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Abstract wheret denotes the cardinality of a set. For roles nanigs
we defind R)% := {(y,z) | (z,y) € RT}. With ALCQ we
denote the fragment o £LC Q7 that does not contain inverse
roles. WithSAT(ALCQ) and SAT(ALCQT) we denote the
set of all satisfiabled£C O-, resp., ALC QZ-concepts.

Many Description Logics (DLs) allow for counting

expressions of various forms that are important in
many applications, e.g., for reasoning with seman-
tic data models and for applications concerned with

the configuration of technical systems. We present Obviously, existential and universal restrictions can be ex-
two novel complexity results for DLs that contain pressed inA£C QT with qualifying number restrictions us-
counting constructs: ing the equivalence3R.C' = (> 1 R C) andVR.C = (<

(1) We prove that concept satisfiability f@rCC 97 0 R —C). In order to avoid considering roles such@s,

is decidable in PBACE even if binary coding of we define a functiomnv that returns the inverse of a role by
numbers in the input is assumed. (2) We prove that  settinglnv(R) := R~ if R € Ng, andInv(R) := Sif R =
TBox consistency fordLC Q7 with cardinality re- S~ for someS € Ng.

strictions is NEXPTIME-complete.
Reasoning with Qualifying Number Restrictions In [10]

1 The Complexity of ALCOT atableaux algorithmis presented that decides(3LC Q) in

o - polynomial space, provided that only unary coding of num-
Qualifying number restrictions [10] are a common general bers in the input is allowed. In [6] it is conjectured that binary

isation of both role-quantification and standard number re- ~ =~
strictions that are present in almost all DL systems. The goding of numbers make$(ALC Q) ExPTIME-hard. Why

. . : ; Yoes the coding of numbers seem to be of such an importance
provide an expressive means to describe objects by the nu

) ar the problem? The answer lies in the nature of the tableaux
ber of other objects they are related to and are necessary fg[ orithms forAZCO: Like other tableaux algorithms, the
reasoning with semantic data models [5]. In [16] we have 9 : 9 ey

shown that—at least fad LC—number restrictions can be decide the sgt|sf|ab|l|ty_of a concepitby trying to construct
S - : ; a model for it. For an instance of a concep{> n R C),
replaced by qualifying number restrictions without increas-

: . P the algorithm in [10] generates successors of, and the
ing the (worst-case) complexity of the satisfiability problem. . .

; . ) correctness of the algorithms relies on the fact that they are
In this paper we extend this result to inverse roles.

kept in memorysimultaneously Assuming unary coding of

Definition 1 (The DL LALCQT) Let N be a set ofatomic numbers in the input, this is can be done in polynomial space

conceptsaind N, a set ofatomic roles The set ofALC OT- because the numberwill consumen bits in the input anq
rolesNg is NrU{R~ | R € Ng}. Conceptsn ALCOT are hence the amount of memory needed for theuccessors is
built inductively using the following rules: polynomialin the size of the input. This changes if we assume

_ binary coding of numbers: thenconsumes onljog, n bits
1. everyA € Nc is an ALCQT-concept, and in the input, making the amount of memory required to store
2. ifC,Dy,D, are ALCQZ-conceptsn € N, andR €  n successors potentially exponential in the size of the input.
Npg then—C, D, M Dy, D; U D5, (> n R C), and In [16] we give an algorithm derived from the one pre-
(< n RC)are ALCQTI-concepts. sented in [10] that is capable of decidingiRALCQ) in
We usex as a placeholder fo and >. For an interpreta- P SPACE, even if b_inary codi_ng of numbers in the input is
tion 7 = (AZ,.T), we extend the usual semantics£C- allowed. While still generating. successors for a concept

concepts to qualifying number restrictions by setting (> n R C), non-deterministic guessing of an assignment of
relevant constraints to newly generated individuals is used to

(an RC) :={x e AT | #{y | (z,y) € RT,y € CT}n}, be able to generate them successively while re-using space.



This determines the complexity olh8(ALC Q) as PPACE-
complete. As a result we may augmetfC with qualifying
number restrictions without increasing the (worst-case) con
plexity of the satisfiability problem.

In this paper we present an extension of the algorithm i
[16] that can, additionally, deal with inverse roles and run
in polynomial space. The so-called “reset-restart” techniqu

used to deal with concepts moving “backwards” in the com-

pletion tree due to thehooserule has already been used in
[11] to handle inverse roles.

Definition 2 An ALCQZ-conceptC' is in negation normal
form (NNF) if negation occurs only in front of atomic con-
cepts; we denote the NNF efC' by ~C'. For a conceptC'

in NNF we define cld€”) to be the smallest set of£LC OZ-

M-rule: if1.CiNC, € ﬁ;(l‘) and 2.{01, CQ} Z L(ac)
thenL(z) — L(z) U {Cy, C2}

N-U-rule: if 1.C, U Cs, € ﬁ;(l‘) and 2.{01, CQ} n ﬁ;(l‘) =0
thenL(z) — L(z) U {C} for someC € {C1, C>}

N chooseif 1. (xn R C) € L(x) and

s rule: 2. there is atR-predecessay of =

e with {C, ~C} N L(z) =0

thenL(y) — L(y) U {E} for someE € {C,~C}
and deletall descendants of.

>-rule: if 1. (> n R C) € L(z), none from the above rules is
applicable tar or any of its ancestors, and
2.4RT(z,C) < n
then create a new nodewith L((z,y)) = R and
L(y) ={C, E1,...,E,} where
{D1,...Dp} ={D | (<n R D)€ L(x)}
andE; € {Di, ~Di}.

concepts that contain€’ and is closed under sub-concept
and~.

A completion treefor an ALCQZ-conceptD is a tree
where each node is labelled with a setfl(z) C clogD)
and each edgér, y) is labelled with a (possibly inverse) role
nameL({(z,y)) = R for a role occurring in clogD).

Given a completion tree, a noges called anR-successor
of a nodez iff y is a successor of andL({(z,y)) = R. A
nodey is called anR-neighbourof z iff y is an R-successor
of z, or if z is anInv(R)-successor of.. Predecessors, an-
cestors, paths, etc., are defined as usual.

A nodez in T is said to contain alashif,

e for some atomic concept, {A,—A} C L(x), or

e for some concepf’, role R, andn € N, it holds that
(K n R C) € L(z) and §RT(2,C) > n, where
RY(z,C) := {y | y is R-neighbour ofz in T and
CeL(y)}

A completion tree is calledash-fredff none of its nodes con-
tains a clash; it is calleccompleteiff none of the expansion
rules in Figure 1 is applicable to any of its nodes.

To test the satisfiability of asl £LC QZ-conceptD, the al-

Figure 1: Tableaux expansion rules fet£C Q7

1. gclos(D) = O(|D)).

2. The length of a path iT' is bounded byD|.

3. The out-degree @F is limited bysclog D) x 27!,
4. For any concepD, the algorithm terminates.

Proof. (1) is easily proved by observing thalos(D)
subD) U {~C | C € sul D)}, wheresul(D) is the set

of all subconcepts ab which contains at mos$D| elements.

(2) and (3) are simple consequence of the expansion rules.
(4) is a consequence of the bounded size of the tree because
each rule application either adds nodes to the tree or the adds
concepts to the label of a nodewhich is always a subset of
clog D). The only problem is the deletion of nodes that is
triggered by theehooserule. However, if this rule deletes a
node from the tree, also the label of an ancestor of this node
grows, which prevents an infinite sequence of rule applica-
tions. O

Lemma 4 (Soundness)lf the rules can be applied to an

gorithm starts with a completion tree consisting of a Single/wCQI-conceptD such that they yield a complete and

nodez, with L(zo) = {D}. It applies the expansion rules,
stopping when a clash occurs, and answelsis$ satisfiable”

clash-free completion tree, thdnis satisfiable.

iff the completion rules can be applied in such a way that theyProof. Let T be a complete and clash-free completion tree for

yield a complete and clash-free completion tree.

Correctness of the Algorithm In this paper we can only

D. AmodelZ = (AZ,.T) for D can be defined by choosing
AT to be the nodes ¢F and by defining:

AT ={z| A€ L(x)} forall atomic conceptsl

give the main ideas of the proofs, for details please refer to T — 1z 4 | £((z,y)) = R or L({y, ) = Inv(R)}.
[17]. In order to prove the correctness of the algorithm it is

necessary to show termination, soundness, and completenekguctively it can be shown that, for al € A% and allC' €
The following lemma states the termination of the algorithmclos(D), C' € L(z) impliesz € CZ. SinceD € L(zo) it

an collects some facts that will be needed for the complexitfollows thatD” # () and, hencd is a model ofD.

analysis.

Lemma 3 Let D be anALCQZ-concept in NNF andl’ a
completion tree that is generated fbr by the tableaux algo-
rithm.

a

Lemma 5 (Completeness)Let D be anALC Q7-concept: If

D is satisfiable, then the expansion rules can be applied in
such a way that they yield a complete and clash-free comple-
tion tree forD.



Proof. Let Z = (AZ,-T) be a model forD. We will useZ  for each noder, eachR which appears iclog D), and each
to guide the application of the non-deterministic completionC' € clog D). By storing these values in binary form, we are
rules. For this we incremently define a functiermapping able to keep informatioaboutexponentially many succes-
the nodes irfT" to elements ofA” such that at any given stage sors in memory while storing only a single path at any stage.
the following holds: Once the existence of a complete and clash-free “subtree”
if C € L(x), then(z) € T fo_r the constra_ints ona succesgmf z has been es_ta.blished.,
. 7 this subtree will be discarded from memory. This is admis-
if L((z,y)) = R, then(n(z),7(y)) € R ; ; .
it y, 2 are R-neighbours ofr with y # 2, (%) _S|ble since the tableal_Jx_ rules can delete but will never mod-
thenr(y) # (2) ify this subtree once it is completed. This deletion is nec-
essary because thlehooserule pushes concepts backwards
CLAIM : Whenever(x) holds for a tre€T and a functionr,  which has an influence on other subtrees of the effected node.
and a rule is applicable t@ then it can be applied in a way Since these may already have been discarded from memory
that maintaingx). they have to be regenerated.

The proof of this claim can be found in [17]. Lemma 5 Constraints in a subtree have no influence on the complete-
is a consequence of this claim: obvioudly) holds for the  ness or the existence of a clash in the rest of the tree, with the
initial tree with root noder, if we setw(zy) := so for an  exception that a concept € L(y) for an R-neighbouy of z
elementsy € DT (such an element must exist becadsis  contributes to the value g™ (z, C'). These numbers play a
a model forD). Lemma 3 yields that each sequence of rulerble both in the definition of a clash and for the applicability
applications must terminate, and also each tree for whith of the >-rule. Hence, in order to re-use the space occupied
holds is necessarily clash-free because: (a) it cannot contaby the subtree foy, it is necessary and sufficient to store only
a clash of the forr{ A, - A} C L(z) since this would imply  these numbers.

n(z) € AT andr(z) ¢ AT; (b) it can neither contain a clash  This algorithm consumes only polynomial space: (a) the

of the form(< n R C) € L(z) andfR™ (x,C) > n because depth of the tree is linearly bounded; (b) each node label is a
7 is injective on the set of alkR-neighbours of a node and  subset of a set of linear size; (c) there are polynomially many
hencefRT (z,C) > n impliestRZ(x,C) > n. This contra-  relevant counters; and (d) the values of the counters do not

dictsw(z) € (< n R C)Z. O  exceed the out-degree of the tree and thus can be stored in
polynomial size using binary coding of numbers. O

Theorem 6 The tableaux algorithm is a non-deterministic Obviously, satisfiability forACCQT is at least as hard as

decision procedure far £C QZ-satisfiability. for ALC. Together with the previous lemma this yields:

Complexity of. the Algorithrr_1 What remains to _show IS Theorem 8 SAT(ALCQT) is PSPACE-complete, even if
that the algorithm can be implemented to run in polyno-numbers in the input are represented in binary coding.
mial space. Due to Savitch's theorem [13] (that states that

PSpACE coincides with NP8ACE) it is sufficient to give a 2 The Complexity of Cardinality Restrictions

non-deterministic algorithm that runs in P&E. Still, as for Cardinalit rict s all ¢ it th
ALC, models for ad£C QZ-concept may be required to have ardinality restricions on concepts allows to restrict the
model of a knowledge base with respect to the number of

exponential size so we have to develop a method that fad”fnstances of complex concepts. They have first been intro
tates re-use of space while generating the completion tree. ; " X : )
P g g P duced in [1] forALCQ as a terminological formalism that

run in polynomial space. act complexity ofALCQ with cardinality restrictions is un-
known, we show that, fad £LC QZ, reasoning is NEPTIME-

Proof. Let D be theALC Q7-concept to be tested for satisfi- complete provided that unary coding of numbers in the input
ability. We may assum® to be in NNF because the transfor- js assumed.

mation of a formula to NNF can be performed in linear time

and space. _ o Definition 9 (Cardinality Restrictions) A cardinality re-
The key idea for a PS\CE implementation is thérace  strictionis an expression of the forf® n C) or (< n O)

technique i..e., it is sufficien.t to keep o_nly a single path (@ whereC is an ALCOT-conceptanch € N; a TBox T is a

trace) of T in memory at a given stage if the completion treefjnjte set of cardinality restrictions. An interpretatidnsatis-

is generated in a depth-first manner. This technique has afres(m n C) iff 407 s n; it is model of a TBoXT' (Z k& T)

ready been the key to a P&CE upper bound for the propo- it it satisfies all cardinality restrictions iff’. A TBoxT is

sitional modal logicK,,, and ALC in [14, 9] and it may be  ajled consistentff there is a model of T

generalised to deal with inverse roles by a “reset-restart” tech-

nigue as described in [11]. Moreover, to deal with the cardi- Cardinality restrictions can express terminological axioms

nality restrictions, we need to store the valuestBir (z, C) of the formC = D, which are the most expressive TBox



formalisms usually studied in the DL context [7] as follows: reduction of unbounded domino problems, defining a torus

two conceptg’, D have the same extension in an interpreta-of exponential size is the key to obtaining a XH IME-

tionZ iff Z = (< 0(Cn-D)U(=CnD)). Astandard hardness proof by reduction of bounded domino problems.

inference service of a DL system is satisfiability of a con- To apply Lemma 11 to TBox consistency fdirZC Q7, we

ceptC with respect to a TBoX (i.e., is there a model  must characterise the toréds- x Z,» with a TBox of poly-

of T with C* # (?). For TBoxes consisting of cardinality nomial size. We will us@€n atomic concepty, ..., X, 1

restrictions, this can be reduced to consistency of the TBoandYy, ..., Y, 1, whereX; codes theth bit of the binary

T:=TU{(> 10)}. representation of the X-coordinate of an element
Consistency ofALC QZ-TBoxes can naturally be reduced  For an interpretatiof anda € A7, we defingpoga) by

to satisfiability of C?—the fragment of first order predicate - i

logic restricted to two variables augmented with counting . . i i

quantifiers—by an extension of the translation given in [4]. posia) := (xposa), ypoda)) = (Z zi -2 ’Z yi -2 )’

If we assume unary coding of numbers, this reduction yields =0 =0

a NExpTIME upper bound [12] for the complexity TBox- wherez; := 0 if a ¢ X7 and1 otherwise, ang; is defined

consistency forALCQZ. By reduction from a bounded analogously.

domino problem [3], we show that N TIME is also a lower LetC(o,0) be a concept that is satisfied by all elements
bound for the problem. Again, we can only present the ideathe domain witfpoga) = (0,0) and, similarlyCo» 1 2» 1)
of most proofs. Please refer to [15] for details. is a similar concept, which is satisfied pbga) = (2" —

1,2™ — 1). Let Deast (resp. Dnortn) be concepts enforcing
Definition 10 (Domino System)For n € N, let Z,, denote  that along the roleast(north) the value ofkpos(resp.ypog
the set{0,...,n — 1} and ®,, denote the addition modulo increases by one while the valueygfos(resp.xpo9 stays the
n. A domino systenis a triple D = (D, H,V), whereD  same. This can expressed using a characterisation of binary
is a finite set (of tiles) andZ,V C D x D are relations  addition from [9]:
expressing horizontal and vertical compatibility constraints

-1 -1
between tiles. Fos,tz € N, letU(s,t) be the torusz, x Z; Clon= n|_| on 7|z_| .
andw = wy,...,w,_1 be ann-tuple of tiles (withn. < s). ’ k0 B0
We say thatD tiles U (s, t) with initial condition w iff there n—1 k—1
?]x(ist;a mapping : U(s,t) — D such that, for all(z, y) € Do = k|_|0( |_|0Xj) —((X) — Veast-X;)
S,1), =0 J=
. - X VeastXy))n
o if T(.x,y) =d andr_(m @s 1,y) = d' then(d,d') € H n—1 g—1 (2% = Veasti)
(horizontal constraint); |_| ( |_| -X;) =((X) — VeastX;) M
o if 7(z,y) = dandr(z,y ;1) = d then(d,d') € V k=0 j=0
(vertical constraint); (=X — Veast-Xj))MN
n—1
e 7(i,0) = w; for 0 < i < n (initial condition). |_| (Vi — VeastYy) M (~Y), — Veast-Y3)).
k=0

Bounded domino systems are capable of simulating the
computational behaviour of restricted, so cals@ahple Tur- We define the TBoX;, to consist of the following cardi-
ing Machines (TM). This restriction is non-essential in thenality restrictions:
following sense: Every language accepted in tiff{@) and
spaceS(n) by some one-tape TM is accepted within the (V(>1 east.)lT), (V (> 1 north ;)IT)’
same time and space bounds by a simple TM, as long as (V(=1east’.T)), (¥(= lnorth .T)),

S(n), T(n) > 2n [3]. Exploiting the correspondence be- (21C0,0), (=1C@n-1,m-1)),
tween computations of resource bounded TMs and tilings of (V Deast™ Drortn),
bounded domino systems the following lemma can easily bg;ere we use the following abbreviation& C) is an ab-

shown. breviation for the cardinality restrictioni< 0 =C); T stands
for a concept that is satisfied everywhere in all interpretations

Lemma 11 There is a domino syste such that the fol- (e g, 4 LI ~A4). The TBoxT,, defines a torus of exponential
lowing is a NExPTIME-hard problem. “Given an initial  gjze in the following sense:

\
v

conditionw = wy,...,w,_1 Of lengthn. DoesD tile

U(2n'+1, 27"+ with initial conditionw?” Lemma 12 LetT,, be the TBox as introduced above. Zet
(AT,-T) be a model of},.

Defining a Torus of Exponential Size Just as defining in- e The sizeT,| (i.e., the number of symbols necessary to

finite grids is the key problem in proving undecidability by write downT},) is quadratic inn.



~

e (A7 east, north?) (U@2~,2"),S:,8S2), where
U(2™,2™) is the torusZs» x Z2» andSy, S, are the hor-
izontal and vertical successor relations @a» x Zon.

We will only sketch the proof of this lemma. The first
part is immediate from the construction 6. The second
part is established by showing that the functpmsis an iso-
morphism fromAZ to U(2",2"). Thatposis a homomor-
phism follows immediately from the definition dPeasand
Dnorh- Injectivity of posis established by showing that each
element(z,y) € U(2",2") is the image of at most one el-
ement of A7 by induction over the Manhattan distance of
(z,y) to the upper right corngR™ — 1,2™ — 1) of the torus.
The base case is trivial becauBg contains the cardinality
restrictions(< 1 C(an_12»_1)). The induction step fol-
lows from the fact that each element A” has exactly one
east andnorth-predecessor (sin¢g (= 1 east'.T)), (V (=
1 north '.T)) € T,). Surjectivity is established similarly
starting from(0, 0).

Reducing Domino Problems to TBox Consistency Once

[3] E. Borger, E. Gradel, and Y. Gurevichlhe Classical
Decision ProblemPerspectives in Mathematical Logic.
Springer-Verlag, 1997.

[4] A. Borgida. On the relative expressiveness of descrip-
tion logics and first order logicdArtificial Intelligence
82:353-367, 1996.

D. Calvanese, M. Lenzerini, and D. Nardi. A unified
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(5]

Lemma 12 has been proved, it is easy to reduce the bounded®] J. Y. Halpern and Y. Moses. A guide to completeness

domino problem to TBox consistency. We use a reduction

similar to the on in [2], which uses the fact that we can express
(10]

terminological axioms.

Lemma 13 For a domino syster® = (D,V,H) andw =

and complexity for model logics of knowledge and be-
lief. Artificial Intelligence 54(3):319-379, April 1992.

B. Hollunder and F. Baader. Qualifying number restric-
tions in concept languages. Rroceedings of KR'91
1991.

wo,. .., W1 € D", there is a TBOX'(n, D, w) with [11] I. Horrocks, U. Sattler, and S. Tobies. Practical reason-
e T(n,D,w) is consistentifD tiles U (2", 2™) with initial ing for description logics with functional restrictions,
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Theorem 14 Consistency  of ALCQT-TBoxes is
NExPTIME-hard, even if unary coding of numbers is
used in the input.

Satisfiability of ALC Q7-concepts with respect to TBoxes
consisting of terminological axioms is known to be#=
TiIME-complete [8]. This indicates that cardinality restric-
tions, although interesting for knowledge representation, in-
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