
Towards an in-vitro Implementation of a Universal

Distributed Splicing Model for DNA Computation

Thomas Hinze and Monika Sturm

Dresden University of Technology, Germany

Department of Theoretical Computer Science

e-mail: fhinze,sturmg@tcs.inf.tu-dresden.de

www: http://wwwtcs.inf.tu-dresden.de/dnacomp

Abstract

Emphasizing a combination of recent developments in computer

science with molecular bioengineering, a special distributed splicing

system (TT6) is proposed. This unconventional model for computa-

tion features by a possibility for an in-vitro implementation in the

laboratory as well as by a mathematical exact description. The Dres-

den DNA Computation Group decided to implement such a system on

biohardware and optimized all relevant model parameters and compo-

nents with respect to this objective.

1 Introduction

DNA computing as an unconventional architecture for computing will only

convince if a implementation of a biocomputer in practice succeeds. Re-

search activities in this �eld serve both aspects, theoretical contributions

about models for DNA computation, their computational power and opti-

mization as well as real experiments using molecular biological processes.

The vision in DNA computing consists in establishing an applicable uni-

versal biocomputer. This biocomputer should feature by its computational

speed using massive data parallelism. Furthermore this kind of computer

will be able to store large amounts of data with a much higher density than

electronic memory circuits and requires only a fraction of energy. It should

also be mentioned that all components of biocomputers can be recycled

completely.

This paper introduces an approach towards a universal biocomputer

based on distributed splicing with 6 test tubes with respect to its in-vitro im-



plementation as an issue of DNA computing research in Dresden, Germany.

The Dresden DNA computation group deals with laboratory-practical ap-

proaches and models for DNA computation closed to observable molecular

biological processes. First, a DNA based algorithm to solve the NP-complete

knapsack problem with natural object weights was developed and imple-

mented repetitively in the laboratory. In parallel to these experimental

studies the laboratory-like DNA computing model DNA-Haskell[5] was

conceived based on molecular biological processes observed in detail includ-

ing some side e�ects that can occur indeed. DNA computing models must

be computational complete. DNA-Haskell owns this property proved by

simulation of selected conventional universal models for computation.

There is a variety of di�erent DNA computing models which are charac-

terized by a high abstraction level and by a clear formal model description.

Between these models and an according implementation in the laboratory a

gap exists that has to be discussed. Simulating those DNA computing mod-

els using the laboratory-like DNA-Haskell could be a promising approach

to �ll this gap and to combine the advantages of di�erent models.

2 Selection of an Appropriate Model

Which well-known model for DNA computation is most suitable to be im-

plemented on biohardware? The decision thereover considers many aspects

that can be divided into three classes concerning used data structures, the

control mechanism for the sequence of basic steps, and special features with

respect to the molecular biological toolbox. Oppositional properties inside

these aspects form a classi�cation that supports the selection. Preferred

models are con�gurable in a way that they can behave exibly and they

have an inherent adaptability depending on parameters. All details of a

model speci�cation have to be transformable into available resources, mate-

rials, methods, and laboratory techniques.

Beside the composition of the DNA material, the data structure as-

pect contains information whether the model is restricted or unrestricted,

whether it uses single or multiple data, and whether or not multisets are

considered. The restriction of a model coincides with the one-pot ability:

If consecutive operations are performed inside the same test tube, interme-

diate contents are destroyed (restricted). Otherwise, unrestricted models

allow aliquots (copies) of test tube contents. Single data is a property of

models which use a homogeneous variety of identical DNA molecules. All

these molecules are processed in the same way inducing a high redundancy



by strand copies. Massive data parallelism is based on multiple data caused

by a variety of di�erent DNA strands in the same test tube. Linear DNA

can be generated and analyzed easily, circular DNA is available by plasmids

from bacteria. Other forms of nonlinear DNA are di�cult to handle.

The control mechanism de�nes the degree of parallelism between opera-

tions (single/multiple instruction) as well as the deterministic or nondeter-

ministic behavior. Sequences of operations can be repeated exactly using

deterministic models. In contrast, nondeterministic models are faster in

some cases, and heuristical algorithms can be applied.

With respect to implementation details in the laboratory, important cri-

teria express whether or not a model requires enzymatic reactions, whether

or not DNA strands are �xed on a surface, how the initial input DNA is

generated, which possibilities exist to visualize the �nal result and the pro-

bability for side e�ects and their suppression, for example.

Filtering models, the sticker model, the Turing machine by Rothemund

and splicing systems embody classes of DNA computing models with di�er-

ent underlying concepts and ideas[2]. Splicing systems avoid the brute force

strategy. They seem to be exible enough to adapt the most of the proper-

ties mentioned above by varying certain system parameters. Their core, the

splicing operation, is directly derived from recombinant techniques. Moti-

vated by these facts, the implementation focusses a splicing system.

Splicing systems are established to reach universal computational power

by generating the class of recursive enumerable languages (RE)[3], [6]. Model

parameters like number of test tubes, axioms, rules, strand duplicates as well

as �lter pattern and used DNA structure have to meet requirements for the

implementation in the laboratory. For instance, extended Head systems need

either an in�nite set of axioms or an in�nite set of splicing rules to generate

RE resulting in an in�nite number of DNA strands and restriction enzymes.

A further approach based on multisets leads to the necessary to determine

the number of strand duplicates with high accuracy. The recent state of the

art in molecular bioengineering can not meet these requirements completely.

Therefore other extensions of splicing systems were sought for a practica-

ble possibility. The introduction of distributed splicing systems with n test

tubes[1] seems to be a successful way. The number of test tubes, axioms,

and splicing rules must be balanced together with an appropriate �lter pat-

tern and distribution mechanism resulting in a lab-practicable compromise.

The proposed system TT6 tries to accept the challenge.



3 Model Overview and Adaption

The Distributed Extended Head System with 6 Test Tubes (TT6 for short)

is able to generate RE based on an arbitrary Chomsky type 0 grammar G

achieving computational completeness[7].

TT6 is composed by a �nite set V of alphabet symbols (containing the

sets of nonterminal and terminal symbols from the underlying grammar G

and some auxiliary symbols) supplemented by test tubes T

i

, i = 1; : : : ; 6.

Each test tube T

i

= (A

i

;R

i

;F

i

) is called a component with a �nite set of

axioms A

i

, a �nite set of splicing rules R

i

, and a �nite set of �lter patterns

F

i

. Test tube T

6

acts as a �nal tube and collects exactly those strings that

represent words of the language L(G). The test tubes T

1

until T

5

perform

iterated loops in parallel. Each iterated loop consists of the consecutive

steps splicing operation, �ltering, and distributing.

The splicing operation[4] forms the core of all types of splicing systems

and embodies an abstract formal emulation of DNA recombinant techniques

cut with restriction enzymes (digestion) and ligation. The description of the

splicing operation on words of formal languages leads to a generalization

of the e�ect that is caused by digestion and ligation. The generalization

suppresses certain DNA strands resp. words than can really occur as side

e�ects. The most frequent unwanted e�ects are incomplete digestion and

ligation as well as production of DNA fragments with false composition by

ligation. Additional extractions and labelings prevent these side e�ects and

allow a description of the splicing operation in an experimental convincing

way. During each iterated loop the splicing operation is performed at most

once per test tube.

After splicing, the subsequent �ltering step prepares copies of those

strings that have to be distributed. Every test tube T

i

, i = 1; : : : ; 5 pro-

vides separately exactly those strings that will be moved into other test

tubes. To do so, T

i

evaluates all �lter pattern F

j

, j = 1; : : : ; 5, j 6= i.

Those strands that are transmitted into other tubes are removed from the

producing tube T

i

if they do not match its own �lter pattern F

i

. Each F

i

describes those strings that are moved from other test tubes into T

i

. The

�lter patterns are constructed in a way that each �ltering process can be

implemented by polymerase chain reaction (PCR). That means, the �lter

patterns are preferrably described by leftmost and rightmost word ending

symbols serving as primers. The PCR leads to an ampli�cation of DNA

strands and increases DNA concentrations inside the test tubes.

The subsequent distributing step exchanges the strings prepared by �l-

tering between the test tubes. A union cascade in each iterated loop merges



intermediate products and supplies also the �nal tube.

The steps splicing operation, �ltering, and distributing forming the iter-

ated loop are executed consecutively. After distributing, the next round of

splicing starts. The number of iterated loops is not limited.

4 Conclusions

This paper implies a proposal to the discussion about distributed splicing

systems. The objectives leading to the development of TT6 include the

compliance with a description of RE by a constant number of test tubes,

axioms, and splicing rules, by a nonextended DNA structure, and by an

e�cient derivation of complexity theoretical relevant system parameters di-

rectly from the grammar. TT6 is constructed with strong regard to a prac-

ticable implementation in the laboratory. The distribution of DNA strands

between test tubes is organized in a way that minimizes the number of

transferred DNA strands. Repetitive ampli�cations counteract the decrease

of DNA concentration caused by distribution. Beyond only few strand du-

plicates are necessary to perform all �ltering and distributing processes. The

number of DNA double strands that have to be available initially is equal to

the number of axioms. The operations forming TT6 are based on observable

processes in the laboratory.

References

[1] E. Csuhaj-Varj, L. Kari, G. P�aun. Test tube distributed systems based on

splicing. Computers and AI, vol. 15(2{3), p. 211-232, 1996

[2] M.J. Daley, M.G. Eramian. Models of DNA Computation. Term Report

CS881b, L. Kari, Instructor, 1998

[3] R. Freund, L. Kari, G. P�aun. DNA computing based on splicing: the existence

of universal computers. Theory of Computing Systems, vol. 32, p. 69-112, 1999

[4] T. Head. Formal language theory and DNA: an analysis of the generative ca-

pacity of speci�c recombinant behaviors. Bulletin of the Mathematical Biology,

vol. 49(6), p. 737-759, 1987

[5] T. Hinze, M. Sturm. A universal functional approach to DNA computing and

its experimental practicability. Prel. Proceedings of DNA6, Leiden, NL, 2000

[6] G. P�aun. SPLICING { a challenge for formal language theorists. Journal of

Automata, Languages and Combinatorics, vol. 4, no. 1, p. 3-16, 1999

[7] M. Sturm, T. Hinze. Distributed Splicing of RE with 6 Test Tubes. Prel.

Proceedings of WS on Multiset Processing, Curtea de Arges, Romania, 2000


