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1 Motivation and outline

In order to ensure a reasonable and predi
table behaviour of a Des
ription Logi


(DL) system, reasoning in the DL employed by the system should at least be

de
idable, and preferably of low 
omplexity. Consequently, the expressive power

of the DL in question must be restri
ted in an appropriate way. If the imposed

restri
tions are too severe, however, then the important notions of the appli
a-

tion domain 
an no longer be expressed. Investigating this trade-o� between

the expressivity of DLs and the 
omplexity of their inferen
e problems has thus

been one of the most important issues in DL resear
h.

This paper investigates an approa
h for extending the expressivity of DLs

that (in many 
ases) guarantees that reasoning remains de
idable: the fusion of

DLs. In order to explain the di�eren
e between the usual union and the fusion

of DLs, let us 
onsider a simple example. Assume that the DL D

1

is ALC,

i.e., it provides for the Boolean operators u, t, : and the additional 
on
ept


onstru
tors value restri
tion 8r:C and existential restri
tion 9r:C, and that

the DL D

2

provides for the Boolean operators and number restri
tions (�nr)

and (�nr). If an appli
ation requires 
on
ept 
onstru
tors from both DLs

for expressing its relevant 
on
epts, then one would usually 
onsider the union

D

1

[D

2

of D

1

and D

2

, whi
h allows for the unrestri
ted use of all 
onstru
tors.

For example, the 
on
ept des
ription C

1

:= (9r:A) u (9r::A) u (� 1r) is a legal

D

1

[ D

2

des
ription. Note that this des
ription is unsatis�able, due to the

intera
tion between 
onstru
tors of D

1

and D

2

. The fusion D

1


D

2

of D

1

and

D

2

prevents su
h intera
tions by imposing the following restri
tion: one assumes

that the set of all role names is partitioned into two sets, one that 
an be used in


onstru
tors ofD

1

, and another one that 
an be used in 
onstru
tors ofD

2

. Thus,

the des
ription C

1

from above is not a legal D

1


D

2

des
ription sin
e it uses the

same role r both in the existential restri
tions (whi
h are D

1

-
onstru
tors) and in

the number restri
tion (whi
h is a D

2

-
onstru
tor). In 
ontrast, the des
riptions

1



(9r

1

:A) u (9r

1

::A) u (� 1r

2

) and (9r

1

:(� 1r

2

)) are admissible in D

1


 D

2

sin
e

they employ di�erent roles in the D

1

- and D

2

-
onstru
tors. If the 
on
epts that

must be expressed are su
h that they require both 
onstru
tors from D

1

and D

2

,

but the ones from D

1

for other roles than the ones from D

2

, then one does not

really need the union of D

1

and D

2

; the fusion would be suÆ
ient.

What is the advantage of taking the fusion instead of the union? In gen-

eral, for the union of two DLs one must design new reasoning methods, whereas

reasoning in the fusion 
an be redu
ed to reasoning in the 
omponent DLs.

Indeed, reasoning in the union may even be unde
idable whereas reasoning in

the fusion is still de
idable. As an example, we 
onsider the DLs (i) ALCF ,

whi
h extends the basi
 DL ALC by fun
tional roles (features) and the same-as


onstru
tor (agreement) on 
hains of fun
tional roles; and (ii) ALC

+;Æ;t

, whi
h

extends ALC by transitive 
losure, 
omposition, and union of roles. For both

DLs, subsumption of 
on
ept des
riptions is known to be de
idable [9, 11, 1℄.

However, their union ALCF

+;Æ;t

has an unde
idable subsumption problem [2℄.

This unde
idability result depends on the fa
t that, in ALCF

+;Æ;t

, the role 
on-

stru
tors transitive 
losure, 
omposition, and union 
an be applied to fun
tional

roles that also appear within the same-as 
onstru
tor. This is not allowed in the

fusion ALCF 
 ALC

+;Æ;t

. Of 
ourse, failure of a 
ertain unde
idability proof

does not make the fusion de
idable.

Why do we know that the fusion of de
idable DLs is again de
idable? A
-

tually, in general we don't, and this was our main reason for writing this paper.

The notion \fusion" was introdu
ed and investigated in modal logi
, basi
ally

to transfer results like �nite axiomatizability, de
idability, �nite model prop-

erty, et
. from uni-modal logi
s (with one pair of box and diamond operators)

to multi-modal logi
s (with several su
h pairs, possibly satisfying di�erent ax-

ioms). This has led to rather general transfer results (see, e.g., [13, 10, 8, 12℄ for

results that 
on
ern de
idability), whi
h are sometimes restri
ted to so-
alled

normal modal logi
s [6℄. Sin
e there is a 
lose relationship between modal log-

i
s and DLs [11℄, it is 
lear that these transfer results also apply to some DLs.

The question is, however, to whi
h exa
tly. Some DLs allow for 
onstru
tors

that are not 
onsidered in modal logi
s (e.g., the same-as 
onstru
tor mentioned

above). In addition, some DL 
onstru
tors that have been 
onsidered in modal

logi
s (like quali�ed number restri
tions (�nr:C), (�nr:C), whi
h 
orrespond

to graded modalities) 
an easily be shown to be non-normal.

The purpose of this paper is to 
larify for whi
h DLs de
idability of the


omponent DLs transfers to their fusion. To this purpose, we will introdu
e

so-
alled abstra
t des
ription systems (ADSs), whi
h 
an be seen as a 
ommon

generalization of des
ription and modal logi
s. We will de�ne the fusion of ADSs,

and state two theorems that say under whi
h 
onditions de
idability transfers

from the 
omponent ADSs to their fusion. From the DL point of view, the

two theorems are 
on
erned with the following two de
ision problems: (i) de
id-
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ability of satis�ability and subsumption w.r.t. general 
on
ept in
lusion axioms

(Theorem 8); and (ii) de
idability of satis�ability and subsumption without ter-

minologi
al axioms (Theorem 10). These theorems imply that de
idability (for

both types of problems) transfers to the fusion for most DLs 
onsidered in the

literature. The main ex
eptions (whi
h do not satisfy the prerequisites of the

theorems) are DLs allowing for individuals (
alled nominals in modal logi
) in


on
ept des
riptions, and DLs expli
itly allowing for the universal role or for

negation of roles. Results from modal logi
 for the se
ond type of problems

(ii) usually require the 
omponent modal logi
s to be normal. Our Theorem 10

is less restri
tive, and thus also applies to DLs allowing for quali�ed number

restri
tions.

2 Des
ription logi
s

Before de�ning abstra
t des
ription systems, we re
all the main features of DLs

that must be 
overed by this de�nition. The 
on
ept des
ription language may

provide the following means of expressivity:

Con
ept 
onstru
tors: We have already mentioned several of them in the

previous se
tion. They take 
on
ept and/or role des
riptions and trans-

form them into more 
omplex 
on
ept des
riptions. Con
ept 
onstru
tors

may also be nullary, like the top 
on
ept (>) or individuals (whi
h are just

a name that must be interpreted as a singleton set).

Role 
onstru
tors: We have mentioned 
omposition, union, and transitive


losure as well as role negation in the previous se
tion. The 
omplex

role des
riptions built this way 
an be used within 
on
ept 
onstru
tors,

though some restri
tions may apply (e.g., in a DL with value and number

restri
tions one 
ould allow the use of 
omplex role des
riptions in value,

but not in number restri
tions).

Restri
tions on role interpretations: We have already mentioned fun
tional

roles, whose interpretation is restri
ted to partial fun
tions, and the uni-

versal role, whi
h must be interpreted as the universal relation. Other su
h

restri
tions are transitivity of roles, or in
lusion relationships between roles

enfor
ed by role hierar
hies.

We 
onsider the most general form of terminologi
al axioms, whi
h are gen-

eral in
lusion axioms C v D, where both C and D may be 
omplex des
riptions.

A TBox is a �nite set of su
h axioms. We will not 
onsider ABoxes sin
e they


an be expressed using individuals in 
on
epts. It should be noted, however,

that Theorems 8 and 10 do not apply to DLs allowing for individuals. Thus we

do not have transfer results for ABox reasoning.
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Sin
e all our DLs will be assumed to 
ontain the Boolean operators u;t;:

as 
on
ept 
onstru
tors, subsumption 
an be redu
ed to satis�ability. Thus, it

is suÆ
ient to restri
t the attention to satis�ability of 
on
ept des
riptions. We


onsider the satis�ability problem both w.r.t. a TBox and without TBox (in the

se
ond 
ase, we simply talk about satis�ability of 
on
ept des
riptions).

3 Abstra
t des
ription systems

In order to de�ne the fusion of DLs and prove general results for fusions of DLs,

one needs a formal de�nition of what are \Des
ription Logi
s". Sin
e there

exists a wide variety of DLs with very di�erent 
hara
teristi
s, we introdu
e a

very general formalization, whi
h should 
over all of the DLs 
onsidered in the

literature, but also in
ludes logi
s that would usually not be subsumed under

the name DL.

In this formalization, 
on
ept des
riptions will be represented by terms that

are built using an abstra
t des
ription language.

De�nition 1. An abstra
t des
ription language (ADL) is determined by a 
ount-

ably in�nite set V of variables and a (possibly in�nite) sequen
e (f

i

)

i2I

of fun
-

tions symbols, whi
h are equipped with arities (n

i

)

i2I

. The terms t

j

of this ADL

are built using the follow syntax rules:

t

j

�! x; :t

1

; t

1

^ t

2

; t

1

_ t

2

; f

i

(t

1

; : : : ; t

n

i

);

where x 2 V and the Boolean operators :;^;_ are di�erent from all f

i

.

From the DL point of view, the variables 
orrespond to 
on
ept names and

the Boolean operators as well as the fun
tion symbols 
orrespond to 
on
ept 
on-

stru
tors. As an example, let us view 
on
ept des
riptions of the DL ALCN

u

,

i.e., ALC extended with number restri
tions and 
onjun
tion of roles, as terms

of an ADL. Value restri
tions and existential restri
tions 
an be seen as unary

fun
tion symbols: for ea
h role des
ription r, we have the fun
tion symbols

f

8r

and f

9r

, whi
h take a term t

C

(
orresponding to the 
on
ept des
ription

C) and transform it into the more 
omplex terms f

8r

(t

C

) and f

9r

(t

C

) (
orre-

sponding to the 
on
ept des
riptions 8r:C and 9r:C). Similarly, number re-

stri
tions 
an be seen as nullary fun
tion symbols: for ea
h role des
ription

r and ea
h n 2 N , we have the fun
tion symbols f

�nr

and f

�nr

. Hen
e, the

ALCN

u


on
ept des
ription A u 8(r

1

u r

2

)::(B u (� 2r

1

)) 
orresponds to the

term x

A

^ f

8(r

1

ur

2

)

(:(x

B

^ f

(�2r

1

)

)).

Other 
on
ept 
onstru
tors 
an be translated analogously. For example,

quali�ed number restri
tions (�nr:C), (�nr:C) 
orrespond to unary fun
tion

symbols, individuals in 
on
ept des
riptions and the same-as 
onstru
tor men-

tioned in the motivation 
orrespond to nullary fun
tion symbols.
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The semanti
s of abstra
t des
ription systems is de�ned based on abstra
t

des
ription models.

De�nition 2. An abstra
t des
ription model (ADM) is of the form

W =




W;F

W

= (f

W

i

)

i2I

�

;

where W is a nonempty set and the f

W

i

are fun
tions mapping every sequen
e

hX

1

; : : : ; X

n

i

i of subsets of W to a subset of W .

Sin
e ADMs do not interpret variables, we need an assignment A, whi
h

assigns a subset of W to ea
h variable, before we 
an evaluate terms in an

ADM.

De�nition 3. Let L be an ADL and W =




W;F

W

�

be an ADM for L. An

assignment forW is a mapping A from the set of variables V to 2

W

. The value

an assigment A assigns to a variable x is denoted by x

A

. Let W be an ADM

and A be an assignment forW. With ea
h L-term t, we indu
tively asso
iate a

value t

W;A

in 2

W

as follows:

� x

W;A

:= x

A

for all variables x 2 V ,

� (:t)

W;A

:= Wn(t)

W;A

, (t

1

^t

2

)

W;A

:= t

W;A

1

\t

W;A

2

, (t

1

_t

2

)

W;A

:= t

W;A

1

[t

W;A

2

,

� f(t

1

; : : : ; t

k

)

W;A

:= f

W

(t

W;A

1

; : : : ; t

W;A

k

).

If x

1

; : : : ; x

n

are the variables o

urring in t, then we often write t

W

(X

1

; : : : ; X

n

)

as shorthand for t

W;A

, where A is an assignment with x

A

i

= X

i

for 1 � i � n.

A model in the DL sense interprets both role and 
on
ept names. The

interpretation of the role names �xes the interpretation of the fun
tion symbols


orresponding to 
on
ept 
onstru
tors that involve roles (like value restri
tions,

number restri
tions, et
.). The interpretation of the 
on
ept names 
orresponds

to an assignment. Thus, a DL model is an ADM together with an assignment,

whereas an ADM alone 
orresponds to what is 
alled frame in modal logi
s. Sin
e

individuals in DLs 
orrespond to nullary fun
tion symbols, their interpretation

must also be �xed in the ADM. We will 
all a non-empty domain together with

an interpretation of the role names and (if any) individual names a DL frame.

We introdu
e abstra
t des
ription systems before giving examples of ADMs.

De�nition 4. An abstra
t des
ription system (ADS) is a pair (L;M), where

L is an ADL and M is a 
lass of ADMs for L that is 
losed under isomorphi



opies.
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From the DL point of view, the 
hoi
e of the 
lass M de�nes the semanti
s

of the 
on
ept and role 
onstru
tors, and it allows us, e.g., to in
orporate re-

stri
tions on role interpretations. As mentioned above, an ADM is given by the

interpretation of the role names, and thus one 
an, for example, restri
t the 
lass

to ADMs that interpret a 
ertain role as a transitive relation. Another restri
-

tion that 
an be realized by the 
hoi
e of M is that individuals (
orresponding

to nullary fun
tion symbols) must be interpreted as singleton sets.

As an example, let us view the DL ALCN

u

as an ADS. The ADL L 
orre-

sponding to ALCN

u

has already been dis
ussed. Thus, we 
on
entrate on the


lass of ADMs M indu
ed by the frames of ALCN

u

. Assume that F is su
h a

frame, i.e., F 
onsists of a nonempty domain and interpretations r

F

of the role

names r. The ADM W =




W;F

W

�

indu
ed by F is de�ned as follows. The set

W is identi
al to the domain of F . It remains to de�ne the interpretation of

the fun
tion symbols. We illustrate this on two examples. First, 
onsider the

(unary) fun
tion symbol f

8(r

1

ur

2

)

. Given a subset X of W , the fun
tion f

W

8(r

1

ur

2

)

maps X to

f

W

8(r

1

ur

2

)

(X) := fw 2 W j v 2 X for all v with (w; v) 2 r

F

1

\ r

F

2

g;

i.e., the interpretation of the 
on
ept des
ription 8(r

1

u r

2

):A in the interpreta-

tions based on F interpreting A by X. A

ordingly, the value of the 
onstant

symbol f

(�2r)

inW is given by the interpretation of (� 2r) in the interpretations

based on F .

For our transfer results to hold, we must restri
t ourselves to so-
alled lo
al

ADSs.

De�nition 5. Given two ADMs W

1

=




W

1

; F

W

1

�

and W

2

=




W

2

; F

W

2

�

with

W

1

\W

2

= ;, we say thatW =




W;F

W

�

is the disjoint union ofW

1

andW

2

i�

W = W

1

[W

2

and

f

W

i

(X

1

; : : : ; X

n

i

) = f

W

1

i

(X

1

\W

1

; : : : ; X

n

i

\W

1

)[ f

W

2

i

(X

1

\W

2

; : : : ; X

n

i

\W

2

)

for all X

1

; : : : ; X

n

i

� W and i 2 I. An ADS S = (L;M) is 
alled lo
al if the

set M is 
losed under disjoint unions.

Given two DL frames (without individuals) over disjoint domains, one 
an

build their union by just taking the union of the domains and, for ea
h role

name, the union of its interpretations. It is easy to see that the fun
tion symbols


orresponding to the usual 
on
ept 
onstru
tors (su
h as value restri
tions on

role names) satisfy the requirements for the disjoint union. There are, however,

also examples of DLs whose asso
iated ADSs are not lo
al: (i) The restri
tion

that individuals must be interpreted as singleton sets would be violated in the

disjoint union of two DL frames with individuals. (ii) If one has negation of

roles, then the fun
tion symbol f

8:r

does not satisfy the requirement for the

6



disjoint union. (iii) The union of two universal relations on respe
tive domains

W

1

and W

2

is not the universal relation on W

1

[W

2

.

Finally, let us de�ne the reasoning problems for whi
h we will investigate

transfer of de
idability.

De�nition 6. Given an ADS (L;M), the L-term s is 
alled satis�able i� there

exists an ADM W 2 M and an assignment A su
h that s

W;A

6= ;. We say that

the satis�ability problem for (L;M) is de
idable i� there is an algorithm that,

given an L-term s, answers \yes" if s is satis�able and \no" otherwise.

An in
lusion axiom is of the form t

1

v t

2

, and it is satis�ed by the ADM W

and the assignment A i� t

W;A

1

v t

W;A

2

. The L-term s is 
alled satis�able relative

to the �nite set of in
lusion axioms S i� there exists an ADM W 2 M and an

assignment A satisfying all in
lusion axioms of S su
h that s

W;A

6= ;. We will


all this problem the relativized satis�ability problem.

The satis�ability problem just introdu
ed 
orresponds to satis�ability of 
on-


ept des
riptions without TBox, whereas the relativized satis�ability problem


orresponds to satis�ability of 
on
ept des
riptions w.r.t. a TBox.

4 The fusion of abstra
t des
ription systems

Now, we 
an formally de�ne the fusion of abstra
t des
ription systems.

De�nition 7. The fusion S

1


 S

2

= (L

1


 L

2

;M

1


 M

2

) of two abstra
t

des
ription systems S

1

= (L

1

;M

1

) and S

2

= (L

2

;M

2

) over disjoint sets of

fun
tion symbols (f

i

)

i2I

and (g

j

)

j2J

is de�ned as follows: L

1


 L

2

is the ADL

based on the union f

1

; : : : ; g

1

; : : : of the fun
tion symbols of L

1

and L

2

, and

M

1


M

2

:= f




W; (f

W

i

)

i2I

[ (g

W

j

)

j2J

�

j




W; (f

W

i

)

i2I

�

2 M

1

and




W; (g

W

j

)

j2J

�

2 M

2

g:

As an example, 
onsider the ADSs S

1

and S

2


orresponding to the DLs

ALCF and ALC

+;Æ;t

introdu
ed in the �rst se
tion. The ADS S

1

is based

on the following fun
tion symbols: (i) unary fun
tions symbol f

8r

and f

9r

for

every role name r, (ii) nullary fun
tions symbols 
orresponding to the same-

as 
onstru
tor for every pair of 
hains of fun
tional roles; and the ADS S

2

is

based on the following fun
tion symbols: (iii) unary fun
tions symbol f

8r

and

f

9r

for every role des
ription r built from role names using union, 
omposition,

and transitive 
losure. If we assume that the set of role names employed by

ALCF andALC

+;Æ;t

are disjoint, then these sets of fun
tion symbols are disjoint.

The union of these sets provides us both with the symbols for the same-as


onstru
tor and with the symbols for value and existential restri
tions on role

des
riptions involving union, 
omposition, and transitive 
losure. However, the

7



role des
riptions 
ontain only role names from ALC

+;Æ;t

, and thus none of the

fun
tional roles of ALCF o

urs in su
h des
riptions. Thus, the fusion of ALCF

and ALC

+;Æ;t

yields a stri
t fragment of their union ALCF

+;Æ;t

.

Our �rst transfer result [3℄ is 
on
erned with the relativized satis�ability

problem.

Theorem 8. Let S

1

and S

2

be lo
al ADSs, and suppose that the relativized sat-

is�ability problems for S

1

and S

2

are de
idable. Then the relativized satis�ability

problem for S

1


 S

2

is also de
idable.

In the next se
tion we will give an example for the appli
ation of this theorem.

Note that this theorem does not yield a transfer result for the (unrelativized)

satis�ability problem. Of 
ourse, if the relativized satis�ability problems for S

1

and S

2

are de
idable, then the theorem implies that the satis�ability problem

for S

1


 S

2

is also de
idable (sin
e it is a spe
ial 
ase of the relativized satis�a-

bility problem). However, to be able to apply Theorem 8 to obtain de
idability

of the satis�ability problem in the fusion, the 
omponent ADSs must satisfy

the stronger requirement that the relativized satis�ability problem is de
idable,

whi
h may not always be the 
ase. For example, the theorem 
annot be applied

for the fusion of ALCF and ALC

+;Æ;t

sin
e the relativized satis�ability prob-

lem for ALCF is already unde
idable [2℄. However, the satis�ability problem is

de
idable for both DLs. Before we 
an formulate a transfer result for the satis-

�ability problem, we need to introdu
e an additional notion, whi
h generalizes

the notion of a normal modal logi
s.

De�nition 9. Let (L;M) be an ADS and f be a fun
tion symbol of L of arity

n. The term t

f

(x) (with one variable x) is a 
overing normal term for f i� the

following holds for allW 2 M:

� t

W

f

(W ) = W ,

� for all X; Y � W , t

W

f

(X \ Y ) = t

W

f

(X) \ t

W

f

(Y );

� for all X;X

1

; : : : ; Y

n

� W : X \X

i

= X \ Y

i

for 1 � i � n implies

t

W

f

(X) \ f

W

(X

1

; : : : ; X

n

) = t

W

f

(X) \ f

W

(Y

1

; : : : ; Y

n

):

An ADS (L;M) is said to have 
overing normal terms i� one 
an e�e
tively

determine a 
overing normal term t

f

for every f of L.

For example, 
onsider the term f

8r

(x), where f

8r

is the fun
tion symbol


orresponding to the value restri
tion 
onstru
tor for the role r. Then f

8r

(x)

obviously satis�es the �rst two requirements for 
overing normal terms. In fa
t,

it is easy to see that f

8r

(x) is a 
overing normal term for the fun
tion symbols


orresponding to the value, existential, and (quali�ed) number restri
tions on

the role r.

8



Theorem 10. Let S

1

and S

2

be lo
al ADSs having 
overing normal terms, and

suppose that the satis�ability problems for S

1

and S

2

are de
idable. Then the

satis�ability problem for S

1


 S

2

is also de
idable.

It is easy to see that the prerequisites for this se
ond theorem are satis�ed

by ALCF and ALC

+;Æ;t

, and thus satis�ability is de
idable for their fusion.

5 Transfer results for the fusion of DLs

Let us start with re
alling for whi
h DLs our transfer theorems do not apply.

As mentioned above, the lo
ality requirement is violated by DLs providing for

individuals in 
on
ept des
riptions, role negation, or the universal role. Sin
e the

Boolean operators are always available in ADLs, we 
an only treat DLs whose

set of 
on
ept 
onstru
tors is Boolean 
losed. Finally, to get 
overing normal

terms, we need value restri
tions. Taking the last two points together means

that we 
onsider extensions of ALC. We 
an show that the transfer results apply

to any DL that extends ALC by some of the following:

� the 
on
ept 
onstru
tors number restri
tion, quali�ed number restri
tion,

feature agreement and disagreement, and 
on
rete domain predi
ates,

� the role 
onstru
tors 
omposition, 
onjun
tion, disjun
tion, 
onverse, and

transitive 
losure,

� the restri
tions on role interpretations that respe
tively enfor
e fun
tional

roles, transitive roles, and role hierar
hies.

The above list is not exhaustive; it is just intended to give an impression of the

generality of the transfer results.

We 
an now give an example for the appli
ation of Theorem 8. Consider the

DLs (i) ALCN , whi
h extends ALC by (unquali�ed) number restri
tions, and

(ii) ALC

Æ;u

, whi
h extends ALC by 
omposition and 
onjun
tion of roles. For

both DLs, satis�ability w.r.t. TBoxes is de
idable [5, 7℄, whereas for the union

ALCN

Æ;u

of the two logi
s, satis�ability is already unde
idable [4℄. As in our

previous examples, we 
an take the fusionALCN
ALC

Æ;u

to obtain a de
idable

fragment of the unde
idable union ALCN

Æ;u

. It is easy to see that this fragment

is obtained from ALCN

Æ;u

by restri
ting the roles in number restri
tions to role

names that do not o

ur in 
omplex role des
riptions.

A
knowledgments

The authors were supported by the DFG Proje
t BA1122/3-1 \Combinations

of Modal and Des
ription Logi
s".

9



Referen
es

[1℄ F. Baader. Augmenting 
on
ept languages by transitive 
losure of roles:

An alternative to terminologi
al 
y
les. In Pro
. of the 13

th

IJCAI, pages

446{451, Sidney, Australia, 1991.

[2℄ F. Baader, H.-J. B�ur
kert, B. Nebel, W. Nutt, and G. Smolka. On the

expressivity of feature logi
s with negation, fun
tional un
ertainty, and sort

equations. Journal of Logi
 and Computation, 2:1{18, 1993.

[3℄ F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of des
ription logi
s.

Te
hni
al report, forth
oming.

[4℄ F. Baader and U. Sattler. Expressive number restri
tions in des
ription

logi
s. Journal of Logi
 and Computation, 9(3), 1999.

[5℄ M. Bu
hheit, F. M. Donini, and A. S
haerf. De
idable reasoning in termino-

logi
al knowledge representation systems. Journal of Arti�
ial Intelligen
e

Resear
h, 1:109{138, 1993.

[6℄ B. F. Chellas. Modal logi
. Cambridge University Press, Cambridge, 1980.

[7℄ S. Dane
ki. Nondeterministi
 propositional dynami
 logi
 with interse
tion

is de
idable. In Pro
. of the 5th SCT, volume 208 of LNCS, pages 34{53,

Zabor�ow, Poland, De
. 1984. Springer.

[8℄ K. Fine and G. S
hurz. Transfer theorems for strati�ed modal logi
s. In

Logi
 and Reality: Essays in Pure and Applied Logi
. In Memory of Arthur

Prior, pages 169{213. Oxford University Press, 1996.

[9℄ B. Hollunder and W. Nutt. Subsumption algorithms for 
on
ept languages.

DFKI Resear
h Report RR-90-04, Germany Resear
h Center for Arti�
ial

Intelligen
e, Kaiserslautern, 1990.

[10℄ M. Kra
ht and F. Wolter. Properties of independently axiomatizable bi-

modal logi
s. The Journal of Symboli
 Logi
, 56(4):1469{1485, De
. 1991.

[11℄ K. D. S
hild. A 
orresponden
e theory for terminologi
al logi
s: Prelimi-

nary report. In Pro
. of the 13

th

IJCAI, pages 466{471, Sidney, Australia,

1991.

[12℄ E. Spaan. Complexity of Modal Logi
s. PhD thesis, Department of Mathe-

mati
s and Computer S
ien
e, University of Amsterdam, 1993.

[13℄ F. Wolter. Fusions of modal logi
s revisited. In M. Kra
ht, M. de Rijke,

H. Wansing, and M. Zakharyas
hev, editors, Advan
es in Modal Logi
. CSLI

Publi
ations, 1998.

10


