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1 Motivation and outline

In order to ensure a reasonable and predictable behaviour of a Description Logic
(DL) system, reasoning in the DL employed by the system should at least be
decidable, and preferably of low complexity. Consequently, the expressive power
of the DL in question must be restricted in an appropriate way. If the imposed
restrictions are too severe, however, then the important notions of the applica-
tion domain can no longer be expressed. Investigating this trade-off between
the expressivity of DLs and the complexity of their inference problems has thus
been one of the most important issues in DL research.

This paper investigates an approach for extending the expressivity of DLs
that (in many cases) guarantees that reasoning remains decidable: the fusion of
DLs. In order to explain the difference between the usual union and the fusion
of DLs, let us consider a simple example. Assume that the DL Dy is ALC,
i.e., it provides for the Boolean operators M, LI, = and the additional concept
constructors value restriction Vr.C' and existential restriction Jr.C', and that
the DL D, provides for the Boolean operators and number restrictions (< nr)
and (>nr). If an application requires concept constructors from both DLs
for expressing its relevant concepts, then one would usually consider the union
D, U Dy of Dy and D,, which allows for the unrestricted use of all constructors.
For example, the concept description C := (Ir.A) M (Ir.mA) M (< 1r) is a legal
D:1 U Dy description. Note that this description is unsatisfiable, due to the
interaction between constructors of D; and D,. The fusion D, ® Dy of Dy and
D, prevents such interactions by imposing the following restriction: one assumes
that the set of all role names is partitioned into two sets, one that can be used in
constructors of Dy, and another one that can be used in constructors of D,. Thus,
the description C'; from above is not a legal D; ® Dy description since it uses the
same role r both in the existential restrictions (which are D;-constructors) and in
the number restriction (which is a Dy-constructor). In contrast, the descriptions



(Fr1.A) 11 (Fr1.—A) 1 (< 1rg) and (Iry.(< 1ry)) are admissible in Dy ® D, since
they employ different roles in the D;- and Ds-constructors. If the concepts that
must be expressed are such that they require both constructors from D; and Ds,
but the ones from D; for other roles than the ones from Dy, then one does not
really need the union of D; and D,; the fusion would be sufficient.

What is the advantage of taking the fusion instead of the union? In gen-
eral, for the union of two DLs one must design new reasoning methods, whereas
reasoning in the fusion can be reduced to reasoning in the component DLs.
Indeed, reasoning in the union may even be undecidable whereas reasoning in
the fusion is still decidable. As an example, we consider the DLs (i) ALCF,
which extends the basic DL AALC by functional roles (features) and the same-as
constructor (agreement) on chains of functional roles; and (ii) ALCT°", which
extends ALC by transitive closure, composition, and union of roles. For both
DLs, subsumption of concept descriptions is known to be decidable [9, 11, 1].
However, their union ALCF "> has an undecidable subsumption problem [2].
This undecidability result depends on the fact that, in ALCF ", the role con-
structors transitive closure, composition, and union can be applied to functional
roles that also appear within the same-as constructor. This is not allowed in the
fusion ALCF @ ALCT. Of course, failure of a certain undecidability proof
does not make the fusion decidable.

Why do we know that the fusion of decidable DLs is again decidable? Ac-
tually, in general we don’t, and this was our main reason for writing this paper.
The notion “fusion” was introduced and investigated in modal logic, basically
to transfer results like finite axiomatizability, decidability, finite model prop-
erty, etc. from uni-modal logics (with one pair of box and diamond operators)
to multi-modal logics (with several such pairs, possibly satisfying different ax-
ioms). This has led to rather general transfer results (see, e.g., [13, 10, 8, 12] for
results that concern decidability), which are sometimes restricted to so-called
normal modal logics [6]. Since there is a close relationship between modal log-
ics and DLs [11], it is clear that these transfer results also apply to some DLs.
The question is, however, to which exactly. Some DLs allow for constructors
that are not considered in modal logics (e.g., the same-as constructor mentioned
above). In addition, some DL constructors that have been considered in modal
logics (like qualified number restrictions (< nr.C'), (>nr.C'), which correspond
to graded modalities) can easily be shown to be non-normal.

The purpose of this paper is to clarify for which DLs decidability of the
component DLs transfers to their fusion. To this purpose, we will introduce
so-called abstract description systems (ADSs), which can be seen as a common
generalization of description and modal logics. We will define the fusion of ADSs,
and state two theorems that say under which conditions decidability transfers
from the component ADSs to their fusion. From the DL point of view, the
two theorems are concerned with the following two decision problems: (i) decid-



ability of satisfiability and subsumption w.r.t. general concept inclusion axioms
(Theorem 8); and (ii) decidability of satisfiability and subsumption without ter-
minological axioms (Theorem 10). These theorems imply that decidability (for
both types of problems) transfers to the fusion for most DLs considered in the
literature. The main exceptions (which do not satisfy the prerequisites of the
theorems) are DLs allowing for individuals (called nominals in modal logic) in
concept descriptions, and DLs explicitly allowing for the universal role or for
negation of roles. Results from modal logic for the second type of problems
(ii) usually require the component modal logics to be normal. Our Theorem 10
is less restrictive, and thus also applies to DLs allowing for qualified number
restrictions.

2 Description logics

Before defining abstract description systems, we recall the main features of DLs
that must be covered by this definition. The concept description language may
provide the following means of expressivity:

Concept constructors: We have already mentioned several of them in the
previous section. They take concept and/or role descriptions and trans-
form them into more complex concept descriptions. Concept constructors
may also be nullary, like the top concept (T) or individuals (which are just
a name that must be interpreted as a singleton set).

Role constructors: We have mentioned composition, union, and transitive
closure as well as role negation in the previous section. The complex
role descriptions built this way can be used within concept constructors,
though some restrictions may apply (e.g., in a DL with value and number
restrictions one could allow the use of complex role descriptions in value,
but not in number restrictions).

Restrictions on role interpretations: We have already mentioned functional
roles, whose interpretation is restricted to partial functions, and the uni-
versal role, which must be interpreted as the universal relation. Other such
restrictions are transitivity of roles, or inclusion relationships between roles
enforced by role hierarchies.

We consider the most general form of terminological azioms, which are gen-
eral inclusion axioms C' C D, where both C' and D may be complex descriptions.
A TBoz is a finite set of such axioms. We will not consider ABozes since they
can be expressed using individuals in concepts. It should be noted, however,
that Theorems 8 and 10 do not apply to DLs allowing for individuals. Thus we
do not have transfer results for ABox reasoning.



Since all our DLs will be assumed to contain the Boolean operators M, LI, =
as concept, constructors, subsumption can be reduced to satisfiability. Thus, it
is sufficient to restrict the attention to satisfiability of concept descriptions. We
consider the satisfiability problem both w.r.t. a TBox and without TBox (in the
second case, we simply talk about satisfiability of concept descriptions).

3 Abstract description systems

In order to define the fusion of DLs and prove general results for fusions of DLs,
one needs a formal definition of what are “Description Logics”. Since there
exists a wide variety of DLs with very different characteristics, we introduce a
very general formalization, which should cover all of the DLs considered in the
literature, but also includes logics that would usually not be subsumed under
the name DL.

In this formalization, concept descriptions will be represented by terms that
are built using an abstract description language.

Definition 1. An abstract description language (ADL) is determined by a count-
ably infinite set V of variables and a (possibly infinite) sequence (f;);es of func-
tions symbols, which are equipped with arities (n;);cr. The terms t; of this ADL
are built using the follow syntax rules:

tj — T, _|t1, tl/\tQ, tlth, fz(tla ,tni),
where x € V and the Boolean operators —, A,V are different from all f;.

From the DL point of view, the variables correspond to concept names and
the Boolean operators as well as the function symbols correspond to concept con-
structors. As an example, let us view concept descriptions of the DL ALCN™,
i.e., ALC extended with number restrictions and conjunction of roles, as terms
of an ADL. Value restrictions and existential restrictions can be seen as unary
function symbols: for each role description r, we have the function symbols
fwr and f3,, which take a term tc (corresponding to the concept description
C) and transform it into the more complex terms fy.(tc) and fs,(t¢) (corre-
sponding to the concept descriptions Vr.C' and Jr.C'). Similarly, number re-
strictions can be seen as nullary function symbols: for each role description
r and each n € N, we have the function symbols f>,, and f<,,. Hence, the
ALCN™ concept description A MV(ry M ry).—(B (> 2r;)) corresponds to the
term a4 A forirm) ((TB A f2m)))-

Other concept constructors can be translated analogously. For example,
qualified number restrictions (< nr.C'), (>nr.C) correspond to unary function
symbols, individuals in concept descriptions and the same-as constructor men-
tioned in the motivation correspond to nullary function symbols.
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The semantics of abstract description systems is defined based on abstract
description models.

Definition 2. An abstract description model (ADM) is of the form

W=W,F¥ = (f)ic1),

)

where W is a nonempty set and the f¥ are functions mapping every sequence
(Xi,...,Xp,,) of subsets of W to a subset of W.

Since ADMs do not interpret variables, we need an assignment A, which

assigns a subset of W to each variable, before we can evaluate terms in an
ADM.

Definition 3. Let £ be an ADL and 20 = <W, Fm> be an ADM for £. An
assignment for 20 is a mapping A from the set of variables V to 2. The value
an assigment A assigns to a variable  is denoted by zA. Let 20 be an ADM
and A be an assignment for 20. With each L£-term ¢, we inductively associate a

value t24 in 2 as follows:
o WA .= x4 for all variables z € V,
o (—1)TA = W\ (£)TA, (1 Aly)TA = tANEDA | (8 Vi) BA = A,
o [ty .. tp)BA = fBEIA A,
If z1,...,z, are the variables occurring in #, then we often write t¥(X,,..., X,,)
as shorthand for t2, where A is an assignment with x;“ =X, forl<i<n.

A model in the DL sense interprets both role and concept names. The
interpretation of the role names fixes the interpretation of the function symbols
corresponding to concept constructors that involve roles (like value restrictions,
number restrictions, etc.). The interpretation of the concept names corresponds
to an assignment. Thus, a DL model is an ADM together with an assignment,
whereas an ADM alone corresponds to what is called frame in modal logics. Since
individuals in DLs correspond to nullary function symbols, their interpretation
must also be fixed in the ADM. We will call a non-empty domain together with
an interpretation of the role names and (if any) individual names a DL frame.
We introduce abstract description systems before giving examples of ADMs.

Definition 4. An abstract description system (ADS) is a pair (£, M), where
L is an ADL and M is a class of ADMs for £ that is closed under isomorphic
copies.



From the DL point of view, the choice of the class M defines the semantics
of the concept and role constructors, and it allows us, e.g., to incorporate re-
strictions on role interpretations. As mentioned above, an ADM is given by the
interpretation of the role names, and thus one can, for example, restrict the class
to ADMs that interpret a certain role as a transitive relation. Another restric-
tion that can be realized by the choice of M is that individuals (corresponding
to nullary function symbols) must be interpreted as singleton sets.

As an example, let us view the DL ALCN™ as an ADS. The ADL L corre-
sponding to ALCN™ has already been discussed. Thus, we concentrate on the
class of ADMs M induced by the frames of ALCN™. Assume that F is such a
frame, i.e., F consists of a nonempty domain and interpretations 7% of the role
names r. The ADM 2 = <I/V, FQU> induced by F is defined as follows. The set
W is identical to the domain of F. It remains to define the interpretation of
the function symbols. We illustrate this on two examples. First, consider the
(unary) function symbol fy(,qr,). Given a subset X of W, the function fvm(]rmm)
maps X to

Fotrmy(X) == {w e W |v e X for all v with (w,v) € r{’ N 1]},

i.e., the interpretation of the concept description V(ry Mrs).A in the interpreta-
tions based on F interpreting A by X. Accordingly, the value of the constant
symbol f(>2,) in 20 is given by the interpretation of (> 2r) in the interpretations
based on F.

For our transfer results to hold, we must restrict ourselves to so-called local
ADSs.

Definition 5. Given two ADMs 20, = (Wy, F¥) and 20, = (W,, F™) with
Wi NW,y = (), we say that 20 = <W, Fm> is the disjoint union of 20, and 20, iff
W =W; UW, and

fE(Xy, X)) = XN, X, D) U (X N, ., X, NTTG)

for all Xy,...,X,,, CWandi € I. An ADS S = (£, M) is called local if the
set M is closed under disjoint unions.

Given two DL frames (without individuals) over disjoint domains, one can
build their union by just taking the union of the domains and, for each role
name, the union of its interpretations. It is easy to see that the function symbols
corresponding to the usual concept constructors (such as value restrictions on
role names) satisfy the requirements for the disjoint union. There are, however,
also examples of DLs whose associated ADSs are not local: (i) The restriction
that individuals must be interpreted as singleton sets would be violated in the
disjoint union of two DL frames with individuals. (ii) If one has negation of
roles, then the function symbol fy_, does not satisfy the requirement for the



disjoint union. (iii) The union of two universal relations on respective domains
Wi and W, is not the universal relation on W; U Ws.

Finally, let us define the reasoning problems for which we will investigate
transfer of decidability.

Definition 6. Given an ADS (£, M), the L-term s is called satisfiable iff there
exists an ADM 20 € M and an assignment A such that s%4 # (). We say that
the satisfiability problem for (L, M) is decidable iff there is an algorithm that,
given an L-term s, answers “yes” if s is satisfiable and “no” otherwise.

An inclusion axiom is of the form ¢; C t,, and it is satisfied by the ADM 20
and the assignment A iff {27 C ¢34, The L-term s is called satisfiable relative
to the finite set of inclusion axioms & iff there exists an ADM 20 € M and an
assignment A satisfying all inclusion axioms of S such that s24 = (). We will
call this problem the relativized satisfiability problem.

The satisfiability problem just introduced corresponds to satisfiability of con-
cept descriptions without TBox, whereas the relativized satisfiability problem
corresponds to satisfiability of concept descriptions w.r.t. a TBox.

4 The fusion of abstract description systems

Now, we can formally define the fusion of abstract description systems.

Definition 7. The fusion S; ® Sy = (L1 ® L3, M1 ® My) of two abstract
description systems S; = (£, M;) and Sy = (L2, M) over disjoint sets of
function symbols (f;)icr and (g;);es is defined as follows: £ ® L, is the ADL
based on the union fi,...,¢g,... of the function symbols of £; and L, and

M1 @ My = {(W, (f)ier U (gém)jeﬁ |
<VV, (f?n)ze]> € M and <W, (g?n)je]> S MQ}

As an example, consider the ADSs S; and S5 corresponding to the DLs
ALCF and ALCT"Y introduced in the first section. The ADS S; is based
on the following function symbols: (i) unary functions symbol fy,. and f3, for
every role name r, (ii) nullary functions symbols corresponding to the same-
as constructor for every pair of chains of functional roles; and the ADS S, is
based on the following function symbols: (iii) unary functions symbol fy, and
far for every role description r built from role names using union, composition,
and transitive closure. If we assume that the set of role names employed by
ALCF and ALCT " are disjoint, then these sets of function symbols are disjoint.
The union of these sets provides us both with the symbols for the same-as
constructor and with the symbols for value and existential restrictions on role
descriptions involving union, composition, and transitive closure. However, the
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role descriptions contain only role names from ALC™*", and thus none of the
functional roles of ALCF occurs in such descriptions. Thus, the fusion of ALCF
and ALCT*" yields a strict fragment of their union ALCF ",

Our first transfer result [3] is concerned with the relativized satisfiability
problem.

Theorem 8. Let S; and Sy be local ADSs, and suppose that the relativized sat-
isfiability problems for S1 and Sy are decidable. Then the relativized satisfiability
problem for S ® Sy is also decidable.

In the next section we will give an example for the application of this theorem.
Note that this theorem does not yield a transfer result for the (unrelativized)
satisfiability problem. Of course, if the relativized satisfiability problems for S;
and Sy are decidable, then the theorem implies that the satisfiability problem
for S; ® S5 is also decidable (since it is a special case of the relativized satisfia-
bility problem). However, to be able to apply Theorem 8 to obtain decidability
of the satisfiability problem in the fusion, the component ADSs must satisfy
the stronger requirement that the relativized satisfiability problem is decidable,
which may not always be the case. For example, the theorem cannot be applied
for the fusion of ALCF and ALCT>" since the relativized satisfiability prob-
lem for ALCF is already undecidable [2]. However, the satisfiability problem is
decidable for both DLs. Before we can formulate a transfer result for the satis-
fiability problem, we need to introduce an additional notion, which generalizes
the notion of a normal modal logics.

Definition 9. Let (£, M) be an ADS and f be a function symbol of £ of arity
n. The term t;(x) (with one variable z) is a covering normal term for f iff the
following holds for all 20 € M:

o (W) =W,
o for all X,Y C W, (X NY) = 1¥(X) N F(Y),

o forall X, Xq,... YV, CW: XNX,=XnY,forl<i<n implies

An ADS (£, M) is said to have covering normal terms iff one can effectively
determine a covering normal term ¢, for every f of L.

For example, consider the term fy,.(z), where fy. is the function symbol
corresponding to the value restriction constructor for the role r. Then fy,(z)
obviously satisfies the first two requirements for covering normal terms. In fact,
it is easy to see that fy.(z) is a covering normal term for the function symbols
corresponding to the value, existential, and (qualified) number restrictions on
the role r.



Theorem 10. Let Sy and Sy be local ADSs having covering normal terms, and
suppose that the satisfiability problems for Sy and Sy are decidable. Then the
satisfiability problem for S; ® Sy is also decidable.

It is easy to see that the prerequisites for this second theorem are satisfied
by ALCF and ALCT>Y, and thus satisfiability is decidable for their fusion.

5 Transfer results for the fusion of DLs

Let us start with recalling for which DLs our transfer theorems do not apply.
As mentioned above, the locality requirement is violated by DLs providing for
individuals in concept descriptions, role negation, or the universal role. Since the
Boolean operators are always available in ADLs, we can only treat DLs whose
set, of concept constructors is Boolean closed. Finally, to get covering normal
terms, we need value restrictions. Taking the last two points together means
that we consider extensions of ALC. We can show that the transfer results apply
to any DL that extends ALC by some of the following:

e the concept constructors number restriction, qualified number restriction,
feature agreement and disagreement, and concrete domain predicates,

e the role constructors composition, conjunction, disjunction, converse, and
transitive closure,

e the restrictions on role interpretations that respectively enforce functional
roles, transitive roles, and role hierarchies.

The above list is not exhaustive; it is just intended to give an impression of the
generality of the transfer results.

We can now give an example for the application of Theorem 8. Consider the
DLs (i) ALCN, which extends ALC by (unqualified) number restrictions, and
(i) ALC*", which extends ALC by composition and conjunction of roles. For
both DLs, satisfiability w.r.t. TBoxes is decidable [5, 7], whereas for the union
ALCN®" of the two logics, satisfiability is already undecidable [4]. As in our
previous examples, we can take the fusion ALCN @ ALC*™ to obtain a decidable
fragment of the undecidable union ALCN°™. Tt is easy to see that this fragment
is obtained from ALCN®" by restricting the roles in number restrictions to role
names that do not occur in complex role descriptions.
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