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1 Motivation and outline

In order to ensure a reasonable and preditable behaviour of a Desription Logi

(DL) system, reasoning in the DL employed by the system should at least be

deidable, and preferably of low omplexity. Consequently, the expressive power

of the DL in question must be restrited in an appropriate way. If the imposed

restritions are too severe, however, then the important notions of the applia-

tion domain an no longer be expressed. Investigating this trade-o� between

the expressivity of DLs and the omplexity of their inferene problems has thus

been one of the most important issues in DL researh.

This paper investigates an approah for extending the expressivity of DLs

that (in many ases) guarantees that reasoning remains deidable: the fusion of

DLs. In order to explain the di�erene between the usual union and the fusion

of DLs, let us onsider a simple example. Assume that the DL D

1

is ALC,

i.e., it provides for the Boolean operators u, t, : and the additional onept

onstrutors value restrition 8r:C and existential restrition 9r:C, and that

the DL D

2

provides for the Boolean operators and number restritions (�nr)

and (�nr). If an appliation requires onept onstrutors from both DLs

for expressing its relevant onepts, then one would usually onsider the union

D

1

[D

2

of D

1

and D

2

, whih allows for the unrestrited use of all onstrutors.

For example, the onept desription C

1

:= (9r:A) u (9r::A) u (� 1r) is a legal

D

1

[ D

2

desription. Note that this desription is unsatis�able, due to the

interation between onstrutors of D

1

and D

2

. The fusion D

1


D

2

of D

1

and

D

2

prevents suh interations by imposing the following restrition: one assumes

that the set of all role names is partitioned into two sets, one that an be used in

onstrutors ofD

1

, and another one that an be used in onstrutors ofD

2

. Thus,

the desription C

1

from above is not a legal D

1


D

2

desription sine it uses the

same role r both in the existential restritions (whih are D

1

-onstrutors) and in

the number restrition (whih is a D

2

-onstrutor). In ontrast, the desriptions
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(9r

1

:A) u (9r

1

::A) u (� 1r

2

) and (9r

1

:(� 1r

2

)) are admissible in D

1


 D

2

sine

they employ di�erent roles in the D

1

- and D

2

-onstrutors. If the onepts that

must be expressed are suh that they require both onstrutors from D

1

and D

2

,

but the ones from D

1

for other roles than the ones from D

2

, then one does not

really need the union of D

1

and D

2

; the fusion would be suÆient.

What is the advantage of taking the fusion instead of the union? In gen-

eral, for the union of two DLs one must design new reasoning methods, whereas

reasoning in the fusion an be redued to reasoning in the omponent DLs.

Indeed, reasoning in the union may even be undeidable whereas reasoning in

the fusion is still deidable. As an example, we onsider the DLs (i) ALCF ,

whih extends the basi DL ALC by funtional roles (features) and the same-as

onstrutor (agreement) on hains of funtional roles; and (ii) ALC

+;Æ;t

, whih

extends ALC by transitive losure, omposition, and union of roles. For both

DLs, subsumption of onept desriptions is known to be deidable [9, 11, 1℄.

However, their union ALCF

+;Æ;t

has an undeidable subsumption problem [2℄.

This undeidability result depends on the fat that, in ALCF

+;Æ;t

, the role on-

strutors transitive losure, omposition, and union an be applied to funtional

roles that also appear within the same-as onstrutor. This is not allowed in the

fusion ALCF 
 ALC

+;Æ;t

. Of ourse, failure of a ertain undeidability proof

does not make the fusion deidable.

Why do we know that the fusion of deidable DLs is again deidable? A-

tually, in general we don't, and this was our main reason for writing this paper.

The notion \fusion" was introdued and investigated in modal logi, basially

to transfer results like �nite axiomatizability, deidability, �nite model prop-

erty, et. from uni-modal logis (with one pair of box and diamond operators)

to multi-modal logis (with several suh pairs, possibly satisfying di�erent ax-

ioms). This has led to rather general transfer results (see, e.g., [13, 10, 8, 12℄ for

results that onern deidability), whih are sometimes restrited to so-alled

normal modal logis [6℄. Sine there is a lose relationship between modal log-

is and DLs [11℄, it is lear that these transfer results also apply to some DLs.

The question is, however, to whih exatly. Some DLs allow for onstrutors

that are not onsidered in modal logis (e.g., the same-as onstrutor mentioned

above). In addition, some DL onstrutors that have been onsidered in modal

logis (like quali�ed number restritions (�nr:C), (�nr:C), whih orrespond

to graded modalities) an easily be shown to be non-normal.

The purpose of this paper is to larify for whih DLs deidability of the

omponent DLs transfers to their fusion. To this purpose, we will introdue

so-alled abstrat desription systems (ADSs), whih an be seen as a ommon

generalization of desription and modal logis. We will de�ne the fusion of ADSs,

and state two theorems that say under whih onditions deidability transfers

from the omponent ADSs to their fusion. From the DL point of view, the

two theorems are onerned with the following two deision problems: (i) deid-
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ability of satis�ability and subsumption w.r.t. general onept inlusion axioms

(Theorem 8); and (ii) deidability of satis�ability and subsumption without ter-

minologial axioms (Theorem 10). These theorems imply that deidability (for

both types of problems) transfers to the fusion for most DLs onsidered in the

literature. The main exeptions (whih do not satisfy the prerequisites of the

theorems) are DLs allowing for individuals (alled nominals in modal logi) in

onept desriptions, and DLs expliitly allowing for the universal role or for

negation of roles. Results from modal logi for the seond type of problems

(ii) usually require the omponent modal logis to be normal. Our Theorem 10

is less restritive, and thus also applies to DLs allowing for quali�ed number

restritions.

2 Desription logis

Before de�ning abstrat desription systems, we reall the main features of DLs

that must be overed by this de�nition. The onept desription language may

provide the following means of expressivity:

Conept onstrutors: We have already mentioned several of them in the

previous setion. They take onept and/or role desriptions and trans-

form them into more omplex onept desriptions. Conept onstrutors

may also be nullary, like the top onept (>) or individuals (whih are just

a name that must be interpreted as a singleton set).

Role onstrutors: We have mentioned omposition, union, and transitive

losure as well as role negation in the previous setion. The omplex

role desriptions built this way an be used within onept onstrutors,

though some restritions may apply (e.g., in a DL with value and number

restritions one ould allow the use of omplex role desriptions in value,

but not in number restritions).

Restritions on role interpretations: We have already mentioned funtional

roles, whose interpretation is restrited to partial funtions, and the uni-

versal role, whih must be interpreted as the universal relation. Other suh

restritions are transitivity of roles, or inlusion relationships between roles

enfored by role hierarhies.

We onsider the most general form of terminologial axioms, whih are gen-

eral inlusion axioms C v D, where both C and D may be omplex desriptions.

A TBox is a �nite set of suh axioms. We will not onsider ABoxes sine they

an be expressed using individuals in onepts. It should be noted, however,

that Theorems 8 and 10 do not apply to DLs allowing for individuals. Thus we

do not have transfer results for ABox reasoning.
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Sine all our DLs will be assumed to ontain the Boolean operators u;t;:

as onept onstrutors, subsumption an be redued to satis�ability. Thus, it

is suÆient to restrit the attention to satis�ability of onept desriptions. We

onsider the satis�ability problem both w.r.t. a TBox and without TBox (in the

seond ase, we simply talk about satis�ability of onept desriptions).

3 Abstrat desription systems

In order to de�ne the fusion of DLs and prove general results for fusions of DLs,

one needs a formal de�nition of what are \Desription Logis". Sine there

exists a wide variety of DLs with very di�erent harateristis, we introdue a

very general formalization, whih should over all of the DLs onsidered in the

literature, but also inludes logis that would usually not be subsumed under

the name DL.

In this formalization, onept desriptions will be represented by terms that

are built using an abstrat desription language.

De�nition 1. An abstrat desription language (ADL) is determined by a ount-

ably in�nite set V of variables and a (possibly in�nite) sequene (f

i

)

i2I

of fun-

tions symbols, whih are equipped with arities (n

i

)

i2I

. The terms t

j

of this ADL

are built using the follow syntax rules:

t

j

�! x; :t

1

; t

1

^ t

2

; t

1

_ t

2

; f

i

(t

1

; : : : ; t

n

i

);

where x 2 V and the Boolean operators :;^;_ are di�erent from all f

i

.

From the DL point of view, the variables orrespond to onept names and

the Boolean operators as well as the funtion symbols orrespond to onept on-

strutors. As an example, let us view onept desriptions of the DL ALCN

u

,

i.e., ALC extended with number restritions and onjuntion of roles, as terms

of an ADL. Value restritions and existential restritions an be seen as unary

funtion symbols: for eah role desription r, we have the funtion symbols

f

8r

and f

9r

, whih take a term t

C

(orresponding to the onept desription

C) and transform it into the more omplex terms f

8r

(t

C

) and f

9r

(t

C

) (orre-

sponding to the onept desriptions 8r:C and 9r:C). Similarly, number re-

stritions an be seen as nullary funtion symbols: for eah role desription

r and eah n 2 N , we have the funtion symbols f

�nr

and f

�nr

. Hene, the

ALCN

u

onept desription A u 8(r

1

u r

2

)::(B u (� 2r

1

)) orresponds to the

term x

A

^ f

8(r

1

ur

2

)

(:(x

B

^ f

(�2r

1

)

)).

Other onept onstrutors an be translated analogously. For example,

quali�ed number restritions (�nr:C), (�nr:C) orrespond to unary funtion

symbols, individuals in onept desriptions and the same-as onstrutor men-

tioned in the motivation orrespond to nullary funtion symbols.
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The semantis of abstrat desription systems is de�ned based on abstrat

desription models.

De�nition 2. An abstrat desription model (ADM) is of the form

W =




W;F

W

= (f

W

i

)

i2I

�

;

where W is a nonempty set and the f

W

i

are funtions mapping every sequene

hX

1

; : : : ; X

n

i

i of subsets of W to a subset of W .

Sine ADMs do not interpret variables, we need an assignment A, whih

assigns a subset of W to eah variable, before we an evaluate terms in an

ADM.

De�nition 3. Let L be an ADL and W =




W;F

W

�

be an ADM for L. An

assignment forW is a mapping A from the set of variables V to 2

W

. The value

an assigment A assigns to a variable x is denoted by x

A

. Let W be an ADM

and A be an assignment forW. With eah L-term t, we indutively assoiate a

value t

W;A

in 2

W

as follows:

� x

W;A

:= x

A

for all variables x 2 V ,

� (:t)

W;A

:= Wn(t)

W;A

, (t

1

^t

2

)

W;A

:= t

W;A

1

\t

W;A

2

, (t

1

_t

2

)

W;A

:= t

W;A

1

[t

W;A

2

,

� f(t

1

; : : : ; t

k

)

W;A

:= f

W

(t

W;A

1

; : : : ; t

W;A

k

).

If x

1

; : : : ; x

n

are the variables ourring in t, then we often write t

W

(X

1

; : : : ; X

n

)

as shorthand for t

W;A

, where A is an assignment with x

A

i

= X

i

for 1 � i � n.

A model in the DL sense interprets both role and onept names. The

interpretation of the role names �xes the interpretation of the funtion symbols

orresponding to onept onstrutors that involve roles (like value restritions,

number restritions, et.). The interpretation of the onept names orresponds

to an assignment. Thus, a DL model is an ADM together with an assignment,

whereas an ADM alone orresponds to what is alled frame in modal logis. Sine

individuals in DLs orrespond to nullary funtion symbols, their interpretation

must also be �xed in the ADM. We will all a non-empty domain together with

an interpretation of the role names and (if any) individual names a DL frame.

We introdue abstrat desription systems before giving examples of ADMs.

De�nition 4. An abstrat desription system (ADS) is a pair (L;M), where

L is an ADL and M is a lass of ADMs for L that is losed under isomorphi

opies.
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From the DL point of view, the hoie of the lass M de�nes the semantis

of the onept and role onstrutors, and it allows us, e.g., to inorporate re-

stritions on role interpretations. As mentioned above, an ADM is given by the

interpretation of the role names, and thus one an, for example, restrit the lass

to ADMs that interpret a ertain role as a transitive relation. Another restri-

tion that an be realized by the hoie of M is that individuals (orresponding

to nullary funtion symbols) must be interpreted as singleton sets.

As an example, let us view the DL ALCN

u

as an ADS. The ADL L orre-

sponding to ALCN

u

has already been disussed. Thus, we onentrate on the

lass of ADMs M indued by the frames of ALCN

u

. Assume that F is suh a

frame, i.e., F onsists of a nonempty domain and interpretations r

F

of the role

names r. The ADM W =




W;F

W

�

indued by F is de�ned as follows. The set

W is idential to the domain of F . It remains to de�ne the interpretation of

the funtion symbols. We illustrate this on two examples. First, onsider the

(unary) funtion symbol f

8(r

1

ur

2

)

. Given a subset X of W , the funtion f

W

8(r

1

ur

2

)

maps X to

f

W

8(r

1

ur

2

)

(X) := fw 2 W j v 2 X for all v with (w; v) 2 r

F

1

\ r

F

2

g;

i.e., the interpretation of the onept desription 8(r

1

u r

2

):A in the interpreta-

tions based on F interpreting A by X. Aordingly, the value of the onstant

symbol f

(�2r)

inW is given by the interpretation of (� 2r) in the interpretations

based on F .

For our transfer results to hold, we must restrit ourselves to so-alled loal

ADSs.

De�nition 5. Given two ADMs W

1

=




W

1

; F

W

1

�

and W

2

=




W

2

; F

W

2

�

with

W

1

\W

2

= ;, we say thatW =




W;F

W

�

is the disjoint union ofW

1

andW

2

i�

W = W

1

[W

2

and

f

W

i

(X

1

; : : : ; X

n

i

) = f

W

1

i

(X

1

\W

1

; : : : ; X

n

i

\W

1

)[ f

W

2

i

(X

1

\W

2

; : : : ; X

n

i

\W

2

)

for all X

1

; : : : ; X

n

i

� W and i 2 I. An ADS S = (L;M) is alled loal if the

set M is losed under disjoint unions.

Given two DL frames (without individuals) over disjoint domains, one an

build their union by just taking the union of the domains and, for eah role

name, the union of its interpretations. It is easy to see that the funtion symbols

orresponding to the usual onept onstrutors (suh as value restritions on

role names) satisfy the requirements for the disjoint union. There are, however,

also examples of DLs whose assoiated ADSs are not loal: (i) The restrition

that individuals must be interpreted as singleton sets would be violated in the

disjoint union of two DL frames with individuals. (ii) If one has negation of

roles, then the funtion symbol f

8:r

does not satisfy the requirement for the
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disjoint union. (iii) The union of two universal relations on respetive domains

W

1

and W

2

is not the universal relation on W

1

[W

2

.

Finally, let us de�ne the reasoning problems for whih we will investigate

transfer of deidability.

De�nition 6. Given an ADS (L;M), the L-term s is alled satis�able i� there

exists an ADM W 2 M and an assignment A suh that s

W;A

6= ;. We say that

the satis�ability problem for (L;M) is deidable i� there is an algorithm that,

given an L-term s, answers \yes" if s is satis�able and \no" otherwise.

An inlusion axiom is of the form t

1

v t

2

, and it is satis�ed by the ADM W

and the assignment A i� t

W;A

1

v t

W;A

2

. The L-term s is alled satis�able relative

to the �nite set of inlusion axioms S i� there exists an ADM W 2 M and an

assignment A satisfying all inlusion axioms of S suh that s

W;A

6= ;. We will

all this problem the relativized satis�ability problem.

The satis�ability problem just introdued orresponds to satis�ability of on-

ept desriptions without TBox, whereas the relativized satis�ability problem

orresponds to satis�ability of onept desriptions w.r.t. a TBox.

4 The fusion of abstrat desription systems

Now, we an formally de�ne the fusion of abstrat desription systems.

De�nition 7. The fusion S

1


 S

2

= (L

1


 L

2

;M

1


 M

2

) of two abstrat

desription systems S

1

= (L

1

;M

1

) and S

2

= (L

2

;M

2

) over disjoint sets of

funtion symbols (f

i

)

i2I

and (g

j

)

j2J

is de�ned as follows: L

1


 L

2

is the ADL

based on the union f

1

; : : : ; g

1

; : : : of the funtion symbols of L

1

and L

2

, and

M

1


M

2

:= f




W; (f

W

i

)

i2I

[ (g

W

j

)

j2J

�

j




W; (f

W

i

)

i2I

�

2 M

1

and




W; (g

W

j

)

j2J

�

2 M

2

g:

As an example, onsider the ADSs S

1

and S

2

orresponding to the DLs

ALCF and ALC

+;Æ;t

introdued in the �rst setion. The ADS S

1

is based

on the following funtion symbols: (i) unary funtions symbol f

8r

and f

9r

for

every role name r, (ii) nullary funtions symbols orresponding to the same-

as onstrutor for every pair of hains of funtional roles; and the ADS S

2

is

based on the following funtion symbols: (iii) unary funtions symbol f

8r

and

f

9r

for every role desription r built from role names using union, omposition,

and transitive losure. If we assume that the set of role names employed by

ALCF andALC

+;Æ;t

are disjoint, then these sets of funtion symbols are disjoint.

The union of these sets provides us both with the symbols for the same-as

onstrutor and with the symbols for value and existential restritions on role

desriptions involving union, omposition, and transitive losure. However, the

7



role desriptions ontain only role names from ALC

+;Æ;t

, and thus none of the

funtional roles of ALCF ours in suh desriptions. Thus, the fusion of ALCF

and ALC

+;Æ;t

yields a strit fragment of their union ALCF

+;Æ;t

.

Our �rst transfer result [3℄ is onerned with the relativized satis�ability

problem.

Theorem 8. Let S

1

and S

2

be loal ADSs, and suppose that the relativized sat-

is�ability problems for S

1

and S

2

are deidable. Then the relativized satis�ability

problem for S

1


 S

2

is also deidable.

In the next setion we will give an example for the appliation of this theorem.

Note that this theorem does not yield a transfer result for the (unrelativized)

satis�ability problem. Of ourse, if the relativized satis�ability problems for S

1

and S

2

are deidable, then the theorem implies that the satis�ability problem

for S

1


 S

2

is also deidable (sine it is a speial ase of the relativized satis�a-

bility problem). However, to be able to apply Theorem 8 to obtain deidability

of the satis�ability problem in the fusion, the omponent ADSs must satisfy

the stronger requirement that the relativized satis�ability problem is deidable,

whih may not always be the ase. For example, the theorem annot be applied

for the fusion of ALCF and ALC

+;Æ;t

sine the relativized satis�ability prob-

lem for ALCF is already undeidable [2℄. However, the satis�ability problem is

deidable for both DLs. Before we an formulate a transfer result for the satis-

�ability problem, we need to introdue an additional notion, whih generalizes

the notion of a normal modal logis.

De�nition 9. Let (L;M) be an ADS and f be a funtion symbol of L of arity

n. The term t

f

(x) (with one variable x) is a overing normal term for f i� the

following holds for allW 2 M:

� t

W

f

(W ) = W ,

� for all X; Y � W , t

W

f

(X \ Y ) = t

W

f

(X) \ t

W

f

(Y );

� for all X;X

1

; : : : ; Y

n

� W : X \X

i

= X \ Y

i

for 1 � i � n implies

t

W

f

(X) \ f

W

(X

1

; : : : ; X

n

) = t

W

f

(X) \ f

W

(Y

1

; : : : ; Y

n

):

An ADS (L;M) is said to have overing normal terms i� one an e�etively

determine a overing normal term t

f

for every f of L.

For example, onsider the term f

8r

(x), where f

8r

is the funtion symbol

orresponding to the value restrition onstrutor for the role r. Then f

8r

(x)

obviously satis�es the �rst two requirements for overing normal terms. In fat,

it is easy to see that f

8r

(x) is a overing normal term for the funtion symbols

orresponding to the value, existential, and (quali�ed) number restritions on

the role r.
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Theorem 10. Let S

1

and S

2

be loal ADSs having overing normal terms, and

suppose that the satis�ability problems for S

1

and S

2

are deidable. Then the

satis�ability problem for S

1


 S

2

is also deidable.

It is easy to see that the prerequisites for this seond theorem are satis�ed

by ALCF and ALC

+;Æ;t

, and thus satis�ability is deidable for their fusion.

5 Transfer results for the fusion of DLs

Let us start with realling for whih DLs our transfer theorems do not apply.

As mentioned above, the loality requirement is violated by DLs providing for

individuals in onept desriptions, role negation, or the universal role. Sine the

Boolean operators are always available in ADLs, we an only treat DLs whose

set of onept onstrutors is Boolean losed. Finally, to get overing normal

terms, we need value restritions. Taking the last two points together means

that we onsider extensions of ALC. We an show that the transfer results apply

to any DL that extends ALC by some of the following:

� the onept onstrutors number restrition, quali�ed number restrition,

feature agreement and disagreement, and onrete domain prediates,

� the role onstrutors omposition, onjuntion, disjuntion, onverse, and

transitive losure,

� the restritions on role interpretations that respetively enfore funtional

roles, transitive roles, and role hierarhies.

The above list is not exhaustive; it is just intended to give an impression of the

generality of the transfer results.

We an now give an example for the appliation of Theorem 8. Consider the

DLs (i) ALCN , whih extends ALC by (unquali�ed) number restritions, and

(ii) ALC

Æ;u

, whih extends ALC by omposition and onjuntion of roles. For

both DLs, satis�ability w.r.t. TBoxes is deidable [5, 7℄, whereas for the union

ALCN

Æ;u

of the two logis, satis�ability is already undeidable [4℄. As in our

previous examples, we an take the fusionALCN
ALC

Æ;u

to obtain a deidable

fragment of the undeidable union ALCN

Æ;u

. It is easy to see that this fragment

is obtained from ALCN

Æ;u

by restriting the roles in number restritions to role

names that do not our in omplex role desriptions.
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