A Tableau Algorithm for the Clique Guarded Fragment

Extended

Colin Hirsch
Mathematische Grundlagen der Informatik
RWTH Aachen
hirsch@cs.rwth-aachen.de

1 Introduction

The Guarded Fragment of first-order logic,
introduced by Andréka, van Benthem, and
Németi [1], has been a successful attempt to
transfer many good properties of modal, tem-
poral, and description logics to a larger frag-
ment of predicate logic. Among these are de-
cidability, the finite model property, invariance
under an appropriate variant of bisimulation,
and other nice model theoretic properties [1, 4].

The Guarded Fragment (GF) is obtained
from full first-order logic through relativisation
of quantifiers by so-called guard formulas. Ev-
ery appearance of a quantifier in GF must be
of the form

Jy(a(x,y) A p(x,y)) or Vy(a(x,y) — »(x,¥)),

where « is a positive atomic formula, the guard,
that contains all free variables of . This gener-
alises quantification in modal and temporal log-
ics, where quantification is restricted to those
elements reachable via some accessibility rela-
tion.

By allowing for more general formulas as
guards while preserving the idea of quantifica-
tion only over elements that are close together
in the model, one obtains generalisations of GF
which are still well-behaved in the above sense.
Most importantly, one can obtain the loosely
guarded fragment (LGF) [16] and the clique
guarded fragment (CGF) [5], for which decid-
ability, invariance under clique guarded bisim-
ulation, and some other properties have been
shown in [5]. The question whether CGF and
LGF have the finite model property was open

Abstract

Stephan Tobies
LuFG Theoretical Computer Science
RWTH Aachen
tobies@cs.rwth-aachen.de

until recently. In [10] Hodkinson shows that
LGF and a further variant, the packed fragment
(PF) [14], have the finite model property. In-
deed the packed fragment turns out to be a syn-
tactic variant of the clique guarded fragment.

GF, LGF, and CGF are decidable and known
to be 2-EXPTIME complete, which is shown
in [4, 5] using game and automata-based ap-
proaches. While these approaches yield op-
timal worst-case complexity results for many
logics, they appear to be unsuitable as a start-
ing point for an efficient implementation—their
worst-case complexity is actually their any-
case complexity. Many decidability results
for modal or description logics are based on
tableau algorithms [13, 7, 2, 12]. Some of the
fastest implementations of modal satisfiability
procedures are based on tableau calculi [11].
Unlike automata algorithms, the average-case
behaviour in practice is so good that finding
really hard problems to test these implementa-
tions has become a problem in itself.

In this paper, we generalise the principles
usually found in tableau algorithms for modal
logics to develop a tableau algorithm for CGF.
To the best of our knowledge, this is the first
algorithm for CGF that can be used as the
basis for an efficient implementation'. As a
corollary of the constructions used to show the
soundness of our algorithm, we obtain that GF
has the finite model property. While this re-
sult is not new, we feel that our proof is more

!There are resolution based decision procedures for
GF and LGF [3] that are readily implemented using the
saturation theorem prover SPASS [17]. It is unclear if
this approach can be extended to CGF.

elementary as it does not require some more
advanced model-theoretic constructions along
[8]. We conjecture that the same method can
be extended to include CGF and LGF. Also,
we obtain an alternative proof for the fact that
CGF has a generalised tree model property, i.e.,
every satisfiable CGF formula of width £ has a
model of tree width at most £ — 1 [5].

Due to the limited space for this extended
abstract, we refer to [9] for most of the proofs.

2 Preliminaries

For the definitions of GF and LGF we refer
the reader to [5]. The clique guarded fragment
CGF of first-order logic can be obtained in
two equivalent ways, by either semantically or
syntactically restricting the range of the first-
order quantifiers. In the following we will use
bold letters to refer to tuples of elements of
the universe (a, b, ...) resp. tuples of variables

(X, y,...).

Definition 2.1 (Semantic CGF). Let 7 be
a relational vocabulary. For a T-structure 2A
with universe A, the Gaifman graph of 2 is de-
fined as the undirected graph G(2) = (A, E*)
with

E* = {(a,d) :

a € R¥ which contains both a and a'}.

a # da', there exists R € T and

Under clique guarded semantics we understand
the modification of standard first order seman-
tics, where, instead of ranging over all elements
of the universe, a quantifier is restricted to ele-
ments that form a clique in the Gaifman graph,
including the binding for the free variables of
the matriz formula. More precisely, let A be
a T-structure and p an environment mapping
variables to elements of A. We define the model
relation inductively over the structure of formu-
las as the usual FO semantics with the excep-
tion

A, p = Vy.o(x,y) iff for all a € A such that
p(x) U{a} forms a clique in G()
it is the case that A, plzx — a] = ¢ ,

and a similar definition for the existential case.
With CGF we denote first order logic restricted
to clique guarded semantics.

Definition 2.2 (Syntactic CGF). Let 7 be
a relational vocabulary. A formula o is a
clique-formula for a set x C free(a) if a is a
conjunction of atoms such that each two ele-
ments from x coexist in at least one atom, each
atom contains at least two element from x, and
each element from free(a) \ x occurs exactly
once in one atom. In the following, we will
identify a clique-formula o« with the set of its
conjuncts.

The syntactic CGF is inductively defined as
follows.

1. Every relational atomic formula
Rz ...xz;, or z; = x; belongs to
CGF.

2. CGF is closed under boolean operations.

3. If x,y,z are tuples of variables, a(x,y,z)
is a clique-formula for x Uy and ¢(x,y)
is a formula in CGF such that free(yp) C

xUy,
then E‘yz-(a(xa Yy, Z) A QO(X7 Y))
and Vyz.(a(x,y,2) = o(x,y))

belong to CGF.

We will use (Fyz.(a(x,y,z))e(x,y) and
(Vyz.(a(x,y,2z))p(x,y) as alternative no-
tations for yz.(a(x,y,z) A o(x,y)) and

Vyz.(a(x,y,z) — ¢(X,y)) respectively.

The following Lemma can be shown by ele-
mentary formula manipulation.

Lemma 2.3. Let «(x,y,z) be a clique-

formula for x,y. Then

Vyz.(a(x,y,z) = ¢(x,y))
=Vy.(Fz.a(x,y,z) = o(X,y)).

Some further transformations can be used to
show that a packed quantification can be sim-
ulated by a syntactic clique guarded formula
yielding the following result.

Lemma 2.4. PF and CGF are equally expres-
sive.

The use of the name CGF both for the se-
mantic and the syntactic clique guarded frag-
ment is justified by the following Lemma.

Lemma 2.5. Quer any finite relational vocab-
ulary the syntactic and semantic versions of the
CGF are equally expressive.

Proof sketch: By some elementary equiv-
alence transformations, every syntactically
clique guarded formula can be brought into a
form where switching from standard semantics
to clique guarded semantics does not change
its meaning. Conversely, for any finite signa-
ture there is a finite disjunction clique(x,y,z)
of clique-formulas for x,y such that a,b form
a clique in G(2) iff A |= Jz.clique(a,b,z). By
guarding every quantifier with such a formula
and applying some elementary formula trans-
formations and Lemma 2.3, we get, for every
FO formula 1, a syntactically clique guarded
formula that is equivalent to ¢ under clique
guarded semantics. If we fix a finite relational
vocabulary, this transformation is polynomial
in the width of the formula.

In the following we will only consider the syn-
tactic variant of the clique guarded fragment.

At a first glance the expressiveness of CGF
and the loosely guarded fragment LGF are in-
comparable. While the auxiliary variables of
the CGF allow additional expressiveness, there
are also LGF-formulas that are not (syntacti-
cally) clique guarded. In CGF, a guard « in
Qyz.a(x,y,z) necessarily contains every pair
from x Uy in (at least) one atom. In LGF
a guard £ in Qy.B(x,y) need only contain all
combinations of a variable from x with one
from x Uy in (at least) one guard atom. An
example for a loosely guarded formula that is
not (syntactically) clique guarded is

Y = (Fzy.Rxy)(Vz.(Rzz A Ryz))e(z,y, 2)

because z and y do not coexist in the guard of
the universal quantifier. Yet, 1) can be turned
into a clique guarded formula by adding the
guard Rzy of the existential quantifier to the

guard of the universal quantifier. This yields
the guard Rzy A Rzz A Ryz, a clique formula
for z,y, z. Since it is always possible to clique-
guard a loosely guarded formula in this way,
LGF is contained in CGF. It is also possible to
show that CGF is strictly more expressive than
LGF [5].

Definition 2.6 (NNF, Closure, Width).
Let ¢ € CGF be closed. In the following,
we assume all formulas to be in mnegation
normal form (NNF), where negation occurs
only in front of atomic formulas. Every
formula in CGF can be transformed into NNF
in linear time by pushing negation inwards
using DeMorgan’s law and the duality of the
quantifiers.

For a formula 1p € CGF in NNF, let cl(1)) be
the smallest set that contains 1 and is closed
under sub-formulas. Let C be a set of con-
stants. With cl(y, C) we denote the set

cl(, C) = {p(a) : a C Cp(x) € cl(y)}.

The width of a formula ¢ € CGF is defined
by

width(v) := max{|free(p)| : ¢ € cl(¢)}.

3 A Tableau Algorithm for
CGF

For various modal and description logics, de-
cidability can be shown by means of tableau
algorithms, where satisfiability of a formula)
is decided by a syntactically guided search for
a model for 1. Examples for these kind of al-
gorithms can be found, e.g., in [13, 15, 7, 12].
Models are usually represented by a graph in
which the nodes correspond to worlds and the
edges correspond to the accessibility relations
in the model. Each node is labeled with a
set formulas that this node must satisfy, and
new edges and nodes are created as required
by existential modalities. Since many modal
and description logics have the tree model
property, the graphs generated by these algo-
rithms are trees, which allows for simpler algo-
rithms and easier implementation and optimi-
sation of these algorithms. Indeed, some of the

fastest implementations of modal and descrip-
tion logics satisfiability algorithms are based on
tableau calculi [11].

For many modal or description logics, e.g. K
or ALC, termination of these algorithms is due
to the fact that the modal depth of the formulas
appearing at a node strictly decreases with ev-
ery step from the root of the tree. For other log-
ics, e.g., K4, K with the universal modality, or
the expressive DL SHZ Q, this is no longer true
and termination has to be enforced by other
means. One possibility for this is blocking, i.e.,
stopping the creation of new successor nodes
below a node v if there already is an ancestor
node w that is labeled with similar formulas
as v. Intuitively, in this case the model can
fold back from the predecessor of v to w, creat-
ing a cycle. Unraveling of these cycles recovers
an (infinite) tree model. Since the algorithms
guarantee that the formulas occurring in the la-
bel of the nodes stem from a finite set (usually
the sub-formulas of the input formula), every
growing path will eventually contain a blocked
node, preventing further growth of this path
and (together with a bound on the degree of the
tree) ensuring termination of the algorithm.

Our investigation of a tableau algorithm for
CGF starts with the observation that CGF also
has some kind of tree model property.

Definition 3.1. Let 7 be a relational vocabu-
lary. A T-structure A has tree width k if k € N
is minimal with the following property.

There exists a directed tree T = (V, E) and a
function f :V — 24 such that

o for everyv eV, |f(v)] <k+1,

o for every R € 7 and a € R, there exists
v eV witha C f(v), and

o for every a € A, the set Vo = {v € V
a € f(v)} induces a subtree of T

Every mnode v of T induces a substructure
F(v) C A of cardinality at most k + 1. Since
f(v) may be empty we, admit empty substruc-
tures. The tuple (T, (F(v))yer) 18 called a tree
decomposition of 2.

A logic L has the generalised tree model
property if there exists a computable function

t, assigning to every sentence Y € L a natural
number t(y) such that, if 1 is satisfiable, then
¥ has a model of tree width at most t(1)).

Fact 3.2 (Tree Model Property for CGF).
Every satisfiable sentence ¢ € CGF of width
k has a countable model of tree width at most

k—1.

This is a simple corollary of [5], Theorem 4,
where the same result is given for uCGF, that is
CGF extended by a least fixed point operator.

Fact 3.2 is the starting point for our defi-
nition of a completion tree for a formula ¢ €
CGF. A node v of such a tree no longer stands
for a single element of the model as in the
modal case, but rather for a substructure §(v)
of a tree decomposition of a model. To this
purpose, we label every node v with a set C(v)
of constants (the elements of the substructure)
and a subset of ¢l(i, C(v)), reflecting the for-
mulas that must hold true for these elements.

To deal with auziliary elements—elements
helping to form a clique in G(2l) that are not
part of this clique themselves—we will use x
as a placeholder for an unspecified element in
The following definitions are useful
when dealing with these generalised atoms.

atoms.

Definition 3.3. Let K denote an infinite set
of constants and x & K. For any set of con-
stants C C K we set C* = C' U {x}. We use
t1,t2,... to range over elements of K*. The
relation >* is defined by

Rty ...t >* Rt ...t iff foralli € {1...n}
either t; = * or t; = t.

For an atom (B and a set of formulas ® we de-
fine B €* @ iff there is a ' € ® with 8>* 3.

For a set of constants C C K and an atom
8= Rty ...t,, we define

ti ift; €C
Ble = Rty ...t where t;:{‘ /i

x otherwise

We use the notation a* to indicate that the
tuple a* may contain *’s. Obviously, >* is tran-
sitive and reflexive, and g|5 >* @ for all atoms
B and sets of constants C'.

While these are all syntactic notions, they
have a semantic counterpart that clarifies the
intuition of * standing for an unspecified ele-
ment. Let a’ denote the tuple obtained from a
tuple a* by replacing every occurrence of * in
a* with a distinct fresh variable, and let z be
precisely the variables used in this replacement.
For an atom (, we define

2A = B(a*) iff AR Iz.B(a’).
It is easy to see that

B(a) >* B(b)
B(a) €* ®

A(b) = f(a)
® = pa)

implies

implies

because, if a>*b, then b is obtained from a by
replacing some * with constants, which provide
witnesses for the existential quantifier.

Definition 3.4 (Compl. Tree, Tableau).
Let v € CGF be a closed formula in NNF.
A completion tree T = (V,E,C,A,/N) for
P is a wvertex labeled tree (V,E) with the
labeling function C labeling each node v € V
with a subset of K, A labeling each node
v € V with a subset of cl(y,C(v)*) such that
* occurs only in atoms (without equality) and
the function N : V. — N mapping each node to
a distinct natural number, with the additional
property that, if v is an ancestor of w, then
N(v) < N(w).

A constant ¢ € K is called shared between
two nodes vi,v2 € V, if ¢ € C(vy) N C(vy),
and ¢ € C(w) for all nodes w on the (unique,
undirected, possibly empty) path connecting vy
to vsy.

A node v € V is called directly blocked? by a
node w € V, if w is not blocked, N(w) < N(v)
and there is an injective mapping 7 from C(v)
into C(w) such that, for all constants ¢ € C(v)
that are shared between v and w, 7(c) = ¢, and
m(A(v)) = A(w)|r(c(v)+)- Here and throughout
this paper we use the convention (%) = * for
every function w that verifies a blocking.

2The definition of blocking is recursive. This does
not cause any problems because the status of a node
v only depends on its label and the status of nodes w
with N(w) < N(v). The recursion terminates at the
root node, where the N-value is minimal.

A node is called blocked if it is directly
blocked or if its predecessor is blocked.

A completion tree T contains a clash if there
15 a node v € V such that

e for a constant ¢ € C(v), ¢ # c € A(v), or

e there is an atomic formula B and a tu-
ple of constants a C C(v) such that
{B(a),—f(a)} € A(v).

Otherwise, T is called clash-free. A completion
tree T is called complete if none of the com-
pletion rules given in Figure 1 can be applied to
T. A complete and clash-free completion tree
for 1 is called a tableau for 1.

To test 1 for satisfiability, the tableau algo-
rithm creates an initial tree with only a single
node vy, A(vg) = {9} and C(vy) = 0. The
rules from Figure 1 are successively applied un-
til either a clash occurs, producing output “p
unsatisfiable”, or the tree is complete, in
which case “ip satisfiable” is output.

While our notion of tableaux has many sim-
ilarities to the tableaux appearing in [6], there
are two important differences that make the no-
tion of tableaux here more suitable as basis for
a tableau algorithm.

We will see that every completion tree gen-
erated by the tableau algorithm is finite. Con-
versely, tableaux in [6], in general, can be infi-
nite.

Also, in [6] every node is labeled with a com-
plete (¢, C(v))-type, i.e., every formula ¢ €
cl(y, C(v)) is explicitly asserted true of false at
v. Conversely, a completion tree contains only
assertions about relevant formulas. This im-
plies a lower degree of non-determinism in the
algorithm, which is important for an efficient
implementation.

Theorem 3.5. The tableau algorithm is a
(non-deterministic) decision procedure for

CGF-satisfiability.

Proof: This is an immediate consequence of
the following facts established in the subse-
quent sections.

1. Every sequence of rule applications termi-
nates after a finite number of steps. (Ter-
mination, Lemma 3.7)

RA: if @oAd € A(v) and {p,9} € A(v)
then A(v) := A(v) U {p, 9}
Rv:if @VdeA)and {p,9} NA(v) =0
then A(v) := A(v) U {x} for x € {¢, 9} (chosen non-deterministically)
R=:if a=0beA(v)
then for all w that share a with v, C(w) := (C(w) \ {a}) U {b} and A(w) := A(w)[a > b]
RV: if (Vyz.a(a,y,z))p(a,y)) € A(v), there exists a b C C(v) such that for all atoms
B(x,y,z) € a, B(a,b,x---x) € A(v), and ¢(a,b) & A(v)
then A(v) := A(v) U {p(a,b)}
R3: if (Jyz.a(a,y,z))p(a,y)) € A(v) and for every b,c C C(v),{a(a,b,c),p(a,b)} Z A(v)

and there is no child w of v with {a(a, b, c), ¢(a,

and v is not blocked

A
b)} C C

A(w) for some b, ¢ C

(w)

then let b, ¢ be sequences of distinct and fresh constants that match the lengths of y, z,

create a child w of v with C(w) :=aUbUc and A(w) := {«a(a, b,c),
veV\{w}}

let N(w) =1+ max{N(v) :

v(a,b)}, and

Ry: if p(a*) € A(v),[atomic,w is a neighbour of v with a* N C(w) # 0, and
B8 i) # Alw)
then A(w) = Aw) U {8(a)|g,)
RIV:if ¢(a) € A(v),p(a) universal, and y is a neighbour of z with a C C(w) and ¢(a) ¢ A(w)
then A(w) := A(w) U{p(a)}

Figure 1: The Completion Rules for CGF

2. If 1) is satisfiable, then the rules can be ap-
plied to generate a tableau for . (Com-
pleteness, Lemma, 3.8)

. If the algorithm constructs a tableau for
1, then 1 is satisfiable (Soundness). We
give two alternative proofs for soundness.
One for GF (Lemma 3.14) and one for the
full CGF (Lemma 3.16).

We give two proofs for the soundness of the
tableau algorithm because as corollaries of the
constructions used in the different proofs, we
obtain alternative proofs for the finite model
property of GF (Corollary 3.15) and of the gen-
eralised tree model property of CGF (Corol-
lary 3.17).

3.1 Termination

The following technical lemma is a simple con-
sequence of the completion rules and the block-
ing condition.

Lemma 3.6. Let ¢ € CGF be a closed for-
mula in NNF with |4 = n, width(¢)
and T a completion tree generated for 1 by ap-
plication of the rules in Figure 1. For every
node v € T,

L. |C(v)| < m

:m7

2. |[A(w)| <nx(m+1)™

3. Any £ > 2n*(m+D)™ distinct nodes in T

contain a blocked node.

Lemma 3.7 (Termination). Let ¢ € CGF
be a closed formula in NNF. Any sequence of
rule application of the tableau algorithm start-
ing from the initial tree terminates.

Proof: For any completion tree T generated
by the tableau algorithm, we define || - || : V —
N3 by
[oll :== (IC(v)[, nx (m+1)" —]|A(v)],

[{o € A(v) | triggers the R3-r. for v}|).

The lexicographic order < on N is well-founded,
i.e. it has no infinite decreasing chains. Any

rule application decreases ||v|| w.r.t. < for at
least one node v, and never increases ||v|| w.r.t.
< for an existing node v. However it may create
a new node w. Hence, there can only be a finite
number of applications of rules to every node in
T and an infinite sequence of rule applications
would generate an infinite tree. As a corollary
of Lemma 3.6, we have that the depths of T
is bounded by 2"*(m+1™ 4 1 gince, on any
directed path of that length, there must be a
blocked node. The R3-rule is never applied to
blocked nodes, so paths with blocked nodes can
not grow in length. Hence, T can only be in-
finite due to an infinite branching in T. Any
successor of a node v is generated by applica-
tion of the R3-rule to v. Each such application
generates exactly one successor. Hence, for T
to be inifinite, there must be an infinite number
of applications of the R3-rule to a node v. As
each such application decreases ||v]| we have a
contradiction. "

3.2 Completeness

Lemma 3.8. Let »p € CGF be a closed for-
mula in NNF. If 1 is satisfiable, then there
is a sequence of rule applications starting from
the initial tree that yields a tableau.

Proof: Since 1) is satisfiable, there is a model
A of 1p. We will use 2 to guide the applica-
tion of the non-deterministic RV-rule. For this
we incremently define a function g : (J{C(v) |
v € V} = A such that forallv e V : A =
g(A(v)). We refer to this property by (x).

The set A(v) can contain atomic formulas
a(a*) where x occurs at some positions of a*
and is not mapped to an element of A by g. We
deal with this as described below Definition 3.3
by setting

A g(a(a) iff A Tz.g(a(@)).

CrAM 1: If for a completion tree T there exists
a function g such that (%) holds and a rule is
applicable to T, then it can be applied in a way
that maintains ().

e For the RA- and the RV-rule this is obvi-
ous.

e If the R=-rule is applicable to a node

v € V with a = b € A(v), then A
g(b) = g(b) implies g(a) = ¢g(b). Hence,
for every node w that shares a with v,
g(A(w)) = g(A(w)[a — b]) and the rule
can be applied without violating ().

If the RV-rule is applicable to a node v €
V with (Vyz.a(a,y,z))p(a,y) € A(v),
then there is b C C(v) such that, for
all atoms (3(x,y,z) € a, B(a,b,x--- %) €*
A(v). Hence, from the definition of
€*, there is a tuple ¢* C C(v)*
such that B3(a,b,*--- %) >* B(a,b,c*) and
B(a,b,c*) €* A(v). From (x) we get that
2 = Jz.6(g(a),g(b),z) and since every
z appears in exactly one atom in «, also
2 = Jz.a(g(a), g(b),z). Hence, we have

{2 E{Vy.(3z.a(g(a),y,z) = ¢(g9(a),y)),
Jz.a(g(a),g(b),z)}

which, by Lemma 2.3, implies A |
©(g(a),g(b)) and hence ¢(a,b) can be
added to A(v) without violating (x).

If the R3-rule is applicable to a node v €
V with (Jyz.a(a,y,z))p(a,y), then this
implies

2= g((Fyz.a(a,y,z)p(a,y))

Hence, there are sequences b’,¢’ C A
of elements such that A =
{a(g(a),b’,c'),p(g(a),b’)}. If we define
g such that g(b) = b’ and g(c) = ¢/, then
obviously 2 = {g(a(a,b,c),g(¢(a,b))}.
Note, that this might involve setting
g(bl) = g(bg) for some bl,bQ € b. With
this construction the resulting extended
completion-tree T and extended function
g again satisfy ().

If the R{-rule is applicable to anode v € V
with #(a*) € A(v) and a neighbour w with
a* N C(w) # 0, then it adds ﬁ(a*)|’(‘3(w) to
A(w). From (x) we get that 2 = 3(g(a*)),
and since B(a*)|’é(w) >* B(a*), this im-
plies 2 = ﬂ(g(a*))|’(‘3(w). Hence, adding
ﬁ(a*)|’(‘3(w) to A(w) does not violate (x).

e If the R]V-rule is applicable to a node v €
V with a universal formula ¢(a) € A(v)
and a neighbour w which shares a with
v, (%) yields 2 = ¢(g(a)). Hence, adding
p(a) to A(w) does not violate (x).

CrLamM 2: A completion-tree T for which a
function g exists such that () holds is clash
free.

Assume that T contains a clash, namely,
there is a node v € V such that either a #
a € V(v)—implying A = g(a) # g(a)—, or
that there is a sequence a C C(v), and an
atomic formula ¢ such that {#(a),-8(a)} C
A(v). From (x) it would follow that A |

{B(g(a)),~B(g(a))}, also a contradiction.

These claims yield Lemma 3.8 as follows. Let
T be a tableau for 1. Since 2 = 9, (x) is sat-
isfied for initial tree together with the empty
function g. By Lemma 3.7, any sequence of
applications is finite, and from Claim 1 we get
that there is a sequence of rule-applications
that maintains (*). By Claim 2, this sequence
results in a tableau. "

Lemma 3.8 involves two different kinds of
non-determinism, namely, the choice which
rule to apply to which constraint (as several
rules can be applicable simultaneously), and
which disjunct to choose in an application of
the RV-rule. While the latter choice is don’t-
know non-deterministic, i.e., for a satisfiable
formula only certain choices will lead to the dis-
covery of a tableau, the former choice is don’t-
care non-deterministic. This means that arbi-
trary choices of which rule to apply next will
lead to the discovery of a tableau for a satis-
fiable formula. For an implementation of the
tableau algorithm this has the following con-
sequences. Exhaustive search is necessary to
deal with all possible expansions of the RV-rule,
but arbitrary strategies of choosing which rule
to apply next and where will lead to a correct
implementation, although the efficiency of the
implementation will strongly depend on a so-
phisticated strategy.

3.3 Correctness

In order to prove the correctness of the tableau
algorithm we have to show that the existence
of a tableau for 1 implies satisfiability of).
To this purpose, we will construct an, indeed
finite, model from a tableau. The following ap-
plies only to GF; the generalization to CGF
is yet work in progress and can at this point
only be conjectured. An alternative correctness
proof applicable to the CGF case is given in a
later section in Lemma 3.16, providing a fur-
ther proof for the generalised tree model prop-
erty but omitting the finite model property.

In the following, let ¢ € GF[r] and let T =
(V,E,C,A,N) be a tableau for . W.l.o.g.,
we assume, for every node v € V and every
a € C(v), a = a € A(v). For every block-
ing situation we fix a mapping 7 verifying this
blocking.

Definition 3.9. We make the blocking rela-
tion explicit. For every blocked node v there
is a unique node u blocking v and we define B
as set of all such pairs (u,v). Further define
C(V) :=| J{C(v) : v €V, vnot blocked}.

The equivalence relation ~ on C(V) is the re-
flexive and transitive closure of the set of all
pairs of constants (c,d), where ¢ € C(u) and
d € C(v) for two nodes u and v, (u,v) € B and
the function 7 that verifies the blocking maps
d to c.

We also use ~ as an operator that maps a
constant a to its ~-class a. For tuples of con-
stants a, this operation is performed compo-
nentwise. We say that a C C(v), if for each
a € a there is an a’ € a N C(v).

Definition 3.10. Let v,w € V and a € C(v),
b € C(w). An (a,b)-path in T is a sequence
(s15¢1), .-+, (8K, k) iIn VX C(V) such that ¢; =
a, ¢, = b and for all 1 < 7 < k one of the
following holds.

1. (Si, 8i+1) € Eand ¢ = Cit+1
2. (si,8i+1) € B and m(ciy1) = ¢

3. 1. and 2. for reversed roles of 7 and 7 + 1.

That is, an (a,b)-path verifies a ~ b.

The general idea in the construction of a
model from a tableau is to use C(V)/~ as
the universe and define the relations using
the atomic constraints in the nodes. In gen-
eral, there may be problematic situations in a
tableau that make this construction impossible,
so called dormant clashes.

Definition 3.11 (Dormant Clash). Two
distinct nodes v,w € V, two tuples of con-
stants a,b and a positive literal B form
a dormant clash (v,w,a,b,3) in T, if
a € C(v), b € C(w) and it is the case that
a # b, but a ~ b and either 3(a) € A(v)
and B(b) & A(w) or pla) € A(v) and
B(b) € A(w).

Note that for each dormant clash
(v,w,a,b,[), the intersection of the sets
P, ={p : pisan (a;b;)-path}, 1 < i < |al,
is empty. Any path included in all P; would
successively let the complete atomic infor-
mation about a and b be propagated from v
to w using RJ, either producing a true clash
or contradicting the definition of a dormant
clash.

Further, there are constants a; € a and b; €
b, a; # b but a; ~ b;, such that for some
(8iy¢i)s (Sit1,¢ip1) on every (ag, by)-path, either
s; is blocked by s;11 (or vice versa) and the
belonging injection 7 maps ¢; to ¢jy1 (¢jy1 to
¢i), or there is a node s blocking both s; and
s;+1 such that for the respective injections 7y, :
C(si) = C(s) and 7y, : C(si41) — C(s) we
have m,,(c1) = 7y, (cit1). It follows that B
contains (s;, $;41) (or (sij11,8;)) in the first and
both (s, s;) and (s, $;41) in the second case.

Definition 3.12. Given a tableau T, the set
of critical edges of T, S = S(T), is a subset of
B defined as follows.

e For each dormant clash C' = (v, w, a, b, 3)
we choose an index t such that for a; € a
and by € b we have a; # b;. Let S contain
the first B-edge from each (ay, b;)-path.

By making enough (but finitely many) iso-
morphic copies of all subtrees of the tableau

below the root, it is possible to redirect all crit-
ical edges into different copies in a manner that
gets rid of all (isomorphic copies of) dormant
clashes.

Lemma 3.13. If there is a finite tableau T for
1, then there is also a finite tableau T for 1
that does not contain dormant clashes.

The construction used to show this Lemma
is omitted in this paper and can be found in

[9].

Lemma 3.14. Let ¢ € GF[7]| and let T be a
tableau for 1p. Then 1 is (finitely) satisfiable.

Proof: According to Lemma 3.13 we assume
T = (V,E,C,A,N) to be a tableau for 1 that
does not contain critical edges.

Towards the finite satisfiability we construct
a finite structure 2 = QA(T) with universe
A := C(V)/~. For each relation R € 7 and
each tuple a € A of matching arity let a € R¥
iff there is a node v € V and a tuple of con-
stants b € C(v) such that all b; ~ a; and
Rb € A(v). Note that with R} and the non-
existence of dormant clashes, this is the case iff
the same holds true independent of the specific
choice of b or v. Hence 2 is well defined.

CLAIM: A =).

This is implied by the stronger statement
that for every closed formula ¢ using constants
from a that appears in the A-label of some un-
blocked node v of T, pla +— a] holds in 2.
Again ¢ is assumed to be in NNF.

e For equality statements this is immediate.
The R=-rule makes sure, that distinct con-
stants occuring at a common node have
distinct ~-classes. For inequality state-
ments, assume a # b € A(v), but a ~ b.
Then we can find an (a,b)-path contain-
ing a node w # v and a constant ¢ € C(w)
with @ ~ ¢ ~ b. Since we have assumed
¢ = ¢ € A(v), this would imply the exis-
tence of the dormant clash (v, w, ab, cc,c =
¢) in T.

e For an atomic sentence Ra, we get 2 |=
Ra immediately from the construction of

2. In case of a negated atomic sentence,
assume p(a) = "Ra € A(v) but A = Ra.
This implies the existence of a (dormant)
clash in T.

For positive Boolean combinations the ar-
gument is immediate.

Let p(a) = (Jy.Bla,y))n(a,y). If, for
some b € C(v), 8(a,b),n(a,b) € A(v),
we note that 2 = n(a, b) and A = 5(a,b)
by induction hypothesis for g and .

If there is no b € C(v) with
B(a,b),n(a,b) € A(v), then applica-
tion of the R3-Rule yields a successor
node w of v with constants b € C(w)
such that S(a,b),n(a,b) € A(w). If w is
not blocked, the claim again follows by
induction hypothesis for 5 and 7.

If, however, w is blocked, consider the
node u with (u,w) € B and the injection
m : C(w) — C(u). Then B(m(a),n(b))
and n(w(a), (b)) are in the A-label of u.
Since all pairs of constants (a,a’) where
a’ m(a) are in the same ~-class, it
follows by induction that 2 = G(a,b) A

n(a,b), and hence ¢(a) holds in 2.

Finally let p(a) = (Vy.B(a,y))n(a,y). As-
sume that there is a tuple b such that
2 = A(a,b). Then there is a node w
where a Ub C C(w), ie., there are tu-
ples a’,b’ C C(w) with a’ ~ a and
b’ ~ b. Moreover, 5(a’,b’) € A(w) and
p(a') € A(w). Hence, the RV-rule is ap-
plicable for ¢(a’) at w and must have
been applied because T is complete. This
gives us n(a’,b’) € A(v), which, by in-
duction, yields 2 |= n(a’,b’) and hence
A = n(a,b).

Unfortunately, for CGF it is not sufficient
to get rid of the dormant clashes, but one
has to deal also with ewvil cliqgues. These are
cliques in the Gaifman graph of the constructed
model that are not explicitly represented in the
tableau and are only caused by folding back
from blocked to blocking nodes. These cliques

10

might interfere with universally quantified sub-
formulas of the input formula 1 in a way that
leads to the obtained structure not being a
model for i even though it was constructed
from a tableau for 1. Although we believe that
it is possible to construct a finite model from a
tableau using a similar construction to the one
used to establish the result for GF, the proof
remains part of future work.

Hence, we only obtain the finite model prop-
erty of the GF as a corollary from this.

Corollary 3.15. GF has the finite model
property.

Proof: 1If ¢ € GF[r] is satisfiable, then, by
Lemma 3.8, it has a finite tableau. As shown
in the proof of Lemma 3.14, such a tableau in-

duces a finite model for 1) "

3.4 Correctness, alternative version

Since the construction used in the proof of
Lemma 3.14 so far could only be shown to be
valid for GF, we still need to show soundness
of the algorithm for CGF. In this section, we
will give an alternative proof for the soundness
of the algorithm, which is valid also for CGF.
From the construction employed in the proof
we obtain and alternative proof of Fact 3.2 as
a corollary.

Lemma 3.16. Let v € CGF[r] with k =
width(v) and let T be a tableau for 1) generated
by the tableau algorithm. Then 1 is satisfiable
and has a model of tree width at most k — 1.

Due to limited space, we refer to [9] for the
full proof and give only a sketch here.
Proof: TLet T = (V,E,C,A,N) a tableau
for ¢. Using an unraveling construction, we

will construct a model for 4 of width at most

k —1 from T. We define
V., ={v €V : v is not indirectly blocked }

and Paths(T) C V! (the set of non-empty
strings over V) inductively defined by?

3This complicated form of unraveling, where we
record both blocked and blocking node is necessary be-
cause there might be a situation where two successors
v1,v2 of a node are blocked by the same node w.

o [72] € Paths(T) for the root vy of T,

o if [Z—,i:j—,z] € Paths(T), w is a succes-
sor of v, and w is not blocked, then
% ... 5—,2%] € Paths(T),

o if [”—,15—,2] € Paths(T), w is a successor

blocked by the node u € V, then

.2 L] € Paths(T).

vy, w

vy
vy
of v,
(%

o

The set Paths(T) forms a tree, with p’ be-
ing a successor of p if p’ is obtained from p by
concatenating one element » at the end. We
define the auxiliary functions Tail, Tail' by set-
ting Tail(p) = v, and Tail'(p) = v, for every
pathp =[% ... Z—,Z] We further define

1

Using Claim 2, we can show that the blocking
condition and the R}- and R}V-rule work as
desired.

Claim 3: TLet p,gq € Paths(T), a C
C(Tail(p)), b € C(Tail(g))) and (a,p) ~ (b,q).

e For every atomic formula 3, G(a, - - - x)€*
A(Tail(p)) iff B(b,*---*) €* A(Tail(q)).

e For every universal formula ¢, ¢p(a) €
A(Tail(p)) iff p(b) € A(Tail(q)).

Due to Claim 3, we can now define a struc-
ture A over the universe A C(T)/~ by
setting, for a relation R € 7 of arity m,
([a1,p1]xs - - - » [@m, Pm)~) € R iff there is a
path p € Paths(T) and constants c,..

.Cm

C(T) = {(a,p) : p € Paths(T) A a € C(Tail(p))}such that (¢;,p) € [a;,pi]l~ and Rey...cp €

and the relation ~ as the smallest symmetric
relation on C(T) satisfying

e (a,p) ~ (a,q) if Tail'(¢) is an unblocked
successor of Tail(p) and a € C(Tail(p)) N
C(Tail'()),

e (a,p) ~ (b,q) if Tail'(q) is a blocked succes-
sor of Tail(p), a € C(Tail(p)) N C(Tail'(q))
and m(a) = b for the function 7 that veri-
fies that Tail'(¢) is blocked by Tail(q).

With ~ we denote the reflexive, transitive clo-
sure of ~. First we need to prove some techni-
calities for this unraveling.

Claim 1: Let p € Paths(T) and a,b €
C(Tail(p)). Then (a,p) = (b,p) iff a = 0.

Claim 1 is shown by contradiction. For a # b
with (a,p) = (b,p) we take a shortest ~-path
from (a,p) to (b, p), which must be of the form
(a,p) ~ (¢,q) ~ (b,p). This implies that
Tail'(¢) must be blocked by Tail(q) (because
otherwise a = b = ¢ would hold), which im-
plies that the function 7 verifying this blocking
cannot be injective. This is impossible.

Since the set Paths(T) is a tree, and as a
consequence of Claim 1, we get the following.

Claim 2: Let p,p’ € Paths(T) with p

€

[5_'15_'2’ p = [Z—,ig—,z% If, for a
C(vn),b € C(w), (a,p) =~ (b,p') then (a,p) ~

(b,p").

11

A(Tail(p)).

It remains to show that this construction
yields 2 = 4. This is a consequence of the fol-
lowing claim that can be shown by induction
over the structure of the formula .

Claim 4: For every path p € Paths(T) and
a C C(Tail(p)), if p(a) € A(Tail(p)), then A =
o([a,pl~)-

As a special instance of Claim 4 we get that
A = 1. Due to Lemma 3.6, for every node
v € V, |C(v)| < width(¢)) and hence 2 has
tree width at most width(«) — 1. .
Corollary 3.17. CGF, and hence also
PF/LGF /GF have the generalised tree model

property.

Proof: Let ¢ € CGF[r] be satisfiable. Then,
from Lemma 3.8 we get that there is a tableau
T for 1. By Lemma 3.16, T induces a model for
1) of tree width at most width())—1. Note that
we have never relied on Fact 3.2 to obtain any of
the results in this paper and hence have indeed
given an alternative proof for the generalised
tree model property of CGF.

4 Conclusion

We have developed a tableau algorithm for
CGF, which we hope can serve as basis for

an efficient implementation of a decision pro-
cedure for CGF. This hope is justified by the
fact that some of the most efficient implemen-
tations of modal or description logic reasoners
are based on tableau calculi similar to the one
for CGF presented in this paper. As a corollary
from the constructions used to prove the cor-
rectness of the tableau algorithm, we give an, in
our opinion, simpler proof for the finite modal
property of GF. An extension of our approach
to CGF is part of future work. We also give a
new proof of the fact that GF/LGF/CGF have
the generalised tree model property.

Acknowledgements

We would like to thank Andrei Voronkov for
helpful discussions. The second author is sup-
ported by the DFG, Project No. GR 1324/3-1.

References

[1] H. Andréka, J. van Benthem, and I. Németi.
Modal languages and bounded fragments of predi-
cate logic. Journal of Philosophical Logic, 27:217—
274, 1998.

F. M. Donini, M. Lenzerini, D. Nardi, and
W. Nutt. The complexity of concept languages.
Information and Computation, 134(1):1-58, 1997.

2]

H. Ganzinger and H. de Nivelle. A superposition
decision procedure for the guarded fragment with
equality. In Proc. 14th IEEE Symp. on Logic in
Computer Science, pages 295-303, 1999.

[4] E. Gradel. On the restraining power of guards.
Journal of Symbolic Logic. To appear.

[5] E. Grddel. Decision procedures for guarded log-
ics. In H. Ganzinger, editor,Proceedings of 16th In-
ternational Conference on Automated Deduction,
volume 1632 of Lecture Notes in Artificial Intelli-
gence, pages 31-51. Springer-Verlag, 1999.

E. Gradel and I. Walukiewicz. Guarded fixed point
logic. In Proc. 14th IEEE Symp. on Logic in Com-
puter Science, pages 45-54, 1999.

[6]

J. Y. Halpern and Y. Moses. A guide to complete-
ness and complexity for model logics of knowledge
and belief. Artificial Intelligence, 54(3):319-379,
April 1992.

B. Herwig. Extending partial isomorphisms on fi-
nite structures. Combinatorica, 15:365-371, 1995.

12

[9]

[10]

[11]

[12]

[15]

[16]

[17]

C. Hirsch and S. Tobies. A tableau algo-
rithm for the clique guarded fragment. LTCS-
Report 00-03, LuFG Theoretical Computer Sci-
ence, RWTH Aachen, Germany, 2000. On-
line available from http://www-1ti.informatik.
rwth-aachen.de/Forschung/Reports.html.

I. Hodkinson Loosely guarded fragment of first-
order logic has the finite model property. Submit-
ted, 2000. Online available from http://wuw.doc.
ic.ac.uk/"imh/index.html.

I. Horrocks, P. F. Patel-Schneider, and R. Sebas-
tiani. An analysis of empirical testing for modal
decision procedures. Logic Journal of the IGPL,
8(3):293-323, 2000.

I. Horrocks, U. Sattler, and S. Tobies. Practi-
cal reasoning for expressive description logics. In
H. Ganzinger, D. McAllester, and A. Voronkov,
editors, Proceedings of the 6th International Con-
ference on Logic for Programming and Automated
Reasoning (LPAR’99), number 1705 in Lecture
Notes in Artificial Intelligence, pages 161-180.
Springer-Verlag, September 1999.

R. Ladner. The computational complexity of prov-
ability in systems of propositional modal logic.
SIAM Journal on Computing, 6:467-480, 1977.

M. Marx. Tolerance Logic. In Journal of Logic,
Language and Computation. To appear. On-
line availble from http://turing.wins.uva.nl/
“marx/papers.html.

M. Schmidt-Schau8 and G. Smolka. Attributive
concept descriptions with complements. Artificial
Intelligence, 48:1-26, 1991.

J. van Benthem. Dynamic bits and pieces. ILLC
research report, University of Amsterdam, 1997.

C. Weidenbach. SPASS—version 0.49. J. of Au-
tomated Reasoning, 18(2):247-252, April 1997.

