[DLNN97] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of

concept languages. Information and Computation, 134(1):1{58, 10 April

1997.

[Fin72] K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logic,

13:516{520, 1972.

[GS96] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal

logics from propositional decision procedures|the case study of modal K.

Proc. of CADE-13, LNCS 1104. Springer, 1996.

[HB91] B. Hollunder and F. Baader. Qualifying number restrictions in concept

languages. In Proc. of KR-91, pages 335{346, Boston (USA), 1991.

[HM92] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for

model logics of knowledge and belief. Arti�cial Intelligence, 54(3):319{379,

April 1992.

[HS97] U. Hustadt and R. A. Schmidt. On evaluating decision procedures for modal

logic. In Proc. of IJCAI-97), volume 1, pages 202{207, 1997.

[Lad77] R. E. Ladner. The computational complexity of provability in systems

of modal propositional logic. SIAM Journal on Computing, 6(3):467{480,

September 1977.

[OS97] H. J. Ohlbach and R. A. Schmidt. Functional translation and second-

order frame properties of modal logics. Journal of Logic and Computation,

7(5):581{603, October 1997.

[OSH96] H. J. Ohlbach, R. A. Schmidt, and U. Hustadt. Translating graded modali-

ties into predicate logic. In H. Wansing, editor, Proof Theory of Modal Logic,

volume 2 of Applied Logic Series, pages 253{291. Kluwer, 1996.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic

tape complexities. Journal of Computer and System Sciences, 4(2):177{192,

April 1970.

[Sch91] K. Schild. A correspondence theory for terminological logics: Preliminary

report. In Proc. of IJCAI-91, pages 466{471, 1991.

[Sch97] R. A. Schmidt. Resolution is a decision procedure for many propositional

modal logics: Extended abstract. In M. Kracht, M. de Rijke, H. Wansing,

and M. Zakharyaschev, editors, Advances in Modal Logic '96. CLSI Publi-

cations, 1997.

[SSS91] M. Schmidt-Schau� and G. Smolka. Attributive concept descriptions with

complements. Arti�cial Intelligence, 48:1{26, 1991.

