
Building and Structuring Description Logic

Knowledge Bases Using Least Common

Subsumers and Concept Analysis

Franz Baader and Ralf Molitor

Lehr- und Forschungsgebiet Theoretische Informatik, RWTH Aachen,

Ahornstra�e 55, 52074 Aachen, Germany,

fbaader,molitorg@informatik.rwth-aachen.de

Abstract. Given a �nite set C := fC

1

; : : : ; C

n

g of description logic con-

cepts, we are interested in computing the subsumption hierarchy of all

least common subsumers of subsets of C. This hierarchy can be used to

support the bottom-up construction and the structuring of description

logic knowledge bases. The point is to compute this hierarchy without

having to compute the least common subsumer for all subsets of C. We

will show that methods from formal concept analysis developed for com-

puting concept lattices can be employed for this purpose.

1 Introduction

Knowledge representation systems based on description logics (DL) can be used

to describe the knowledge of an application domain in a structured and for-

mally well-understood way. Traditionally, the knowledge base of a DL system is

built in a top-down manner. First, the relevant concepts of the application do-

main (its terminology) are formalized by concept descriptions, i.e., expressions

that are built from atomic concepts (unary predicates) and atomic roles (binary

predicates) using the concept constructors provided by the DL language. In a

second step, these concept descriptions are then used to specify properties of

objects occurring in the domain. The standard inference procedures provided by

DL systems (like computing the subsumption hierarchy between concepts, and

testing for implied instance relationships between objects and concepts) support

this traditional approach to building DL knowledge bases.

The main problem with the top-down approach is that it presupposes a

knowledge engineer that is both, an expert in description logics, and in the ap-

plication domain. Less experienced knowledge engineers encounter (at least one

of) the following two problems: (1) it is often not clear which are the relevant

concepts in an application; and (2) even if it is clear which (intuitive) concepts

should be introduced, it is sometimes di�cult to come up with formal de�nitions

of these concepts in the given DL language. It has turned out that providing ade-

quate support for overcoming these problems requires additional (non-standard)

inference procedures for DL systems.

In [2, 3], we propose to support the construction of DL knowledge bases in

a bottom-up fashion: instead of directly de�ning a new concept, the knowledge

engineer introduces several typical examples as objects, which are then auto-

matically generalized into a concept description by the system. This description

is o�ered to the knowledge engineer as a possible candidate for a de�nition of

the concept. The task of computing such a concept description can be split into

two subtasks: computing the most speci�c concepts of the given objects, and

then computing the least common subsumer of these concepts. The most spe-

ci�c concept (msc) of an object o (the least common subsumer (lcs) of concept

descriptions C

1

; : : : ; C

n

) is the most speci�c concept description C expressible

in the given DL language that has o as an instance (that subsumes C

1

; : : : ; C

n

).

The problem of computing the lcs and (to a limited extent) the msc has already

been investigated in the literature [5, 9, 2, 3].

Here, we will address an additional problem that occurs in the bottom-up

approach: obviously, the choice of the examples is crucial for the quality of the

result. If the examples are too similar, the resulting concept might be too spe-

ci�c. Conversely, if the examples are too di�erent, the resulting concept is likely

to be too general. Our goal in this paper is to support the process of choosing

an appropriate set of objects as examples. Assume that C

1

; : : : ; C

n

are the most

speci�c concepts of a given collection of objects o

1

; : : : ; o

n

, and that we intend

to use subsets of this collection for constructing new concepts. In order to avoid

obtaining concepts that are too general or too speci�c, it would be good to

know the position of the corresponding lcs in the subsumption hierarchy of all

least common subsumers of subsets of fC

1

; : : : ; C

n

g. Since there are exponen-

tially many subsets to be considered, and (depending on the DL language) both,

computing the lcs and testing for subsumption, can be expensive operations,

we want to obtain complete information on how this hierarchy looks like with-

out computing the least common subsumers of all subsets of fC

1

; : : : ; C

n

g, and

without explicitly making all the subsumption tests between these least common

subsumers.

This is where methods from formal concept analysis [11] come into play. We

shall show that the dual of the attribute exploration algorithm [10, 11] (called

object exploration in the following) can be adapted to our purposes. To be more

precise, given a formal context, the attribute (object) exploration algorithm

computes the concept lattice as well as a minimal implication base, the so-called

(dual) Duquenne-Guigues base [8], of this context. For a given set of concept

descriptions fC

1

; : : : ; C

n

g, we will de�ne a formal context that has the property

that its concept lattice is isomorphic to the subsumption hierarchy of all least

common subsumers of subsets of fC

1

; : : : ; C

n

g. Thus, standard tools for drawing

concept lattices [17] can be employed to show the hierarchy to the user. In

addition, the dual Duquenne-Guigues base provides a small representation of

this hierarchy. From this representation, all subsumption relationships can be

deduced in time linear in the size of the representation. To compute the concept

lattices and the Duquenne-Guigues base, the exploration algorithm employs an

algorithm for computing the lcs and a decision procedure for subsumption as

sub-procedures. Although, in the worst case, an exponential number of calls to

these sub-procedures cannot be avoided, experiences from applications of formal

concept analysis [16] indicate that the exploration algorithm usually does a lot

better in practice.

Another application for this method is structuring of DL knowledge bases.

DL knowledge bases encountered in applications are often rather
at in the sense

that a given concept can have a large number of direct successors in the sub-

sumption hierarchy. Deeper hierarchies would be more convenient when browsing

the knowledge base along the hierarchy, and they would make searching more ef-

�cient. Given a concept C with direct sub-concepts fC

1

; : : : ; C

n

g, one could use

least common subsumers of selected subsets to provide a better structuring of

the knowledge base by inserting additional layers between C and its sub-concepts

C

1

; : : : ; C

n

. Again, knowing the hierarchy of all least common subsumers of sub-

sets of fC

1

; : : : ; C

n

g can support the knowledge engineer in choosing the right

subsets.

In the next section, we introduce the DL languages ALE and ALN , de�ne

the subsumption problem as well as the notion \least common subsumer", and

recall results from the literature for deciding subsumption and computing the

least common subsumer. In Section 3, we introduce as many of the basic no-

tions of formal concept analysis as are necessary for our purposes. In particular,

we sketch the object exploration algorithm. Section 4 applies this technique to

our problem of computing the subsumption hierarchy between least common

subsumers of subsets of a given collection of concepts. In Section 5, we provide

some experimental results that support our thesis that object exploration is an

appropriate tool for this purpose. Section 6 concludes with some comments on

related and future work.

2 The description logics ALE and ALN

For the purpose of this paper, it is su�cient to restrict the attention to the

formalism for de�ning concept descriptions (i.e., we need not introduce TBoxes,

which allow to abbreviate complex descriptions by names, and ABoxes, which

introduce objects and their properties). In order to de�ne concepts in a DL

knowledge base, one starts with a set N

C

of concept names (unary predicates)

and a setN

R

of role names (binary predicates), and de�nes more complex concept

descriptions using the operations provided by the DL language of the particular

system. In this paper, we consider the languages ALE and ALN ,

1

which allow

for concept descriptions built from the indicated subsets of the constructors

shown in Table 1. In this table, P stands for a concept name, r for a role name,

n for a nonnegative integer, and C;D for arbitrary concept descriptions.

The semantics of concept descriptions is de�ned in terms of an interpretation

I = (�

I

; �

I

). The domain �

I

of I is a non-empty set and the interpretation

1

It should be noted, however, that the methods developed in this paper apply to

arbitrary concept descriptions languages, as long as they are equipped with a sub-

sumption algorithm and an algorithm for computing least common subsumers.

Table 1. Syntax and semantics of concept descriptions.

name of constructor Syntax Semantics ALE ALN

top-concept > �

I

x x

bottom-concept ? ; x x

primitive negation :P �

I

n P

I

x x

conjunction C uD C

I

\D

I

x x

value restriction 8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g x x

existential restriction 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g x

number restriction (� n r) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

g � ng x

number restriction (� n r) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

g � ng x

function �

I

maps each concept name P 2 N

C

to a set P

I

� �

I

and each role

name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The extension of �

I

to arbitrary

concept descriptions is inductively de�ned, as shown in the third column of

Table 1.

One of the most important traditional inference services provided by DL-

systems is computing subconcept/superconcept relationships (so-called subsump-

tion relationships) between concept descriptions. The concept description C

2

subsumes the concept description C

1

(C

1

v C

2

) i� C

I

1

� C

I

2

for all interpre-

tations I; C

2

is equivalent to C

1

(C

1

� C

2

) i� C

1

v C

2

and C

2

v C

1

. The

subsumption relation v is a quasi order (i.e., re
exive and transitive), but in

general not a partial order since it need not be antisymmetric (i.e., there may

exist equivalent description that are not syntactically equal). As usual, the quasi

order v induces a partial order v

�

on the equivalence classes of concept descrip-

tions:

[C

1

]

�

v

�

[C

2

]

�

i� C

1

v C

2

;

where [C

i

]

�

:= fD j C

i

� Dg is the equivalence class of C

i

(i = 1; 2). When

talking about the subsumption hierarchy of a set of descriptions, one means this

induced partial order.

Deciding subsumption between ALN -concept descriptions is polynomial [4],

whereas the subsumption problem for ALE is NP-complete [6].

In addition to subsumption, we are interested in the non-standard inference

problem of computing the least common subsumer of concept descriptions.

De�nition 1 Given n � 2 concept descriptions C

1

; : : : ; C

n

in a DL language

L, the concept description C of L is an lcs of C

1

; : : : ; C

n

(C = lcs(C

1

; : : : ; C

n

))

i� (i) C

i

v C for all 1 � i � n, and (ii) C is the least concept description with

this property, i.e., if C

0

satis�es C

i

v C

0

for all 1 � i � n, then C v C

0

.

As an example, consider the ALE-concept descriptions

C := 9has-child:> u 8has-child:(Male u Doctor) and

D := 9has-child:(Male uMechanic) u 9has-child:(Female u Doctor)

respectively describing parents whose children are all male doctors, and parents

having a son that is a mechanic and a daughter that is a doctor. The lcs of C

and D is given by the ALE-concept description

lcs(C;D) = 9has-child:Male u 9has-child:Doctor:

It describes all parents having at least one son and at least one child that is a

doctor (see [3] for an algorithm for computing such an lcs).

Depending on the DL under consideration, the lcs of two or more descriptions

need not always exist, but if it exists, then it is unique up to equivalence. It is

also easy to see that one can restrict the attention to the problem of computing

the lcs of two concept descriptions, since the lcs of n > 2 descriptions can be

obtained by iterated application of the binary lcs operation.

In [3], we have shown that the lcs of two ALE-concept descriptions always

exists and that it can e�ectively be computed; however, the size of the lcs can

be exponential in the size of the input descriptions. For ALN , the lcs of two

descriptions also always exists and it can be computed in polynomial time. In

addition, the size of the lcs is polynomial in the size of the input descriptions,

even if one considers n > 2 descriptions (these results for ALN can easily be

obtained by restricting the results in [2] to the acyclic case).

3 Formal concept analysis

We shall introduce only those notions and results from formal concept analysis

that are necessary for our application. We will describe how the object explo-

ration algorithm works, but note that explaining why it works is beyond the

scope of this paper (see [11] for more information on formal concept analysis).

De�nition 2 A formal context is a triple K = (O;P ;S), where O is a set of

objects, P is a set of attributes (or properties), and S � O�P is a relation that

connects each object o with the attributes satis�ed by o.

Let K = (O;P ;S) be a formal context. For a set of objects A � O, the intent

A

0

of A is the set of attributes that are satis�ed by all objects in A, i.e.,

A

0

:= fp 2 P j 8a 2 A: (a; p) 2 Sg:

Similarly, for a set of attributes B � P , the extent B

0

of B is the set of objects

that satisfy all attributes in B, i.e.,

B

0

:= fo 2 O j 8b 2 B: (o; b) 2 Sg:

It is easy to see that, for A

1

� A

2

� O (resp. B

1

� B

2

� P), we have

{ A

0

2

� A

0

1

(resp. B

0

2

� B

0

1

),

{ A

1

� A

00

1

and A

0

1

= A

000

1

(resp. B

1

� B

00

1

and B

0

1

= B

000

1

).

A formal concept is a pair (A;B) consisting of an extent A � O and an intent

B � P such that A

0

= B and B

0

= A. Such formal concepts can be hierarchically

ordered by inclusion of their extents, and this order induces a complete lattice,

the concept lattice of the context. Given a formal context, the �rst step for

analyzing this context is usually to compute the concept lattice.

The following are easy consequences of the de�nition of formal concepts and

the properties of the �

0

operation mentioned above:

Lemma 3 All formal concepts are of the form (A

00

; A

0

) for a subset A of O, and

any such pair is a formal concept. In addition, (A

00

1

; A

0

1

) � (A

00

2

; A

0

2

) i� A

0

2

� A

0

1

.

Thus, if the context is �nite, the concept lattices can in principle be computed

by enumerating the subsets A of O, and applying the operations �

0

and �

00

.

However, this na��ve algorithm is usually very ine�cient. In many applications

[16], one has a large (or even in�nite) set of objects, but only a relatively small

set of attributes. In such a situation, Ganter's attribute exploration algorithm

[10, 11] has turned out to be an e�cient approach for computing the concept

lattice.

In the application considered in this paper, we are faced with the dual sit-

uation: the set of attributes will be the in�nite set of all possible concept de-

scriptions of the DL under consideration, and the set of objects will be the �nite

collection of concept descriptions for which we want to compute the subsumption

hierarchy of least common subsumers. Consequently, we must dualize Ganter's

algorithm and the notions on which it depends. Alternatively, we could have

considered the dual context (which is obtained by transposing the matrix cor-

responding to S) and employed the usual attribute exploration for this context.

The correctness of the dual version is an immediate consequence of the fact that

its results coincide with the results of the usual algorithm on the dual context.

Object exploration

Before we can describe the dual version of Ganter's algorithm, called object

exploration in the following, we must introduce some notation. The most im-

portant notion for the algorithm is the one of an implication between sets of

objects. Intuitively, such an implication A

1

! A

2

holds if any attribute satis�ed

by all elements of A

1

is also satis�ed by all elements of A

2

.

De�nition 4 Let K be a formal context and A

1

, A

2

be subsets of O. The object

implication A

1

! A

2

holds in K (K j= A

1

! A

2

) i� A

0

1

� A

0

2

. An attribute p

violates the implication A

1

! A

2

i� p 2 A

0

1

nA

0

2

.

It is easy to see that an implication A

1

! A

2

holds in K i� A

2

� A

00

1

. In

particular, given a set of objects A, the implications A! (A

00

nA) always holds

in K. We denote the set of all object implications that hold in K by Imp

O

(K).

This set can be very large, and thus one is interested in (small) generating sets.

De�nition 5 Let J be a set of object implications, i.e., the elements of J are

of the form A

1

! A

2

for sets of objects A

1

; A

2

� O. For a subset A of O, the

implication hull of A with respect to J is denoted by J (A). It is the smallest

subset H of O such that

{ A � H, and

{ A

1

! A

2

2 J and A

1

� H imply A

2

� H.

The set of object implications generated by J consists of all implications A

1

!

A

2

such that A

2

� J (A

1

). It will be denoted by Cons(J). We say that a set

of implications J is a base of Imp

O

(K) i� Cons(J) = Imp

O

(K) and no proper

subset of J satis�es this property.

If J is a base for Imp

O

(K), then it can be shown that A

00

= J (A) for all A � O.

The implication hull J (A) of a set of objects A can be computed in time linear in

the size of J and A using, for example, methods for deciding satis�ability of sets

of propositional Horn clauses [7]. Consequently, given a base J for Imp

O

(K),

any question of the form \A

1

! A

2

2 Imp

O

(K)?" can be answered in time linear

in the size of J [fA

1

! A

2

g.

There may exist di�erent implication bases of Imp

O

(K), and not all of them

need to be of minimal cardinality. A base J of Imp

O

(K) is called minimal base

i� no base of Imp

O

(K) has a cardinality smaller than the cardinality of J .

Duquenne and Guigues have given a description of such a minimal base [8] for

the dual case of attribute implications. Ganter's attribute exploration algorithm

computes this minimal base as a by-product. In the following, we introduce the

dual Duquenne-Guigues base and show how it can be computed using the object

exploration algorithm.

The de�nition of the dual Duquenne-Guigues base given below is based on

a modi�cation of the closure operator A 7! J (A) de�ned by a set J of object

implications. For a subset A of O, the implication pseudo-hull of A with respect

to J is denoted by J

�

(A). It is the smallest subset H of O such that

{ A � H , and

{ A

1

! A

2

2 J and A

1

� H (strict subset) imply A

2

� H .

Given J , the pseudo-hull of a set A � O can again be computed in time linear

in the size of J and A (e.g., by adapting the algorithm in [7] appropriately). A

subset A of O is called pseudo-closed in a formal context K i� Imp

O

(K)

�

(A) = A

and A

00

6= A.

De�nition 6 The dual Duquenne-Guigues base of a formal context K consists

of all object implications A

1

! A

2

where A

1

� O is pseudo-closed in K and

A

2

= A

00

1

nA

1

.

When trying to use this de�nition for actually computing the dual Duquenne-

Guigues base of a formal context, one encounters two problems:

1. The de�nition of pseudo-closed refers to the set of all valid implications

Imp

O

(K), and our goal is to avoid explicitly computing all of them.

2. The closure operator A 7! A

00

is used, and computing it via A 7! A

0

7! A

00

may not be feasible for a context with an in�nite set of attributes.

Ganter solves the �rst problem by enumerating the pseudo-closed sets of K in

a particular order, called lectic order. This order makes sure that it is su�cient

to use the already computed part J of the base when computing the pseudo-

hull. To de�ne the lectic order, �x an arbitrary linear order on the set of objects

O = fo

1

; : : : ; o

n

g, say o

1

< � � � < o

n

. For all j; 1 � j � n, and A

1

; A

2

� O we

de�ne

A

1

<

j

A

2

i� o

j

2 A

2

nA

1

and A

1

\ fo

1

; : : : ; o

j�1

g = A

2

\ fo

1

; : : : ; o

j�1

g:

The lectic order < is the union of all relations <

j

for j = 1; : : : ; n. It is a linear

order on the powerset of O. The lectic smallest subset of O is the empty set.

The second problem is solved by constructing an increasing chain of �nite

subcontexts of K. The context K

i

= (O

i

;P

i

;S

i

) is a subcontext of K i� O

i

= O,

P

i

� P , and S

i

= S \ (O � P

i

). The closure operator A 7! A

00

is always

computed with respect to the current �nite subcontext K

i

. To avoid adding a

wrong implication, an \expert" is asked whether the implication A ! A

00

n A

really holds in the whole K. If it does not hold, the expert must provide a

counterexample, i.e., an attribute p from P n P

i

that violates the implication.

This attribute is then added to the current context. Technically, this means that

the expert must provide an attribute p, and must say which of the objects of O

satisfy this attribute and which don't.

The following algorithm computes the set of all extents of formal concepts of

K as well as the dual Duquenne-Guigues base of K. The concept lattice is then

given by the usual inclusion ordering between the extents.

Algorithm 7 (Object exploration) Initialization: One starts with the empty

set of object implications, i.e., J

0

:= ;, the empty set of concept extents E

0

:= ;,

and the empty subcontext K

0

of K, i.e., P

0

:= ;. The lectic smallest subset of O

is A

0

:= ;.

Iteration: Assume that K

i

, J

i

, E

i

, and A

i

(i � 0) are already computed.

Compute A

00

i

with respect to the current subcontext K

i

. Now the expert is asked

whether the implication A

i

! A

00

i

nA

i

holds in K.

2

If the answer is \no", then let p

i

2 P be the counterexample provided by the

expert. Let A

i+1

:= A

i

, J

i+1

:= J

i

, and let K

i+1

be the subcontext of K with

P

i+1

:= P

i

[fp

i

g.

If the answer is \yes", then K

i+1

:= K

i

and

(E

i+1

;J

i+1

) :=

�

(E

i

;J

i

[fA

i

! A

00

i

nA

i

g) if A

00

i

6= A

i

;

(E

i

[fA

i

g;J

i

) if A

00

i

= A

i

:

To �nd the new set A

i+1

, we start with j = n, and test whether

(�) A

i

<

j

J

�

i+1

((A

i

\ fo

1

; : : : ; o

j�1

g) [fo

j

g)

2

If A

00

i

nA

i

= ;, then it is not really necessary to ask the expert because implications

with empty right-hand side hold in any context.

holds. The index j is decreased until one of the following cases occurs:

(1) j = 0: In this case, E

i+1

is the set of all concept extents and J

i+1

the dual

Duquenne-Guigues base of K, and the algorithm stops.

(2) (�) holds for j > 0: In this case, A

i+1

:= J

�

i+1

((A

i

\ fo

1

; : : : ; o

j�1

g)[fo

j

g),

and the iteration is continued.

4 Computing the hierarchy of least common subsumers

Given a �nite set O := fC

1

; : : : ; C

n

g of concept descriptions, we are interested

in the subsumption hierarchy between all least common subsumers of subsets

of C. For sets A � O of cardinality � 2, we have already de�ned the notion

lcs(A). We extend this notion to the empty set and singletons in the obvious

way: lcs(;) := ? and lcs(fC

i

g) := C

i

.

Our goal is to compute the subsumption hierarchy between all concept de-

scriptions lcs(A) for subsets A of O without explicitly computing all these least

common subsumers. This is achieved by de�ning a formal context with objects

O such that the concept lattice of this context is isomorphic to the subsumption

hierarchy we are interested in.

De�nition 8 Given a DL language L and a �nite set O := fC

1

; : : : ; C

n

g of

L-concept descriptions, the corresponding formal context K

L

(O) = (O;P ;S) is

de�ned as follows:

O := fC

1

; : : : ; C

n

g;

P := fD j D is an L-concept descriptiong;

S := f(C;D) j C v Dg:

As an easy consequence of the de�nition of K

L

(O) and of the lcs, we obtain that

the intent of a set A � O is closely related to the lcs of this set:

Lemma 9 Let A

1

; A

2

be subsets of O.

1. A

0

= fD 2 P j lcs(A) v Dg;

2. A

0

1

� A

0

2

i� lcs(A

2

) v lcs(A

1

);

3. the implication A

1

! A

2

holds in K

L

(O) i� lcs(A

2

) v lcs(A

1

).

As an immediate consequence of 3. of this lemma, the dual Duquenne-Guigues

base J of K

L

(O) yields a representation of all subsumption relationships of the

form lcs(A

1

) v lcs(A

2

) for subsets A

1

; A

2

of O. Given this base J , any question

of the form \lcs(A

1

) v lcs(A

2

)?" can then be answered in time linear in the size

of J [fA

1

! A

2

g. Another easy consequence of the lemma is that the concept

lattice of K

L

(O) coincides with the subsumption hierarchy of all least common

subsumers of subsets of O.

Theorem 10 The concept lattice of K

L

(O) is isomorphic to the subsumption

hierarchy of all least common subsumers of subsets of O.

Proof. We de�ne the mapping � from the formal concepts of K

L

(O) to the set

of (equivalence classes of) least common subsumers of subsets of O as follows:

�(A;B) := [lcs(A)]

�

:

For formal concepts (A

1

; B

1

); (A

2

; B

2

) we have (A

1

; B

1

) � (A

2

; B

2

) i� A

1

� A

2

i� A

0

2

� A

0

1

i� lcs(A

1

) v lcs(A

2

). As an easy consequence we obtain that � is

order preserving (and thus also injective): (A

1

; B

1

) � (A

2

; B

2

) i� [lcs(A

1

)]

�

v

�

[lcs(A

2

)]

�

.

It remains to be shown that � is surjective as well. Let A be an arbitrary

subset of O. We must show that [lcs(A)]

�

can be obtained as an image of the

mapping �. By Lemma 3, (A

00

; A

0

) is a formal concept, and thus it is su�cient

to show that lcs(A) � lcs(A

00

). Obviously, A � A

00

implies lcs(A) v lcs(A

00

)

(by de�nition of the lcs). To see the converse, note that, for all C

i

2 O, we have

C

i

2 A

00

i� C

i

v D for all D 2 A

0

(def. of �

0

and K

L

(O))

i� C

i

v D for all D such that lcs(A) v D (Lemma 9)

i� C

i

v lcs(A). (def. of the lcs)

Obviously, this implies lcs(A

00

) v lcs(A).

If we want to apply Algorithm 7 to compute the concept lattice and the

dual Duquenne-Guigues base, we need an \expert" for the context K

L

(O). This

expert must be able to answer the questions asked by the object exploration

algorithm, i.e., given an object implication A

1

! A

2

, it must be able to decide

whether this implication holds in K

L

(O). If the implication does not hold, it

must be able to compute a counterexample, i.e., an attribute p 2 A

0

1

nA

0

2

.

If the language L is such that the lcs is computable and subsumption is

decidable (which is, e.g., the case for L = ALE or L = ALN), then we can

implement such an expert.

Lemma 11 Given a subsumption algorithm for L as well as an algorithm for

computing the lcs of a �nite set of L-concept descriptions, these algorithms can

be used to obtain an \expert" for the context K

L

(O).

Proof. First, we show how to decide whether a given object implication A

1

! A

2

holds in K

L

(O) or not. By Lemma 9, we know that A

1

! A

2

holds in K

L

(O) i�

lcs(A

2

) v lcs(A

1

). Obviously, lcs(A

2

) v lcs(A

1

) i� C

i

v lcs(A

1

) for all C

i

2 A

2

.

Thus, to answer the question \A

1

! A

2

?", we �rst compute lcs(A

1

) and then use

the subsumption algorithm to test whether C

i

v lcs(A

1

) holds for all C

i

2 A

2

.

Second, assume that A

1

! A

2

does not hold in K

L

(O), i.e., lcs(A

2

) 6v lcs(A

1

).

We claim that lcs(A

1

) is a counterexample, i.e., lcs(A

1

) 2 A

0

1

and lcs(A

1

) 62 A

0

2

.

This is an immediate consequence of the facts that A

0

i

= fD 2 P j lcs(A

i

) v Dg

(i = 1; 2) and that lcs(A

2

) 6v lcs(A

1

).

Of this counterexample, Algorithm 7 really needs the column correspond-

ing to this attribute in the matrix corresponding to S. This column can easily

be computed using the subsumption algorithm: for each C

i

2 O, we use the

subsumption algorithm to test whether C

i

v lcs(A) holds or not.

Using this expert, an application of Algorithm 7 yields

{ all extents of formal concepts of K

L

(O), and thus the concept lattice of

K

L

(O), which coincides with the subsumption hierarchy of all least common

subsumers of subsets of O (by Theorem 10);

{ the dual Duquenne-Guigues base of K

L

(O), which yields a compact repre-

sentation of this hierarchy (by 3. of Lemma 9); and

{ a �nite subcontext of K

L

(O) that has the same concept extents as K

L

(O)

and the same �

00

operation on sets of objects.

Using the output of Algorithm 7, one can then employ the usual tools for drawing

concept lattices [17] in order to present the subsumption hierarchy of all least

common subsumers of subsets of O to the knowledge engineer.

5 First experimental results

In the previous section, we have shown that the object exploration algorithm

can be used to compute the hierarchy of least common subsumers of a given set

of concept descriptions. What remains is to analyze whether object exploration

really is a good approach for solving this task. Our reason for trying it in the

�rst place was that computing this hierarchy is the same as computing a certain

concept lattice (as shown above), and that Ganter's algorithm is known to be

a very good method for doing this. The problem with this generic argument in

favour of object exploration is, of course, that we consider a very speci�c context,

and that it might well be that, for this context, object exploration is not the

best thing to do. The �rst experimental results that will be described below are,

however, rather encouraging.

We intend to use the bottom-up construction of knowledge bases in a chemical

process engineering application [13, 14], where the knowledge base describes stan-

dard building blocks of process models (such as certain types of reactors). Cur-

rently, this knowledge base consists of about 600 de�nitions of building blocks,

which we translate into ALE-concept descriptions.

In order to test the object exploration algorithm, we have taken 7 descriptions

of reactors of a similar type, which the process engineers considered to be good

examples for generating a new concept. These descriptions were translated into

ALE-concept descriptions R

1

; : : : ; R

7

, and we applied the object exploration al-

gorithm to this set of objects. The resulting concept lattice, which coincides with

the hierarchy of all least common subsumers of subsets of O := fR

1

; : : : ; R

7

g,

is depicted in Figure 1. The top concept corresponds to the lcs obtained from

the whole set of examples, and the bottom concept is the lcs obtained from the

empty set, i.e., the description ?. The node labelled lcs(i

1

: : : i

m

) corresponds to

the formal concept with extent R

i

1

; : : : ; R

i

m

, and thus to lcs(R

i

1

; : : : ; R

i

m

). Note

that in many cases lcs(R

i

1

; : : : ; R

i

m

) can also be obtained as the lcs of a strict

subset of fR

i

1

; : : : ; R

i

m

g. This can be easily seen by using the least-upper-bound

operation of the concept lattice. For example, lcs(R

i

; R

7

) = lcs(R

1

; : : : ; R

7

) for

all i; 1 � i � 6.

LCS(1 2 3 4 5 6 7)

LCS(1 2 3 4 5 6)

LCS(1 2 3 4 5)

LCS(1 2 3 5)

LCS(1 2 3)

LCS(1 2 4 5 6)

LCS(1 2 4 5) LCS(1 2 4 6)

LCS(1 2 4)LCS(1 2 5)

LCS(1 2)

LCS(1 3 4 5 6)

LCS(1 3 4 5)

LCS(1 3 5)

LCS(1 3)

LCS(1 4 5 6)

LCS(1 4 5) LCS(1 4 6)

LCS(1 4)LCS(1 5)

LCS(1)

LCS(2 5)

LCS(2)

LCS(3 5)

LCS(3) LCS(4)LCS(5) LCS(6) LCS(7)

LCS()

REACTOR1 REACTOR2 REACTOR3 REACTOR4REACTOR5 REACTOR6 REACTOR7

Fig. 1. The hierarchy of least common subsumers of seven reactor descriptions.

Statistical information: The Duquennes-Guigues base of the context consists of

15 implications, and the concept lattice of 30 formal concepts. If we subtract the

trivial least common subsumers ?; R

1

; : : : ; R

7

as well as lcs(R

1

; : : : ; R

7

), which

turned out to be equivalent to an already existing description, we end up with 21

candidates for new concepts. Of these 21 interesting least common subsumers,

only 10 have explicitly been computed during the exploration.

During the calls of the \expert", 255 subsumption tests and 25 n-ary lcs oper-

ations have been executed. Because we re-used already computed least common

subsumers, the 25 n-ary lcs operations only required 25 binary lcs operations.

The number of counterexamples computed by the expert was also 25.

Finally, we measured the time needed for executing the interesting subtasks,

namely computing the lcs, testing subsumption, and realizing the overhead in-

troduced by the object exploration algorithm (e.g., computing the �

00

operation,

the pseudo-hull, etc). It turned out that more than 84% of the time was used for

computing least common subsumers, 15% for subsumption tests, and less than

1% for the rest. This shows that, at least for this small example, the exploration

algorithm does not introduce any measurable overhead. The fact that computing

the lcs needed a lot more time than testing subsumption is probably due to the

fact that we used a highly optimized subsumption algorithm [12], but only a

�rst prototypical implementation of the lcs algorithm.

What can be learned from the concept lattice? Two important facts about the

reactor descriptions can be read o� immediately. First, there is no subsumption

relationship between any of the 7 concepts since all singleton sets occur as ex-

tents. Second, Reactor 7 is quite di�erent from the other reactors since its lcs

with any of the others yields a very general concept description. Thus, it should

not be used for generating new concepts together with the other ones. In fact, a

closer look at R

7

revealed that, though it describes a reactor of a type similar to

that of the other ones, this description was given on a completely di�erent level

of abstraction.

Next, let us consider the question of which of the least common subsumers

occurring in the lattice appear to be good candidates for providing an interesting

new concept. First, the lcs of the whole set is ruled out since it involves Reactor 7,

which does not �t well with the other examples (see above). Second, in order

to avoid concepts that are too speci�c, least common subsumers that do not

cover more than half of the reactors should also be avoided. If we use these two

criteria, then we are left with 9 candidates (the formal concepts with extents of

cardinality 4, 5, and 6), which is a number of concepts that can well be inspected

by the process engineer. In our example, the 5 least common subsumers on the

�rst layer of these interesting candidates (the formal concepts with extents of

cardinality 4) turned out to be the most promising, though this must still be

checked in more detail with the process engineers.

6 Related and future work

The idea of using tools from formal concept analysis in description logics is not

new. In [1], the attribute exploration algorithm was used to compute a small

representation of the subsumption hierarchy of all conjunctions of concepts de-

�ned in a terminology, and in [15] this approach was extended such that it could

handle both, conjunction and disjunction. There are, however, signi�cant di�er-

ences to the approach considered in the present paper. First, the formal context

de�ned in [1, 15] is quite di�erent from the one introduced above: its objects are

pairs consisting of an interpretation I and an element of �

I

. To be able to com-

pute the counterexamples required by the attribute exploration algorithm, the

subsumption algorithm had to be extended such that it computes appropriate �-

nite countermodels [1]. Second, [1] was only interested in the Duquennes-Guigues

base computed by the algorithm, and not in the concept lattice. In fact, in the

experiments made with the approach introduced in [1], the base turned out to

by usually rather small, whereas the lattice was very large (and thus it did not

make sense to visualize it) [?].

In the future we will test the approach introduced in this paper with more

examples from our chemical process engineering application. In particular, we

will more closely analyze which of the least common subsumers yield concepts

that make sense in the application domain, with the goal to develop appropriate

heuristics for suggesting good candidates based on the computed concept lattice.

In addition, we will try to optimize the method, with the goal to avoid even more

explicit lcs computations by using information from the partial implication base

and the subcontext already computed.

References

1. F. Baader. Computing a Minimal Representation of the Subsumption Lattice of all

Conjunctions of Concepts De�ned in a Terminology. In Proceedings of KRUSE'95,

1995.

2. F. Baader and R. K�usters. Computing the least common subsumer and the most

speci�c concept in the presence of cyclic ALN -concept descriptions. In Proceedings

of KI'98, Springer LNCS 1504, 1998.

3. F. Baader, R. K�usters, and R. Molitor. Computing least common subsumers in

description logics with existential restrictions. In Proceedings of IJCAI'99, Morgan

Kaufmann, 1999.

4. A. Borgida and P. Patel-Schneider. A semantics and complete algorithm for sub-

sumption in the Classic description logic. J. Arti�cial Intelligence Research, 1,

1994.

5. W.W. Cohen and H. Hirsh. Learning the Classic description logic: Theoretical

and experimental results. In Proceedings of KR'94, Morgan Kaufmann, 1994.

6. F.M. Donini, M. Lenzerini, D. Nardi, B. Hollunder, W. Nutt, and A.M. Spaccamela.

The complexity of existential quanti�cation in concept languages. Arti�cial Intel-

ligence, 53, 1992.

7. W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satis�ability

of propositional Horn formulae. J. Logic Programming, 3, 1984.

8. V. Duquenne. Contextual implications between attributes and some representa-

tional properties for �nite lattices. In Beitr�age zur Begri�sanalyse, B.I. Wissen-

schaftsverlag, 1987.

9. M. Frazier and L. Pitt. Classic learning. Machine Learning, 25, 1996.

10. B. Ganter. Finding all closed sets: A general approach. Order, 8, 1991.

11. B. Ganter and R. Wille. Formal Concept Analysis { Mathematical Foundations,

Springer{Verlag, 1999.

12. I. Horrocks. The FaCT system. In Proceedings of Tableaux'98, LNAI 1397, 1998.

13. W. Marquardt. Trends in computer-aided process modeling. Computers and Chem-

ical Engineering, 20(6/7), 1996.

14. U. Sattler. Terminological Knowledge Representation Systems in a Process Engi-

neering Application. PhD thesis, RWTH Aachen, 1998.

15. G. Stumme. The concept classi�cation of a terminology extended by conjunction

and disjunction. In Proceedings of PRICAI'96, Springer LNCS 1114, 1996.

16. G. Stumme and R. Wille. Begri�iche Wissensverarbeitung | Methoden und An-

wendungen. Springer{Verlag, 2000.

17. F. Vogt. Formale Begri�sanalyse mit C

++

. Springer{Verlag, 1996.

