
Rewriting Concepts Using Terminologies

Franz Baader, Ralf K�usters, and Ralf Molitor

Theoretical Computer Science, RWTH Aachen

Ahornstra�e 55, 52074 Aachen, Germany

email: fbaader,kuesters,molitorg@informatik.rwth-aachen.de

Abstract

The problem of rewriting a concept given a

terminology can informally be stated as fol-

lows: given a terminology T (i.e., a set of

concept de�nitions) and a concept descrip-

tion C that does not contain concept names

de�ned in T , can this description be rewrit-

ten into a \related better" description E by

using (some of) the names de�ned in T ?

In this paper, we �rst introduce a general

framework for the rewriting problem in de-

scription logics, and then concentrate on one

speci�c instance of the framework, namely

the minimal rewriting problem (where \bet-

ter" means shorter, and \related" means

equivalent). We investigate the complexity

of the decision problem induced by the mini-

mal rewriting problem for the languagesFL

0

,

ALN , ALE , and ALC, and then introduce an

algorithm for computing (minimal) rewrit-

ings for the language ALE . (In the full pa-

per, a similar algorithm is also developed for

ALN .) Finally, we sketch other interesting

instances of the framework.

1 Motivation

In description logics (DLs), the standard inference

problems, like the subsumption and the instance prob-

lem, are now well-investigated. More recently, new

types of inference problems have been introduced and

investigated, like matching (Borgida and McGuinness,

1996; Baader et al., 1999a; Baader and K�usters, 2000)

and computing the least common subsumer (Cohen

et al., 1992; Cohen and Hirsh, 1994; Baader and

K�usters, 1998; Baader et al., 1999b). In contrast to

the standard inferences, algorithms that solve these

nonstandard problems produce concept descriptions as

output, which are then returned to the user for in-

spection. For example, in an application in chemical

process engineering (Baader and Sattler, 1996; Sattler,

1998) we try to support the bottom-up construction of

knowledge bases by computing most speci�c concepts

(msc) of individuals and least common subsumers (lcs)

of concepts: instead of directly de�ning a new concept,

the knowledge engineer introduces several typical ex-

amples as individuals, which are then generalized into

a concept description by using the msc and the lcs

operation (Baader and K�usters, 1998; Baader et al.,

1999b). This description is then o�ered to the knowl-

edge engineer as a possible candidate for a de�nition

of the concept.

In such a framework, it is important that the returned

description is as readable and comprehensible as possi-

ble. Unfortunately, the descriptions that are produced

by the known algorithms for solving the nonstandard

inference problems in general do not satisfy this re-

quirement. The reason is that { like most algorithms

for the standard inference problems { these algorithms

work on unfolded descriptions, i.e., concept descrip-

tions that do not contain names de�ned in the un-

derlying terminology (TBox). Consequently, the de-

scriptions that they produce also do not use de�ned

names, which makes them large and hard to read and

comprehend. One possibility to overcome this problem

would be to modify the known algorithms for the non-

standard inference problems such that they can take

de�ned names into account. In order to avoid having

to modify all these algorithms separately, we propose

not to change the algorithms themselves, but to add

rewriting as a post-processing step to them.

Informally, the problem of rewriting a concept given

a terminology can be stated as follows: given a

TBox T (i.e., a set of concept de�nitions) and a

concept description C that does not contain concept

names de�ned in T , can this description be rewrit-

ten into an \related better" description E by us-

ing (some of) the names de�ned in T ? In this pa-

per, related will mean equivalent, and better will

mean shorter (but one can also imagine other op-

timality criteria). For example, if T contains the

de�nition Parent

:

= Human u 9has-child:Human, then

the concept description Human u 9has-child:(Human u

9has-child:Human) can be rewritten into the two

smaller descriptions Human u 9has-child:Parent and

Parent u 9has-child:Parent, which are both equivalent

to the original description.

The formal framework for rewriting that will be intro-

duced in Section 3 encompasses this type of rewriting

(called the minimal rewriting problem in the follow-

ing), but also has other interesting instances (see Sec-

tion 7). In Section 4 we investigate the complexity of

the decision problem induced by the minimal rewrit-

ing problem for the DLs FL

0

, ALN , ALE , and ALC.

This will show that (unless P=NP) minimal rewrit-

ings cannot be computed in polynomial time, even for

DLs with a polynomial subsumption problem. Sec-

tion 5 then sketches an algorithm for computing all

minimal rewritings for the DL ALE . (A similar algo-

rithm exists for ALN (Baader et al., 1999c).) In Sec-

tion 6, we describe a more e�cient rewriting algorithm,

which computes one (possibly non-minimal) rewriting

using a greedy heuristics. Due to space limitations, we

cannot give complete proofs of all the results presented

in this paper. All details can, however, be found in the

full paper (Baader et al., 1999c).

2 Preliminaries

Concept descriptions are inductively de�ned with the

help of a set of constructors, starting with a set N

C

of concept names and a set N

R

of role names. In this

work, we consider concept descriptions built from the

constructors shown in Table 1. The concept descrip-

tions in the description logics FL

0

, ALN , ALE , and

ALC are built using certain subsets of these construc-

tors, as shown in the last four columns of Table 1.

When talking about an arbitrary DL, we will usually

employ the letter L (possibly with subscript).

The semantics of concept descriptions is de�ned in

terms of an interpretation I = (�

I

; �

I

). The domain

�

I

of I is a non-empty set of individuals and the inter-

pretation function �

I

maps each concept name P 2 N

C

to a set P

I

� �

I

and each role name r 2 N

R

to a bi-

nary relation r

I

� �

I

��

I

. The extension of �

I

to

arbitrary concept descriptions is inductively de�ned,

as shown in the third column of Table 1.

The terminology of an application domain can be rep-

resented in a so-called TBox. A TBox T is a �nite

set of concept de�nitions of the form A

:

= C, where

A 2 N

C

is a concept name and C is a concept descrip-

tion. The interpretation I is a model of the TBox T i�

it satis�es A

I

= C

I

for all concept de�nitions A

:

= C

in T .

The concept name A is a de�ned name in the TBox T

i� it occurs on the left-hand side of a concept de�ni-

tion in T ; otherwise, A is called primitive name. The

concept description C in A

:

= C is called the de�n-

ing concept of A. For a given DL L, we talk about

L-concept descriptions and L-TBoxes, if all construc-

tors occurring in the concept descriptions and concept

de�nitions belong to L. Throughout the paper, we as-

sume TBoxes to be (1) without multiple de�nitions,

i.e., for each de�ned name A, there exists a unique

concept de�nition of the form A

:

= C in T ; and (2)

acyclic, i.e., the de�ning concept of a de�ned name

must not, directly or indirectly, refer to this name (see

(Nebel, 1990a) for exact de�nitions). The TBox T is

called unfolded i� all de�ning concepts in T do not

contain de�ned names (Nebel, 1990a). Because of our

assumptions on TBoxes, a given TBox can always be

transformed into an equivalent unfolded TBox; how-

ever, this unfolding process can lead to an exponential

blow-up of the TBox (Nebel, 1990b).

One of the most important inference services provided

by DL systems is computing the subsumption hierar-

chy. The concept description D subsumes the concept

description C (C v D) i� C

I

� D

I

for all interpre-

tations I; D is equivalent to C (C � D) i� C v D

and D v C. In the presence of a TBox T , we say that

D subsumes C modulo T (C v

T

D) i� C

I

� D

I

for

all models I of T , and C is equivalent to D modulo T

(C �

T

D) i� C v

T

D and D v

T

C.

3 A general framework for rewriting

in DLs

De�nition 1 (Rewriting) Let N

R

be a set of role

names and N

P

a set of primitive names, and let L

s

,

L

d

, and L

t

be three DLs (the source-, destination, and

TBox-DL, respectively). A rewriting problem is given

by

� an L

t

-TBox T containing only role names from

N

R

and primitive names from N

P

; the set of de-

�ned names occurring in T is denoted by N

D

;

� an L

s

-concept description C using only the names

from N

R

and N

P

;

� a binary relation � � L

s

� L

d

between L

s

- and

L

d

-concept descriptions.

Construct name Syntax Semantics FL

0

ALE ALC ALN

Top > �

I

x x x

Bottom ? ; x x x

Primitive negation (P 2 N

C

) :P �

I

n P

I

x x x

Negation :C �

I

n C

I

x

Conjunction C uD C

I

\D

I

x x x x

Disjunction C tD C

I

[D

I

x

Existential restriction 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g x x

Value restriction 8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g x x x x

At least number restriction (� n r) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

g � ng x

At most number restriction (� n r) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

g � ng x

Table 1: Syntax and semantics of concept descriptions.

An L

d

-rewriting of C using T is an L

d

-concept de-

scription E built using names from N

R

and N

P

[N

D

such that C�E.

Given an appropriate ordering � on L

d

-concepts, a

rewriting E is called �-minimal i� there does not exist

a rewriting E

0

such that E

0

� E.

As an example, consider the instance of the framework

where all three DLs are the language ALN , the rela-

tion � is instantiated by equivalence modulo T , and

the ordering � is induced by the size of the concept

descriptions. Let

C = Male u Rich u (� 1 has-child) u

8has-child:(Male u Rich); and

T = fFather

:

= Male u (� 1 has-child);

RichParent

:

= Rich u 8has-child:Rich u

(� 1 has-child);

FatherOfSons

:

= Father u 8has-child:Maleg:

It is easy to see that the concept description

FatherOfSons u RichParent is an ALN -rewriting of C

using T , and that its size is minimal.

This was an example of what we will call the minimal

rewriting problem, i.e., the instance of the framework

where (i) all three DLs are the same language L; (ii)

the binary relation � corresponds to equivalence mod-

ulo the TBox; and (iii) L-concept descriptions are or-

dered by size, i.e., E � E

0

i� jEj � jE

0

j. The size jEj

of a concept description E is de�ned to be the number

of occurrences of concept and role names in E (where

> and ? are not counted).

In the present paper, we will restrict our attention

to the minimal rewriting problem for the DLs FL

0

,

ALN , ALE , and ALC. Other interesting instances of

the framework will be mentioned in Section 7.

4 The minimal rewriting decision

problem

In order to determine the complexity of the minimal

rewriting problem, we �rst consider the decision prob-

lem induced by this optimization problem for a given

DL L: Given an L-concept description C, an L-TBox

T , and a nonnegative integer �, does there exist an

L-rewriting E of C using T such that jEj � �?

Since this decision problem can obviously be reduced

to the problem of computing a minimal rewriting of

C using T , hardness results for the decision problem

carry over to the optimization problem. In the sequel,

we give lower and upper bounds for the complexity of

the minimal rewriting decision problem for the DLs

FL

0

, ALN , ALE , and ALC.

NP-Hardness for FL

0

, ALN , and ALE

We give a reduction of the NP-complete problem SET-

COVER (Garey and Johnson, 1979) to the minimal

rewriting decision problem in FL

0

. An instance of the

SETCOVER problem is of the following form:

Instance: A �nite set U = fu

1

; : : : ; u

n

g, a family F =

fF

i

� U j 1 � i � mg of non-empty subsets of U ,

and a nonnegative integer �.

Question: Does there exist a subset fF

i

1

; : : : ; F

i

k

g of

F of size k � � such that F

i

1

[: : : [F

i

k

= U?

Obviously, we can restrict our attention to instances

of the problem where at least F itself covers U , i.e.,

F

1

[: : : [F

m

= U .

For a given instance (U ;F ; �) of the SETCOVER

problem, we view U as set of primitive names, and de-

�ne the corresponding instance of the minimal rewrit-

ing decision problem in FL

0

as follows:

C

U

:= u

1

u : : : u u

n

T

F

:= fA

j

:

= u

u2F

j

u j 1 � j � mg:

NP-hardness for the minimal rewriting decision prob-

lem in FL

0

is an immediate consequence of the follow-

ing lemma.

Lemma 2 There exists a minimal rewriting E of C

U

using T

F

with jEj � � i� there exists a cover of U with

k � � sets from F .

Proof: A rewriting of C

U

of size k � � is of the form

D = A

i

1

u : : :uA

i

l

u v

l+1

u : : :u v

k

for some 1 � l � k

and v

j

2 U (for l + 1 � j � k).

First, we show that we can (w.l.o.g.) assume that l =

k, i.e., D does not contain primitive names. Since F

covers U , we know that for each v

j

, l + 1 � j � k,

there exists F

i

j

2 F with v

j

2 F

i

j

. Thus, replacing

each v

j

by A

i

j

yields a rewriting D

0

of C

U

such that

D

0

does not contain primitive names, and jD

0

j � jDj.

Now, let D = A

i

1

u : : : u A

i

k

be a rewriting of C

U

that does not contain primitive names. Then C �

T

D

implies that, for each u 2 U there exists a de�ned

name A

i

j

such that u occurs in the right-hand side of

the de�nition of A

i

j

. Hence, F

i

1

[: : : [F

i

k

is a cover

of U of size k � �.

Conversely, let F

i

1

[: : : [F

i

k

be a cover of U of size

k � �. Then D := A

i

1

u : : : uA

i

k

is a rewriting of C

U

of size k � �. 2

It is easy to see that the above reduction is still valid if

we view the concept C

U

as ALN - or ALE-concept and

the TBox T

F

as ALN - or ALE-TBox (Baader et al.,

1999c). Thus, the minimal rewriting decision problem

is also NP-hard for ALN and ALE .

PSPACE-Hardness for ALC

The following lemma yields a reduction of subsump-

tion in ALC to the minimal rewriting decision prob-

lem for ALC. Since subsumption in ALC is PSPACE-

complete (Schmidt-Schauss and Smolka, 1991), this

implies PSPACE-hardness for the minimal rewriting

decision problem for ALC.

Lemma 3 Let C;D be two ALC-concept descriptions,

and A;P

1

; P

2

three di�erent concept names not occur-

ring in C;D. Then C v D i� there exists a minimal

rewriting of size � 1 of the ALC-concept description

P

1

uP

2

uC using the TBox T := fA

:

= P

1

uP

2

uCuDg.

Proof: First, assume that C v D. This implies C �

C uD and thus P

1

uP

2

uC � P

1

uP

2

uC uD. Hence,

A is a rewriting of size � 1 of P

1

u P

2

u C w.r.t. T .

Conversely, let E be a rewriting of size � 1 of P

1

u

P

2

u C w.r.t. T . We distinguish several cases.

1. E = A: Then P

1

u P

2

u C � P

1

u P

2

u C u D.

Since P

1

and P

2

do not occur in C and D, it is easy to

show (Baader et al., 1999c) that the above equivalence

implies C � C uD, and thus C uD.

2. E = ?: Then P

1

u P

2

u C � ?. Since P

1

; P

2

are

primitive names not occurring in C, we obtain C � ?,

and thus C v D.

3. E = >: Then P

1

u P

2

u C � > in contradiction to

P

1

u P

2

< >.

4. E = Q for a concept name Q distinct from A: For

Q 2 fP

1

; P

2

g, let w.l.o.g. Q = P

1

. Then P

1

� P

1

uP

2

u

C. This implies P

1

v P

1

uP

2

uC and hence P

1

v P

2

in

contradiction to the fact that P

1

and P

2

are di�erent

primitive names. Finally, assume Q 62 fA;P

1

; P

2

g.

Then Q � P

1

u P

2

u C implies Q v P

1

u P

2

u C, and

hence Q v P

1

in contradiction to the fact that Q and

P

1

are di�erent primitive names.

All other cases where jEj � 1 (e.g., E = :E

0

with

jE

0

j � 1; E = 8r:E

0

/9r:E

0

with jE

0

j = 0; ...) can

be treated analogously (see (Baader et al., 1999c) for

details). 2

This reduction of subsumption to the minimal rewrit-

ing decision problem also works for sublanguages of

ALC (if they allow for conjunction) as well as for ex-

tensions of ALC known from the literature. This shows

that, for all such DLs, the minimal rewriting decision

problem is at least as hard as the subsumption prob-

lem. Note that this yields an alternative proof of NP-

hardness of the minimal rewriting decision problem for

ALE , but not for FL

0

and ALN (since subsumption is

polynomial for these languages).

A general upper bound

The following simple algorithm decides whether there

exists a rewriting of C using T of size � � in nondeter-

ministic polynomial time, using an oracle for deciding

equivalence modulo TBox: First, nondeterministically

compute a concept description E of size � �; then test

whether E �

T

C.

Note that testing E �

T

C is a special case of the

general equivalence problem modulo TBox: C does

not contain de�ned names. In fact, we have shown

that this restricted equivalence problem is less complex

than the general problem for the DLs FL

0

and ALN

(see (Baader et al., 1999c) for details).

The complexity results for the minimal rewriting deci-

sion problem for the DLs under consideration are sum-

TBox unfolded not unfolded

FL

0

NP-complete NP-complete

ALN NP-complete in �

p

2

, NP-hard

ALE NP-complete in PSPACE, NP-hard

ALC PSPACE-complete PSPACE-complete

Table 2: Summary of the complexity results.

marized in Table 2. The upper bounds are obtained

from

� the simple algorithm described above,

� two new complexity results for the restricted

equivalence problem for FL

0

(in P) and ALN (in

�

p

2

), and

� known complexity results for the equivalence

problem modulo TBox for ALE and ALC (in

PSPACE) (Donini et al., 1992; Lutz, 1999).

It should be noted that there are two independent

sources of complexity for the minimal rewriting prob-

lem. On the one hand, we have to decide equivalence

modulo TBox in order to test whether a computed

concept description is a rewriting. On the other hand,

in order to compute a minimal rewriting, we have to

solve an optimization problem. Since the restricted

equivalence problem for FL

0

can be decided in poly-

nomial time, the hardness result for FL

0

implies that

this optimization problem is hard, independently of

the complexity of the equivalence problem.

5 The minimal rewriting computation

problem

Whereas the previous section was concerned with

deciding whether there exists a (minimal) rewriting

within a given size bound, this section considers the

problem of actually computing (minimal) rewritings.

Due to lack of space, we restrict our attention to ALE ,

but all notions and results can easily be adapted to

ALN (Baader et al., 1999c).

For a given instance (C; T) of the minimal rewriting

computation problem, one is interested in either com-

puting (1) one minimal rewriting of C using T , or (2)

all minimal rewritings of C using T .

The hardness results of the previous section imply that

computing one minimal rewriting is already a hard

problem. In addition, the following simple example

shows that the number of minimal rewritings of a con-

cept description C using a TBox T can be exponential

in the size of C and T . This example works for all the

four DLs considered in the previous section.

Input: An ALE-concept description C in 8-normal

form and an ALE-TBox T .

Algorithm:

Compute an extension C

�

of C.

Compute a reduction

b

C of C

�

w.r.t. T .

Return

b

C.

Figure 1: The rewriting algorithm for ALE .

For a nonnegative integer n, let

C

n

:= P

1

u : : : u P

n

and

T

n

:= fA

i

:

= P

i

j 1 � i � ng:

For each vector i = (i

1

; : : : ; i

n

) 2 f0; 1g

n

, we de�ne

E

i

:= u

1�j�n;i

j

=0

P

j

u u

1�j�n;i

j

=1

A

j

:

Obviously, for all i 2 f0; 1g

n

, E

i

is a rewriting of C

n

of size jE

i

j = n = jC

n

j. Furthermore, it is easy to

see that there does not exist a smaller rewriting of C

n

using T

n

. Hence, there exists an exponential number

of di�erent minimal rewritings of C

n

using T

n

.

A na��ve algorithm for computing one minimal rewrit-

ing would enumerate all concept descriptions E of size

k = 1, then k = 2, etc., until a rewriting E

0

of C us-

ing T is encountered. By construction, this rewriting

is minimal, and since C is a rewriting of itself, one

need not consider sizes larger than jCj. If one is inter-

ested in computing all minimal rewritings, it remains

to enumerate all concept descriptions of size jE

0

j, and

test for each of them whether they are equivalent to C

modulo T .

Obviously, this na��ve algorithm is very ine�cient. Its

main drawback is that it is not source-oriented: the

candidate rewritings are computed without using the

input C. The main contribution of this paper is a

nondeterministic rewriting algorithm that computes

rewritings by directly modifying the input concept

C. More precisely, the algorithm will work on the

8-normal form of the input concept, i.e., the normal

form obtained from C by exhaustively applying the

rule 8r:E u 8r:F �! 8r:(E u F). This normal form

can be computed in polynomial time.

The idea underlying the improved algorithm depicted

in Figure 1 is to split the computation of a rewriting

E into two steps. First, an extension of C w.r.t. T is

computed.

De�nition 4 (Extension) Let C be an ALE-concept

description and T an ALE-TBox. The concept descrip-

tion C

�

is an extension of C w.r.t. T i� C

�

�

T

C

and C

�

can be obtained from C by conjoining de�ned

names at some positions in C.

In the second step, a so-called reduction of C

�

w.r.t. T

is computed, i.e., a concept description

b

C that is (i)

equivalent to C

�

modulo T , and (ii) obtained from C

�

by eliminating all the redundancies in C

�

.

The main technical problem to be solved is to give

an appropriate formal de�nition of reduction, and to

show how reductions can be computed. Before we go

into such detail, we (1) give an example illustrating

the rewriting algorithm of Figure 1; and (2) explain

what this algorithm actually computes.

(1) As an example, consider the ALE -concept descrip-

tion

C = P uQu8r:P u9r:(P u9r:Q)u9r:(P u8r:(Qu:Q));

and the ALE-TBox T = f A

1

:

= 9r:Q; A

2

:

= P u

8r:P; A

3

:

= 8r:P g. The concept description

C

�

= A

2

u P uQ u 8r:P u

9r:(A

1

u P u 9r:Q) u 9r:(P u 8r:(Q u :Q))

is an extension of C. A reduction of C

�

can be ob-

tained by eliminating

� P and 8r:P on the top-level of C

�

, because they

are redundant w.r.t. A

2

;

� P in both of the existential restrictions on the

top-level of C

�

, because it is redundant due to

the value restriction 8r:P ;

� the existential restriction 9r:Q, because it is re-

dundant w.r.t. A

1

;

and replacing Qu:Q by ?, since ? is the minimal in-

consistent concept description. The resulting concept

description

b

C = A

2

u Q u 9r:A

1

u 9r:8r:? is equiva-

lent to C modulo T , i.e.,

b

C is a rewriting of C using

T . Furthermore, it is easy to see that

b

C is a minimal

rewriting of C using T .

(2) Obviously, there may exist exponentially many es-

sentially di�erent (i.e., not equivalent w.r.t. the empty

TBox) extensions of C, and we can show (Baader et al.,

1999c) that, for ALE , each extension may have ex-

ponentially many essentially di�erent reductions (for

ALN , reductions are unique). Thus, the algorithm of

Figure 1 should be viewed as a nondeterministic al-

gorithm (with an oracle for the equivalence problem).

We will show that it is correct in the following sense:

Theorem 5 1. Every possible output of the algo-

rithm in Figure 1 is a rewriting of the input con-

cept description C using the input TBox T .

2. The set of all computed rewritings contains all

minimal rewritings of C using T (modulo asso-

ciativity, commutativity and idempotence of con-

junction, and the equivalence C u > � C).

If we compute just one extension and then one reduc-

tion of this extension, then we have a deterministic and

polynomial-time algorithm (with an oracle for equiva-

lence) for computing one rewriting; however, the com-

puted rewriting need not be minimal. Nevertheless,

this opens the way for a heuristic approach to com-

puting \small" (rather than minimal) rewritings (see

Section 6). We can also show the following (Baader

et al., 1999c): if we compute all extensions and then

just one reduction of each extension, then the set of all

rewritings computed this way always contains at least

one minimal rewriting.

Reduction of ALE-concept descriptions

For the sake of simplicity, we assume the set of role

names N

R

to be the singleton frg. However, the def-

initions and results can easily be generalized to arbi-

trary sets of role names (Baader et al., 1999c).

In order to formalize the notion of a reduction for ALE ,

we need the following notation.

De�nition 6 (Subdescription) Let T be an ALE-

TBox and C an ALE-concept description that may

contain de�ned names from T . The ALE-concept de-

scription

b

C is a subdescription of C w.r.t. T i� (i)

b

C = C; or (ii)

b

C = ?; or (iii)

b

C is obtained from

C by removing some (negated) primitive names, value

restrictions, or existential restrictions on the top-level

of C, and for all remaining value/existential restric-

tions 8r:D/9r:D replacing D by a subdescription

b

D of

D.

In the above example, the concept description

b

C is a

subdescription of C

�

, whereas the concept description

Q u 9r:A

1

u 9r:8r:? is not since we do not allow for

removing de�ned names in C (unless they occur within

value or existential restrictions that are removed as a

whole).

De�nition 7 (Reduction w.r.t. T) Let T be an

ALE-TBox and C an ALE-concept description in 8-

normal form that may contain de�ned names from T .

An ALE-concept description

b

C is called reduction of C

w.r.t. T i�

b

C is a minimal subdescription of C that is

equivalent to C modulo T .

Disallowing the removal of de�ned names in the de�ni-

tion of the notion \subdescription" makes sense since

Input: An ALE-concept description C in 8-normal form, an ALE-TBox T , and an ALE-concept description F .

Algorithm: reduce(C; T ; F)

If C u F �

T

?, then

b

C := ?;

Otherwise,

Let fA

1

; : : : ; A

m

g := def(C);

Let fQ

1

; : : : ; Q

`

g := prim(C) n prim(T (F u A

1

u : : : u A

m

));

If val

r

(T (F u A

1

u : : : u A

m

)) v

T

val

r

(C)

then D

r

:= >

else D

r

:= reduce(val

r

(C); T ; val

r

(T (F u A

1

u : : : u A

m

)));

Let D be a subset of the set C := freduce(C

j

; T ; val

r

(C) u val(T (F u A

1

u : : : u A

m

))) j C

j

2 exr

r

(C)g

such that

1. there do not exist D

1

; D

2

2 D, D

1

6= D

2

, with

val

r

(C) u val

r

(T (F u A

1

u : : : u A

m

)) uD

1

v

T

val

r

(C) u val

r

(T (F u A

1

u : : : u A

m

)) uD

2

,

2. there does not exist D 2 D with F u A

1

u : : : u A

m

u 8r:val

r

(C) v

T

9r:D,

3. for each C

i

2 exr

r

(C), there exists D 2 D with 9r:D u 8r:val

r

(C) u F u A

1

u : : : u A

m

v

T

9r:C

i

;

or F u A

1

u : : : uA

m

u 8r:val

r

(C) v

T

9r:C

i

, and

4. the size

P

D2D

(jDj+1) of the set is minimal among the sizes of all subsets of C satisfying (1){(3);

De�ne

b

C := Q

1

u : : : uQ

`

uA

1

u : : : u A

m

u 8r:D

r

u u

D2D

9r:D,

where the value restriction 8r:D

r

is omitted if D

r

= >;

Return

b

C .

Figure 2: The reduction algorithm for ALE .

the reduction step is always applied after the exten-

sion step. It is possible that removal of de�ned names

could yield a smaller rewriting, but this rewriting is

obtained when considering the extension where these

names have not been added in the �rst place. Allowing

the removal of de�ned names would thus only increase

the amount of nondeterminism without creating addi-

tional rewritings.

In the sequel, we describe an algorithm that computes

a reduction of C in deterministic polynomial time (us-

ing an oracle for deciding equivalence modulo T). The

set of all reductions of C can be computed in exponen-

tial time.

Intuitively, a reduction

b

C of an ALE-concept C in 8-

normal form is computed in a top-down manner. If

C �

T

?, then

b

C := ?. Otherwise, let 8r:C

0

be the

(unique!) value restriction and A

1

u : : : u A

n

the con-

junction of the de�ned names on the top-level of C.

Basically,

b

C is obtained from C as follows:

1. Remove the (negated) primitive concept Q occur-

ring on the top-level of C, if A

1

u : : :uA

n

v

T

Q.

2. Remove 9r:C

1

occurring on the top-level of C, if

(a) A

1

u : : : u A

n

u 8r:C

0

v

T

9r:C

1

, or (b) there

is another existential restriction 9r:C

2

on the top-

level of C such that A

1

u: : :uA

n

u8r:C

0

u9r:C

2

v

T

9r:C

1

.

3. Remove 8r:C

0

if A

1

u : : : u A

n

v

T

8r:C

0

.

4. Finally, all concept descriptions D occurring in

the remaining value and existential restrictions

are reduced recursively.

The formal speci�cation of the reduction algorithm

is more complex than the intuitive description given

above mainly for two reasons. First, in (2b) it could

be the case that the subsumption relation also holds

if the rôles of 9r:C

1

and 9r:C

2

are exchanged. In this

case, one has a choice of which concept to remove. If

the (recursive) reduction of C

1

and C

2

yields descrip-

tions of di�erent size, then we remove the existential

restriction for the concept with the larger reduction.

If, however, the reductions are of equal size, then we

must make a (don't know) nondeterministic choice be-

tween removing the one or the other.

Second, in (4) we cannot really reduce the descriptions

D without considering the context in which they oc-

cur. The reduction of these concepts must take into

account the concept C

0

as well as all concepts D

0

oc-

curring in value restrictions of the form 8r:D

0

on the

top-level of the de�ning concepts for A

1

; : : : ; A

n

. For

instance, consider our example from above, where the

removal of P within the existential restrictions on the

top-level of C

�

was justi�ed by the presence of 8r:P

on the top-level of C

�

. Since we want to apply the

reduction algorithm recursively, we need a third input

parameter to take care of the context. To be more

precise, the reduction algorithm described in Figure 2

computes a reduction of an ALE-concept description

C w.r.t. an ALE-TBox T and an ALE-concept descrip-

tion F . A reduction of C w.r.t. T and F is a minimal

subdescription

b

C of C such that C u F �

T

b

C u F .

The formal speci�cation of the reduction algorithm in

Figure 2 is based on the following notations. Let T

be an ALE-TBox and C an ALE-concept description

that may contain de�ned names from T . The unfolded

concept description T (C) is de�ned as the concept de-

scription obtained from C by exhaustively substituting

de�ned names in C by their de�ning concepts in T .

1

The set of all de�ned names occurring on the top-level

of C is denoted by def(C), and the set of all (negated)

primitive names occurring on the top-level of C is de-

noted by prim(C). For an ALE-concept description C

and a role name r,

� val

r

(C) denotes the concept description occurring

in the unique value restriction on the top-level of

the 8-normal form of C, where val

r

(C) := > if

there is no such value restriction; and

� exr

r

(C) denotes the set fC

1

; : : : ; C

n

g of concept

descriptions occurring in existential restrictions of

the form 9r:C

i

on the top-level of C.

The following lemma states soundness and complete-

ness of the reduction algorithm of Figure 2.

Lemma 8 (Baader et al., 1999c) Each output

b

C

obtained from reduce(C; T ; F) is a reduction of C

w.r.t. T and F . Conversely, for each reduction E

of C w.r.t. T and F , there exists an output

b

C of

reduce(C; T ; F) that is equal to E.

Consequently, reduce(C; T ;>) produces all reductions

of C w.r.t. T .

1

Note that T (C) is well-de�ned due to our assumptions

on TBoxes. However, just as for unfolding TBoxes, this

step may lead to an exponential blow-up.

Proof of Theorem 5

The �rst item in the statement of Theorem 5 is a direct

consequence of the de�nition of extensions and reduc-

tions. In order to prove the second item, let E be a

minimal rewriting of C using T . The main point is

now that we can de�ne an extension C

�

of C induced

by E such that E is a subdescription of C

�

.

Intuitively, C

�

can be obtained from C as follows:

1. conjoin to C all de�ned names occurring on the

top-level of E;

2. if there exists a value restriction 8r:E

0

on the top-

level of E, then there also exists a value restriction

8r:C

0

on the top-level of C (otherwise, C would

not be equivalent to E modulo T): substitute C

0

by the recursively de�ned extension of C

0

induced

by E

0

;

3. for each existential restriction 9r:E

i

on the top-

level of E, there exists a corresponding existential

restriction 9r:C

i

on the top-level of C such that

C

i

uval

r

(C) �

T

E

i

uval

r

(C) (otherwise, C would

not be equivalent to E modulo T): substitute C

i

by the recursively de�ned extension of C

i

induced

by E

i

.

In the formal de�nition of C

�

, we must, just as for

the reduction algorithm, take into account the con-

text in which a concept description occurs. To this

purpose, we extend the notion \extension w.r.t. T " to

\extension w.r.t. T and F": C

�

is an extension of C

w.r.t. T and F i� C

�

is obtained from C by conjoining

de�ned names from T at any position in C such that

C

�

u F �

T

C u F . Furthermore, we need the notion

\reduced w.r.t. T and F": a concept description E

is called reduced w.r.t. T and F if E is a reduction

w.r.t. T and F of itself.

The recursive de�nition of an extension C

�

of C in-

duced by E w.r.t. T and F is depicted in Figure 3.

This de�nition makes sense since it can be shown

(Baader et al., 1999c) that there always exists a per-

mutation of exr

r

(C) of the desired form.

In order to complete the proof of the second part of

Theorem 5, we need the following lemma.

Lemma 9 (Baader et al., 1999c) Let T be an ALE-

TBox, C;F;E ALE-concept descriptions such that C is

in 8-normal form and does not contain de�ned names,

E is reduced w.r.t. T and F , and E uF �

T

C uF . If

C

�

is the concept description de�ned in Figure 3, then

1. C

�

is an extension of C w.r.t. T and F , and

Given: An ALE-TBox T , and ALE-concept description C;F;E, where

- C is in 8-normal form and does not contain de�ned names,

- E is reduced w.r.t. T and F , and C u F �

T

E u F .

Recursive de�nition of the extension C

�

of C w.r.t. T and F induced by E:

If E u F �

T

?, then C

�

:= C;

Otherwise,

Let fQ

1

; : : : ; Q

k

g := prim(C);

Let fA

1

; : : : ; A

n

g := def(E);

Let D

r

be the recursively de�ned extension of val

r

(C) w.r.t. T and val

r

(F) induced by val

r

(E);

Let exr

r

(C) = fC

1

; : : : ; C

m

g and exr

r

(E) = fE

1

; : : : ; E

`

g;

Let fj

1

; : : : ; j

m

g be a permutation of f1; : : : ;mg such that, for all 1 � i � `,

C

j

i

u val

r

(C u F) �

T

E

i

u val

r

(E u F u T (A

1

u : : : u A

n

));

For 1 � i � `, let C

�

j

i

be the recursively de�ned extension of C

j

i

w.r.t. T and val

r

(C u F) induced by E

i

;

Then C

�

is de�ned by

C

�

:= Q

1

u : : : uQ

k

uA

1

u : : : u A

n

u 8r:D

r

u u

1�i�`

9r:C

�

j

i

u u

`+1�i�m

9r:C

j

i

;

where the value restriction 8r:D

r

is omitted if there does not exist a value restriction on the top-level of C.

Figure 3: The recursive de�nition of extensions w.r.t. T and F induced by E.

2. E is a subdescription of C

�

.

Now, let E be a minimal rewriting of C using T . Then

E is reduced w.r.t. T and > since otherwise E would

not be minimal. Let C

�

be the extension of C w.r.t. T

and > induced by E. By Lemma 9, we know that E is

a subdescription of C

�

. Thus, minimality of E implies

that E is a reduction of C

�

, and hence E is contained

in the set of all rewritings computed by the algorithm

(by Lemma 8).

Complexity of the minimal rewriting

computation problem

Using the improved rewriting algorithm for ALE de-

scribed in Figure 1, we can show the following com-

plexity results.

Proposition 10 1. One minimal rewriting of C us-

ing T can be computed using polynomial space.

2. The set of all minimal rewritings of C using T

can be computed in exponential time.

Proof: Each extension of C is polynomial (modulo

idempotence) in the size of C and T . Furthermore,

there are \only" exponentially many (essentially di�er-

ent) extensions of C. Since equivalence modulo TBox

in ALE can be decided in PSPACE (Lutz, 1999), the

set of all extensions can be enumerated using polyno-

mial space. For each extension C

�

, the reductions

b

C

can again be enumerated in polynomial space. Thus,

if we are interested in just one minimal rewriting, it

is su�cient always to store the smallest rewriting en-

countered so far. Hence, we can compute one minimal

rewriting of C using polynomial space. Since the num-

ber of minimal rewritings may be exponential, the set

of all minimal rewritings can only be computed in ex-

ponential time. 2

6 A heuristic rewriting algorithm

In this section, we present an algorithm that computes

a small, but not necessarily minimal, rewriting of an

ALE-concept description C using an ALE -TBox T in

deterministic polynomial time using an oracle for de-

ciding equivalence modulo T . The idea underlying the

algorithm can be described as follows. Instead of �rst

computing an extension of C and then the reduction

of this extension, we interleave these two steps in a

single pass through the concept. Both, for the exten-

sion and the reduction, we employ a greedy heuristics.

To be more precise, the concept description C is pro-

cessed recursively. In each recursion step, we build

a local extension by conjoining to the top level of C

the set fA

1

; : : : ; A

n

g of all minimal (w.r.t. v

T

) de-

�ned names in T subsuming C. Then we remove all

(negated) primitive names, value restrictions, and exis-

tential restrictions on the top-level of C that are redun-

dant w.r.t. A

1

; : : : ; A

n

, and the context in which they

occur, i.e., the value restrictions obtained from previ-

ous recursion steps. Finally, the concept descriptions

in the remaining value and existential restrictions are

rewritten recursively. Like the reduction algorithm,

the heuristic rewriting algorithm thus takes as inputs

the concept C to be rewritten, the underlying TBox

T , and a concept description F describing the context

C has to be considered in.

The formal speci�cation of the rewriting algorithm re-

quires an additional notation. For an ALE-concept de-

scription C that may contain de�ned names, T

�

(C)

denotes the concept description obtained from C by

exhaustively substituting de�ned names on the top-

level of C by their de�ning concepts from the underly-

ing TBox T . In contrast to T (C), the size of T

�

(C) is

always polynomial in the size of C and T . The follow-

ing lemma states the correctness and the complexity

of the heuristic rewriting algorithm for ALE depicted

in Figure 4.

Lemma 11 (Baader et al., 1999c) Let T be an ALE-

TBox, C;F ALE-concept descriptions without de�ned

names, and let

b

C be the result of rewrite(C; T ; F).

1.

b

C u F �

T

C u F .

2.

b

C is computed in deterministic polynomial time

using an oracle for deciding subsumption modulo

TBox in ALE .

The following example shows that the rewriting com-

puted by the heuristic algorithm need not be minimal.

For a nonnegative integer n > 2, we consider the ALE-

concept description C

n

= 8r:(P

1

u : : : u P

n

) and the

ALE-TBox

T

n

:= f A

i

:

= 8r:P

i

j 1 � i � ng [

fA

n+1

:

= P

1

u : : : u P

n

g:

The heuristic rewriting algorithm of Figure 4 produces

the rewriting

b

C

n

:= A

1

u : : :uA

n

of size n. The unique

minimal rewriting of C

n

using T is E

n

:= 8r:A

n+1

,

which is of size 2. Hence, this example even shows

that the di�erence between the size of the rewriting

produced by the heuristic algorithm and the size of

the minimal rewritings can become arbitrarily large.

The reason why the heuristic algorithm does not �nd

the minimal rewriting in this example is that it intro-

duces too many de�ned names on the top level. These

names allow for the removal of all the value restrictions

on the top level, which makes it impossible to recog-

nize that at a lower level a more promising extension

could have been found.

In principle, this is the only reason for the heuris-

tic algorithm not to �nd a minimal rewriting. In or-

der to characterize the di�erence between the rewrit-

ing computed by the heuristic algorithm and the

minimal rewritings, we need the notion of a quasi-

subdescription. There are two di�erences between a

subdescription and a quasi-subdescription: on the one

hand, in a quasi-subdescription, we do not allow for

substituting a concept description by ?. On the other

hand, we allow for conjoining de�ned names at some

positions in C.

De�nition 12 (Quasi-subdescription) Let T be

an ALE -TBox and C an ALE -concept description that

may contain de�ned names from T . The ALE-concept

description

b

C is a quasi-subdescription of C w.r.t. T

i� (i)

b

C = C, or (ii)

b

C is obtained from C by re-

moving some (negated) primitive names, conjoining

some de�ned names, removing some value restric-

tions or existential restrictions, and for all remaining

value/existential restrictions 8r:D/9r:D replacing D

by a quasi-subdescription

b

D of D.

Lemma 13 (Baader et al., 1999c) Let T be an ALE-

TBox, C an ALE -concept description not contain-

ing de�ned names, and E;F ALE -concept descriptions

such that E is reduced w.r.t. T and F and C u F �

T

E u F . The result

b

C of rewrite(C; T ; F) is a quasi-

subdescription of E.

If E is a minimal rewriting of C using T , then E

is reduced w.r.t. T and >, and C u > �

T

E u >.

Thus, Lemma 13 implies that the rewriting

b

C :=

rewrite(C; T ;>) produced by the heuristic algorithm

is a quasi-subdescription of E.

Intuitively, if we view concept descriptions as trees

where edges are due to existential and value restric-

tions, and nodes are labeled with (negated) concept

names, then the above result can be interpreted as

follows. The rewriting

b

C produced by the heuristic al-

gorithm may have a tree structure that is smaller than

the one of the minimal rewriting E. The labels of the

nodes in the tree corresponding to

b

C may contain less

(negated) primitive names, but more de�ned names.

First experimental results

In order to study the usefulness of our minimal rewrit-

ing approach, we have implemented a prototype of the

rewriting algorithm depicted in Figure 4. First results

obtained in our process engineering application are en-

couraging: for a TBox with about 65 de�ned and 55

primitive names, 128 source descriptions of size about

800 (obtained as results of the lcs computation) were

Input: An ALE-concept description C in 8-normal form, an ALE-TBox T , and an ALE-concept description F .

Algorithm: rewrite(C; T ; F)

If C u F �

T

?, then

b

C := ?;

If F v

T

C, then

b

C := >;

Otherwise,

Let fA

1

; : : : ; A

n

g be the set of all minimal de�ned names A

i

with C u F v

T

A

i

;

Let fQ

1

; : : : ; Q

`

g := prim(C) n prim(T

�

(F u A

1

u : : : u A

n

));

Let D

r

:= rewrite(val

r

(C); T ; val

r

(T

�

(F u A

1

u : : : u A

n

)));

Let fD

1

; : : : ; D

m

g := exr

r

(C) and D

r

:= fD

1

; : : : ; D

m

g;

For i = 1; : : : ;m do

if (1) there exists D 2 D

r

n fD

i

g with D u val

r

(C u T

�

(F)) v D

i

, or

(2) A

1

u : : : uA

n

u val

r

(C) u F v 9r:D

i

then D

r

:= D

r

n fD

i

g;

De�ne

b

C := Q

1

u : : : uQ

`

uA

1

u : : : uA

n

u 8r:D

r

u u

D2D

r

9r:rewrite(D; T ; val

r

(C u T

�

(F)),

where 8r:D

r

is omitted if D

r

= >;

Return

b

C .

Figure 4: A rewriting algorithm for ALE using a greedy heuristics.

rewritten into descriptions of size about 10.

For each of these rewritings, the set of de�ned

names computed in each recursion step, i.e., the set

fA

1

; : : : ; A

n

g in Figure 4, had size one, i.e., there

existed just one (minimal) de�ned name subsuming

C u F . Thus, the negative e�ect (illustrated by the

above example) that too many de�ned names were

conjoined did not occur in our experiments. For the fu-

ture, we are planning a more thorough empirical evalu-

ation, also comparing the heuristic algorithm with one

that actually computes (all) minimal rewritings.

7 Related and future work

In this paper, we have restricted our attention to the

minimal rewriting problem. There are, however, also

other interesting instances of the general rewriting

framework introduced in Section 3.

Rewriting queries using views

The problem of rewriting queries using views in DLs,

as considered in (Beeri et al., 1997), is one such in-

stance. As source and TBox-DL, that paper consid-

ers the language ALN and its extension ALCNR,

2

i.e.,

L

s

= L

t

= ALN or L

s

= L

t

= ALCNR, and as destina-

tion DL L

d

= fu;tg. The rewritings to be computed

are maximally contained rewritings, i.e., the relation

� is subsumption v, and the ordering � is inverse

2

In addition to the constructors in ALC, ALCNR allows

for number restrictions and role conjunction (r

1

u r

2

).

subsumption w. More precisely, (Beeri et al., 1997)

is concerned with total rewritings, i.e., the rewriting

E should no longer contain primitive names. In our

framework, total rewritings can be taken into account

by modifying the optimality ordering � as follows:

E � E

0

i� (a) E does not contain primitive names

and E

0

contains primitive names, or (b) E and E

0

do

not contain de�ned names and E w E

0

. If there exists

at least one total rewriting E of C using T , then each

minimal (w.r.t. the modi�ed ordering �) rewriting of

C is total.

Section 3 of (Beeri et al., 1997) contains the following

two results:

� For L

s

= L

t

= ALCNR and L

d

= fu;tg, a max-

imally contained total rewriting is computable.

Using the subsumption algorithm for ALCNR, this

can also be used to decide whether there exists a

total rewriting equivalent to the input concept C.

� If ALCNR is replaced by ALN , then one can com-

pute a maximally contained total rewriting in ex-

ponential time, and existence of a total rewriting

equivalent to C can also be decided in exponential

time.

It should be noted that, in the conclusion of (Beeri

et al., 1997), the authors state that, for ALN , a max-

imally contained rewriting can be computed in poly-

nomial time; however, the actual complexity bound

given in (Beeri et al., 1997), Theorem 3.2, only yields

an exponential time bound. This coincides with our

complexity results given in Section 4.

Translation of concept descriptions

Another interesting instance of the framework, which

we intend to investigate in the future, is the translation

of concept descriptions from one DL into another, i.e.,

the instance where (i) L

s

and L

d

are di�erent DLs;

(ii) the TBox is assumed to be empty; and (iii) the

binary relation � is given as �, v, or w. By trying to

rewrite an L

s

-concept C into an equivalent L

d

-concept

E, one can �nd out whether C is expressible in L

d

.

In many cases, such an exact rewriting may not ex-

ist. In this case, one can try to approximate C by

an L

d

-concept from above (below), i.e., �nd a mini-

mal (maximal) concept description E in L

d

such that

C v E (E v C). An inference service that can com-

pute such rewritings could, for example, support the

transfer of knowledge bases between di�erent systems.

References

Baader, F. and K�usters, R. (1998). Computing the

least common subsumer and the most speci�c

concept in the presence of cyclic ALN -concept

descriptions. In Proceedings of the 22nd An-

nual German Conference on Arti�cial Intelligence

(KI'98), volume 1504 of Lecture Notes in Com-

puter Science, Springer Verlag.

Baader, F. and K�usters, R. (2000). Matching in de-

scription logics with existential restrictions. In

Proceedings of the Seventh International Confer-

ence on Principles of Knowledge Representation

and Reasoning (KR2000). Morgan Kaufmann.

Baader, F., K�usters, R., Borgida, A., and McGuin-

ness, D. (1999a). Matching in description logics.

Journal of Logic and Computation, 9(3).

Baader, F., K�usters, R., and Molitor, R. (1999b).

Computing least common subsumers in descrip-

tion logics with existential restrictions. In Pro-

ceedings of the 16th International Joint Confer-

ence on Arti�cial Intelligence 1999 (IJCAI'99),

Morgan Kaufmann.

Baader, F., K�usters, R., and Molitor, R. (1999c).

Rewriting concepts using terminologies { re-

visited. LTCS-Report 99-12, LuFG Theoret-

ical Computer Science, RWTH Aachen, Ger-

many. See http://www-lti.informatik.rwth-

aachen.de/Forschung/Reports.html.

Baader, F. and Sattler, U. (1996). Knowledge repre-

sentation in process engineering. In Proceedings of

the 1996 International Workshop on Description

Logic (DL'96), AAAI Press.

Beeri, C., Levy, A. Y., and Rousset, M.-C. (1997).

Rewriting queries using views in description log-

ics. In PODS '97. Proceedings of the Six-

teenth ACM SIG-SIGMOD-SIGART Symposium

on Principles of Database Systems, ACM Press.

Borgida, A. and McGuinness, D. L. (1996). Ask-

ing queries about frames. In Proceedings of

the Fifth International Conference on Princi-

ples of Knowledge Representation and Reasoning

(KR'96), Morgan Kaufmann.

Cohen, W., Borgida, A., and Hirsh, H. (1992). Com-

puting least common subsumers in description

logics. In Proceedings of the 10th National Con-

ference on Arti�cial Intelligence, MIT Press.

Cohen, W. and Hirsh, H. (1994). Learning the clas-

sic description logic: Theoretical and experimen-

tal results. In Principles of Knowledge Represen-

tation and Reasoning: Proceedings of the Fourth

International Conference (KR'94), Morgan Kauf-

mann.

Donini, F., Lenzerini, M., Nardi, D., Hollunder, B.,

Nutt, W., and Spaccamela, A. (1992). The com-

plexity of existential quanti�cation in concept lan-

guages. Arti�cial Intelligence, 53.

Garey, M. and Johnson, D. (1979). Computers and

Intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco.

Lutz, C. (1999). Complexity of terminological reason-

ing revisited. In Proceedings of the 6th Interna-

tional Conference on Logic for Programming and

Automated Reasoning (LPAR'99), volume 1705 of

Lecture Notes in Arti�cial Intelligence, Springer

Verlag.

Nebel, B. (1990a). Reasoning and Revision in Hy-

brid Representation Systems, volume 422 of Lec-

ture Notes in Arti�cial Intelligence. Springer Ver-

lag.

Nebel, B. (1990b). Terminological reasoning is inher-

ently intractable. Arti�cial Intelligence, 43(2).

Sattler, U. (1998). Terminological knowledge repre-

sentation systems in a process engineering appli-

cation. PhD thesis, RWTH Aachen.

Schmidt-Schauss, M. and Smolka, G. (1991). Attribu-

tive concept descriptions with complements. Ar-

ti�cial Intelligence, 48(1).

