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Abstract

Many Description Logics (DLs) allow for counting
expressions of various forms that are important in
many applications, e.g., for reasoning with seman-
tic data models and for applications concerned with
the configuration of technical systems. We present
two novel complexity results for DLs that contain
counting constructs:
(1) We prove that concept satisfiability forALCQI
is decidable in PSPACE even if binary coding of
numbers in the input is assumed. (2) We prove that
TBox consistency forALCQI with cardinality re-
strictions is NEXPTIME-complete.

1 The Complexity ofALCQI
Qualifying number restrictions [10] are a common general-
isation of both role-quantification and standard number re-
strictions that are present in almost all DL systems. They
provide an expressive means to describe objects by the num-
ber of other objects they are related to and are necessary for
reasoning with semantic data models [5]. In [16] we have
shown that—at least forALC—number restrictions can be
replaced by qualifying number restrictions without increas-
ing the (worst-case) complexity of the satisfiability problem.
In this paper we extend this result to inverse roles.

Definition 1 (The DL ALCQI) LetN
C

be a set ofatomic
conceptsandN

R

a set ofatomic roles. The set ofALCQI-
rolesN

R

isN
R

[fR

�

j R 2 N

R

g. ConceptsinALCQI are
built inductively using the following rules:

1. everyA 2 N

C

is anALCQI-concept, and

2. if C;D
1

; D

2

are ALCQI-concepts,n 2 N, andR 2

N

R

then:C, D
1

u D

2

, D
1

t D

2

, (> n R C), and
(6 n R C) areALCQI-concepts.

We use./ as a placeholder for6 and>. For an interpreta-
tion I = (�

I

; �

I

), we extend the usual semantics ofALC-
concepts to qualifying number restrictions by setting

(./ n R C)

I

:= fx 2 �

I

j ]fy j (x; y) 2 R

I

; y 2 C

I

g ./ ng;

where] denotes the cardinality of a set. For roles namesR,
we define(R�

)

I

:= f(y; x) j (x; y) 2 R

I

g. WithALCQ we
denote the fragment ofALCQI that does not contain inverse
roles. WithSAT(ALCQ) and SAT(ALCQI) we denote the
set of all satisfiableALCQ-, resp.,ALCQI-concepts.

Obviously, existential and universal restrictions can be ex-
pressed inALCQI with qualifying number restrictions us-
ing the equivalences9R:C � (> 1 R C) and8R:C � (6

0 R :C). In order to avoid considering roles such asR

��,
we define a functionInv that returns the inverse of a role by
settingInv(R) := R

� if R 2 N

R

, andInv(R) := S if R =

S

� for someS 2 N

R

.

Reasoning with Qualifying Number Restrictions In [10]
a tableaux algorithm is presented that decides SAT(ALCQ) in
polynomial space, provided that only unary coding of num-
bers in the input is allowed. In [6] it is conjectured that binary
coding of numbers makes SAT(ALCQ) EXPTIME-hard. Why
does the coding of numbers seem to be of such an importance
for the problem? The answer lies in the nature of the tableaux
algorithms forALCQ: Like other tableaux algorithms, they
decide the satisfiability of a conceptC by trying to construct
a model for it. For an instancex of a concept(> n R C),
the algorithm in [10] generatesn successors ofx, and the
correctness of the algorithms relies on the fact that they are
kept in memorysimultaneously. Assuming unary coding of
numbers in the input, this is can be done in polynomial space
because the numbern will consumen bits in the input and
hence the amount of memory needed for then successors is
polynomial in the size of the input. This changes if we assume
binary coding of numbers: thenn consumes onlylog

2

n bits
in the input, making the amount of memory required to store
n successors potentially exponential in the size of the input.

In [16] we give an algorithm derived from the one pre-
sented in [10] that is capable of deciding SAT(ALCQ) in
PSPACE, even if binary coding of numbers in the input is
allowed. While still generatingn successors for a concept
(> n R C), non-deterministic guessing of an assignment of
relevant constraints to newly generated individuals is used to
be able to generate them successively while re-using space.



This determines the complexity of SAT(ALCQ) as PSPACE-
complete. As a result we may augmentALC with qualifying
number restrictions without increasing the (worst-case) com-
plexity of the satisfiability problem.

In this paper we present an extension of the algorithm in
[16] that can, additionally, deal with inverse roles and runs
in polynomial space. The so-called “reset-restart” technique
used to deal with concepts moving “backwards” in the com-
pletion tree due to thechoose-rule has already been used in
[11] to handle inverse roles.

Definition 2 An ALCQI-conceptC is in negation normal
form (NNF) if negation occurs only in front of atomic con-
cepts; we denote the NNF of:C by�C. For a conceptC
in NNF we define clos(C) to be the smallest set ofALCQI-
concepts that containsC and is closed under sub-concepts
and�.

A completion treefor an ALCQI-conceptD is a tree
where each nodex is labelled with a setL(x) � clos(D)

and each edgehx; yi is labelled with a (possibly inverse) role
nameL(hx; yi) = R for a role occurring in clos(D).

Given a completion tree, a nodey is called anR-successor
of a nodex iff y is a successor ofx andL(hx; yi) = R. A
nodey is called anR-neighbourof x iff y is anR-successor
of x, or if x is an Inv(R)-successor ofy. Predecessors, an-
cestors, paths, etc., are defined as usual.

A nodex in T is said to contain aclashif,

� for some atomic conceptA, fA;:Ag � L(x), or

� for some conceptC, role R, andn 2 N, it holds that
(6 n R C) 2 L(x) and ]R

T

(x;C) > n, where
R

T

(x;C) := fy j y is R-neighbour ofx in T and
C 2 L(y)g.

A completion tree is calledclash-freeiff none of its nodes con-
tains a clash; it is calledcompleteiff none of the expansion
rules in Figure 1 is applicable to any of its nodes.

To test the satisfiability of anALCQI-conceptD, the al-
gorithm starts with a completion tree consisting of a single
nodex

0

with L(x
0

) = fDg. It applies the expansion rules,
stopping when a clash occurs, and answers “D is satisfiable”
iff the completion rules can be applied in such a way that they
yield a complete and clash-free completion tree.

Correctness of the Algorithm In this paper we can only
give the main ideas of the proofs, for details please refer to
[17]. In order to prove the correctness of the algorithm it is
necessary to show termination, soundness, and completeness.
The following lemma states the termination of the algorithm
an collects some facts that will be needed for the complexity
analysis.

Lemma 3 Let D be anALCQI-concept in NNF andT a
completion tree that is generated forD by the tableaux algo-
rithm.

u-rule: if 1.C
1

u C

2

2 L(x) and 2.fC
1

; C

2

g 6� L(x)

thenL(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1.C
1

t C

2

2 L(x) and 2.fC
1

; C

2

g \ L(x) = ;

thenL(x) �! L(x) [ fCg for someC 2 fC

1

; C

2

g

choose- if 1. (./ n R C) 2 L(x) and
rule: 2. there is anR-predecessory of x

with fC;�Cg \ L(x) = ;

thenL(y) �! L(y) [ fEg for someE 2 fC;�Cg

and deleteall descendants ofy.

>-rule: if 1. (> n R C) 2 L(x), none from the above rules is
applicable tox or any of its ancestors, and

2. ]RT(x;C) < n

then create a new nodey with L(hx; yi) = R and
L(y) = fC;E

1

; : : : ; E

n

g where
fD

1

; : : : D

n

g = fD j (./ n R D) 2 L(x)g

andE
i

2 fD

i

;�D

i

g.

Figure 1: Tableaux expansion rules forALCQI

1. ]clos(D) = O(jDj).

2. The length of a path inT is bounded byjDj.

3. The out-degree ofT is limited by]clos(D)� 2

jDj.

4. For any conceptD, the algorithm terminates.

Proof. (1) is easily proved by observing thatclos(D) =

sub(D) [ f�C j C 2 sub(D)g, wheresub(D) is the set
of all subconcepts ofD which contains at mostjDj elements.
(2) and (3) are simple consequence of the expansion rules.
(4) is a consequence of the bounded size of the tree because
each rule application either adds nodes to the tree or the adds
concepts to the label of a nodex which is always a subset of
clos(D). The only problem is the deletion of nodes that is
triggered by thechoose-rule. However, if this rule deletes a
node from the tree, also the label of an ancestor of this node
grows, which prevents an infinite sequence of rule applica-
tions. ut

Lemma 4 (Soundness)If the rules can be applied to an
ALCQI-conceptD such that they yield a complete and
clash-free completion tree, thenD is satisfiable.

Proof. LetT be a complete and clash-free completion tree for
D. A modelI = (�

I

; �

I

) for D can be defined by choosing
�

I to be the nodes ofT and by defining:

A

I

= fx j A 2 L(x)g for all atomic conceptsA

R

I

= fhx; yi j L(hx; yi) = R orL(hy; xi) = Inv(R)g:

Inductively it can be shown that, for allx 2 �

I and allC 2

clos(D), C 2 L(x) impliesx 2 C

I . SinceD 2 L(x

0

) it
follows thatDI

6= ; and, henceI is a model ofD. ut

Lemma 5 (Completeness)LetD be anALCQI-concept: If
D is satisfiable, then the expansion rules can be applied in
such a way that they yield a complete and clash-free comple-
tion tree forD.



Proof. Let I = (�

I

; �

I

) be a model forD. We will useI
to guide the application of the non-deterministic completion
rules. For this we incremently define a function� mapping
the nodes inT to elements of�I such that at any given stage
the following holds:

if C 2 L(x), then�(x) 2 C

I

if L(hx; yi) = R; thenh�(x); �(y)i 2 R

I

if y; z areR-neighbours ofx with y 6= z;

then�(y) 6= �(z)

9

>

>

=

>

>

;

(�)

CLAIM : Whenever(�) holds for a treeT and a function�,
and a rule is applicable toT then it can be applied in a way
that maintains(�).

The proof of this claim can be found in [17]. Lemma 5
is a consequence of this claim: obviously,(�) holds for the
initial tree with root nodex

0

if we set�(x
0

) := s

0

for an
elements

0

2 D

I (such an element must exist becauseI is
a model forD). Lemma 3 yields that each sequence of rule
applications must terminate, and also each tree for which(�)

holds is necessarily clash-free because: (a) it cannot contain
a clash of the formfA;:Ag � L(x) since this would imply
�(x) 2 A

I and�(x) 62 A

I ; (b) it can neither contain a clash
of the form(6 n R C) 2 L(x) and]RT(x;C) > n because
� is injective on the set of allR-neighbours of a nodex and
hence]RT(x;C) > n implies]RI

(x;C) > n. This contra-
dicts�(x) 2 (6 n R C)

I . ut

Theorem 6 The tableaux algorithm is a non-deterministic
decision procedure forALCQI-satisfiability.

Complexity of the Algorithm What remains to show is
that the algorithm can be implemented to run in polyno-
mial space. Due to Savitch's theorem [13] (that states that
PSPACE coincides with NPSPACE) it is sufficient to give a
non-deterministic algorithm that runs in PSPACE. Still, as for
ALC, models for aALCQI-concept may be required to have
exponential size so we have to develop a method that facili-
tates re-use of space while generating the completion tree.

Lemma 7 The tableaux algorithm can be implemented to
run in polynomial space.

Proof. LetD be theALCQI-concept to be tested for satisfi-
ability. We may assumeD to be in NNF because the transfor-
mation of a formula to NNF can be performed in linear time
and space.

The key idea for a PSPACE implementation is thetrace
technique, i.e., it is sufficient to keep only a single path (a
trace) ofT in memory at a given stage if the completion tree
is generated in a depth-first manner. This technique has al-
ready been the key to a PSPACE upper bound for the propo-
sitional modal logicK

m

andALC in [14, 9] and it may be
generalised to deal with inverse roles by a “reset-restart” tech-
nique as described in [11]. Moreover, to deal with the cardi-
nality restrictions, we need to store the values for]R

T

(x;C)

for each nodex, eachR which appears inclos(D), and each
C 2 clos(D). By storing these values in binary form, we are
able to keep informationaboutexponentially many succes-
sors in memory while storing only a single path at any stage.

Once the existence of a complete and clash-free “subtree”
for the constraints on a successory of x has been established,
this subtree will be discarded from memory. This is admis-
sible since the tableaux rules can delete but will never mod-
ify this subtree once it is completed. This deletion is nec-
essary because thechoose-rule pushes concepts backwards
which has an influence on other subtrees of the effected node.
Since these may already have been discarded from memory
they have to be regenerated.

Constraints in a subtree have no influence on the complete-
ness or the existence of a clash in the rest of the tree, with the
exception that a conceptC 2 L(y) for anR-neighboury of x
contributes to the value of]RT(x;C). These numbers play a
rôle both in the definition of a clash and for the applicability
of the>-rule. Hence, in order to re-use the space occupied
by the subtree fory, it is necessary and sufficient to store only
these numbers.

This algorithm consumes only polynomial space: (a) the
depth of the tree is linearly bounded; (b) each node label is a
subset of a set of linear size; (c) there are polynomially many
relevant counters; and (d) the values of the counters do not
exceed the out-degree of the tree and thus can be stored in
polynomial size using binary coding of numbers. ut

Obviously, satisfiability forALCQI is at least as hard as
for ALC. Together with the previous lemma this yields:

Theorem 8 SAT(ALCQI) is PSPACE-complete, even if
numbers in the input are represented in binary coding.

2 The Complexity of Cardinality Restrictions
Cardinality restrictions on concepts allows to restrict the
model of a knowledge base with respect to the number of
instances of complex concepts. They have first been intro-
duced in [1] forALCQ as a terminological formalism that
is interesting for configuration applications. While the ex-
act complexity ofALCQ with cardinality restrictions is un-
known, we show that, forALCQI, reasoning is NEXPTIME-
complete provided that unary coding of numbers in the input
is assumed.

Definition 9 (Cardinality Restrictions) A cardinality re-
striction is an expression of the form(> n C) or (6 n C)

whereC is anALCQI-concept andn 2 N; a TBox T is a
finite set of cardinality restrictions. An interpretationI satis-
fies(./ n C) iff ]CI

./ n; it is model of a TBoxT (I j= T )
iff it satisfies all cardinality restrictions inT . A TBoxT is
calledconsistentiff there is a modelI of T .

Cardinality restrictions can express terminological axioms
of the formC = D, which are the most expressive TBox



formalisms usually studied in the DL context [7] as follows:
two conceptsC;D have the same extension in an interpreta-
tion I iff I j= (6 0 (C u :D) t (:C u D)). A standard
inference service of a DL system is satisfiability of a con-
ceptC with respect to a TBoxT (i.e., is there a modelI
of T with C

I

6= ;?). For TBoxes consisting of cardinality
restrictions, this can be reduced to consistency of the TBox
T

0

:= T [ f(> 1 C)g.
Consistency ofALCQI-TBoxes can naturally be reduced

to satisfiability ofC2—the fragment of first order predicate
logic restricted to two variables augmented with counting
quantifiers—by an extension of the translation given in [4].
If we assume unary coding of numbers, this reduction yields
a NEXPTIME upper bound [12] for the complexity TBox-
consistency forALCQI. By reduction from a bounded
domino problem [3], we show that NEXPTIME is also a lower
bound for the problem. Again, we can only present the ideas
of most proofs. Please refer to [15] for details.

Definition 10 (Domino System)For n 2 N, let Z
n

denote
the setf0; : : : ; n � 1g and�

n

denote the addition modulo
n. A domino systemis a triple D = (D;H; V ), whereD
is a finite set (of tiles) andH;V � D � D are relations
expressing horizontal and vertical compatibility constraints
between tiles. Fors; t 2 N, letU(s; t) be the torusZ

s

� Z

t

andw = w

0

; : : : ; w

n�1

be ann-tuple of tiles (withn � s).
We say thatD tiles U(s; t) with initial conditionw iff there
exists a mapping� : U(s; t) ! D such that, for all(x; y) 2
U(s; t),

� if �(x; y) = d and�(x �
s

1; y) = d

0 then(d; d0) 2 H

(horizontal constraint);

� if �(x; y) = d and�(x; y �
t

1) = d

0 then(d; d0) 2 V

(vertical constraint);

� �(i; 0) = w

i

for 0 � i < n (initial condition).

Bounded domino systems are capable of simulating the
computational behaviour of restricted, so calledsimple, Tur-
ing Machines (TM). This restriction is non-essential in the
following sense: Every language accepted in timeT (n) and
spaceS(n) by some one-tape TM is accepted within the
same time and space bounds by a simple TM, as long as
S(n); T (n) � 2n [3]. Exploiting the correspondence be-
tween computations of resource bounded TMs and tilings of
bounded domino systems the following lemma can easily be
shown.

Lemma 11 There is a domino systemD such that the fol-
lowing is a NEXPTIME-hard problem. “Given an initial
condition w = w

0

; : : : ; w

n�1

of lengthn. DoesD tile
U(2

n

d

+1

; 2

n

d

+1

) with initial conditionw?”

Defining a Torus of Exponential Size Just as defining in-
finite grids is the key problem in proving undecidability by

reduction of unbounded domino problems, defining a torus
of exponential size is the key to obtaining a NEXPTIME-
hardness proof by reduction of bounded domino problems.

To apply Lemma 11 to TBox consistency forALCQI, we
must characterise the torusZ

2

n

� Z

2

n with a TBox of poly-
nomial size. We will use2n atomic conceptsX

0

; : : : ; X

n�1

andY
0

; : : : ; Y

n�1

, whereX
i

codes theith bit of the binary
representation of the X-coordinate of an elementa:

For an interpretationI anda 2 �

I , we definepos(a) by

pos(a) := (xpos(a); ypos(a)) :=

�

n�1

X

i=0

x

i

� 2

i

;

n�1

X

i=0

y

i

� 2

i

�

;

wherex
i

:= 0 if a 62 X

I

i

and1 otherwise, andy
i

is defined
analogously.

LetC
(0;0)

be a concept that is satisfied by all elementsa of
the domain withpos(a) = (0; 0) and, similarly,C

(2

n

�1;2

n

�1)

is a similar concept, which is satisfied ifpos(a) = (2

n

�

1; 2

n

� 1). Let Deast (resp. Dnorth) be concepts enforcing
that along the roleeast(north) the value ofxpos(resp.ypos)
increases by one while the value ofypos(resp.xpos) stays the
same. This can expressed using a characterisation of binary
addition from [9]:

C

(0;0)

=

n�1

G

k=0

:X

k

u

n�1

G

k=0

:Y

k

;

Deast
=

n�1

G

k=0

(

k�1

G

j=0

X

j

) !((X

k

! 8east::X
k

) u

(:X

k

! 8east:X
k

))u

n�1

G

k=0

(

k�1

G

j=0

:X

j

) !((X

k

! 8east:X
k

) u

(:X

k

! 8east::X
k

))u

n�1

G

k=0

((Y

k

! 8east:Y
k

) u (:Y

k

! 8east::Y
k

)):

We define the TBoxT
n

to consist of the following cardi-
nality restrictions:

(8 (> 1 east:)>); (8 (> 1 north :)>);

(8 (= 1 east�1:>)); (8 (= 1 north�1:>));

(� 1 C

(0;0)

); (= 1 C

(2

n

�1;2

n

�1)

);

(8DeastuDnorth);

where we use the following abbreviations:(8 C) is an ab-
breviation for the cardinality restriction(� 0 :C); > stands
for a concept that is satisfied everywhere in all interpretations
(e.g.,A t :A). The TBoxT

n

defines a torus of exponential
size in the following sense:

Lemma 12 LetT
n

be the TBox as introduced above. LetI =

(�

I

; �

I

) be a model ofT
n

.

� The sizejT
n

j (i.e., the number of symbols necessary to
write downT

n

) is quadratic inn.



� (�

I

; eastI ; northI) �

=

(U(2

n

; 2

n

); S

1

; S

2

), where
U(2

n

; 2

n

) is the torusZ
2

n

�Z

2

n andS
1

; S

2

are the hor-
izontal and vertical successor relations onZ

2

n

�Z

2

n.

We will only sketch the proof of this lemma. The first
part is immediate from the construction ofT

n

. The second
part is established by showing that the functionposis an iso-
morphism from�

I to U(2

n

; 2

n

). Thatpos is a homomor-
phism follows immediately from the definition ofDeast and
Dnorth. Injectivity of posis established by showing that each
element(x; y) 2 U(2

n

; 2

n

) is the image of at most one el-
ement of�I by induction over the Manhattan distance of
(x; y) to the upper right corner(2n � 1; 2

n

� 1) of the torus.
The base case is trivial becauseT

n

contains the cardinality
restrictions(� 1 C

(2

n

�1;2

n

�1)

). The induction step fol-
lows from the fact that each elementa 2 �

I has exactly one
east- andnorth-predecessor (since(8 (= 1 east�1:>)); (8 (=

1 north�1:>)) 2 T

n

). Surjectivity is established similarly
starting from(0; 0).

Reducing Domino Problems to TBox Consistency Once
Lemma 12 has been proved, it is easy to reduce the bounded
domino problem to TBox consistency. We use a reduction
similar to the on in [2], which uses the fact that we can express
terminological axioms.

Lemma 13 For a domino systemD = (D;V;H) andw =

w

0

; : : : ; w

n�1

2 D

�, there is a TBoxT (n;D; w) with

� T (n;D; w) is consistent iffD tilesU(2

n

; 2

n

) with initial
conditionw, and

� T (n;D; w) can be computed in time polynomial inn.

Together with Theorem 11 this yields:

Theorem 14 Consistency of ALCQI-TBoxes is
NEXPTIME-hard, even if unary coding of numbers is
used in the input.

Satisfiability ofALCQI-concepts with respect to TBoxes
consisting of terminological axioms is known to be EXP-
TIME-complete [8]. This indicates that cardinality restric-
tions, although interesting for knowledge representation, in-
crease the complexity of the inference problem. While
ALCQI with cardinality restriction has the same worst-case
complexity asC2, we have shown that it does not reach the
expressiveness of the latter [15].
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