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Abstract. Description logics are a family of knowledge representation

formalisms that are descended from semantic networks and frames via

the system Kl-one. During the last decade, it has been shown that

the important reasoning problems (like subsumption and satis�ability)

in a great variety of description logics can be decided using tableau-

like algorithms. This is not very surprising since description logics have

turned out to be closely related to propositional modal logics and logics

of programs (such as propositional dynamic logic), for which tableau

procedures have been quite successful.

Nevertheless, due to di�erent underlying intuitions and applications,

most description logics di�er signi�cantly from run-of-the-mill modal

and program logics. Consequently, the research on tableau algorithms

in description logics led to new techniques and results, which are, how-

ever, also of interest for modal logicians. In this article, we will focus on

three features that play an important rôle in description logics (number

restrictions, terminological axioms, and role constructors), and show how

they can be taken into account by tableau algorithms.

1 Introduction

Description logics (DLs) are a family of knowledge representation languages

which can be used to represent the terminological knowledge of an application

domain in a structured and formally well-understood way. The name description

logics is motivated by the fact that, on the one hand, the important notions of

the domain are described by concept descriptions, i.e., expressions that are built

from atomic concepts (unary predicates) and atomic roles (binary predicates)

using the concept and role constructors provided by the particular DL. On the

other hand, DLs di�er from their predecessors, such as semantic networks and

frames [44, 37], in that they are equipped with a formal, logic-based semantics,

which can, e.g., be given by a translation into �rst-order predicate logic.

Knowledge representation systems based on description logics (DL systems)

provide their users with various inference capabilities that allow them to deduce

implicit knowledge from the explicitly represented knowledge. For instance, the

subsumption algorithm allows one to determine subconcept-superconcept rela-

tionships: C is subsumed by D i� all instances of C are also instances of D, i.e.,

the �rst description is always interpreted as a subset of the second description.

In order to ensure a reasonable and predictable behaviour of a DL system, the

subsumption problem for the DL employed by the system should at least be



decidable, and preferably of low complexity. Consequently, the expressive power

of the DL in question must be restricted in an appropriate way. If the imposed

restrictions are too severe, however, then the important notions of the appli-

cation domain can no longer be expressed. Investigating this trade-o� between

the expressivity of DLs and the complexity of their inference problems has been

one of the most important issues in DL research. Roughly, this research can be

classi�ed into the following four phases.

Phase 1: First system implementations. The original Kl-one system [12] as

well as its early successor systems (such as Back [43], K-Rep [36], and Loom

[35]) employ so-called structural subsumption algorithms, which �rst normalise

the concept descriptions, and then recursively compare the syntactic structure

of the normalised descriptions (see, e.g., [38] for the description of such an algo-

rithm). These algorithms are usually very e�cient (polynomial), but they have

the disadvantage that they are complete only for very inexpressive DLs, i.e., for

more expressive DLs they cannot detect all the existing subsumption relation-

ships (though this fact was not necessarily known to the designers of the early

systems).

Phase 2: First complexity and undecidability results. Partially in parallel with

the �rst phase, the �rst formal investigations of the subsumption problem in DLs

were carried out. It turned out that (under the assumption P 6= NP) already

quite inexpressive DLs cannot have polynomial subsumption algorithms [10, 39],

and that the DL used by the Kl-one system even has an undecidable subsump-

tion problem [49]. In particular, these results showed the incompleteness of the

(polynomial) structural subsumption algorithms. One reaction to these results

(e.g., by the designers of Back and Loom) was to call the incompleteness of the

subsumption algorithm a feature rather than a bug of the DL system. The de-

signers of the Classic system [42, 9] followed another approach: they carefully

chose a restricted DL that still allowed for an (almost) complete polynomial

structural subsumption algorithm [8].

Phase 3: Tableau algorithms for expressive DLs and thorough complexity

analysis. For expressive DLs (in particular, DLs allowing for disjunction and/or

negation), for which the structural approach does not lead to complete subsump-

tion algorithms, tableau algorithms have turned out to be quite useful: they are

complete and often of optimal (worst-case) complexity. The �rst such algorithm

was proposed by Schmidt-Schau� and Smolka [50] for a DL that they called ALC

(for \attributive concept description language with complements").

1

It quickly

turned out that this approach for deciding subsumption could be extended to

various other DLs [28, 26, 4, 1, 23] and also to other inference problems such as

the instance problem [24]. Early on, DL researchers started to call the algorithms

obtained this way \tableau-based algorithms" since they observed that the orig-

inal algorithm by Schmidt-Schau� and Smolka for ALC, as well as subsequent

algorithms for more expressive DL, could be seen as specialisations of the tab-

1

Actually, at that time the authors were not aware of the close connection between

their rule-based algorithm working on constraint systems and tableau procedures for

modal and �rst-order predicate logics.



leau calculus for �rst-order predicate logic (the main problem to solve was to �nd

a specialisation that always terminates, and thus yields a decision procedure).

After Schild [47] showed that ALC is just a syntactic variant of multi-modal K,

it turned out that the algorithm by Schmidt-Schau� and Smolka was actually a

re-invention of the known tableau algorithm for K.

At the same time, the (worst-case) complexity of a various DLs (in particular

also DLs that are not propositionally closed) was investigated in detail [20, 21,

19].

The �rst DL systems employing tableau algorithms (Kris [5] and Crack

[13]) demonstrated that (in spite of their high worst-case complexity) these al-

gorithms lead to acceptable behaviour in practice [6]. Highly optimised systems

such as FaCT [30] have an even better behaviour, also for benchmark problems

in modal logics [29, 31].

Phase 4: Algorithms and e�cient systems for very expressive DLs.Motivated

by applications (e.g., in the database area), DL researchers started to investi-

gate DLs whose expressive power goes far beyond the one of ALC (e.g., DLs

that do not have the �nite model property). First decidability and complexity

results for such DLs could be obtained from the connection between proposi-

tional dynamic logic (PDL) and DLs [47]. The idea of this approach, which was

perfected by DeGiacomo and Lenzerini, is to translate the DL in question into

PDL. If the translation is polynomial and preserves satis�ability, then the known

EXPTIME-algorithms for PDL can be employed to decide subsumption in expo-

nential time. Though this approach has produced very strong complexity results

[16{18] it turned out to be less satisfactory from a practical point of view. In fact,

�rst tests in a database application [33] showed that the PDL formulae obtained

by the translation technique could not be handled by existing e�cient imple-

mentations of satis�ability algorithms for PDL [41]. To overcome this problem,

DL researchers have started to design \practical" tableau algorithms for very

expressive DLs [32, 33].

The purpose of this article is to give an impression of the work on tableau

algorithms done in the DL community, with an emphasis on features that, though

they may also occur in modal logics, are of special interest to description logics.

After introducing some basic notions of description logics in Section 2, we will

describe a tableau algorithm for ALC in Section 3. Although, from the modal

logic point of view, this is just the well-known algorithm for multi-modal K, this

section will introduce the notations and techniques used in description logics,

and thus set the stage for extensions to more interesting DLs. In the subsequent

three section we will show how the basic algorithm can be extended to one

that treats number restrictions, terminological axioms, and role constructors of

di�erent expressiveness, respectively.

2 Description logics: basic de�nitions

The main expressive means of description logics are so-called concept descrip-

tions, which describe sets of individuals or objects. Formally, concept descriptions



Table 1. Syntax and semantics of concept descriptions.

Construct name Syntax Semantics

negation :C �

I

n C

I

conjunction C uD C

I

\D

I

disjunction C tD C

I

[D

I

existential restriction 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restriction 8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g

at-least restriction (>nr:C) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

^ y 2 C

I

g � ng

at-most restriction (6nr:C) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

^ y 2 C

I

g � ng

are inductively de�ned with the help of a set of concept constructors, starting

with a set N

C

of concept names and a set N

R

of role names. The available con-

structors determine the expressive power of the DL in question. In this paper,

we consider concept descriptions built from the constructors shown in Table 1,

where C;D stand for concept descriptions, r for a role name, and n for a non-

negative integer. In the description logic ALC, concept descriptions are formed

using the constructors negation, conjunction, disjunction, value restriction, and

existential restriction. The description logic ALCQ additionally provides us with

(quali�ed) at-least and at-most number restrictions.

The semantics of concept descriptions is de�ned in terms of an interpretation

I = (�

I

; �

I

). The domain �

I

of I is a non-empty set of individuals and the

interpretation function �

I

maps each concept name P 2 N

C

to a set P

I

� �

I

and each role name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The extension of

�

I

to arbitrary concept descriptions is inductively de�ned, as shown in the third

column of Table 1.

From the modal logic point of view, roles are simply names for accessibil-

ity relations, and existential (value) restrictions correspond to diamonds (boxes)

indexed by the respective accessibility relation. Thus, any ALC description can

be translated into a multi-modal formula and vice versa. For example, the de-

scription P u 9r:P u 8r::P corresponds to the formula p ^ hrip ^ [r]:p, where

p is an atomic proposition corresponding to the concept name P . As pointed

out by Schild [47], there is an obvious correspondence between the semantics of

ALC and the Kripke semantics for multi-modal K, which satis�es d 2 C

I

i� the

world d satis�es the formula �

C

corresponding to C in the Kripke structure corre-

sponding to I. Number restrictions also have a corresponding construct in modal

logics, so-called graded modalities [53], but these are not as well-investigated as

the modal logic K.

One of the most important inference services provided by DL systems is

computing the subsumption hierarchy of a given �nite set of concept descriptions.

De�nition 1. The concept description D subsumes the concept description C

(C v D) i� C

I

� D

I

for all interpretations I; C is satis�able i� there exists

an interpretation I such that C

I

6= ;; and C and D are equivalent i� C v D

and D v C.



In the presence of negation, subsumption can obviously be reduced to satis�a-

bility: C v D i� C u :D is unsatis�able.

2

Given concept descriptions that de�ne the important notions of an applica-

tion domain, one can then describe a concrete situation with the help of the

assertional formalism of description logics.

De�nition 2. Let N

I

be a set of individual names. An ABox is a �nite set of

assertions of the form C(a) ( concept assertion) or r(a; b) ( role assertion), where

C is a concept description, r a role name, and a; b are individual names.

An interpretation I, which additionally assigns elements a

I

2 �

I

to indi-

vidual names a, is a model of an ABox A i� a

I

2 C

I

((a

I

; b

I

) 2 r

I

) holds for

all assertions C(a) (r(a; b)) in A.

The Abox A is consistent i� it has a model. The individual a is an instance

of the description C w.r.t. A i� a

I

2 C

I

holds for all models I of A.

Satis�ability (and thus also subsumption) of concept descriptions as well as the

instance problem can be reduced to the consistency problem for ABoxes: (i) C

is satis�able i� the ABox fC(a)g for some a 2 N

I

is consistent; and (ii) a is an

instance of C w.r.t. A i� A[ f:C(a)g is inconsistent.

Usually, one imposes the unique name assumption on ABoxes, i.e., requires

the mapping from individual names to elements of �

I

to be injective. Here, we

dispense with this requirement since it has no e�ect for ALC, and for DLs with

number restrictions we will explicitly introduce inequality assertions, which can

be used to express the unique name assumption.

3 A tableau algorithm for ALC

Given an ALC-concept description C

0

, the tableau algorithm for satis�ability

tries to construct a �nite interpretation I that satis�es C

0

, i.e., contains an ele-

ment x

0

such that x

0

2 C

I

0

. Before we can describe the algorithm more formally,

we need to introduce an appropriate data structure in which to represent (partial

descriptions of) �nite interpretations. The original paper by Schmidt-Schau� and

Smolka [50], and also many other papers on tableau algorithms for DLs, intro-

duce the new notion of a constraint system for this purpose. However, if we look

at the information that must be expressed (namely, the elements of the inter-

pretation, the concept descriptions they belong to, and their role relationships),

we see that ABox assertions are su�cient for this purpose.

It will be convenient to assume that all concept descriptions are in negation

normal form (NNF), i.e., that negation occurs only directly in front of con-

cept names. Using de Morgan's rules and the usual rules for quanti�ers, any

ALC-concept description can be transformed (in linear time) into an equivalent

description in NNF.

Let C

0

by an ALC-concept in NNF. In order to test satis�ability of C

0

,

the algorithm starts with A

0

:= fC

0

(x

0

)g, and applies consistency preserving

2

This was the reason why Schmidt-Schau� and Smolka [50] added negation to their

DL in the �rst place.



The !

u

-rule

Condition: A contains (C

1

u C

2

)(x), but it does not contain both C

1

(x) and

C

2

(x).

Action: A

0

:= A [ fC

1

(x); C

2

(x)g.

The !

t

-rule

Condition: A contains (C

1

t C

2

)(x), but neither C

1

(x) nor C

2

(x).

Action: A

0

:= A [ fC

1

(x)g, A

00

:= A [ fC

2

(x)g.

The !

9

-rule

Condition: A contains (9R.C)(x), but there is no individual name z such that

C(z) and R(x; z) are in A.

Action: A

0

:= A [ fC(y); R(x; y)g where y is an individual name not occurring

in A.

The !

8

-rule

Condition: A contains (8R.C)(x) and R(x; y), but it does not contain C(y).

Action: A

0

:= A [ fC(y)g.

Fig. 1. Transformation rules of the satis�ability algorithm for ALC.

transformation rules (see Fig. 1) to this ABox. The transformation rule that

handles disjunction is nondeterministic in the sense that a given ABox is trans-

formed into two new ABoxes such that the original ABox is consistent i� one

of the new ABoxes is so. For this reason we will consider �nite sets of ABoxes

S = fA

1

; : : : ;A

k

g instead of single ABoxes. Such a set is consistent i� there is

some i, 1 � i � k, such that A

i

is consistent. A rule of Fig. 1 is applied to a

given �nite set of ABoxes S as follows: it takes an element A of S, and replaces

it by one ABox A

0

or by two ABoxes A

0

and A

00

.

De�nition 3. An ABox A is called complete i� none of the transformation

rules of Fig. 1 applies to it. The ABox A contains a clash i� fP (x);:P (x)g � A

for some individual name x and some concept name P . An ABox is called closed

if it contains a clash, and open otherwise.

The satis�ability algorithm for ALC works as follows. It starts with the sin-

gleton set of ABoxes ffC

0

(x

0

)gg, and applies the rules of Fig. 1 (in arbitrary

order) until no more rules apply. It answers \satis�able" if the set

b

S of ABoxes

obtained this way contains an open ABox, and \unsatis�able" otherwise. Cor-

rectness of this algorithm is an easy consequence of the following lemma.

Lemma 1. Let C

0

by an ALC-concept in negation normal form.

1. There cannot be an in�nite sequence of rule applications

ffC

0

(x

0

)gg ! S

1

! S

2

! � � � :

2. Assume that S

0

is obtained from the �nite set of ABoxes S by application of

a transformation rule. Then S is consistent i� S

0

is consistent.



3. Any closed ABox A is inconsistent.

4. Any complete and open ABox A is consistent.

The �rst part of this lemma (termination) is an easy consequence of the facts

that (i) all concept assertions occurring in an ABox in one of the sets S

i

are of

the form C(x) were C is a subdescription of C

0

; and (ii) if an ABox in S

i

contains

the role assertion r(x; y), then the maximal role depth (i.e., nesting of value and

existential restrictions) of concept descriptions occurring in concept assertions

for y is strictly smaller than the maximal role depth of concept descriptions

occurring in concept assertions for x. A detailed proof of termination (using an

explicit mapping into a well-founded ordering) for a set of rules extending the

one of Fig. 1 can, e.g., be found in [4].

The second and third part of the lemma are quite obvious, and the fourth

part can be proved by de�ning the canonical interpretation I

A

induced by A:

1. The domain �

I

A

of I

A

consists of all the individual names occurring in A.

2. For all concept names P we de�ne P

I

A

:= fx j P (x) 2 Ag.

3. For all role names r we de�ne r

I

A

:= f(x; y) j r(x; y) 2 Ag.

By de�nition, I

A

satis�es all the role assertions in A. By induction on the

structure of concept descriptions, it is easy to show that it satis�es the concept

assertions as well, provided that A is complete and open.

It is also easy to show that the canonical interpretation has the shape of a

�nite tree whose depth is linearly bounded by the size of C

0

and whose branching

factor is bounded by the number of di�erent existential restrictions in C

0

. Con-

sequently, ALC has the �nite tree model property , i.e., any satis�able concept

C

0

is satis�able in a �nite interpretation I that has the shape of a tree whose

root belongs to C

0

.

To sum up, we have seen that the transformation rules of Fig. 1 reduce

satis�ability of an ALC-concept C

0

(in NNF) to consistency of a �nite set

b

S of

complete ABoxes. In addition, consistency of

b

S can be decided by looking for

obvious contradictions (clashes).

Theorem 1. It is decidable whether or not an ALC-concept is satis�able.

Complexity issues. The satis�ability algorithm for ALC presented above may

need exponential time and space. In fact, the size of the complete and open

ABox (and thus of the canonical interpretation) built by the algorithm may be

exponential in the size of the concept description. For example, consider the

descriptions C

n

(n � 1) that are inductively de�ned as follows:

C

1

:= 9R.A u 9R.B;

C

n+1

:= 9R.A u 9R.B u 8R.C

n

:

Obviously, the size of C

n

grows linearly in n. However, given the input descrip-

tion C

n

, the satis�ability algorithm generates a complete and open ABox whose



canonical interpretation is a binary tree of depth n, and thus consists of 2

n+1

�1

individuals.

Nevertheless, the algorithm can be modi�ed such that it needs only poly-

nomial space. The main reason is that di�erent branches of the tree model to

be generated by the algorithm can be investigated separately, and thus the tree

can be built and searched in a depth-�rst manner. Since the complexity class

NPSPACE coincides with PSPACE [46], it is su�cient to describe a nondeter-

ministic algorithm using only polynomial space, i.e., for the nondeterministic

!

t

-rule, we may simply assume that the algorithm chooses the correct alterna-

tive. In principle, the modi�ed algorithm works as follows: it starts with fC

0

(x

0

)g

and

1. applies the !

u

- and !

t

-rules as long as possible and checks for clashes;

2. generates all the necessary direct successors of x

0

using the !

9

-rule and

exhaustively applies the !

8

-rule to the corresponding role assertions;

3. successively handles the successors in the same way.

Since the successors of a given individual can be treated separately, the algorithm

needs to store only one path of the tree model to be generated, together with

the direct successors of the individuals on this path and the information which

of these successors must be investigated next. Since the length of the path is

linear in the size of the input description C

0

, and the number of successors is

bounded by the number of di�erent existential restrictions in C

0

, the necessary

information can obviously be stored within polynomial space.

This shows that the satis�ability problem for ALC-concept descriptions is

in PSPACE. PSPACE-hardness can be shown by a reduction from validity of

Quanti�ed Boolean Formulae [50].

Theorem 2. Satis�ability of ALC-concept descriptions is PSPACE-complete.

The consistency problem for ALC-ABoxes. The satis�ability algorithm

described above can also be used to decide consistency of ALC-ABoxes. Let A

0

be an ALC-ABox such that (w.l.o.g.) all concept descriptions in A are in NNF.

To test A

0

for consistency, we simply apply the rules of Fig. 1 to the singleton

set fA

0

g. It is easy to show that Lemma 1 still holds. Indeed, the only point that

needs additional consideration is the �rst one (termination). Thus, the rules of

Fig. 1 yield a decision procedure for consistency of ALC-ABoxes.

Since now the canonical interpretation obtained from a complete and open

ABox need no longer be of tree shape, the argument used to show that the

satis�ability problem is in PSPACE cannot directly be applied to the consis-

tency problem. In order to show that the consistency problem is in PSPACE,

one can, however, proceed as follows: In a pre-completion step, one applies the

transformation rules only to old individuals (i.e., individuals present in the orig-

inal ABox A

0

). Subsequently, one can forget about the role assertions, i.e., for

each individual name in the pre-completed ABox, the satis�ability algorithm is

applied to the conjunction of its concept assertions (see [25] for details).

Theorem 3. Consistency of ALC-ABoxes is PSPACE-complete.



4 Number restrictions

Before treating the quali�ed number restrictions introduced in Section 2, we

consider a restricted form of number restrictions, which is the form present in

most DL systems. In unquali�ed number restrictions, the qualifying concept is

the top concept >, where > is an abbreviation for P t:P , i.e., a concept that is

always interpreted by the whole interpretation domain. Instead of (>nr:>) and

(6nr:>), we write unquali�ed number restrictions simply as (>nr) and (6nr).

The DL that extends ALC by unquali�ed number restrictions is denoted by

ALCN .

Obviously, ALCN - and ALCQ-concept descriptions can also be transformed

into NNF in linear time.

4.1 A tableau algorithm for ALCN

The main idea underlying the extension of the tableau algorithm for ALC to

ALCN is quite simple. At-least restrictions are treated by generating the re-

quired role successors as new individuals. At-most restrictions that are currently

violated are treated by (nondeterministically) identifying some of the role suc-

cessors. To avoid running into a generate-identify cycle, we introduce explicit

inequality assertions that prohibit the identi�cation of individuals that were

introduced to satisfy an at-least restriction.

Inequality assertions are of the form x 6

:

= y for individual names x; y, with

the obvious semantics that an interpretation I satis�es x 6

:

= y i� x

I

6= y

I

. These

assertions are assumed to be symmetric, i.e., saying that x 6

:

= y belongs to an

ABox A is the same as saying that y 6

:

= x belongs to A.

The satis�ability algorithm for ALCN is obtained from the one for ALC by

adding the rules in Fig. 2, and by considering a second type of clashes :

{ f(6nr)(x)g [ fr(x; y

i

) j 1 � i � n+ 1g [ fy

i

6

:

= y

j

j 1 � i < j � n+ 1g � A

for x; y

1

; : : : ; y

n+1

2 N

I

, r 2 N

R

, and a nonnegative integer n.

The nondeterministic!

�

-rule replaces the ABoxA by �nitely many new ABoxes

A

i;j

. Lemma 1 still holds for the extended algorithm (see e.g. [7], where this is

proved for a more expressive DL). This shows that satis�ability (and thus also

subsumption) of ALCN -concept descriptions is decidable.

Complexity issues. The ideas that lead to a PSPACE algorithm for ALC can

be applied to the extended algorithm as well. The only di�erence is that, before

handling the successors of an individual (introduced by at-least and existential

restrictions), one must check for clashes of the second type and generate the

necessary identi�cations. However, this simple extension only leads to a PSPACE

algorithm if we assume the numbers in at-least restrictions to be written in base

1 representation (where the size of the representation coincides with the number

represented). For bases larger than 1 (e.g., numbers in decimal notation), the

number represented may be exponential in the size of the representation. Thus,



The !

�

-rule

Condition: A contains (>nr)(x), and there are no individual names z

1

; : : : ; z

n

such that r(x; z

i

) (1 � i � n) and z

i

6

:

= z

j

(1 � i < j � n) are contained in A.

Action: A

0

:= A [ fr(x; y

i

) j 1 � i � ng [ fy

i

6

:

= y

j

j 1 � i < j � ng, where

y

1

; : : : ; y

n

are distinct individual names not occurring in A.

The !

�

-rule

Condition: A contains distinct individual names y

1

; : : : ; y

n+1

such that

(6nr)(x) and r(x; y

1

); : : : ; r(x; y

n+1

) are in A, and y

i

6

:

= y

j

is not in A for

some i 6= j.

Action: For each pair y

i

; y

j

such that i < j and y

i

6

:

= y

j

is not in A, the ABox

A

i;j

:= [y

i

=y

j

]A is obtained from A by replacing each occurrence of y

i

by y

j

.

Fig. 2. The transformation rules handling unquali�ed number restrictions.

we cannot introduce all the successors required by at-least restrictions while only

using space polynomial in the size of the concept description if the numbers in

this description are written in decimal notation.

It is not hard to see, however, that most of the successors required by the at-

least restrictions need not be introduced at all. If an individual x obtains at least

one r-successor due to the application of the!

9

-rule, then the!

�

-rule need not

be applied to x for the role r. Otherwise, we simply introduce one r-successor

as representative. In order to detect inconsistencies due to conicting number

restrictions, we need to add another type of clashes: f(6nr)(x); (>mr)(x)g � A

for nonnegative integers n < m. The canonical interpretation obtained by this

modi�ed algorithm need not satisfy the at-least restrictions in C

0

. However, it

can easily by modi�ed to an interpretation that does, by duplicating r-successors

(more precisely, the whole subtrees starting at these successors).

Theorem 4. Satis�ability of ALCN -concept descriptions is PSPACE-complete.

The consistency problem for ALCN -ABoxes. Just as for ALC, the ex-

tended rule set for ALCN can also be applied to arbitrary ABoxes. Unfortu-

nately, the algorithm obtained this way need not terminate, unless one imposes

a speci�c strategy on the order of rule applications. For example, consider the

ABox

A

0

:= fr(a; a); (9R:P )(a); (61r)(a); (8r:9r:P )(a)g:

By applying the !

9

-rule to a, we can introduce a new r-successor x of a:

A

1

:= A

0

[ fr(a; x); P (x)g:

The !

8

-rule adds the assertion (9r:P )(x), which triggers an application of the

!

9

-rule to x. Thus, we obtain the new ABox

A

2

:= A

1

[ f(9r:P )(x); r(x; y); P (y)g:



The !

choose

-rule

Condition: A contains (6nr:C)(x) and r(x; y), but neither C(y) nor :C(y).

Action: A

0

:= A [ fC(y)g, A

00

:= A [ f:C(y)g.

Fig. 3. The !

choose

-rule for quali�ed number restrictions.

Since a has two r-successors in A

2

, the !

�

-rule is applicable to a. By replacing

every occurrence of x by a, we obtain the ABox

A

3

:= A

0

[ fP (a); r(a; y); P (y)g:

Except for the individual names (and the assertion P (a), which is, however,

irrelevant), A

3

is identical to A

1

. For this reason, we can continue as above to

obtain an in�nite chain of rule applications.

We can easily regain termination by requiring that generating rules (i.e., the

rules !

9

and !

�

) may only be applied if none of the other rules is applicable.

In the above example, this strategy would prevent the application of the !

9

-

rule to x in the ABox A

1

[ f(9r:P )(x)g since the !

�

-rule is also applicable.

After applying the !

�

-rule (which replaces x by a), the !

9

-rule is no longer

applicable since a already has an r-successor that belongs to P .

In order to obtain a PSPACE algorithm for consistency of ALCN -ABoxes,

the pre-completion technique sketched above for ALC can also be applied to

ALCN [25].

Theorem 5. Consistency of ALCN -ABoxes is PSPACE-complete.

4.2 A tableau algorithm for ALCQ

An obvious idea when attempting to extend the satis�ability algorithm for

ALCN to one that can handle ALCQ is the following (see [53]):

{ Instead of simply generating n new r-successors y

1

; : : : ; y

n

in the !

�

-rule,

one also asserts that these individuals must belong to the qualifying concept

C by adding the assertions C(y

i

) to A

0

.

{ The !

�

-rule only applies if A also contains the assertions C(y

i

) (1 � i �

n+ 1).

Unfortunately, this does not yield a correct algorithm for satis�ability in ALCQ.

In fact, this simple algorithm would not detect that the concept description

(>3r) u (61r:P ) u (61r::P ) is unsatis�able. The (obvious) problem is that,

for some individuals a and concept descriptions C, the ABox may neither con-

tain C(a) nor :C(a), whereas in the canonical interpretation constructed from

the ABox, one of the two must hold. In order to overcome this problem, the

nondeterministic !

choose

-rule of Fig. 3 must be added [26]. Together with the

!

choose

-rule, the simple modi�cation of the !

�

- and !

�

-rule described above

yields a correct algorithm for satis�ability in ALCQ [26].



Complexity issues. The approach that leads to a PSPACE-algorithm for ALC

can be applied to the algorithm for ALCQ as well. However, as with ALCN , this

yields a PSPACE-algorithm only if the numbers in number restrictions are as-

sumed to be written in base 1 representation. For ALCQ, the idea that leads

to a PSPACE-algorithm for ALCN with decimal notation does no longer work:

it is not su�cient to introduce just one successor as representative for the role

successors required by at-least restrictions. Nevertheless, it is possible to design a

PSPACE-algorithm for ALCQ also w.r.t. decimal notation of numbers [52]. Like

the PSPACE-algorithm for ALC, this algorithm treats the successors separately.

It uses appropriate counters (and a new type of clashes) to check whether quali-

�ed number restrictions are satis�ed. By combining the pre-completion approach

of [25] with this algorithm, we also obtain a PSPACE-result for consistency of

ALCQ-ABoxes.

Theorem 6. Satis�ability of ALCQ-concept descriptions as well as consistency

of ALCQ-ABoxes are PSPACE-complete problems.

5 Terminological axioms

DLs systems usually provide their users also with a terminological formalism.

In its simplest form, this formalism can be used to introduce names for complex

concept descriptions. More general terminological formalisms can be used to

state connections between complex concept descriptions.

De�nition 4. A TBox is a �nite set of terminological axioms of the form C

:

=

D, where C;D are concept descriptions. The terminological axiom C

:

= D is

called concept de�nition i� C is a concept name.

An interpretation I is a model of the TBox T i� C

I

= D

I

holds for all

terminological axioms C

:

= D in T .

The concept description D subsumes the concept description C w.r.t. the

TBox T (C v

T

D) i� C

I

� D

I

for all models I of T ; C is satis�able w.r.t. T

i� there exists a model I of T such that C

I

6= ;. The Abox A is consistent w.r.t.

T i� it has a model that is also a model of T . The individual a is an instance

of C w.r.t. A and T i� a

I

2 C

I

holds for each model I of A and T .

In the following, we restrict our attention to terminological reasoning (i.e.,

the satis�ability and subsumption problem) w.r.t. TBoxes; however, the meth-

ods and results also apply to assertional reasoning (i.e., the instance and the

consistency problem for ABoxes).

5.1 Acyclic terminologies

The early DL systems provided TBoxes only for introducing names as abbrevi-

ations for complex descriptions. This is possible with the help of acyclic termi-

nologies.



De�nition 5. A TBox is an acyclic terminology i� it is a set of concept de�-

nitions that neither contains multiple de�nitions nor cyclic de�nitions. Multiple

de�nitions are of the form A

:

= C;A

:

= D for distinct concept descriptions C;D,

and cyclic de�nitions are of the form A

1

:

= C

1

; : : : ; A

n

:

= C

n

, where A

i

occurs

in C

i�1

(1 < i � n) and A

1

occurs in C

n

. If the acyclic terminology T contains

a concept de�nition A

:

= C, then A is called de�ned name and C its de�ning

concept.

Reasoning w.r.t. acyclic terminologies can be reduced to reasoning without

TBoxes by unfolding the de�nitions: this is achieved by repeatedly replacing

de�ned names by their de�ning concepts until no more de�ned names occur.

Unfortunately, unfolding may lead to an exponential blow-up, as the following

acyclic terminology (due to Nebel [39]) demonstrates:

fA

0

:

= 8r:A

1

u 8s:A

1

; : : : ; A

n�1

:

= 8r:A

n

u 8s:A

n

g:

This terminology is of size linear in n, but unfolding applied to A

0

results in

a concept description containing the name A

n

2

n

times. Nebel [39] also shows

that this complexity can, in general, not be avoided: for the DL FL

0

, which

allows for conjunction and value restriction only, subsumption between concept

descriptions can be tested in polynomial time, whereas subsumption w.r.t. acyclic

terminologies is coNP-complete.

For more expressive languages, the presence of acyclic TBoxes may or may

not increase the complexity of the subsumption problem. For example, subsump-

tion of concept descriptions in the language ALC is PSPACE-complete, and so

is subsumption w.r.t. acyclic terminologies [34]. Of course, in order to obtain

a PSPACE-algorithm for subsumption in ALC w.r.t. acyclic terminologies, one

cannot �rst apply unfolding to the concept descriptions to be tested for sub-

sumption since this may need exponential space. The main idea is that one uses

a tableau algorithm like the one described in Section 3, with the di�erence that

it receives concept descriptions containing de�ned names as input. Unfolding is

then done on demand : if the tableau algorithm encounters an assertion of the

form A(x), where A is a name occurring on the left-hand side of a de�nition

A

:

= C in the terminology, then it adds the assertion C(x). However, it does not

further unfold C at this stage. It is not hard to show that this really yields a

PSPACE-algorithm for satis�ability (and thus also for subsumption) of concepts

w.r.t. acyclic terminologies in ALC [34].

Theorem 7. Satis�ability w.r.t. acyclic terminologies is PSPACE-complete in

ALC.

Although this technique also works for many extensions of ALC (such as

ALCN and ALCQ), there are extensions for which it fails. One such example

is the language ALCF , which extends ALC by functional roles as well as agree-

ments and disagreements on chains of functional roles (see, e.g., [34] for the def-

inition of these constructors). Satis�ability of concept descriptions is PSPACE-

complete for this DL [27], but satis�ability of concept descriptions w.r.t. acyclic

terminologies is NEXPTIME-complete [34].



5.2 General TBoxes

For general terminological axioms of the form C

:

= D, where C may also be a

complex description, unfolding is obviously no longer possible. Instead of con-

sidering �nitely many such axiom C

1

:

= D

1

; : : : ; C

n

:

= D

n

, it is su�cient to

consider the single axiom

b

C

:

= >, where

b

C := (:C

1

tD

1

) u (C

1

t :D

1

) u � � � u (:C

n

tD

n

) u (C

n

t :D

n

)

and > is an abbreviation for P t :P .

The axiom

b

C

:

= > just says that any individual must belong to the concept

b

C. The tableau algorithm for ALC introduced in Section 3 can easily be modi�ed

such that it takes this axiom into account: all individuals are simply asserted to

belong to

b

C. However, this modi�cation may obviously lead to nontermination

of the algorithm.

For example, consider what happens if this algorithm is applied to test con-

sistency of the ABox A

0

:= f(9r:P )(x

0

)g modulo the axiom 9r:P

:

= >: the

algorithm generates an in�nite sequence of ABoxes A

1

;A

2

; : : : and individuals

x

1

; x

2

; : : : such that A

i+1

:= A

i

[fr(x

i

; x

i+1

); P (x

i+1

); (9r:P )(x

i+1

)g. Since all

individuals x

i

(i � 1) receive the same concept assertions as x

1

, we may say that

the algorithms has run into a cycle.

Termination can be regained by trying to detect such cyclic computations,

and then blocking the application of generating rules: the application of the

rule !

9

to an individual x is blocked by an individual y in an ABox A i�

fD j D(x) 2 Ag � fD

0

j D

0

(y) 2 Ag. The main idea underlying blocking is that

the blocked individual x can use the role successors of y instead of generating new

ones. For example, instead of generating a new r-successor for x

2

in the above

example, one can simply use the r-successor of x

1

. This yields an interpretation I

with �

I

:= fx

0

; x

1

; x

2

g, P

I

:= fx

1

; x

2

g, and r

I

:= f(x

0

; x

1

); (x

1

; x

2

); (x

2

; x

2

)g.

Obviously, I is a model of both A

0

and the axiom 9r:P

:

= >.

To avoid cyclic blocking (of x by y and vice versa), we consider an enu-

meration of all individual names, and de�ne that an individual x may only be

blocked by individuals y that occur before x in this enumeration. This, together

with some other technical assumptions, makes sure that a tableau algorithm

using this notion of blocking is sound and complete as well as terminating both

for ALC and ALCN (see [14, 2] for details).

Theorem 8. Consistency of ALCN -ABoxes w.r.t. TBoxes is decidable.

It should be noted that the algorithm is no longer in PSPACE since it may

generate role paths of exponential length before blocking occurs. In fact, even

for the language ALC, satis�ability modulo general terminological axioms is

known to be EXPTIME-complete [48].

Blocking does not work for all extensions of ALC that have a tableau-based

satis�ability algorithm. An example is again the DL ALCF , for which satis�a-

bility is decidable, but satis�ability w.r.t. general TBoxes undecidable [40, 3].



6 Expressive roles

The DLs considered until now allowed for atomic roles only. There are two ways

of extending the expressivity of DLs w.r.t. roles: adding role constructors and

allowing to constrain the interpretation of roles.

Role constructors can be used to build complex roles from atomic ones. In

the following, we will restrict our attention to the inverse constructor, but other

interesting role constructors have been considered in the literature (e.g., Boolean

operators [15] or composition and transitive closure [1, 47]). The inverse r

�

of a

role name r has the obvious semantics: (r

�

)

I

:= f(y; x) j (x; y) 2 r

I

g.

Constraining the interpretation of roles is very similar to imposing frame con-

ditions in modal logics. One possible such constraint has already been mentioned

in the previous section: in ALCF the interpretation of some roles is required to

be functional. Here, we will consider transitive roles and role hierarchies. In a

DL with transitive roles, a subset N

+

R

of the set of all role names N

R

is �xed

[45]. Elements of N

+

R

must be interpreted by transitive binary relations. (This

corresponds to the frame condition for the modal logic K

4

.) A role hierarchy is

given by a �nite set of role inclusion axioms of the form r v s for roles r; s.

An interpretation I satis�es the role hierarchy H i� r

I

� s

I

holds for each

r v s 2 H.

DLs with transitive roles and role hierarchies have the nice property that

reasoning w.r.t. TBoxes can be reduced to reasoning without TBoxes using a

technique called internalisation [3, 30, 32]. Like in Section 5.2, we may assume

that TBoxes are of the form T = f

b

C

:

= >g. In SH, the extension of ALC with

transitive roles and role hierarchies, we introduce a new transitive role name

u and assert in the role hierarchy that u is a super-role of all roles occurring

in

b

C and the concept description C

0

to be tested for satis�ability. Then, C

0

is satis�able w.r.t. T i� C u

b

C u 8u:

b

C is satis�able. Extending this reduction

to inverse roles consists simply in making u also a super-role of the inverse

of each role occurring in

b

C or C

0

[32]. This reduction shows that a tableau

algorithm for SH must also employ some sort of blocking to ensure termination

(see Section 5.2).

Things become even more complex if we consider the DL SHIF , which ex-

tends SH by the inverse of roles and functional roles. In fact, it is easy to show

that SHIF no longer has the �nite model property, i.e., there are satis�able

SHIF -concept descriptions that are not satis�able in a �nite interpretation

[32]. Instead of directly trying to construct an interpretation that satis�es C

0

(which might be in�nite), the tableau algorithm for SHIF introduced in [32,

33] �rst tries to construct a so-called pre-model, i.e., a structure that can be

\unravelled" to a (possibly in�nite) canonical (tree) interpretation. To ensure

termination (without destroying correctness), the algorithm employs blocking

techniques that are more sophisticated than the one described in Section 5.2. In-

terestingly, an optimised implementation of this algorithm in the system I-FaCT

behaves quite well in realistic applications [33]. A re�nement of the blocking

techniques employed for SHIF can be used to prove that satis�ability in SI



(i.e., the extension of ALC by transitive and inverse roles) is in PSPACE [51,

33].

Finally, let us briey comment on the di�erence between transitive roles and

transitive closure of roles. Transitive closure is more expressive, but it appears

that one has to pay dearly for this. In fact, whereas there exist quite e�cient im-

plementations for very expressive DLs with transitive roles, inverse roles, and role

hierarchies (see above), no such implementations are known (to us) for closely

related logics with transitive closure, such as converse-PDL (which is a nota-

tional variant of the extension of ALC by transitive closure, union, composition,

and inverse of roles [47]). One reason could be that the known tableau algorithm

for converse-PDL [22] requires a \cut" rule, which is massively nondeterministic,

and thus very hard to implement e�ciently. An other problem with transitive

closure is that a blocked individual need no longer indicate \success", as is the

case in DLs with transitive roles (see, e.g., the discussion of \good" and \bad"

cycles in [1]).
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