
Matching in Description Logics with Existential Restrictions

Franz Baader and Ralf K�usters

LuFg Theoretical Computer Science, RWTH Aachen

Ahornstra�e 55, 52074 Aachen, Germany

email: fbaader,kuestersg@informatik.rwth-aachen.de

Abstract

Matching of concepts against patterns is a

new inference task in Description Logics,

which was originally motivated by applica-

tions of the Classic system. Consequently,

the work on this problem was until now

mostly concerned with sublanguages of the

Classic language, which does not allow for

existential restrictions.

This paper extends the existing work on

matching in two directions. On the one hand,

the question of what are the most \interest-

ing" solutions of matching problems is ex-

plored in more detail. On the other hand, for

languages with existential restrictions both,

the complexity of deciding the solvability of

matching problems and the complexity of ac-

tually computing sets of \interesting" match-

ers are determined. The results show that

existential restrictions make these computa-

tional tasks more complex. Whereas for sub-

languages ofClassic both problems could be

solved in polynomial time, this is no longer

possible for languages with existential restric-

tions.

1 Introduction

In description logics (DLs), the standard inference

problems, like the subsumption and the instance prob-

lem, are now well-investigated. More recently, new

types of inference problems have been introduced and

investigated, like computing the least common sub-

sumer of concepts (Cohen et al., 1992; Baader et al.,

1999b) and matching concept descriptions against pat-

terns.

This paper is concerned with the latter of these two

inference problems, which has originally been intro-

duced in (Borgida and McGuinness, 1996; McGuin-

ness, 1996) to help �lter out the unimportant aspects

of large concepts appearing in knowledge bases of the

Classic DL system (Brachman et al., 1991; Borgida

et al., 1989). More recently, matching (as well as the

more general problem of uni�cation) has been pro-

posed as a tool for detecting redundancies in knowl-

edge bases (Baader and Narendran, 1998) and to sup-

port the integration of knowledge bases by prompt-

ing possible interschema assertions to the integrator

(Borgida and K�usters, 1999).

All three applications have in common that one wants

to search the knowledge base for concepts having a

certain (not completely speci�ed) form. This \form"

can be expressed with the help of so-called concept

patterns, i.e., concept descriptions containing vari-

ables (which stand for descriptions). For example,

assume that we want to �nd concepts that are con-

cerned with individuals having a son and a daugh-

ter sharing some characteristic. This can be ex-

pressed by the pattern D := 9has-child:(Male u X) u

9has-child:(FemaleuX), whereX is a variable standing

for the common characteristic. The concept descrip-

tion C := 9has-child:(Tall u Male) u 9has-child:(Tall u

Female) matches this pattern in the sense that, if we

replace the variable X by the description Tall, the pat-

tern becomes equivalent to the description. Thus, the

substitution � := fX 7! Tallg is a matcher modulo

equivalence of the matching problem C �

?

D. Note

that not only the fact that there is a matcher is of

interest, but also the matcher itself, since it tells us

what is the common characteristic of the son and the

daughter.

Looking for such an exact match (called matching

modulo equivalence in the following) is not always ap-

propriate, though. In our example, using matching

modulo equivalence means that all the additional char-

acteristics of the son and daughter mentioned in the

concept must be common to both. Thus, the de-

scription C

0

:= 9has-child:(Tall u Male u Talkative) u

9has-child:(Tall u Female u Quiet) does not match the

pattern modulo equivalence. Matching modulo sub-

sumption only requires that, after the replacement, the

pattern subsumes the description. Thus, the substitu-

tion � from above is a matcher modulo subsumption of

the matching problem C

0

v

?

D.

Previous results on matching in DLs were mostly con-

cerned with sublanguages of the Classic description

language, which does not allow for existential restric-

tions of the kind used in our example. A polynomial-

time algorithm for computing matchers modulo sub-

sumption for a rather expressive DL was introduced

in (Borgida and McGuinness, 1996). The main draw-

back of this algorithm is that it requires the concept

patterns to be in structural normal form, and thus it

cannot handle arbitrary matching problems. In ad-

dition, the algorithm is incomplete, i.e., it does not

always �nd a matcher, even if one exists. For the

DL ALN , a polynomial-time algorithm for matching

modulo subsumption and equivalence was presented

in (Baader et al., 1999a). This algorithm is complete

and it applies to arbitrary patterns.

Motivated by an application in chemical process engi-

neering (Baader and Sattler, 1996), which requires ex-

istential restrictions, the main purpose of this paper is

to investigate matching in DLs allowing for existential

restrictions. We will show that existential restrictions

make matching more complex in two respects. First,

whereas matching in the DLs considered in (Borgida

and McGuinness, 1996; Baader et al., 1999a) is poly-

nomial, even deciding the existence of matchers is an

NP-complete problem in the presence of existential

restrictions (Section 3). Second, the algorithms de-

scribed in (Borgida and McGuinness, 1996; Baader

et al., 1999a) always compute the least matcher (w.r.t.

subsumption of substitutions; see the de�nition of v

s

in Section 4) of the given matching problem. For lan-

guages with existential restrictions, such a unique least

matcher need not exist. However, the set of minimal

matchers is �nite (though possibly exponential in the

size of the matching problem), and we will show how

to compute this set (Section 5). It has turned out,

however, that the minimal matchers are not necessar-

ily the most interesting ones since they may contain

certain redundancies. Thus, one also needs a kind of

post-processing step that removes these redundancies

(Section 6). Since giving an answer to the question of

what are good sets of matchers is a crucial and non-

trivial problem, which has not been explored satisfac-

torily so far, we will treat this question in a separate

section (Section 4). A more detailed presentation and

Syntax Semantics

> �

C uD C

I

\D

I

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

:P , P 2 N

C

� n P

I

? ;

Table 1: Syntax and semantics of concept descriptions.

complete proofs of all the results stated in this paper

can be found in (Baader and K�usters, 1999).

2 Preliminaries

Concept descriptions are inductively de�ned with the

help of a set of concept constructors, starting with a

set N

C

of concept names and a set N

R

of role names.

In this paper, we consider concept descriptions built

from the constructors shown in Table 1. In the de-

scription logic EL, concept descriptions are formed

using the constructors top-concept (>), conjunction

(C u D), and existential restriction (9r:C). The de-

scription logic ALE additionally provides us with value

restrictions (8r:C), primitive negation (:P), and the

bottom-concept (?).

As usual, the semantics of concept descriptions is de-

�ned in terms of an interpretation I = (�; �

I

). The

domain � of I is a non-empty set and the interpreta-

tion function �

I

maps each concept name P 2 N

C

to

a set P

I

� � and each role name r 2 N

R

to a binary

relation r

I

� ���. The extension of �

I

to arbitrary

concept descriptions is de�ned inductively, as shown

in the second column of Table 1.

One of the most important traditional inference ser-

vices provided by DL systems is computing the sub-

sumption hierarchy. The concept description C is sub-

sumed by the descriptionD (C v D) i� C

I

� D

I

holds

for all interpretations I. The concept descriptions C

and D are equivalent (C � D) i� they subsume each

other.

In order to de�ne concept patterns, we additionally

need a set X of concept variables, which we assume to

be disjoint from N

C

[N

R

. Informally, an ALE -concept

pattern is an ALE-concept description over the concept

names N

C

[X and the role names N

R

, with the only

exception that primitive negation must not be applied

to variables.

De�nition 1 The set of all ALE-concept patterns

over N

C

, N

R

, and X is inductively de�ned as follows:

� Every concept variable X 2 X is a pattern.

� Every ALE-concept description over N

C

and N

R

is a pattern.

� If D

1

and D

2

are concept patterns, then D

1

uD

2

is a concept pattern.

� If D is a concept pattern and r is a role name,

then 8r:D and 9r:D are concept patterns.

The notion of a pattern (and also the notions \sub-

stitution" and \matching problem" introduced below)

can be restricted to EL in the obvious way. For exam-

ple, if X;Y are concept variables, r a role name, and

A;B concept names, then D := A u X u 9r:(B u Y)

is both an EL- and ALE-concept pattern, but :X is

neither an ALE- nor an EL-concept pattern.

A substitution � is a mapping from X into the set of all

ALE-concept descriptions. This mapping is extended

to concept patterns in the usual way, i.e.,

� �(C) := C for all ALE -concept descriptions C,

� �(D

1

uD

2

) := �(D

1

) u �(D

2

),

� �(8r:D) := 8r:�(D) and �(9r:D) := 9r:�(D).

For example, if we apply the substitution � := fX 7!

AuB; Y 7! Ag to the patternD from above, we obtain

the description �(D) = A u A u B u 9r:(B u A). The

result of applying a substitution to an ALE -concept

pattern is always an ALE-concept description. Note

that this would no longer be the case if negation were

allowed in front of concept variables. In fact, �(:X) =

:(A u B) cannot be expressed in ALE .

De�nition 2 Let C be an ALE-concept description

and D an ALE-concept pattern. Then, C �

?

D is

an ALE-matching problem modulo equivalence and

C v

?

D is an ALE -matching problem modulo sub-

sumption. The substitution � is a matcher of C �

?

D

i� C � �(D), and it is a matcher of C v

?

D i�

C v �(D).

3 Complexity of the decision problem

In this section, we are interested in the complexity

of deciding whether a given matching problem has a

matcher or not. Our results are summarized in Ta-

ble 2. The �rst and the second row of the table refer

to matching modulo subsumption and matching mod-

ulo equivalence, respectively.

EL ALE

subsumption P NP-complete

equivalence NP-complete NP-complete

Table 2: Deciding solvability of matching problems

First, note that patterns are not required to contain

variables. Consequently, matching modulo subsump-

tion (equivalence) is at least as hard as subsumption

(equivalence). Thus, NP-completeness of subsumption

in ALE (Donini et al., 1992) yields the hardness part

of the second column of Table 2. Second, for the lan-

guages ALE and EL, matching modulo subsumption

can be reduced to subsumption: C v

?

D has a matcher

i� �

>

:= fX 7! > j X 2 Xg is a matcher of C v

?

D.

Thus, the known complexity results for subsumption in

ALE and EL (Donini et al., 1992; Baader et al., 1999b)

complete the �rst row of Table 2. Third, NP-hardness

of matching modulo equivalence for EL can be shown

by a reduction of SAT. The reduction in (Baader and

K�usters, 1999) uses only a �xed number of role names.

Here, we give a simpler reduction for which, however,

the number of role names grows with the formula.

Lemma 3 Deciding the solvability of matching prob-

lems modulo equivalence in EL is NP-hard.

Proof. Let � = p

1

^ � � � ^ p

m

be a propositional for-

mula in conjunctive normal form and let fx

1

; : : : ; x

n

g

be the propositional variables of this problem. For

these variables, we introduce the concept variables

fX

1

; : : : ; X

n

; X

1

; : : : ; X

n

g. Furthermore, we need con-

cept names A and B as well as role names r

1

; : : : ; r

n

and s

1

; : : : ; s

m

.

First, we specify a matching problem C

n

�

?

D

n

that

encodes the truth values of the n propositional vari-

ables:

C

n

:= 9r

1

:A u 9r

1

:B u � � � u 9r

n

:A u 9r

n

:B;

D

n

:= 9r

1

:X

1

u 9r

1

:X

1

u � � � u 9r

n

:X

n

u 9r

n

:X

n

:

The matchers of this problem are exactly the substi-

tutions that replace X

i

by A and X

i

by B (corre-

sponding to x

i

= true), or vice versa (corresponding

to x

i

= false).

In order to encode �, we introduce a concept pattern

D

p

i

for each conjunct p

i

. For example, if p

i

= x

1

_x

2

_

x

3

_x

4

, then D

p

i

:= X

1

uX

2

uX

3

uX

4

uB. The whole

formula is then represented by the matching problem

C

�

�

?

D

�

, where

C

�

:= 9s

1

:(A u B) u � � � u 9s

m

:(A u B);

D

�

:= 9s

1

:D

p

1

u � � � u 9s

m

:D

p

m

:

This matching problem ensures that, among all the

variables in D

p

i

, at least one must be replaced by A.

This corresponds to the fact that, within one conjunct

p

i

, there must be at least one literal that evaluates to

true. Note that we need the concept B in D

p

i

to cover

the case where all variables in D

p

i

are substituted with

A.

We combine the two matching problems introduced

above into a single problem C

n

u C

�

�

?

D

n

uD

�

. It

is easy to verify that � is satis�able i� this matching

problem is solvable.

It remains to show that matching modulo equivalence

in EL and ALE can in fact be decided in nondetermin-

istic polynomial time. This is an easy consequence of

the following lemma.

Lemma 4 If an EL- or ALE-matching problem modulo

equivalence has a matcher, then it has one of size poly-

nomially bounded by the size of the problem. Further-

more, this matcher uses only concept and role names

already contained in the matching problem.

The lemma (together with the known complexity re-

sults for subsumption) shows that the following can

be realized in NP: \guess" a substitution satisfying

the given size bound, and then test whether it is a

matcher.

For EL, the polynomial bound stated in the lemma can

be derived from our algorithm for computing so-called

s-co-complete sets of matchers presented in Section 6.

At the end of Section 6, we will also comment on the

(quite involved) proof of Lemma 4 for ALE .

4 Solutions of matching problems

In this section and in Section 5.1, we will use the EL-

concept description C

1

ex

and the pattern D

1

ex

shown

in Figure 1 as our running example. (The graphical

representation will be explained later on.)

It is easy to see that the substitution �

>

is a matcher of

C

1

ex

v

?

D

1

ex

, and thus this matching problem modulo

subsumption is indeed solvable. However, the matcher

�

>

is obviously not an interesting one. We are inter-

ested in matchers that bring us as close as possible

to the description C

1

ex

. In this sense, the matcher

�

1

:= fX 7! W u 9hc:W; Y 7! Wg is better than

�

>

, but still not optimal. In fact, �

2

:= fX 7!

W u 9hc:W u 9hc:(W u P); Y 7!W uDg is better than

�

1

since it satis�es C

1

ex

� �

2

(D

1

ex

) < �

1

(D

1

ex

).

We formalize this intuition with the help of the fol-

lowing precedence ordering on matchers. For a given

matching problem C v

?

D and two matchers �; � we

de�ne

� v

i

� i� �(D) v �(D):

Here \i" stands for \instance". Two matchers �; � are

i-equivalent (� �

i

�) i� � v

i

� and � v

i

�. A matcher

� is called i-minimal i�, for every matcher � , � v

i

�

implies � �

i

�. We are interested in computing i-

minimal matchers ; more precisely, we want to obtain

at least one i-minimal matcher for each of the mini-

mal i-equivalence classes (i.e., i-equivalence classes of

i-minimal matchers). Since an i-equivalence class usu-

ally contains more than one matcher, the question is

which ones to prefer.

In (Baader et al., 1999a), it is shown that a given

ALN -matching problem always has a unique minimal

i-equivalence class, and that this class is the class of

the least matcher w.r.t. the ordering

� v

s

� i� �(X) v �(X) for all X 2 X ;

where \s" stands for \substitution". The matcher � is

a least matcher w.r.t. v

s

i� � v

s

� for all matchers � .

The notions s-minimal, s-equivalent, etc. are de�ned

in the obvious way.

For EL and ALE , things are quite di�erent. As illus-

trated by the example 9r:A u 9r:B v

?

9r:X , a given

matching problem may have several non-equivalent

i-minimal (s-minimal) matchers: the substitutions

fX 7! Ag and fX 7! Bg are both i- and s-minimal,

and they are obviously neither i- nor s-equivalent. It

can be shown (Baader and K�usters, 1999) that the set

of all s-minimal matchers (up to s-equivalence) also

contains all i-minimal matchers (up to i-equivalence).

However, the s-minimal matchers are usually not the

best representatives of their i-equivalence class.

In our running example, �

2

is a least and therefore i-

minimal matcher. Nevertheless, it is not the one we

really want to compute since it contains redundancies,

i.e., expressions that are not really necessary for ob-

taining the instance �

2

(D

1

ex

) (modulo equivalence). In

fact, �

2

contains two di�erent kinds of redundancies.

First, the existential restriction 9hc:W in �

2

(X) is re-

dundant since removing it still yields a concept de-

scription equivalent to �

2

(X). Second, W in �

2

(Y) is

redundant in that the substitution obtained by delet-

ing W from �

2

(Y) still yields the same instance of

D

1

ex

(although the substitution obtained this way is no

longer s-equivalent to �

2

). In our example, the only i-

minimal matcher (modulo associativity and commuta-

tivity of concept conjunction) that is free of redundan-

cies in this sense is �

3

:= fX 7!Wu9hc:(WuP); Y 7!

Dg.

W: Woman

P: Professor

D: Doctor

hc: has-child

v

0

:W

v

1

:W v

2

:W;D

v

3

:W;D v

4

:W;P v

5

:W;P

hc

hc hc

hc

hc

C

1

ex

:= W u 9hc:(W u 9hc:(W u D) u 9hc:(W u P)) u 9hc:(W u D u 9hc:(W u P))

D

1

ex

:= W u 9hc:(X u 9hc:(W u Y)) u 9hc:(X u Y)

w

2

:X;Y

w

3

:W; Y

w

0

:W

hc

hc hc

w

1

:X

G(C

1

ex

) : G(D

1

ex

) :

Figure 1: EL-concept description and pattern, and their EL-description trees.

We want to compute i-minimal matchers that are re-

duced, i.e., free of redundancies. It remains to for-

malize the notion \reduced" more rigorously. For this

purpose, we need the notion of a subdescription.

De�nition 5 For an ALE-concept description C, the

ALE-concept description

b

C is a subdescription of C

(

b

C �

d

C) i� (i)

b

C = C; or (ii)

b

C = ?; or (iii)

b

C is obtained from C by removing some (negated)

concept names, value restrictions, or existential re-

strictions on the top-level of C, and for all remain-

ing value/existential restrictions 8r:E/9r:E replacing

E by a subdescription of E.

Note that, if everything is removed from C, then

b

C = >. For EL, subdescriptions are de�ned analo-

gously; clearly, (ii) must be removed for EL. The con-

cept description

b

C is a strict subdescription of C i�

b

C �

d

C and

b

C 6= C.

De�nition 6 The ALE-concept description C is called

reduced i� there does not exist a strict subdescription

of C that is equivalent to C.

For example, �

3

(X) is reduced, whereas �

2

(X) is not.

Reduced concept descriptions are unique, provided

that they are also in 8-normal form. An ALE -concept

description C is in 8-normal form i� the 8-rule 8r:Eu

8r:F �! 8r:(E u F) cannot be applied to C. Clearly,

every concept description can easily be transformed

(in polynomial time) into its 8-normal form by exhaus-

tively applying the 8-rule.

Lemma 7 (Baader and K�usters, 1999) Equivalent

and reduced ALE-concept descriptions in 8-normal

form are equal up to associativity and commutativity

of concept conjunction.

The ordering �

d

can be extended to substitutions in

the obvious way:

� �

d

� i� �(X) �

d

�(X) for all X 2 X :

The matcher � of C v

?

D is called reduced i� it is a d-

minimal matcher (i.e., minimal w.r.t. �

d

). Note that,

given a reduced matcher �, every concept description

�(X) is reduced. However, as illustrated by our run-

ning example (removal of W in �

2

(Y)), just replacing

the descriptions �(X) by equivalent reduced descrip-

tions does not necessarily yield a reduced matcher.

To sum up, given a matching problem C v

?

D, we

want to compute matchers that are i-minimal and re-

duced. It should be noted that a given i-equivalence

class of matchers may contain di�erent reduced match-

ers. Since reduced and s-equivalent matchers are equal

up to associativity and commutativity of conjunc-

tion, it is, however, su�cient to compute the reduced

matchers up to s-equivalence.

Our approach for computing i-minimal and reduced

matchers of C v

?

D proceeds in two steps (which we

consider in more detail in the next two sections):

1. Compute the set of all i-minimal matchers of C v

?

D up to i-equivalence (i.e., one matcher for each

i-equivalence class).

2. For each i-minimal matcher � computed in the

�rst step, compute the d-minimal matchers up to

s-equivalence of �(D) �

?

D.

Of course, if we are interested in matching modulo

equivalence in the �rst place, we just apply the second

step to C �

?

D.

5 Computing i-minimal matchers

In this section, we show how to compute the set of

all i-minimal matchers up to i-equivalence for a given

matching problem C v

?

D. In fact, the algorithms for

EL and ALE that we will present below solve a slightly

di�erent problem: they compute so-called s-complete

sets of matchers.

De�nition 8 A set of matchers is called s-complete

i� it contains (at least) all s-minimal matchers up to s-

equivalence. It is called minimal s-complete, if it con-

sists of one representative of every s-equivalence class

of the s-minimal matchers.

Analogously, one can de�ne (minimal) i-complete sets.

A simple proof shows the following relationship be-

tween s- and i-complete sets.

Lemma 9 Every s-complete set is also i-complete.

Given an s-complete set, one can therefore in a post-

processing step use the subsumption algorithm (for EL

or ALE) to determine a minimal i-complete set.

Mainly for didactic reasons, we present the algorithm

for computing s-complete sets of matchers both for

EL and ALE . In general, an algorithm for a given DL

does not necessarily work for its sublanguages since the

set of potential matchers changes. In this particular

case, however, the algorithm for ALE applied to EL-

matching problems only yields matchers in EL.

5.1 Computing s-complete sets in EL

The algorithm for computing s-complete sets of match-

ers in EL is based on a characterization of subsumption

between EL-concepts via homomorphisms between the

corresponding description trees. This characterization

has been introduced in (Baader et al., 1999b) for the

purpose of computing the least common subsumer (lcs)

of EL-concepts. Before introducing the matching al-

gorithm, we briey recall the characterization of sub-

sumption.

Characterizing subsumption in EL

De�nition 10 An EL-description tree is a tree of the

form G = (V;E; v

0

; `) where

� V is a �nite set of nodes;

� E � V �N

R

� V is a �nite set of edges labeled

with role names r (9-edges);

� v

0

2 V is the root of G;

� ` is a labeling function mapping the nodes in V to

�nite subsets of N

C

. The empty label corresponds

to the top-concept.

The EL-description tree G(C) corresponding to the

EL-concept description C simply reects the syntac-

tic structure of the description. For example, the

description tree corresponding to the EL-concept de-

scription C

1

ex

of our example is depicted on the left-

hand side of Figure 1. For an EL-concept descrip-

tion C and a node v in the corresponding descrip-

tion tree G(C), we denote the part of C corresponding

to v by C

v

. In our example, we have, for instance,

C

1

ex;v

1

=W u 9hc:(W u D) u 9hc:(W u P).

De�nition 11 A mapping ' : V

H

�! V

G

from an

EL-description tree H = (V

H

; E

H

; w

0

; `

H

) to an EL-

description tree G = (V

G

; E

G

; v

0

; `

G

) is called homo-

morphism i� the following conditions are satis�ed:

1. '(w

0

) = v

0

,

2. for all v 2 V

H

we have `

H

(v) � `

G

('(v)),

3. for all vrw 2 E

H

, we have '(v)r'(w) 2 E

G

.

Now, subsumption can be characterized as follows:

Lemma 12 (Baader et al., 1999b) Given two EL-

concept descriptions C;D, we have C v D i� there

exists a homomorphism from G(D) into G(C).

The EL-matching algorithm

In order to employ this lemma for deriving the EL-

matching algorithm, we need to generalize the notions

introduced above to concept patterns. EL-description

trees can be extended to concept patterns by simply

treating variables like concept names. For example,

the concept pattern D

1

ex

in the example yields the de-

scription tree depicted on the right-hand side of Fig-

ure 1. When extending the notion of a homomor-

phism to description trees representing concept pat-

terns, we simply ignore the concept variables, i.e., the

second condition must hold only for non-variable con-

cept names.

In our example, there are six homomorphisms from

G(D

1

ex

) into G(C

1

ex

). We consider the ones mapping w

i

onto v

i

for i = 0; 1; 2, and w

3

onto v

3

or w

3

onto v

4

,

which we denote by '

1

and '

2

, respectively.

Input: EL-matching problem C v

?

D.

Output: s-complete set C for C v

?

D.

C := ;;

For all homomorphisms ' from

G(D) = (V;E; v

0

; `) into G(C) do

De�ne � by �(X) := lcsfC

'(v)

j X 2 `(v)g

for all variables X in D;

C := C [f�g;

Figure 2: The EL-matching algorithm

The matching algorithm described in Figure 2 con-

structs substitutions � such that C v �(D), i.e., there

is a homomorphism from G(�(D)) into G(C). This is

achieved by �rst computing all homomorphisms from

G(D) into G(C). The remaining problem is that a vari-

able X may occur more than once in D. Thus, we can-

not simply de�ne �(X) as C

'(v)

where v is such that X

occurs in the label of v. Since there may exist several

nodes v with this property, we take the least common

subsumer of the corresponding parts of C. The reason

for taking the least common subsumer is that we want

to compute substitutions that are as small as possible

w.r.t. v

s

. Recall that E is the least common subsumer

(lcs) of E

1

; : : : ; E

n

(lcs(E

1

; : : : ; E

n

) for short) i� (i) E

subsumes E

1

; : : : ; E

n

and (ii) E is the least concept

description w.r.t. subsumption that satis�es (i), i.e.,

for every concept description E

0

, if E

0

w E

1

; : : : ; E

n

,

then E

0

w E. Algorithms for computing the lcs of EL-

and ALE-concept descriptions have been described in

(Baader et al., 1999b).

In our example, the homomorphism '

1

yields the sub-

stitution �

1

:

�

1

(X) := lcsfC

1

ex;v

1

; C

1

ex;v

2

g � W u 9hc:(W u P);

�

1

(Y) := lcsfC

1

ex;v

2

; C

1

ex;v

3

g � W u D;

whereas '

2

yields the substitution �

2

:

�

2

(X) := lcsfC

1

ex;v

1

; C

1

ex;v

2

g � W u 9hc:(W u P);

�

2

(Y) := lcsfC

1

ex;v

2

; C

1

ex;v

4

g � W:

The substitution �

1

is an i-minimal matcher, but �

2

is

neither i-minimal nor s-minimal. Therefore, �

2

will be

removed in the post-processing step when extracting a

minimal i-complete set from the computed s-complete

one. By applying Lemma 12, it is easy to show:

Theorem 13 (Baader and K�usters, 1999) The algo-

rithm described in Figure 2 always computes an s-

complete set of matchers for a given EL-matching prob-

lem modulo subsumption.

5.2 Computing s-complete sets in ALE

The algorithm for computing s-complete sets for ALE-

matching problems modulo subsumption is similar to

the one for EL. However, due to inconsistent concepts

expressible inALE and the interaction between existen-

tial and value restrictions, things become more com-

plicated.

As before, the algorithm is based on the characteriza-

tion of subsumption via homomorphisms between de-

scription trees, which we briey recall in the following

(see (Baader et al., 1999b) for more details).

8r s

G(C

2

ex

) :

v

0

: ;

8r s

v

0

0

: ;

8r r

v

0

3

: X v

0

4

: P

v

0

1

: ;

r

v

0

5

: X

v

0

2

: ;

G(D

2

ex

) :

8ss

v

1

: ;

v

4

: :Qv

3

: Q v

5

: :P

r

v

2

: ;

Figure 3: ALE-description trees.

Characterizing subsumption in ALE

The notion of EL-description trees is generalized to

ALE in a straightforward manner: (i) In addition to

9-edges labeled with role names r, ALE-description

trees may also contain 8-edges labeled 8r; (ii) be-

side concept names and variables, labels of nodes in

ALE-description trees may also contain negated con-

cept names as well as the bottom-concept.

Again, any ALE-concept description/pattern C can be

translated into a corresponding ALE-description tree

G(C). For example, the description trees G(C

2

ex

) and

G(D

2

ex

) corresponding to the ALE-concept description

C

2

ex

and the concept pattern D

2

ex

de�ned as

C

2

ex

:= 8r:(9s:Q u 8s::Q) u 9s:9r::P;

D

2

ex

:= 8r:(8r:X u 9r:P) u 9s:9r:X

are depicted in Figure 3.

In order to extend the characterization of subsump-

tion from EL to ALE , the notion of a homomorphism

must be extended and concept descriptions need to be

normalized before turning them into description trees.

Obviously, a homomorphism between ALE-description

trees must distinguish between 8- and 9-edges. More

important, a homomorphism must be allowed to map

a node and all its successors onto an inconsistent node,

i.e., a node whose label contains ?.

De�nition 14 A mapping ' : V

H

�! V

G

from an

ALE-description tree H = (V

H

; E

H

; w

0

; `

H

) to an ALE-

description tree G = (V

G

; E

G

; v

0

; `

G

) is called homo-

morphism i� the following conditions are satis�ed:

1. '(w

0

) = v

0

,

2. for all v 2 V

H

we have `

H

(v) � `

G

('(v)) or ? 2

`

G

('(v)),

3. for all vrw 2 E

H

, either '(v)r'(w) 2 E

G

, or

'(v) = '(w) and ? 2 `

G

('(v)), and

4. for all v8rw 2 E

H

, either '(v)8r'(w) 2 E

G

, or

'(v) = '(w) and ? 2 `

G

('(v)).

The main purpose of the normalization rules on ALE-

concept descriptions (see below) is to make implic-

itly inconsistent parts of C explicit, and to propa-

gate value restrictions onto existential restrictions and

other value restrictions.

De�nition 15 Let E;F be two ALE -concept descrip-

tions, r 2 N

R

, and P 2 N

C

. The ALE-normalization

rules are de�ned as follows

P u :P , 9r:?, E u ? �! ?,

8r:E u 9r:F �! 8r:E u 9r:(E u F),

8r:E u 8r:F �! 8r:(E u F),

8r:> �! >.

A concept description C is called normalized if none

of the normalization rules can be applied to some part

of C.

The rules should be read modulo commutativity of

conjunction; e.g., 9r:E u 8r:F is also normalized to

9r:(E u F) u 8r:F . An unnormalized concept descrip-

tion C can be normalized by exhaustively applying the

normalization rules in C. The resulting (normalized)

concept description is called normal form of C. Since

each normalization rule preserves equivalence, the nor-

mal form of C is equivalent to C. The ALE-description

tree corresponding to the normal form of C is denoted

by G

C

.

If only the rule 8r:> �! > is exhaustively applied

to a concept description C, then the resulting concept

description is called >-normal form of C, and the cor-

responding tree is denoted by G

>

C

.

Now, subsumption can be characterized in terms of

homomorphisms as follows:

Lemma 16 (Baader et al., 1999b) Let C;D be ALE-

concept descriptions. Then, C v D i� there exists a

homomorphism from G

>

D

to G

C

.

It should be noted that the theorem stated in (Baader

et al., 1999b) requires a homomorphism from G

D

in-

stead of G

>

D

. However, a closer look at the proof in

(Baader et al., 1998) reveals that >-normalization of

the subsumer is su�cient. This will be important in

the following when we use Lemma 16 as basis for the

ALE-matching algorithm. In this context, the sub-

sumer is an instantiation of the pattern D, and thus,

normalizing the subsumer �(D) depends on the sub-

stitution �, which is not known in advance. Therefore,

it is crucial that only very simple normalizations of the

subsumer are required.

r

8s

v

3

: Q

8r

v

4

: P

r

v

0

: ;

v

2

: ;v

1

: ;

w

2

: X w

3

: Y

r

8s8r

w

0

: ;

w

1

: ;

G

>

D

3

ex

:G

C

3

ex

:

Figure 5: The description trees for C

3

ex

and D

3

ex

.

The ALE-matching algorithm

Following Lemma 16, the EL-matching algorithm is

modi�ed as follows: (i) instead of the trees G(C)

and G(D), we now consider G

C

and G

>

D

, where the

>-normal form of D is obtained by treating concept

variables like concept names; (ii) homomorphisms are

computed with respect to De�nition 14, where again

variables are ignored in 2.

This straightforward extension of the EL-matching al-

gorithm is su�cient to solve the ALE-matching prob-

lem C

2

ex

v D

2

ex

. There exists exactly one homomor-

phism ' from G

>

D

2

ex

into G

C

2

ex

(see Figure 4). Following

the EL-matching algorithm, ' gives rise to the matcher

� with �(X) := lcsf?;:Pg � :P . The singleton set

f�g is indeed an s-complete set.

However, as illustrated by the next example, this sim-

ple extension of the EL-matching algorithm does not

work in general.

Example 17 Consider the ALE -matching problem

C

3

ex

v

?

D

3

ex

, where

C

3

ex

:= (9r:8r:Q) u (9r:8s:P)

D

3

ex

:= 9r:(8r:X u 8s:Y):

The description trees corresponding to C

3

ex

and D

3

ex

are

depicted in Figure 5. Obviously, � := fX 7! Q; Y 7!

>g and � := fX 7! >; Y 7! Pg are solutions of the

matching problem. However, there is no homomor-

phism from G

>

D

3

ex

into G

C

3

ex

. Indeed, the node w

1

can

be mapped either on v

1

or on v

2

. In the former case,

w

2

can be mapped on v

3

, but then there is no way to

map w

3

. In the latter case, w

3

must be mapped on v

4

,

but then there is no node w

2

can be mapped on.

The problem is that Lemma 16 requires the subsumer

to be in >-normal form. However, the >-normal form

of the instantiated concept pattern depends on the

matcher, and thus cannot be computed in advance.

For instance, in Example 17 the instances �(D

3

ex

) and

8r

w

0

: �

w

4

: �

'

v

1

: f?g

v

0

: �

8r

v

5

: :P

v

4

: ;

w

3

: P

w

1

: ;

s

r

s

rr

G

C

2

ex

: G

>

D

2

ex

:

8r

w

2

: X w

5

: X

Figure 4: Subsumption for ALE .

�(D

3

ex

) of D

3

ex

are not >-normalized since they con-

tain 8s:> and 8r:>, respectively. The description tree

for the >-normalized concept description �(D

3

ex

) does

not include the node w

3

and the 8s-edge leading to it.

Analogously, for �(D), w

2

would be deleted.

This illustrates that the instances of a pattern are not

necessarily in >-normal form and that the >-normal

form depends on the particular instance. However,

only those matchers cause problems that replace vari-

ables by the top-concept. Therefore, instead of con-

sidering homomorphisms originating from G

>

D

, the al-

gorithm computes homomorphisms from the so-called

>-patterns of D into G

C

.

De�nition 18 The concept pattern E is called >-

pattern of D i� E is obtained from D by replacing

some of the variables in D by >.

In our example, we obtain the following >-normalized

>-patterns for D

3

ex

: D

3

ex

, 9r:(8r:X), 9r:(8s:Y), and

9r:>. Matching these patterns against C

3

ex

, the ex-

tended matching algorithm described above computes

the following sets of solutions: ;, f�g, f�g, and ffX 7!

>; Y 7! >gg. The union of these sets provides us with

an s-complete set of solutions of C

3

ex

v

?

D

3

ex

.

The matching algorithm for ALE obtained from these

considerations is depicted in Figure 6. Here `(v) de-

notes the label of v in G

>

E

, and C

'(v)

stands for the

concept description corresponding to the subtree of G

C

with root '(v).

5.3 Complexity of computing i-complete sets

There are two di�erent aspects to consider. First, the

size of i-complete (and s-complete) sets, and second,

the complexity of the algorithm for computing these

sets. The following theorem shows that the size of

complete sets may grow exponentially in the size of

the matching problem.

Input: ALE -matching problem C v

?

D

Output: s-complete set C for C v

?

D

C := ;

For all >-patterns E of D do

For all homomorphisms ' from G

>

E

into G

C

De�ne � by

�(X) := lcsfC

'(v)

j X 2 `(v)g

for all X in E and

�(X) := >

for all X in D not contained in E

C := C [f�g

Figure 6: The ALE-matching algorithm.

Theorem 19 Both, for EL and ALE

1. the cardinality of minimal i-complete and s-

complete sets of matchers and the size of the

matchers in these sets are at most exponential in

the size of the matching problem;

2. these exponential upper-bounds are tight.

We illustrate the second part of the theorem by two

examples, one for the cardinality of complete sets and

one for the size of the matchers.

Example 20 Let C

n

be the EL-/ALE -concept descrip-

tion

C

n

:=

n

u

i=1

9r:(

n

u

j=1

9r:(A

i

u B

j

);

and D

n

be the EL-/ALE -concept pattern

D

n

:=

n

u

i=1

9r:9r:X

i

:

For the matching problem C

n

v

?

D

n

and a word w =

a

1

� � � a

n

2 f1; : : : ; ng

n

of length n over the alphabet

f1; : : : ; ng, the substitution �

w

(X

i

) := A

i

uB

j

for a

i

=

j is obviously an i-minimal and s-minimal matcher.

Furthermore, for di�erent words w;w

0

2 f1; : : : ; ng

n

,

one obtains i-incomparable and s-incomparable match-

ers. Since there are n

n

such words, the number of i-

minimal and s-minimal matchers grows exponentially

in n, and thus in the size of the matching problems

C

n

v

?

D

n

.

The next example demonstrates that the size of a sin-

gle matcher in an s-complete/i-complete set may grow

exponentially in the size of the matching problem.

Example 21 In (Baader et al., 1999b), it has

been shown that there is a sequence E

1

; E

2

; : : : of

EL-/ALE-concept descriptions such that the size of

lcs(E

1

; : : : ; E

n

) grows exponentially in the size of

E

1

; : : : ; E

n

.

Now, consider the EL-/ALE -matching problem C

0

n

v

?

D

0

n

, where C

0

n

:= 9r

1

:E

1

u � � � u 9r

n

:E

n

and D

0

n

:=

9r

1

:X u � � � u 9r

n

:X. Clearly, for an i-minimal or s-

minimal matcher � of this matching problem, �(X) �

lcs(E

1

; : : : ; E

n

). Thus, �(X) grows exponentially in

the size of the matching problem.

We now turn to the complexity of the ALE-matching

algorithm and show that it runs in exponential time.

Obviously, this also implies the exponential upper-

bound stated in the �rst part of Theorem 19. Sim-

ilar arguments can be employed for the EL-matching

algorithm.

First, note that the number of >-patterns E of D is

at most exponential in the size of D. Also, the size

of G

>

E

for each such >-pattern is linear in the size of

D. As shown in (Baader et al., 1999b), the size of G

C

is at most exponential in the size of C. Consequently,

it is easy to see that the number of homomorphisms

from G

>

E

into G

C

is at most exponential in the size of

C and D. This shows that the number of matchers �

computed by the algorithm is at most exponential in

the size of the given matching problem.

It remains to be shown that each such � can be com-

puted in exponential time. As proved in (Baader et al.,

1999b), the lcs of n concepts C

1

; : : : ; C

n

can be com-

puted in time bounded by the product of the sizes of

the concepts C

i

. Since the size of G

C

, and thus also

of C

'(v)

, is at most exponential in C and the number

of nodes v in G

>

E

is linear in D, it follows that each

�(X) can be computed in time exponential in the size

of C and D. Finally, the fact that D (and thus also E)

contains only a linear number of variables shows that

� can be computed in exponential time. This proves

Corollary 22 Computing i- and s-complete sets for

EL-/ALE-matching problems modulo subsumption can

be carried out in time exponential in the size of the

matching problem.

Recall that we are actually interested in computing

a minimal i-complete set of the matching problem

C v

?

D. As mentioned at the beginning of this sec-

tion, given an s-complete set, one can compute a min-

imal i-complete set by testing subsumption between

the instances �(D) of D, where � belongs to the s-

complete set. Since the size of these instances may

be exponential in the size of the matching problem,

and since subsumption is polynomial in EL and NP-

complete in ALE , we obtain the following complexity

result for computing minimal i-complete sets:

Corollary 23 Computing minimal i-complete sets for

matching modulo subsumption can be carried out in

exponential time for EL- and in exponential space for

ALE-matching problems.

6 Computing d-minimal matchers

In order to realize the second step of the matching al-

gorithm sketched at the end of Section 4, we must show

how to compute all d-minimal (i.e., reduced) matchers

up to s-equivalence of a given matching problem mod-

ulo equivalence. For such a matching problem C �

?

D,

sets containing at least all d-minimal matchers up to s-

equivalence are called d-complete. Such a set is called

minimal if it contains exactly one d-minimal matcher

for each s-equivalence class.

The following theorem implies that, in the worst case,

algorithms computing d-complete sets need exponen-

tial time.

Theorem 24 Let C �

?

D be an EL- or ALE-matching

problem modulo equivalence. Then,

1. the cardinality of (minimal) d-complete sets can

grow exponentially in the size of the matching

problem;

2. however, there always exists a (minimal) d-

complete set such that the size of each matcher

in this set is polynomially bounded.

The �rst statement of the theorem is an easy conse-

quence of the fact that every d-complete set for the

EL-/ALE-matching problem 9r:A

1

u � � � u 9r:A

n

�

?

9r:X

1

u� � � 9r:X

n

contains at least an exponential num-

ber of matchers.

The non-trivial result to prove is the second part of

Theorem 24 (see (Baader and K�usters, 1999)). This

result yields a na��ve exponential-time algorithm for

computing d-complete sets: Enumerate all substitu-

tions up to the polynomial bound and �lter out those

that are not solutions of the problem or that are not

d-minimal. The �ltering can be realized by a polyno-

mial time algorithm using an oracle for subsumption.

Obviously, this na��ve algorithm is very ine�cient.

For EL, we will sketch an improved exponential time

algorithm, which signi�cantly prunes the search space

for candidate matchers. This algorithm is based on

the following (non-trivial) lemma:

Lemma 25 (Baader and K�usters, 1999) The matcher

� of the EL-matching problem C �

?

D is d-minimal i�

it is s-maximal and �(X) is reduced for all variables

X.

Here s-maximality of matchers is de�ned w.r.t. v

s

in

the obvious way. Note that this lemma does not hold

for ALE , and thus it is not clear how to extend our

approach from EL to ALE .

Because of the lemma, the task of computing a d-

complete set of matchers in EL can be split into

two subtasks. First, compute an s-co-complete set of

matchers, i.e., a set containing all s-maximal match-

ers up to s-equivalence. Second, for every matcher �

in the set and every variable X , compute a reduced

concept description equivalent to �(X). In (Baader

and K�usters, 1999), it is shown that, for EL, the sec-

ond task can be realized by a polynomial time algo-

rithm. In the following, we sketch an algorithm for

performing the �rst task (see (Baader and K�usters,

1999) for a complete description and proof of correct-

ness). Roughly speaking, this algorithm is the dual of

the one in Figure 2. The duality occurs at two places

in the algorithm.

First, instead of computing substitutions � satisfying

C v �(D), we now compute substitutions � that sat-

isfy C w �(D). To make sure that the substitutions

computed by the algorithm really solve the matching

problem C �

?

D, we use the subsumption algorithm

for EL to remove those substitutions not satisfying

C v �(D). In order to obtain substitutions � sat-

isfying C w �(D), we now consider homomorphisms

in the other direction, i.e., from G(C) into G(D). To

be more precise, we consider homomorphisms that

are partial in the following sense: (i) certain nodes of

G(C) need not be mapped onto nodes of G(D); and

(ii) for certain nodes the inclusion condition between

labels need not hold. The idea is that the parts of C

that are not mapped and the labels violating the inclu-

sion condition are covered by the concepts substituted

for the variables. For this reason, a partial homomor-

phism implicitly associates with each variable a set of

concepts that must be covered by this variable. (Note

that, for a given partial homomorphism, there are dif-

ferent ways of associating concepts with variables.)

The second duality occurs when de�ning the substi-

tution � : in the de�nition of �(X), the lcs is re-

placed by conjunction of the concepts associated with

X . The exact de�nition of partial homomorphisms is

such that a given partial homomorphism can always

be extended to a (total) homomorphism ' from G(C)

into G(�(D)) for the constructed substitution � . A

detailed description of the algorithm can be found in

(Baader and K�usters, 1999). Here, we only illustrate

it by the matching problem C

1

ex

�

?

D

1

ex

. For instance,

 := fv

0

7! w

0

; v

1

7! w

1

; v

2

7! w

2

; v

3

7! w

3

g is a par-

tial homomorphism from G(C

1

ex

) into G(D

1

ex

). Here

the nodes v

4

and v

5

are not mapped by . The \miss-

ing parts" can be covered by associating with X the

concepts W and 9hc:(W u P), and with Y the concept

D. In addition, it is not hard to verify that the sub-

stitution � := fX 7! W u 9hc:(W u P); Y 7! Dg also

satis�es C

1

ex

v �(D

1

ex

). Thus, � is a matcher in the

computed s-co-complete set.

A sketch of the proof of Lemma 4

It is easy to see that, by construction, the matchers

in the s-co-complete set computed by the algorithm

sketched above are of size polynomial in the size of

the matching problem. This shows Lemma 4 for EL,

since an s-co-complete set can only be empty if the

matching problem is not solvable.

For ALE , things are more complicated. In the sequel,

let �

0

be an arbitrary matcher of the ALE-matching

problem C �

?

D (where, without loss of general-

ity, �

0

(X) is in 8-normal form for every variable X).

The task is to construct from �

0

a new matcher � of

size polynomially bounded in the size of the matching

problem. In the following, let C

r

be the reduced con-

cept description equivalent to C. Note that the size of

C

r

is linear in the size of C. Furthermore, let E

0

be

the 8-normal form of �

0

(D).

First, assume that C

r

does not contain ?. As an easy

consequence of Lemma 7, we can show that there exists

an injective homomorphism from G(C

r

) into G(E

0

).

Let G

0

be the image of G(C

r

) under . In principle,

� is obtained from �

0

by removing from each descrip-

tion �

0

(X) all the parts that are not needed to obtain

G

0

. Consequently, the size of �(X) is bounded by the

size of C

r

, and thus � is polynomial in the size of the

matching problem.

It remains to be shown that � solves the matching

problem C �

?

D. Let E be the 8-normal form of �(D).

The construction of � ensures that is still an injective

homomorphism from G(C

r

) into G(E). This implies

that �(D) � E v C

r

� C. Conversely, the de�nition

of � also implies �

0

v

s

�, and thus C � �

0

(D) v �(D).

If C

r

contains ?, then each description �(X) must be

extended by those parts of G(E

0

) that contribute to

inconsistencies. In (Baader and K�usters, 1999), these

parts are identi�ed and it is shown that they can be

chosen such that the size of � can still be polynomially

bounded by the size of the matching problem.

7 Future work

The remaining technical challenge is to design practi-

cal algorithms for computing d-minimal matchers for

ALE , and for ALN and its extension to the Classic

description language.

We will also evaluate the usefulness of matching for

removing redundancies in knowledge bases within our

process engineering application (Baader and Sattler,

1996). In order to apply matching to the problem

of integrating knowledge bases (Borgida and K�usters,

1999), we �rst need to extend the matching algorithm

to an algorithm that takes schemas (i.e., certain types

of inclusion axioms) into account.

References

Baader, F. and K�usters, R. (1999). Matching in De-

scription Logics with Existential Restrictions Re-

visited. Tech. Report LTCS-Report 99-13, LuFg

Theoretical Computer Science, RWTH Aachen,

Germany. See http://www-lti.informatik.rwth-

aachen.de/Forschung/Reports.html.

Baader, F., K�usters, R., Borgida, A., and McGuin-

ness, D. (1999a). Matching in description logics.

Journal of Logic and Computation, 9(3):411{447.

Baader, F., K�usters, R., and Molitor, R. (1998).

Computing Least Common Subsumer in De-

scription Logics with Existential Restrictions.

Tech. Report LTCS-Report 98-09, LuFg The-

oretical Computer Science, RWTH Aachen,

Germany. See http://www-lti.informatik.rwth-

aachen.de/Forschung/Reports.html.

Baader, F., K�usters, R., and Molitor, R. (1999b).

Computing least common subsumer in description

logics with existential restrictions. In Dean, T.,

editor, Proceedings of the 16th International Joint

Conference on Arti�cial Intelligence (IJCAI'99),

pages 96{101. Morgan Kaufmann.

Baader, F. and Narendran, P. (1998). Uni�cation of

concept terms in description logics. In Proceed-

ings of the 13th Biennial European Conference on

Arti�cial Intelligence (ECAI-98). Brighton, UK.

Baader, F. and Sattler, U. (1996). Knowledge rep-

resentation in process engineering. In Proceed-

ings of the International Workshop on Descrip-

tion Logics, Cambridge (Boston), MA, U.S.A.

AAAI Press/The MIT Press.

Borgida, A., Brachman, R. J., McGuinness, D. L.,

and Resnick, L. A. (1989). CLASSIC: A struc-

tural data model for objects. In Proceedings of the

1989 ACM SIGMOD International Conference on

Management of Data, pages 59{67, Portland, OR.

Borgida, A. and K�usters, R. (1999). What's not

in a name? Initial explorations of a struc-

tural approach to integrating large concept

knowledge-bases. Technical Report DCS-TR-

391, Rutgers University, USA. Available via

ftp://ftp.cs.rutgers.edu/pub/technical-reports/.

Borgida, A. and McGuinness, D. L. (1996). Ask-

ing queries about frames. In Proceedings of

the Fifth International Conference on Princi-

ples of Knowledge Representation and Reason-

ing (KR'96), pages 340{349, San Francisco, Calif.

Morgan Kaufmann.

Brachman, R. J., McGuinness, D. L., Patel-Schneider,

P. F., Resnick, L. A., and Borgida, A. (1991).

Living with CLASSIC: When and how to use a

KL-ONE-like language. In Sowa, J., editor, Prin-

ciples of Semantic Networks, pages 401{456. Mor-

gan Kaufmann, San Mateo, Calif.

Cohen, W., Borgida, A., and Hirsh, H. (1992). Com-

puting least common subsumers in description

logics. In Swartout, W., editor, Proceedings of

the 10th National Conference on Arti�cial Intel-

ligence, pages 754{760, San Jose, CA. MIT Press.

Donini, F., Hollunder, B., Lenzerini, M., Marchetti,

A., Nardi, D., and Nutt, W. (1992). The com-

plexity of existential quanti�cation in concept lan-

guages. Arti�cial Intelligence, 2{3:309{327.

McGuinness, D. (1996). Explaining Reasoning in De-

scription Logics. PhD thesis, Department of Com-

puter Science, Rutgers University. Also available

as a Rutgers Technical Report LCSR-TR-277.

