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Abstract. We examine the complexity and expressivity of the combi-

nation of the Description Logic ALCQI with a terminological formalism

based on cardinality restrictions on concepts. This combination can nat-

urally be embedded into C

2

, the two variable fragment of predicate logic

with counting quanti�ers. We prove that ALCQI has the same complex-

ity as C

2

but does not reach its expressive power.
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1 Introduction

Description Logic (DL) systems can be used in knowledge based systems to

represent and reason about taxonomical knowledge of problem domain in a se-

mantically well-de�ned manner [WS92]. These systems usually consist at least

of the following three components: a DL, a terminological component, and a

reasoning service.

Description logics allow the de�nition of complex concepts (unary predicates)

and roles (binary relations) to be built from atomic ones by the application of

a given set of constructors; for example the following concept describes those

fathers having at least two daughters:

Parentu Male u (� 2 hasChild Female)

The terminological component (TBox) allows for the organisation of de�ned

concepts and roles. The TBox formalisms studied in the DL context range from

weak ones allowing only for the introduction of abbreviations for complex con-

cepts, over TBoxes capable of expressing various forms of axioms, to cardinality

restrictions that can express restrictions on the number of elements a concept

may have. Consider the following three TBox expressions:

BusyParent= Parentu (� 2 hasChild Toddler)

Malet Female = Personu (= 2 hasChild

�1

Parent)

(� 2 Personu (� 0 hasChild

�1

Parent))
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The �rst introduces BusyParent as an abbreviation for a more complex concept,

the second is an axiom stating that Male and Female are exactly those persons

having two parents, the third is a cardinality restriction expressing that in the

domain of discourse there are at most two earliest ancestors.

The reasoning service performs task like subsumption or consistency test for

the knowledge stored in the TBox. There exist sound and complete algorithms

for reasoning in a large number of DLs and di�erent TBox formalisms that

meet the known worst-case complexity of these problems (see [DLNN97] for an

overview). Generally, reasoning for DLs can be performed in four di�erent ways:

{ by structural comparison of syntactical normal forms of concepts [BPS94].

{ by tableaux algorithms that are hand-tailored to suit the necessities of the

operators used to form the DL and the TBox formalism. Initially, these algo-

rithms were designed to decide inference problems only for the DL without

taking into account TBoxes, but it is possible to generalise these algorithms

to deal with di�erent TBox formalisms. Most DLs handled this way are at

most PSpace complete but additional complexity may arise from the TBox.

The complexity of the tableaux approach usually meets the known worst-case

complexity of the problem [SSS91,DLNN97].

{ by perceiving the DL as a (fragment of a) modal logic such as PDL [GL96]; for

many DLs handled in this manner already concept satis�ability is ExpTime-

complete, but axioms can be \internalised" [Baa91] into the concepts and

hence do not increase the complexity.

{ by translation of the problem into a fragment or �rst order other logic with

a decidable decision problem [Bor96,OSH96].

From the fragments of predicate logic that are studied in the second context,

only C

2

, the two variable fragment of �rst order predicate logic augmented with

counting quanti�ers, is capable of dealing with counting expressions that are

commonly used in DLs; similarly it is able to express cardinality restrictions.

Another thing that comes \for free" when translating DLs into �rst order logic

is the ability to deal with inverse roles.

Combining all these parts into a single DL, one obtains the DL ALCQI|the

well-known DL ALC [SSS91] augmented by qualifying number restrictions (Q)

and inverse roles (I). In this work we study both complexity and expressivity of

ALCQI combined with TBoxes based on cardinality restrictions.

Regarding the complexity we show that ALCQI with cardinality restrictions

already is NExpTime-hard and hence has the same complexity as C

2

[PST97]

1

.

To our knowledge this is the �rst DL for which NExpTime-completeness has

formally been proved. Since ALCQI with TBoxes consisting of axioms is still in

ExpTime, this indicates that cardinality restrictions are algorithmically hard to

handle.

1

The NExpTime-result is valid only if we assume unary coding of numbers in the

counting quanti�ers. This is the standard assumption made by most results concern-

ing the complexity of DLs.
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Despite the fact that both ALCQI and C

2

have the same worst-case com-

plexity we show that ALCQI lacks some of the expressive power of C

2

. Prop-

erties of binary predicates (e.g. re
exivity) that are easily expressible in C

2

can

not be expressed in ALCQI. We establish our result by giving an Ehrenfeucht-

Fra��ss�e game that exactly captures the expressivity of ALCQI with cardinality

restrictions. This is the �rst time in the area of DL that a game-theoretic charac-

terisation is used to prove an expressivity result involving TBox formalisms. The

game as it is presented here is not only applicable to ALCQI with cardinality

restrictions; straightforward modi�cations make it applicable to both ALCQ as

well as to weaker TBox formalisms such as terminological axioms.

In [Bor96] a DL is presented that has the same expressivity as C

2

. This

expressivity result is one of the main results of that paper and the DL com-

bines a large number of constructs; the paper does not study the computational

complexity of the presented logics. Our motivation is of a di�erent nature: we

study the complexity and expressivity of a DL consisting of only a minimal set

of constructs that seem sensible when a reduction of that DL to C

2

is to be

considered.

2 The Logic ALCQI

De�nition 1. A signature is a pair � = (N

C

; N

R

) where N

C

is a �nite set of

concepts names and N

R

is a �nite set of role names. Concepts in ALCQI are

built inductively from these using the following rules: All A 2 N

C

are concepts,

and, if C, C

1

, and C

2

are concepts, then also :C; C

1

u C

2

; and (� n S C)

with n 2 N, and S = R or S = R

�1

for some R 2 N

R

are concepts. We

de�ne C

1

t C

2

as an abbreviation for :(:C

1

u :C

2

) and (� n S C) as an

abbreviation for :(� (n+1) S C). We also use (= n S C) as an abbreviation

for (� n S C) u (� n S C).

A cardinality restriction of ALCQI is an expression of the form (� n C) or

(� n C) where C is a concept and n 2 N; a TBox T of ALCQI is a �nite set

of cardinality restrictions.

The semantics of a concept is de�ned relative to an interpretation I =

(�

I

; �

I

), which consists of a domain �

I

and a valuation (�

I

) which maps each

concept name A to a subset A

I

of �

I

and each role name R to a subset R

I

of

�

I

��

I

. This valuation is inductively extended to arbitrary concept de�nitions

using the following rules, where ]M denotes the cardinality of a set M :

(:C)

I

:= �

I

n C

I

; (C

1

u C

2

)

I

:= C

I

1

\ C

I

2

;

(� n R C)

I

:= fa 2 �

I

j ]fb 2 �

I

j (a; b) 2 R

I

^ b 2 C

I

g � ng;

(� n R

�1

C)

I

:= fa 2 �

I

j ]fb 2 �

I

j (b; a) 2 R

I

^ b 2 C

I

g � ng:

An interpretation I satis�es a cardinality restriction (� n C) i� ](C

I

) � n

and it satis�es (� n C) i� ](C

I

) � n. It satis�es a TBox T i� it satis�es all

cardinality restrictions in T ; in this case, I is called a model of T and we will

denote this fact by I j= T . A TBox that has a model is called consistent.
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(A) := Ax for A 2 N

C

	

x

(:C) := :	

x

(C)

	

x

(C

1

u C

2

) := 	

x

(C

1

) ^ 	

x

(C

2

)

	

x

(� n R C) := 9

�n

y:(Rxy ^ 	

y

(C))

	

x

(� n R

�1

C) := 9

�n

y:(Ryx^ 	

y

(C))

	(./ n C) := 9

./n

x:	

x

(C) for ./ 2 f>;6g

	(T ) :=

V

f	(./ n C) j (./ n C) 2 Tg

Fig. 1. The translation from ALCQI into C

2

adopted from [Bor96]

With ALCQ we denote the fragment of ALCQI that does not contain any

inverse roles R

�1

.

TBoxes consisting of cardinality restrictions have �rst been studied in [BBH96]

for the DL ALCQ. They can express terminological axioms of the form C = D

that are the most expressive TBox formalisms usually studied in the DL context

[GL96] as follows: obviously, two concepts C;D have the same extension in an

interpretation i� it satis�es the cardinality restriction (� 0 (Cu:D)t(:CuD)).

One standard inference service for DL systems is satis�ability of a concept C

with respect to a TBox T (i.e., is there an interpretation I such that I j= T and

C

I

6= ;). For a TBox formalism based on cardinality restrictions this is easily

reduced to TBox consistency, because obviously C is satis�able with respect to

T i� T [ f(� 1 C)g is a consistent TBox. To this the reason we will restrict

our attention to TBox consistency; other standard inferences such as concept

subsumption can be reduced to consistency as well.

Until now there does not exist a tableaux based decision procedure for

ALCQI TBox consistency. Nevertheless this problem can be decided with the

help of a well-known translation of ALCQI-TBoxes to C

2

[Bor96] given in Fig. 1.

The logic C

2

is fragment of predicate logic that allows only two variables but is

enriched with counting quanti�ers of the form 9

�l

. The translation 	 yields a

satis�able sentence of C

2

if and only if the translated TBox is consistent. Since

the translation from ALCQI to C

2

can be performed in linear time, the NExp-

Time upper bound [GOR97,PST97] for satis�ability of C

2

directly carries over

to ALCQI-TBox consistency:

Lemma 1. Consistency of an ALCQI-TBox T can be decided in NExpTime.

Please note that the NExpTime-completeness result from [PST97] is only

valid if we assume unary coding of numbers in the input; this implies that a large

number like 1000 may not be stored in logarithmic space in some k-ary repre-

sentation but consumes 1000 units of storage. This is the standard assumption

made by most results concerning the complexity of DLs. We will come back to

this issue later in this paper.
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3 ALCQI is NExpTime-complete

To show that NExpTime is also the lower bound for the complexity of TBox

consistency we use a bounded version of the domino problem. Domino problems

[Wan63,Ber66] have successfully been employed to establish undecidability and

complexity results for various description and modal logics [Spa93,BS99].

3.1 Domino Systems

De�nition 2. For an n 2 N let Z

n

denote the set f0; : : : ; n� 1g and �

n

denote

the addition modulo n. A domino system is a triple D = (D;H; V ), where D

is a �nite set (of tiles) and H;V � D � D are relations expressing horizontal

and vertical compatibility constraints between the tiles. For s; t 2 N let U(s; t)

be the torus Z

s

� Z

t

and w = w

0

; : : : ; w

n�1

be an n-tuple of tiles (with n � s).

We say that D tiles U(s; t) with initial condition w i� there exists a mapping

� : U(s; t)! D such that, for all (x; y) 2 U(s; t),

{ if �(x; y) = d and �(x �

s

1; y) = d

0

then (d; d

0

) 2 H (horizontal constraint);

{ if �(x; y) = d and �(x; y �

t

1) = d

0

then (d; d

0

) 2 V (vertical constraint);

{ �(i; 0) = w

i

for 0 � i < n (initial condition).

Bounded domino systems are capable of expressing the computational be-

haviour of restricted, so called simple, Turing Machines (TM). This restriction

is non-essential in the following sense: Every language accepted in time T (n) and

space S(n) by some one-tape TM is accepted within the same time and space

bounds by a simple TM, as long as S(n); T (n) � 2n [BGG97].

Theorem 1 ([BGG97], Theorem 6.1.2). Let M be a simple TM with input

alphabet �. Then there exists a domino system D = (D;H; V ) and a linear time

reduction which takes any input x 2 �

�

to a word w 2 D

�

with jxj = jwj such

that

{ If M accepts x in time t

0

with space s

0

, then D tiles U(s; t) with initial

condition w for all s � s

0

+ 2; t � t

0

+ 2;

{ if M does not accept x, then D does not tile U(s; t) with initial condition w

for any s; t � 2.

Corollary 1. Let M be a (w.l.o.g. simple) non-deterministic TM with time-

(and hence space-) bound 2

n

d

(d constant) deciding an arbitrary NExpTime-

complete language L(M) over the alphabet �. Let D be the according domino sys-

tem and and trans the reduction from Theorem 1. The following is a NExpTime-

hard problem:

Given an initial condition w = w

0

; : : : ; w

n�1

of length n. Does D tile

U(2

n

d

+1

; 2

n

d

+1

) with initial condition w?

Proof. The function trans is a linear reduction from L(M) to the problem above:

For v 2 �

�

with jvj = n it holds that v 2 L(M) i� M accepts v in time and

space 2

jvj

d

i� D tiles U(2

n

d

+1

; 2

n

d

+1

) with initial condition trans(v). ut
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3.2 De�ning a Torus of Exponential Size

Just as de�ning in�nite grids is the key problem in proving undecidability by

reduction of unbounded domino problems, de�ning a torus of exponential size is

the key to obtaining a NExpTime-completeness proof by reduction of bounded

domino problems.

To be able to apply Corollary 1 to TBox consistency for ALCQI we must

characterise the torus Z

2

n

�Z

2

n

with a TBox of polynomial size. To characterise

this torus we will use 2n concepts X

0

; : : : ; X

n�1

and Y

0

; : : : ; Y

n�1

, where X

i

codes the ith bit of the binary representation of the X-coordinate of an element

a:

For an interpretation I and an element a 2 �

I

, we de�ne pos(a) by

pos(a) := (xpos(a); ypos(a)) :=

�

n�1

X

i=0

x

i

� 2

i

;

n�1

X

i=0

y

i

� 2

i

�

; where

x

i

=

(

0; if a 62 X

I

i

1; otherwise

y

i

=

(

0; if a 62 Y

I

i

1; otherwise

:

We use a well-known characterisation of binary addition (e.g. [BGG97]) to

relate the positions of the elements in the torus:

Lemma 2. Let x; x

0

be natural numbers with binary representations

x =

n�1

X

i=0

x

i

� 2

i

and x

0

=

n�1

X

i=0

x

0

i

� 2

i

:

This implies:

x

0

� x+ 1 (mod 2

n

) i�

n�1

^

k=0

(

k�1

^

j=0

x

j

= 1)! (x

k

= 1$ x

0

k

= 0)

^

n�1

^

k=0

(

k�1

_

j=0

x

j

= 0)! (x

k

= x

0

k

)

where the empty conjunction and disjunction are interpreted as true and false

respectively.

We de�ne the TBox T

n

to consist of the following cardinality restrictions:

(8 (� 1 east >)); (8 (� 1 north >));

(8 (= 1 east

�1

>)); (8 (= 1 north

�1

>));

(� 1 C

(0;0)

); (� 1 C

(2

n

�1;2

n

�1)

); (� 1 C

(2

n

�1;2

n

�1)

); (8 D

east

uD

north

);

where we use the following abbreviations: the expression (8 C) is an abbre-

viation for the cardinality restriction (� 0 :C), the concept 8R:C stands for
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(� 0 R :C), and > stands for an arbitrary concept that is satis�ed in all

interpretations (e.g. A t :A).

The concept C

(0;0)

is satis�ed by all elements a of the domain for which

pos(a) = (0; 0) holds. C

(2

n

�1;2

n

�1)

is a similar concept, which is satis�ed if

pos(a) = (2

n

� 1; 2

n

� 1):

C

(0;0)

=

n�1

G

k=0

:X

k

u

n�1

G

k=0

:Y

k

; C

(2

n

�1;2

n

�1)

=

n�1

G

k=0

X

k

u

n�1

G

k=0

Y

k

:

The conceptD

east

(resp.D

north

) enforces that along the role east (resp. north)

the value of xpos (resp. ypos) increases by one while the value of ypos (resp. xpos)

stays the same. They exactly resemble the formula from Lemma 2:

D

east

=

n�1

G

k=0

(

k�1

G

j=0

X

j

)! ((X

k

! 8east::X

k

) u (:X

k

! 8east:X

k

))

u

n�1

G

k=0

(

k�1

G

j=0

:X

j

)! ((X

k

! 8east:X

k

) u (:X

k

! 8east::X

k

))

u

n�1

G

k=0

((Y

k

! 8east:Y

k

) u (:Y

k

! 8east::Y

k

)):

The concept D

north

is similar to D

east

where the role north has been substituted

for east and variables X

i

and Y

i

have been swapped.

The following lemma is a consequence of the de�nition of pos and Lemma 2.

Lemma 3. Let I = (�

I

; �

I

) be an interpretation and a; b 2 �

I

.

(a; b) 2 east

I

and a 2 D

I

east

implies: xpos(b) � xpos(a) + 1 (mod 2

n

)

ypos(b) = ypos(a)

(a; b) 2 north

I

and a 2 D

I

north

implies: xpos(b) = xpos(a)

ypos(b) � ypos(a) + 1 (mod 2

n

)

The TBox T

n

de�nes a torus of exponential size in the following sense:

Lemma 4. Let T

n

be the TBox as introduced above. Let I = (�

I

; �

I

) be an

interpretation such that I j= T

n

. This implies

(�

I

; east

I

;north

I

)

�

=

(U(2

n

; 2

n

); S

1

; S

2

)

where U(2

n

; 2

n

) is the torus Z

2

n

�Z

2

n

and S

1

; S

2

are the horizontal and vertical

successor relations on the torus.

Proof. We will only sketch the proof of this lemma. It is established by showing

that the function pos is an isomorphism from �

I

to U(2

n

; 2

n

). That pos is a
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homomorphism follows immediately from Lemma 3. Injectivity of pos is estab-

lished by showing that each element (x; y) 2 U(2

n

; 2

n

) is the image of at most

one element of �

I

by induction over the Manhattan distance of (x; y) to the up-

per right corner (2

n

� 1; 2

n

� 1) of the torus. The base case is trivially satis�ed

because T

n

contains the cardinality restrictions (� 1 C

(2

n

�1;2

n

�1)

). The induc-

tion step follows from the fact that each element a 2 �

I

has exactly one east-

and north-predecessor (since (8 (= 1 east

�1

>)); (8 (= 1 north

�1

>)) 2 T

n

) and

Lemma 3. Surjectivity is established similarly starting from the corner (0; 0). ut

It is interesting to note that we need inverse roles only to guarantee that pos is

injective. The same can be achieved by adding the cardinality restriction (� (2

n

�

2

n

) >) to T

n

, from which the injectivity of pos follows from its surjectivity and

simple cardinality considerations. Of course the size of this cardinality restriction

would only be polynomial in n if we allow binary coding of numbers. Also note

that we have made explicit use of the special expressive power of cardinality

restrictions by stating that, in any model of T

n

, the extension of C

(2

n

�1;2

n

�1)

must have at most one element. This can not be expressed with a TBox consisting

of terminological axioms.

3.3 Reducing Domino Problems to TBox Consistency

Once Lemma 4 has been proved, it is easy to reduce the bounded domino problem

to TBox consistency. We use the standard reduction that has been applied in

the DL context, e.g., in [BS99].

Lemma 5. Let D = (D;V;H) be a domino system. Let w = w

0

; : : : ; w

n�1

2 D

�

.

There is a TBox T (n;D; w) such that:

{ T (n;D; w) is consistent i� D tiles U(2

n

; 2

n

) with initial condition w.

{ T (n;D; w) can be computed in time polynomial in n.

Proof. We de�ne T (n;D; w) := T

n

[ T

D

[ T

w

, where T

n

is de�ned as above,

T

D

captures the vertical and horizontal compatibility constraints of the domino

system D, and T

w

enforces the initial condition. We use an atomic concept C

d

for each tile d 2 D. T

D

consists of the following cardinality restrictions:

(8

G

d2D

C

d

); (8

G

d2D

G

d

0

2Dnfdg

:(C

d

u C

d

0

));

(8

G

d2D

(D

d

! (8east:

G

(d;d

0

)2H

C

d

0

))); (8

G

d2D

(D

d

! (8north:

G

(d;d

0

)2V

C

d

0

))):

T

w

consists of the cardinality restrictions

(8 (C

(0;0)

! C

w

0

)); : : : ; (8 (C

(n�1;0)

! C

w

n�1

)

where, for each x; y, C

(x;y)

is a concept that is satis�ed by an element a i�

pos(a) = (x; y), similar to C

(0;0)

and C

(2

n

�1;2

n

�1)

.

From the de�nition of T (n;D; w) and Theorem 4, it follows that each model

of T (n;D; w) immediately induces a tiling of U(2

n

; 2

n

) and vice versa. Also, for

a �xed domino system D, T (n;D; w) is obviously polynomially computable. ut
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The next theorem is an immediate consequence of Lemma 5 and Corollary 1:

Theorem 2. Consistency of ALCQI-TBoxes is NExpTime-hard, even if unary

coding of numbers is used in the input.

Recalling the note below Lemma 4, we see that the same argument also

applies to ALCQ if we allow binary coding of numbers.

Corollary 2. Consistency of ALCQ-TBoxes is NExpTime-hard, if binary cod-

ing is used to represent numbers in cardinality restrictions.

Note that for unary coding we needed both inverse roles and cardinality re-

strictions for the reduction. This is consistent with the fact that satis�ability for

ALCQI concepts with respect to TBoxes consisting of terminological axioms is

still in ExpTime, which can be shown by a reduction to Converse-PDL [GM99].

This shows that cardinality restrictions on concepts are an additional source of

complexity; one reason for this might be that ALCQI with cardinality restric-

tions no longer has a tree-model property in the modal logic sense.

4 Expressiveness of ALCQI

Since reasoning for ALCQI has the same (worst-case) complexity as for C

2

,

naturally the question arises how the two logics are related with respect to their

expressivity. We show that ALCQI is strictly less expressive than C

2

.

4.1 A De�nition of Expressiveness

There are di�erent approaches to de�ne the expressivity of Description Log-

ics [Baa96,Bor96,AdR98], but only the one presented in [Baa96] is capable of

handling TBoxes. We will use a de�nition that is equivalent to the one given

in [Baa96] restricted to a special case. It bases the notion of expressivity on the

classes of interpretations de�nable by a sentence (or TBox).

De�nition 3. Let � = (N

C

; N

R

) be a �nite signature. A class C of �-interpre-

tations is called characterisable by a logic L i� there is a sentence '

C

over �

such that C = fI j I j= '

C

g.

The class C is called projectively characterisable i� there is a sentence '

0

C

over a signature �

0

� � such that C = fIj

�

j I j= '

0

C

g, where Ij

�

denotes the

�-reduct of I.

A logic L

1

is called as expressive as another logic L

2

(L

1

� L

2

) i�, for any

�nite signature � , any L

2

-characterisable class C can be projectively characterised

in L

1

.

Since C

2

is usually restricted to a relational signature with relation symbols

of arity at most two, this de�nition is appropriate to relate the expressiveness

of ALCQI and C

2

. It is worth noting that ALCQI is strictly more expressive
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than ALCQ, because ALCQ has the �nite model property [BBH96], while the

following ALCQI TBox has no �nite models:

T

inf

= f(8 (� 1 R >)); (8 (� 1 R

�1

>)); (� 1 (= 0 R

�1

>))g:

The �rst cardinality restriction requires an outgoing R-edge for every element

of a model and thus each R-path in the model in in�nite. The second and third

restriction require the existence of an R-path in the model that contains no cycle,

which implies the existence of in�nitely many elements in the model. SinceALCQ

has the �nite model property, the class C

inf

:= fI j I j= T

inf

g, which contains

only models with in�nitely many elements, can not be projectively characterised

by an ALCQ-TBox.

The translation 	 from ALCQI-TBoxes to C

2

sentences given in Fig. 1 not

only preserves satis�ability, but the translation also has exactly the same models

as the initial TBox. This implies that ALCQI � C

2

.

4.2 A Game for ALCQI

Usually, the separation of two logics with respect to their expressivity is a hard

task and not as easily accomplished as we have just done with ALCQ and

ALCQI. Even for logics of very restricted expressivity, proofs of separation re-

sults may become involved and complex [Baa96] and usually require a detailed

analysis of the classes of models a logic is able to characterise. Valuable tools

for these analyses are Ehrenfeucht-Fra��ss�e games. In this section we present an

Ehrenfeucht-Fra��ss�e game that exactly captures the expressivity of ALCQI.

De�nition 4. For an ALCQI concept C, the role depth rd(C) counts the max-

imum number of nested cardinality restrictions. Formally we de�ne rd as follows:

rd(A) := 0 for A 2 N

C

rd(:C) := rd(C)

rd(C

1

u C

2

) := maxfrd(C

1

); rd(C

2

)g

rd(� n R C) := 1 + rd(C)

The set C

n

m

is de�ned to consist of exactly those ALCQI concepts that have a

role depth of at most m, and in which the numbers appearing in number restric-

tions are bounded by n; the set L

n

m

is de�ned to consist of all ALCQI-TBoxes

T that contain only cardinality restrictions of the form (./ k C) with k � n and

C 2 C

n

m

.

Two interpretations I and J are called n-m-equivalent (I�

n

m

J ) i�, for all

TBoxes T in L

n

m

, it holds that I j= T i� J j= T . Similarly, for x 2 �

I

and

y 2 �

J

we say that I; x and J ; y are n-m-equivalent (I; x �

n

m

J ; y) i�, for all

C 2 C

n

m

it holds that, x 2 C

I

i� y 2 C

J

.

Two elements x 2 �

I

and y 2 �

J

are called locally equivalent (I; x �

l

J ; y), i� for all A 2 N

C

: x 2 A

I

i� y 2 A

J

.
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Note that, since we assume � to be �nite, there are only �nitely many pairwise

inequivalent concepts in each class C

n

m

.

We will now de�ne an Ehrenfeucht-Fraisse game for ALCQI to capture the

expressivity of concepts in the classes C

n

m

: The game is played by two players.

Player I is called the spoiler while Player II is called the duplicator. The spoiler's

aim is to prove two structures not to be n-m-equivalent, while Player II tries

to prove the contrary. The game consists of a number of rounds in which the

players move pebbles on the elements of the two structures.

De�nition 5. Let � be a nonempty set. Let x be an element of � and X a

subset of �. For any binary relation R � � �� we write xRX to denote the

fact that (x; x

0

) 2 R holds for all x

0

2 X. For the set N

R

of role names let N

R

be the union of N

R

and fR

�1

j R 2 N

R

g.

A con�guration captures the state of a game in progress. It is of the form

G

n

m

(I; x;J ; y), where n 2 N is a limit on the size of set that may be chosen

during the game, m denotes the number of moves which still have to be played,

and x and y are the elements of �

I

resp. �

J

on which the pebbles are placed.

For the con�guration G

n

m

(I; x;J ; y) the rules are as follows:

1. If I; x 6�

l

J ; y, then Player II loses; if m = 0 and I; x �

l

J ; y, then Player

II wins.

2. If m > 0, then Player I selects one of the interpretations; assume this is I

(the case J is handled dually). He then picks a role S 2 N

R

and a number

l � n. He picks a set X � �

I

such that xS

I

X and ]X = l. The duplicator

has to answer with a set Y � �

J

with yS

J

Y and ]Y = l. If there is no such

set, then she loses.

3. If Player II was able to pick such a set Y , then Player I picks an element

y

0

2 Y . Player II has to answer with an element x

0

2 X.

4. The game continues with G

n

m�1

(I; x

0

;J ; y

0

).

We say that Player II has a winning strategy for G

n

m

(I; x;J ; y) i� she can

always reach a winning position no matter which moves Player I plays. We write

I; x

�

=

n

m

J ; y to denote this fact.

Theorem 3. For two structures I;J and two elements x 2 �

I

; y 2 �

J

it holds

that I; x

�

=

n+1

m

J ; y i� I; x �

n

m

J ; y.

We omit the proof of this and the next theorem. These employ the same

techniques that are used to show the appropriateness of the known Ehrenfeucht-

Fra��ss�e games for C

2

and for modal logics, please refer to [Tob99] for details.

The game as it has been presented so far is suitable only if we have already

placed pebbles on the interpretations. To obtain a game that characterises �

n

m

as a relation between interpretations, we have to introduce an additional rule

that governs the placement of the �rst pebbles. Since a TBox consists of cardi-

nality restrictions which solely talk about concept membership, we introduce an

unconstrained set move as the �rst move of the game G

n

m

(I;J ).

De�nition 6. For two interpretations I;J , G

n

m

(I;J ) is played as follows:
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1. Player I picks one of the structures; assume he picks I (the case J is handled

dually). He then picks a set X � �

I

with ]X = l where l � n. Player II

must pick a set Y � �

J

of equal size. If this is impossible then she loses.

2. Player I picks an element y 2 Y , Player II must answer with an x 2 X.

3. The game continues with G

n

m

(I; x; I; y).

Again we say that Player II has a winning strategy for G

n

m

(I;J ) i� she can

always reach a winning positions no matter which moves Player I chooses. We

write I

�

=

n

m

J do denote this fact.

Theorem 4. For two structures I;J it holds that I �

n

m

J i� I

�

=

n+1

m

J .

Similarly, it would be possible to de�ne a game that captures the expressivity

of ALCQI with TBoxes consisting of terminological axioms by replacing the

unconstrained set move from Def. 6 by a move where Player I picks a structure

and one element from that structure; Player II then has to answer accordingly

and the game continues as described in Def. 5.

4.3 The Expressivity Result

We will now use this characterisation of the expressivity of ALCQI to prove

that ALCQI is less expressive than C

2

. Even though we have introduced the

powerful tool of Ehrenfeucht-Fra��ss�e games, the proof is still rather complicated.

This is mainly due to the fact that we use a general de�nition of expressiveness

that allows for the introduction of arbitrary additional role- and concept-names

into the signature.

Theorem 5. ALCQI is not as expressive as C

2

.

Proof. To prove this theorem we have to show that there is a class C that is

characterisable in C

2

but that cannot be projectively characterised in ALCQI:

Claim 1: For an arbitrary R 2 N

R

the class C

R

:= fI j R

I

is re
exiveg is not

projectively characterisable in ALCQI. Obviously, C

R

is characterisable in C

2

.

Proof of Claim 1: Assume Claim 1 does not hold and that C

R

is projectively

characterised by the TBox T

R

2 L

n

m

over an arbitrary (but �nite) signature

� = (N

C

; N

R

) with R 2 N

R

. We will have derived a contradiction once we have

shown that there are two � -interpretations A;B such that A 2 C

R

, B 62 C

R

, but

A �

n

m

B. In fact, A �

n

m

B implies B j= T

R

and hence B 2 C

R

, a contradiction.

In particular, C

R

contains all interpretations A with R

A

= f(x; x) j x 2 �

A

g,

i.e. interpretations in which R is interpreted as equality. Since C

n

m

contains only

�nitely many pairwise inequivalent concepts and C

R

contains interpretations of

arbitrary size, there is also such an A such that there are two elements x

1

; x

2

2

�

A

with x

1

6= x

2

and A; x

1

�

n

m

A; x

2

. We de�ne B from A as follows:

�

B

:= �

A

;

A

B

:= A

A

for each A 2 N

C

;

S

B

:= S

A

for each S 2 N

R

n fRg;

R

B

:= (R

A

n f(x

1

; x

1

); (x

2

; x

2

)g) [ f(x

1

; x

2

); (x

2

; x

1

)g:
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Since R

B

is no longer re
exive, as desired B 62 C

R

holds. It remains to be shown

that A �

n

m

B holds. We prove this by showing that A

�

=

n+1

m

B holds, which is

equivalent to A �

n

m

B by Theorem 4.

Any opening move of Player I can be answered by Player II in a way that

leads to the con�guration G

n+1

m

(A; x;B; x), where x depends on the choices of

Player I. We have to show that, for any con�guration of this type, Player II has

a winning strategy. Since certainly A; x

�

=

n+1

m

A; x this follows from Claim 2:

Claim 2: For all k � m: If A; x

�

=

n+1

k

A; y then A; x

�

=

n+1

k

B; y.

Proof of Claim 2: We prove Claim 2 by induction over k. Denote Player II's

strategy for the con�guration G

n+1

k

(A; x;A; y) by S.

For k = 0, Claim 2 follows immediately from the construction of B:A; x

�

=

n+1

0

A; y implies A; x �

l

A; y and A; y �

l

B; y since B agrees with A on the inter-

pretation of all atomic concepts. It follows that A; x �

l

B; y, which means that

Player II wins the game G

n+1

0

(A; x;B; y). For 0 < k � m, assume that Player I

selects an arbitrary structure and a legal subset of the respective domain. Player

II tries to answer that move according to S which provides her with a move for

the game G

n+1

k

(A; x;A; y). There are two possibilities:

{ The move provided by S is a valid move also for the game G

n+1

k

(A; x;B; y):

Player II can answer the choice of Player I according to S without violating

the rules, which yields a con�guration G

n+1

k�1

(A; x

0

;B; y

0

) such that for x

0

; y

0

it holds that A; x

0

�

=

n+1

k�1

A; y

0

(because Player II moved according to S).

From the induction hypothesis it follows that A; x

0

�

=

n+1

k�1

B; y

0

.

{ The move provided by S is not a valid move for the game G

n+1

k

(A; x;B; y)

This requires a more detailed analysis: Assume Player I has chosen to move

in A and has chosen an S 2 N

R

and a set X of size l � n + 1 such that

xS

A

X . Let Y be the set that Player II would choose according S. This

implies that Y has also l elements and that yS

A

Y . That this choice is not

valid in the game G

n+1

k

(A; x;B; y) implies that there is an element z 2 Y

such that (y; z) 62 S

B

. This implies y 2 fx

1

; x

2

g and S 2 fR;R

�1

g, because

these are the only elements and relations that are di�erent in A and B.

W.l.o.g. assume y = x

1

and S = R. Then also z = x

1

must hold, because

this is the only element such that (x

1

; z) 2 R

A

and (x

1

; z) 62 R

B

. Thus,

the choice Y

0

:= (Y n fx

1

g) [ fx

2

g is a valid one for Player II in the game

G

n+1

m

(A; x;B; y): x

1

R

B

Y

0

and jY

0

j = l because (x

1

; x

2

) 62 R

A

.

There are two possibilities for Player I to choose an element y

0

2 Y

0

:

1. y

0

6= x

2

: Player II chooses x

0

2 X according to S. This yields a con�gu-

ration G

n+1

k�1

(A; x

0

;B; y

0

) such that A; x

0

�

=

n+1

k�1

A; y

0

.

2. y

0

= x

2

: Player II answers with the x

0

2 X that is the answer to

the move x

1

of Player I according to S. For the obtained con�gura-

tion G

n+1

k�1

(A; x

0

;B; y

0

) also A; x

0

�

=

n+1

k�1

A; y

0

holds: By the choice of

x

1

; x

2

, A; x

1

�

n

m

A; x

2

is satis�ed and since k � 1 < m also A; x

1

�

n

k�1

A; x

2

holds which implies A; x

1

�

=

n+1

k�1

A; x

2

by Theorem 4. Since Player

II chose x

0

according to S it holds that A; x

0

�

=

n+1

k�1

A; x

1

and hence

A; x

0

�

=

n+1

k�1

A; x

2

since

�

=

n+1

k�1

is transitive.
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In both cases we can apply the induction hypothesis which yields A; x

0

�

=

n+1

k�1

B; y

0

and hence Player II has a winning strategy for G

n+1

k

(A; x;B; y). The

case that Player I chooses from B instead of A can be handled dually. ut

By adding constructs to ALCQI that allow to form more complex role ex-

pressions one can obtain a DL that has the same expressive power as C

2

, such

a DL is presented in [Bor96]. The logic presented there has the ability to ex-

press a universal role that makes it possible to internalise both TBoxes based

on terminological axioms and cardinality restrictions on concepts.

5 Conclusion

We have shown that, with a rather limited set of constructors, one can de�ne a

DL whose reasoning problems are as hard as those of C

2

without reaching the

expressive power of the latter. This shows that cardinality restrictions, although

interesting for knowledge representation, are inherently hard to handle algorith-

mically. At a �rst glance, this makes ALCQI with cardinality restrictions on

concepts obsolete for knowledge representation, because C

2

delivers more ex-

pressive power at the same computational price. Yet, is is likely that a dedicated

algorithm for ALCQI may have better average complexity than the C

2

algo-

rithm; such an algorithm has yet to be developed. An interesting question lies

in the coding of numbers: If we allow binary coding of numbers, the transla-

tion approach together with the result from [PST97] leads to a 2-NExpTime

algorithm. As for C

2

, it is an open question whether this additional exponential

blow-up is necessary. A positive answer would settle the same question for C

2

while a proof of the negative answer might give hints how the result for C

2

might

be improved.
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