
A Tableau Algorithm for the Clique Guarded Fragment

Extended Abstrat

Colin Hirsh

Mathematishe Grundlagen der Informatik

RWTH Aahen

hirsh�s.rwth-aahen.de

Stephan Tobies

LuFG Theoretial Computer Siene

RWTH Aahen

tobies�s.rwth-aahen.de

1 Introdution

The Guarded Fragment of �rst-order logi,

introdued by Andr�eka, van Benthem, and

N�emeti [1℄, has been a suessful attempt to

transfer many good properties of modal, tem-

poral, and desription logis to a larger frag-

ment of prediate logi. Among these are de-

idability, the �nite model property, invariane

under an appropriate variant of bisimulation,

and other nie model theoreti properties [1, 4℄.

The Guarded Fragment (GF) is obtained

from full �rst-order logi through relativisation

of quanti�ers by so-alled guard formulas. Ev-

ery appearane of a quanti�er in GF must be

of the form

9y(�(x;y) ^ '(x;y)) or 8y(�(x;y) ! '(x;y));

where � is a positive atomi formula, the guard,

that ontains all free variables of '. This gener-

alises quanti�ation in modal and temporal log-

is, where quanti�ation is restrited to those

elements reahable via some aessibility rela-

tion.

By allowing for more general formulas as

guards while preserving the idea of quanti�a-

tion only over elements that are lose together

in the model, one obtains generalisations of GF

whih are still well-behaved in the above sense.

Most importantly, one an obtain the loosely

guarded fragment (LGF) [16℄ and the lique

guarded fragment (CGF) [5℄, for whih deid-

ability, invariane under lique guarded bisim-

ulation, and some other properties have been

shown in [5℄. The question whether CGF and

LGF have the �nite model property was open

until reently. In [10℄ Hodkinson shows that

LGF and a further variant, the paked fragment

(PF) [14℄, have the �nite model property. In-

deed the paked fragment turns out to be a syn-

tati variant of the lique guarded fragment.

GF, LGF, and CGF are deidable and known

to be 2-ExpTime omplete, whih is shown

in [4, 5℄ using game and automata-based ap-

proahes. While these approahes yield op-

timal worst-ase omplexity results for many

logis, they appear to be unsuitable as a start-

ing point for an eÆient implementation|their

worst-ase omplexity is atually their any-

ase omplexity. Many deidability results

for modal or desription logis are based on

tableau algorithms [13, 7, 2, 12℄. Some of the

fastest implementations of modal satis�ability

proedures are based on tableau aluli [11℄.

Unlike automata algorithms, the average-ase

behaviour in pratie is so good that �nding

really hard problems to test these implementa-

tions has beome a problem in itself.

In this paper, we generalise the priniples

usually found in tableau algorithms for modal

logis to develop a tableau algorithm for CGF.

To the best of our knowledge, this is the �rst

algorithm for CGF that an be used as the

basis for an eÆient implementation

1

. As a

orollary of the onstrutions used to show the

soundness of our algorithm, we obtain that GF

has the �nite model property. While this re-

sult is not new, we feel that our proof is more

1

There are resolution based deision proedures for

GF and LGF [3℄ that are readily implemented using the

saturation theorem prover SPASS [17℄. It is unlear if

this approah an be extended to CGF.

1

elementary as it does not require some more

advaned model-theoreti onstrutions along

[8℄. We onjeture that the same method an

be extended to inlude CGF and LGF. Also,

we obtain an alternative proof for the fat that

CGF has a generalised tree model property, i.e.,

every satis�able CGF formula of width k has a

model of tree width at most k � 1 [5℄.

Due to the limited spae for this extended

abstrat, we refer to [9℄ for most of the proofs.

2 Preliminaries

For the de�nitions of GF and LGF we refer

the reader to [5℄. The lique guarded fragment

CGF of �rst-order logi an be obtained in

two equivalent ways, by either semantially or

syntatially restriting the range of the �rst-

order quanti�ers. In the following we will use

bold letters to refer to tuples of elements of

the universe (a;b; : : :) resp. tuples of variables

(x;y; : : :).

De�nition 2.1 (Semanti CGF). Let � be

a relational voabulary. For a � -struture A

with universe A, the Gaifman graph of A is de-

�ned as the undireted graph G(A) = (A;E

A

)

with

E

A

= f(a; a

0

) : a 6= a

0

; there exists R 2 � and

a 2 R

A

whih ontains both a and a

0

g:

Under lique guarded semantis we understand

the modi�ation of standard �rst order seman-

tis, where, instead of ranging over all elements

of the universe, a quanti�er is restrited to ele-

ments that form a lique in the Gaifman graph,

inluding the binding for the free variables of

the matrix formula. More preisely, let A be

a � -struture and � an environment mapping

variables to elements of A. We de�ne the model

relation indutively over the struture of formu-

las as the usual FO semantis with the exep-

tion

A; � j= 8y:'(x; y) i� for all a 2 A suh that

�(x) [fag forms a lique in G(A)

it is the ase that A; �[x 7! a℄ j= ' ,

and a similar de�nition for the existential ase.

With CGF we denote �rst order logi restrited

to lique guarded semantis.

De�nition 2.2 (Syntati CGF). Let � be

a relational voabulary. A formula � is a

lique-formula for a set x � free(�) if � is a

onjuntion of atoms suh that eah two ele-

ments from x oexist in at least one atom, eah

atom ontains at least two element from x, and

eah element from free(�) n x ours exatly

one in one atom. In the following, we will

identify a lique-formula � with the set of its

onjunts.

The syntati CGF is indutively de�ned as

follows.

1. Every relational atomi formula

Rx

i

1

: : : x

i

m

or x

i

= x

j

belongs to

CGF.

2. CGF is losed under boolean operations.

3. If x;y; z are tuples of variables, �(x;y; z)

is a lique-formula for x [y and '(x;y)

is a formula in CGF suh that free(') �

x [y,

then 9yz:(�(x;y; z) ^ '(x;y))

and 8yz:(�(x;y; z) ! '(x;y))

belong to CGF.

We will use (9yz:(�(x;y; z))'(x;y) and

(8yz:(�(x;y; z))'(x;y) as alternative no-

tations for 9yz:(�(x;y; z) ^ '(x;y)) and

8yz:(�(x;y; z) ! '(x;y)) respetively.

The following Lemma an be shown by ele-

mentary formula manipulation.

Lemma 2.3. Let �(x;y; z) be a lique-

formula for x;y. Then

8yz:(�(x;y; z) ! '(x;y))

� 8y:(9z:�(x;y; z) ! '(x;y)):

Some further transformations an be used to

show that a paked quanti�ation an be sim-

ulated by a syntati lique guarded formula

yielding the following result.

2

Lemma 2.4. PF and CGF are equally expres-

sive.

The use of the name CGF both for the se-

manti and the syntati lique guarded frag-

ment is justi�ed by the following Lemma.

Lemma 2.5. Over any �nite relational voab-

ulary the syntati and semanti versions of the

CGF are equally expressive.

Proof sketh: By some elementary equiv-

alene transformations, every syntatially

lique guarded formula an be brought into a

form where swithing from standard semantis

to lique guarded semantis does not hange

its meaning. Conversely, for any �nite signa-

ture there is a �nite disjuntion lique(x; y; z)

of lique-formulas for x; y suh that a; b form

a lique in G(A) i� A j= 9z:lique(a; b; z). By

guarding every quanti�er with suh a formula

and applying some elementary formula trans-

formations and Lemma 2.3, we get, for every

FO formula , a syntatially lique guarded

formula that is equivalent to under lique

guarded semantis. If we �x a �nite relational

voabulary, this transformation is polynomial

in the width of the formula.

In the following we will only onsider the syn-

tati variant of the lique guarded fragment.

At a �rst glane the expressiveness of CGF

and the loosely guarded fragment LGF are in-

omparable. While the auxiliary variables of

the CGF allow additional expressiveness, there

are also LGF-formulas that are not (syntati-

ally) lique guarded. In CGF, a guard � in

Qyz:�(x;y; z) neessarily ontains every pair

from x [y in (at least) one atom. In LGF

a guard � in Qy:�(x;y) need only ontain all

ombinations of a variable from x with one

from x [y in (at least) one guard atom. An

example for a loosely guarded formula that is

not (syntatially) lique guarded is

 = (9xy:Rxy)(8z:(Rxz ^Ryz))'(x; y; z)

beause x and y do not oexist in the guard of

the universal quanti�er. Yet, an be turned

into a lique guarded formula by adding the

guard Rxy of the existential quanti�er to the

guard of the universal quanti�er. This yields

the guard Rxy ^ Rxz ^ Ryz, a lique formula

for x; y; z. Sine it is always possible to lique-

guard a loosely guarded formula in this way,

LGF is ontained in CGF. It is also possible to

show that CGF is stritly more expressive than

LGF [5℄.

De�nition 2.6 (NNF, Closure, Width).

Let 2 CGF be losed. In the following,

we assume all formulas to be in negation

normal form (NNF), where negation ours

only in front of atomi formulas. Every

formula in CGF an be transformed into NNF

in linear time by pushing negation inwards

using DeMorgan's law and the duality of the

quanti�ers.

For a formula 2 CGF in NNF, let l() be

the smallest set that ontains and is losed

under sub-formulas. Let C be a set of on-

stants. With l(;C) we denote the set

l(;C) = f'(a) : a � C;'(x) 2 l()g:

The width of a formula 2 CGF is de�ned

by

width() := maxfjfree(')j : ' 2 l()g:

3 A Tableau Algorithm for

CGF

For various modal and desription logis, de-

idability an be shown by means of tableau

algorithms, where satis�ability of a formula

is deided by a syntatially guided searh for

a model for . Examples for these kind of al-

gorithms an be found, e.g., in [13, 15, 7, 12℄.

Models are usually represented by a graph in

whih the nodes orrespond to worlds and the

edges orrespond to the aessibility relations

in the model. Eah node is labeled with a

set formulas that this node must satisfy, and

new edges and nodes are reated as required

by existential modalities. Sine many modal

and desription logis have the tree model

property, the graphs generated by these algo-

rithms are trees, whih allows for simpler algo-

rithms and easier implementation and optimi-

sation of these algorithms. Indeed, some of the

3

fastest implementations of modal and desrip-

tion logis satis�ability algorithms are based on

tableau aluli [11℄.

For many modal or desription logis, e.g. K

or ALC, termination of these algorithms is due

to the fat that the modal depth of the formulas

appearing at a node stritly dereases with ev-

ery step from the root of the tree. For other log-

is, e.g., K4, K with the universal modality, or

the expressive DL SHIQ, this is no longer true

and termination has to be enfored by other

means. One possibility for this is bloking, i.e.,

stopping the reation of new suessor nodes

below a node v if there already is an anestor

node w that is labeled with similar formulas

as v. Intuitively, in this ase the model an

fold bak from the predeessor of v to w, reat-

ing a yle. Unraveling of these yles reovers

an (in�nite) tree model. Sine the algorithms

guarantee that the formulas ourring in the la-

bel of the nodes stem from a �nite set (usually

the sub-formulas of the input formula), every

growing path will eventually ontain a bloked

node, preventing further growth of this path

and (together with a bound on the degree of the

tree) ensuring termination of the algorithm.

Our investigation of a tableau algorithm for

CGF starts with the observation that CGF also

has some kind of tree model property.

De�nition 3.1. Let � be a relational voabu-

lary. A � -struture A has tree width k if k 2 N

is minimal with the following property.

There exists a direted tree T = (V;E) and a

funtion f : V ! 2

A

suh that

� for every v 2 V , jf(v)j � k + 1,

� for every R 2 � and a 2 R

A

, there exists

v 2 V with a � f(v), and

� for every a 2 A, the set V

a

= fv 2 V :

a 2 f(v)g indues a subtree of T .

Every node v of T indues a substruture

F(v) � A of ardinality at most k + 1. Sine

f(v) may be empty we, admit empty substru-

tures. The tuple hT; (F(v))

v2T

i is alled a tree

deomposition of A.

A logi L has the generalised tree model

property if there exists a omputable funtion

t, assigning to every sentene 2 L a natural

number t() suh that, if is satis�able, then

 has a model of tree width at most t().

Fat 3.2 (Tree Model Property for CGF).

Every satis�able sentene 2 CGF of width

k has a ountable model of tree width at most

k � 1.

This is a simple orollary of [5℄, Theorem 4,

where the same result is given for �CGF, that is

CGF extended by a least �xed point operator.

Fat 3.2 is the starting point for our de�-

nition of a ompletion tree for a formula 2

CGF. A node v of suh a tree no longer stands

for a single element of the model as in the

modal ase, but rather for a substruture F(v)

of a tree deomposition of a model. To this

purpose, we label every node v with a set C(v)

of onstants (the elements of the substruture)

and a subset of l(;C(v)), reeting the for-

mulas that must hold true for these elements.

To deal with auxiliary elements|elements

helping to form a lique in G(A) that are not

part of this lique themselves|we will use �

as a plaeholder for an unspei�ed element in

atoms. The following de�nitions are useful

when dealing with these generalised atoms.

De�nition 3.3. Let K denote an in�nite set

of onstants and � 62 K. For any set of on-

stants C � K we set C

�

= C [f�g. We use

t

1

; t

2

; : : : to range over elements of K

�

. The

relation �

�

is de�ned by

Rt

1

: : : t

n

�

�

Rt

0

1

: : : t

0

n

i� for all i 2 f1 : : : ng

either t

i

= � or t

i

= t

0

i

:

For an atom � and a set of formulas � we de-

�ne � 2

�

� i� there is a �

0

2 � with � �

�

�

0

.

For a set of onstants C � K and an atom

� = Rt

1

: : : t

n

, we de�ne

�j

�

C

= Rt

0

1

: : : t

0

n

where t

0

i

=

(

t

i

if t

i

2 C

� otherwise

We use the notation a

�

to indiate that the

tuple a

�

may ontain �'s. Obviously,�

�

is tran-

sitive and reexive, and �j

�

C

�

�

� for all atoms

� and sets of onstants C.

4

While these are all syntati notions, they

have a semanti ounterpart that lari�es the

intuition of � standing for an unspei�ed ele-

ment. Let a

0

denote the tuple obtained from a

tuple a

�

by replaing every ourrene of � in

a

�

with a distint fresh variable, and let z be

preisely the variables used in this replaement.

For an atom �, we de�ne

A j= �(a

�

) i� A j= 9z:�(a

0

):

It is easy to see that

�(a)�

�

�(b) implies �(b) j= �(a)

�(a) 2

�

� implies � j= �(a)

beause, if a�

�

b, then b is obtained from a by

replaing some � with onstants, whih provide

witnesses for the existential quanti�er.

De�nition 3.4 (Compl. Tree, Tableau).

Let 2 CGF be a losed formula in NNF.

A ompletion tree T = (V;E;C;�;N) for

 is a vertex labeled tree (V;E) with the

labeling funtion C labeling eah node v 2 V

with a subset of K, � labeling eah node

v 2 V with a subset of l(;C(v)

�

) suh that

� ours only in atoms (without equality) and

the funtion N : V! N mapping eah node to

a distint natural number, with the additional

property that, if v is an anestor of w, then

N(v) < N(w).

A onstant 2 K is alled shared between

two nodes v

1

; v

2

2 V, if 2 C(v

1

) \ C(v

2

),

and 2 C(w) for all nodes w on the (unique,

undireted, possibly empty) path onneting v

1

to v

2

.

A node v 2 V is alled diretly bloked

2

by a

node w 2 V, if w is not bloked, N(w) < N(v)

and there is an injetive mapping � from C(v)

into C(w) suh that, for all onstants 2 C(v)

that are shared between v and w, �() = , and

�(�(v)) = �(w)j

�(C(v)

�

)

. Here and throughout

this paper we use the onvention �(�) = � for

every funtion � that veri�es a bloking.

2

The de�nition of bloking is reursive. This does

not ause any problems beause the status of a node

v only depends on its label and the status of nodes w

with N(w) < N(v). The reursion terminates at the

root node, where the N-value is minimal.

A node is alled bloked if it is diretly

bloked or if its predeessor is bloked.

A ompletion tree T ontains a lash if there

is a node v 2 V suh that

� for a onstant 2 C(v), 6= 2 �(v), or

� there is an atomi formula � and a tu-

ple of onstants a � C(v) suh that

f�(a);:�(a)g � �(v).

Otherwise, T is alled lash-free. A ompletion

tree T is alled omplete if none of the om-

pletion rules given in Figure 1 an be applied to

T. A omplete and lash-free ompletion tree

for is alled a tableau for .

To test for satis�ability, the tableau algo-

rithm reates an initial tree with only a single

node v

0

, �(v

0

) = f g and C(v

0

) = ;. The

rules from Figure 1 are suessively applied un-

til either a lash ours, produing output \

unsatisfiable", or the tree is omplete, in

whih ase \ satisfiable" is output.

While our notion of tableaux has many sim-

ilarities to the tableaux appearing in [6℄, there

are two important di�erenes that make the no-

tion of tableaux here more suitable as basis for

a tableau algorithm.

We will see that every ompletion tree gen-

erated by the tableau algorithm is �nite. Con-

versely, tableaux in [6℄, in general, an be in�-

nite.

Also, in [6℄ every node is labeled with a om-

plete (;C(v))-type, i.e., every formula ' 2

l(;C(v)) is expliitly asserted true of false at

v. Conversely, a ompletion tree ontains only

assertions about relevant formulas. This im-

plies a lower degree of non-determinism in the

algorithm, whih is important for an eÆient

implementation.

Theorem 3.5. The tableau algorithm is a

(non-deterministi) deision proedure for

CGF-satis�ability.

Proof: This is an immediate onsequene of

the following fats established in the subse-

quent setions.

1. Every sequene of rule appliations termi-

nates after a �nite number of steps. (Ter-

mination, Lemma 3.7)

5

R^ : if ' ^ # 2 �(v) and f'; #g 6� �(v)

then �(v) := �(v) [f'; #g

R_ : if ' _ # 2 �(v) and f'; #g \�(v) = ;

then �(v) := �(v) [f�g for � 2 f'; #g (hosen non-deterministially)

R= : if a = b 2 �(v)

then for all w that share a with v;C(w) := (C(w) n fag) [fbg and �(w) := �(w)[a 7! b℄

R8 : if (8yz:�(a;y; z))'(a;y)) 2 �(v); there exists a b � C(v) suh that for all atoms

�(x;y; z) 2 �; �(a;b; � � � � �) 2

�

�(v); and '(a;b) 62 �(v)

then �(v) := �(v) [f'(a;b)g

R9 : if (9yz:�(a;y; z))'(a;y)) 2 �(v) and for every b; � C(v); f�(a;b;); '(a;b)g 6� �(v)

and there is no hild w of v with f�(a;b;); '(a;b)g � �(w) for some b; � C(w)

and v is not bloked

then let b; be sequenes of distint and fresh onstants that math the lengths of y; z;

reate a hild w of v with C(w) := a [b [and �(w) := f�(a;b;); '(a;b)g; and

let N(w) = 1 +maxfN(v) : v 2 V n fwgg

Rl : if �(a

�

) 2 �(v); � atomi; w is a neighbour of v with a

�

\C(w) 6= ;; and

�(a

�

)j

�

C(w)

62 �(w)

then �(w) := �(w) [f�(a)j

�

C(w)

g

Rl8 : if '(a) 2 �(v); '(a) universal; and y is a neighbour of x with a � C(w) and '(a) 62 �(w)

then �(w) := �(w) [f'(a)g

Figure 1: The Completion Rules for CGF

2. If is satis�able, then the rules an be ap-

plied to generate a tableau for . (Com-

pleteness, Lemma 3.8)

3. If the algorithm onstruts a tableau for

 , then is satis�able (Soundness). We

give two alternative proofs for soundness.

One for GF (Lemma 3.14) and one for the

full CGF (Lemma 3.16).

We give two proofs for the soundness of the

tableau algorithm beause as orollaries of the

onstrutions used in the di�erent proofs, we

obtain alternative proofs for the �nite model

property of GF (Corollary 3.15) and of the gen-

eralised tree model property of CGF (Corol-

lary 3.17).

3.1 Termination

The following tehnial lemma is a simple on-

sequene of the ompletion rules and the blok-

ing ondition.

Lemma 3.6. Let 2 CGF be a losed for-

mula in NNF with j j = n, width() = m,

and T a ompletion tree generated for by ap-

pliation of the rules in Figure 1. For every

node v 2 T,

1. jC(v)j � m

2. j�(v)j � n� (m+ 1)

m

3. Any ` > 2

n�(m+1)

m

distint nodes in T

ontain a bloked node.

Lemma 3.7 (Termination). Let 2 CGF

be a losed formula in NNF. Any sequene of

rule appliation of the tableau algorithm start-

ing from the initial tree terminates.

Proof: For any ompletion tree T generated

by the tableau algorithm, we de�ne k � k : V 7!

N

3

by

kvk := (jC(v)j; n� (m+ 1)

m

� j�(v)j;

jf' 2 �(v) j ' triggers the R9-r. for vgj):

The lexiographi order� on N is well-founded,

i.e. it has no in�nite dereasing hains. Any

6

rule appliation dereases kvk w.r.t. � for at

least one node v, and never inreases kvk w.r.t.

� for an existing node v. However it may reate

a new node w. Hene, there an only be a �nite

number of appliations of rules to every node in

T and an in�nite sequene of rule appliations

would generate an in�nite tree. As a orollary

of Lemma 3.6, we have that the depths of T

is bounded by 2

n�(m+1)

m

+ 1, sine, on any

direted path of that length, there must be a

bloked node. The R9-rule is never applied to

bloked nodes, so paths with bloked nodes an

not grow in length. Hene, T an only be in-

�nite due to an in�nite branhing in T. Any

suessor of a node v is generated by applia-

tion of the R9-rule to v. Eah suh appliation

generates exatly one suessor. Hene, for T

to be ini�nite, there must be an in�nite number

of appliations of the R9-rule to a node v. As

eah suh appliation dereases kvk we have a

ontradition.

3.2 Completeness

Lemma 3.8. Let 2 CGF be a losed for-

mula in NNF. If is satis�able, then there

is a sequene of rule appliations starting from

the initial tree that yields a tableau.

Proof: Sine is satis�able, there is a model

A of . We will use A to guide the applia-

tion of the non-deterministi R_-rule. For this

we inremently de�ne a funtion g :

S

fC(v) j

v 2 Vg ! A suh that for all v 2 V : A j=

g(�(v)). We refer to this property by (�).

The set �(v) an ontain atomi formulas

�(a

�

) where � ours at some positions of a

�

and is not mapped to an element of A by g. We

deal with this as desribed below De�nition 3.3

by setting

A j= g(�(a

�

)) i� A j= 9z:g(�(a

0

)):

Claim 1: If for a ompletion treeT there exists

a funtion g suh that (�) holds and a rule is

appliable to T, then it an be applied in a way

that maintains (�).

� For the R^- and the R_-rule this is obvi-

ous.

� If the R=-rule is appliable to a node

v 2 V with a = b 2 �(v), then A j=

g(b) = g(b) implies g(a) = g(b). Hene,

for every node w that shares a with v,

g(�(w)) = g(�(w)[a 7! b℄) and the rule

an be applied without violating (�).

� If the R8-rule is appliable to a node v 2

V with (8yz:�(a;y; z))'(a;y) 2 �(v),

then there is b � C(v) suh that, for

all atoms �(x;y; z) 2 �, �(a;b; � � � � �) 2

�

�(v). Hene, from the de�nition of

2

�

, there is a tuple

�

� C(v)

�

suh that �(a;b; � � � � �)�

�

�(a;b;

�

) and

�(a;b;

�

) 2

�

�(v). From (�) we get that

A j= 9z:�(g(a); g(b); z) and sine every

z appears in exatly one atom in �, also

A j= 9z:�(g(a); g(b); z). Hene, we have

fA j= f8y:(9z:�(g(a);y; z) ! '(g(a);y));

9z:�(g(a); g(b); z)g

whih, by Lemma 2.3, implies A j=

'(g(a); g(b)) and hene '(a;b) an be

added to �(v) without violating (�).

� If the R9-rule is appliable to a node v 2

V with (9yz:�(a;y; z))'(a;y), then this

implies

A j= g((9yz:�(a;y; z))'(a;y)):

Hene, there are sequenes b

0

;

0

� A

of elements suh that A j=

f�(g(a);b

0

;

0

); '(g(a);b

0

)g. If we de�ne

g suh that g(b) = b

0

and g() =

0

, then

obviously A j= fg(�(a;b;); g('(a;b))g.

Note, that this might involve setting

g(b

1

) = g(b

2

) for some b

1

; b

2

2 b. With

this onstrution the resulting extended

ompletion-tree T and extended funtion

g again satisfy (�).

� If the Rl-rule is appliable to a node v 2 V

with �(a

�

) 2 �(v) and a neighbour w with

a

�

\C(w) 6= ;, then it adds �(a

�

)j

�

C(w)

to

�(w). From (�) we get that A j= �(g(a

�

)),

and sine �(a

�

)j

�

C(w)

�

�

�(a

�

), this im-

plies A j= �(g(a

�

))j

�

C(w)

. Hene, adding

�(a

�

)j

�

C(w)

to �(w) does not violate (�).

7

� If the Rl8-rule is appliable to a node v 2

V with a universal formula '(a) 2 �(v)

and a neighbour w whih shares a with

v, (�) yields A j= '(g(a)). Hene, adding

'(a) to �(w) does not violate (�).

Claim 2: A ompletion-tree T for whih a

funtion g exists suh that (�) holds is lash

free.

Assume that T ontains a lash, namely,

there is a node v 2 V suh that either a 6=

a 2 V(v)|implying A j= g(a) 6= g(a)|, or

that there is a sequene a � C(v), and an

atomi formula ' suh that f�(a);:�(a)g �

�(v). From (�) it would follow that A j=

f�(g(a));:�(g(a))g, also a ontradition.

These laims yield Lemma 3.8 as follows. Let

T be a tableau for . Sine A j= , (�) is sat-

is�ed for initial tree together with the empty

funtion g. By Lemma 3.7, any sequene of

appliations is �nite, and from Claim 1 we get

that there is a sequene of rule-appliations

that maintains (�). By Claim 2, this sequene

results in a tableau.

Lemma 3.8 involves two di�erent kinds of

non-determinism, namely, the hoie whih

rule to apply to whih onstraint (as several

rules an be appliable simultaneously), and

whih disjunt to hoose in an appliation of

the R_-rule. While the latter hoie is don't-

know non-deterministi, i.e., for a satis�able

formula only ertain hoies will lead to the dis-

overy of a tableau, the former hoie is don't-

are non-deterministi. This means that arbi-

trary hoies of whih rule to apply next will

lead to the disovery of a tableau for a satis-

�able formula. For an implementation of the

tableau algorithm this has the following on-

sequenes. Exhaustive searh is neessary to

deal with all possible expansions of the R_-rule,

but arbitrary strategies of hoosing whih rule

to apply next and where will lead to a orret

implementation, although the eÆieny of the

implementation will strongly depend on a so-

phistiated strategy.

3.3 Corretness

In order to prove the orretness of the tableau

algorithm we have to show that the existene

of a tableau for implies satis�ability of .

To this purpose, we will onstrut an, indeed

�nite, model from a tableau. The following ap-

plies only to GF; the generalization to CGF

is yet work in progress and an at this point

only be onjetured. An alternative orretness

proof appliable to the CGF ase is given in a

later setion in Lemma 3.16, providing a fur-

ther proof for the generalised tree model prop-

erty but omitting the �nite model property.

In the following, let 2 GF[� ℄ and let T =

(V;E;C;�;N) be a tableau for . W.l.o.g.,

we assume, for every node v 2 V and every

a 2 C(v), a = a 2 �(v). For every blok-

ing situation we �x a mapping � verifying this

bloking.

De�nition 3.9. We make the bloking rela-

tion expliit. For every bloked node v there

is a unique node u bloking v and we de�ne B

as set of all suh pairs (u; v). Further de�ne

C(V) :=

[

fC(v) : v 2 V; v not blokedg:

The equivalene relation � on C(V) is the re-

exive and transitive losure of the set of all

pairs of onstants (; d), where 2 C(u) and

d 2 C(v) for two nodes u and v, (u; v) 2 B and

the funtion � that veri�es the bloking maps

d to .

We also use � as an operator that maps a

onstant a to its �-lass ~a. For tuples of on-

stants a, this operation is performed ompo-

nentwise. We say that
~
a � C(v), if for eah

a 2 a there is an a

0

2 ~a \C(v).

De�nition 3.10. Let v; w 2 V and a 2 C(v),

b 2 C(w). An (a; b)-path in T is a sequene

(s

1

;

1

); : : : ; (s

k

;

k

) inV�C(V) suh that

1

=

a,

k

= b and for all 1 � i < k one of the

following holds.

1. (s

i

; s

i+1

) 2 E and

i

=

i+1

2. (s

i

; s

i+1

) 2 B and �(

i+1

) =

i

3. 1. and 2. for reversed roles of i and i+ 1.

8

That is, an (a; b)-path veri�es a � b.

The general idea in the onstrution of a

model from a tableau is to use C(V)=� as

the universe and de�ne the relations using

the atomi onstraints in the nodes. In gen-

eral, there may be problemati situations in a

tableau that make this onstrution impossible,

so alled dormant lashes.

De�nition 3.11 (Dormant Clash). Two

distint nodes v; w 2 V, two tuples of on-

stants a;b and a positive literal � form

a dormant lash (v; w;a;b; �) in T, if

a 2 C(v), b 2 C(w) and it is the ase that

a 6= b, but a � b and either �(a) 2 �(v)

and �(b) 62 �(w) or �(a) 62 �(v) and

�(b) 2 �(w).

Note that for eah dormant lash

(v; w;a;b; �), the intersetion of the sets

P

i

= fp : p is an (a

i

; b

i

)-pathg, 1 � i � jaj,

is empty. Any path inluded in all P

i

would

suessively let the omplete atomi infor-

mation about a and b be propagated from v

to w using Rl, either produing a true lash

or ontraditing the de�nition of a dormant

lash.

Further, there are onstants a

t

2 a and b

t

2

b, a

t

6= b

t

but a

t

� b

t

, suh that for some

(s

i

;

i

); (s

i+1

;

i+1

) on every (a

t

; b

t

)-path, either

s

i

is bloked by s

i+1

(or vie versa) and the

belonging injetion � maps

i

to

i+1

(

i+1

to

i

), or there is a node s bloking both s

i

and

s

i+1

suh that for the respetive injetions �

s

i

:

C(s

i

) ! C(s) and �

s

i+1

: C(s

i+1

) ! C(s) we

have �

s

i

(

1

) = �

s

i+1

(

i+1

). It follows that B

ontains (s

i

; s

i+1

) (or (s

i+1

; s

i

)) in the �rst and

both (s; s

i

) and (s; s

i+1

) in the seond ase.

De�nition 3.12. Given a tableau T, the set

of ritial edges of T, S = S(T), is a subset of

B de�ned as follows.

� For eah dormant lash C = (v; w;a;b; �)

we hoose an index t suh that for a

t

2 a

and b

t

2 b we have a

t

6= b

t

. Let S ontain

the �rst B-edge from eah (a

t

; b

t

)-path.

By making enough (but �nitely many) iso-

morphi opies of all subtrees of the tableau

below the root, it is possible to rediret all rit-

ial edges into di�erent opies in a manner that

gets rid of all (isomorphi opies of) dormant

lashes.

Lemma 3.13. If there is a �nite tableau T for

 , then there is also a �nite tableau T

0

for

that does not ontain dormant lashes.

The onstrution used to show this Lemma

is omitted in this paper and an be found in

[9℄.

Lemma 3.14. Let 2 GF[� ℄ and let T be a

tableau for . Then is (�nitely) satis�able.

Proof: Aording to Lemma 3.13 we assume

T = (V;E;C;�;N) to be a tableau for that

does not ontain ritial edges.

Towards the �nite satis�ability we onstrut

a �nite struture A = A(T) with universe

A := C(V)=�. For eah relation R 2 � and

eah tuple a 2 A of mathing arity let a 2 R

A

i� there is a node v 2 V and a tuple of on-

stants b 2 C(v) suh that all b

i

� a

i

and

Rb 2 �(v). Note that with Rl and the non-

existene of dormant lashes, this is the ase i�

the same holds true independent of the spei�

hoie of b or v. Hene A is well de�ned.

Claim: A j= .

This is implied by the stronger statement

that for every losed formula ' using onstants

from a that appears in the �-label of some un-

bloked node v of T, '[a 7!
~
a℄ holds in A.

Again ' is assumed to be in NNF.

� For equality statements this is immediate.

The R=-rule makes sure, that distint on-

stants ouring at a ommon node have

distint �-lasses. For inequality state-

ments, assume a 6= b 2 �(v), but a � b.

Then we an �nd an (a; b)-path ontain-

ing a node w 6= v and a onstant 2 C(w)

with a � � b. Sine we have assumed

 = 2 �(v), this would imply the exis-

tene of the dormant lash (v; w; ab; ; =

) in T.

� For an atomi sentene Ra, we get A j=

R
~
a immediately from the onstrution of

9

A. In ase of a negated atomi sentene,

assume '(a) = :Ra 2 �(v) but A j= R
~
a.

This implies the existene of a (dormant)

lash in T.

� For positive Boolean ombinations the ar-

gument is immediate.

� Let '(a) = (9y:�(a;y))�(a;y). If, for

some b 2 C(v), �(a;b); �(a;b) 2 �(v),

we note that A j= �(
~
a;

~

b) and A j= �(
~
a;

~

b)

by indution hypothesis for � and �.

If there is no b 2 C(v) with

�(a;b); �(a;b) 2 �(v), then applia-

tion of the R9-Rule yields a suessor

node w of v with onstants b 2 C(w)

suh that �(a;b); �(a;b) 2 �(w). If w is

not bloked, the laim again follows by

indution hypothesis for � and �.

If, however, w is bloked, onsider the

node u with (u;w) 2 B and the injetion

� : C(w) ! C(u). Then �(�(a); �(b))

and �(�(a); �(b)) are in the �-label of u.

Sine all pairs of onstants (a; a

0

) where

a

0

= �(a) are in the same �-lass, it

follows by indution that A j= �(
~
a;

~

b) ^

�(
~
a;

~

b), and hene '(
~
a) holds in A.

� Finally let '(a) = (8y:�(a;y))�(a;y). As-

sume that there is a tuple b suh that

A j= �(
~
a;

~

b). Then there is a node w

where
~
a [

~

b � C(w), i.e., there are tu-

ples a

0

;b

0

� C(w) with a

0

� a and

b

0

� b. Moreover, �(a

0

;b

0

) 2 �(w) and

'(a

0

) 2 �(w). Hene, the R8-rule is ap-

pliable for '(a

0

) at w and must have

been applied beause T is omplete. This

gives us �(a

0

;b

0

) 2 �(v), whih, by in-

dution, yields A j= �(a

0

;b

0

) and hene

A j= �(a;b).

Unfortunately, for CGF it is not suÆient

to get rid of the dormant lashes, but one

has to deal also with evil liques. These are

liques in the Gaifman graph of the onstruted

model that are not expliitly represented in the

tableau and are only aused by folding bak

from bloked to bloking nodes. These liques

might interfere with universally quanti�ed sub-

formulas of the input formula in a way that

leads to the obtained struture not being a

model for even though it was onstruted

from a tableau for . Although we believe that

it is possible to onstrut a �nite model from a

tableau using a similar onstrution to the one

used to establish the result for GF, the proof

remains part of future work.

Hene, we only obtain the �nite model prop-

erty of the GF as a orollary from this.

Corollary 3.15. GF has the �nite model

property.

Proof: If 2 GF[� ℄ is satis�able, then, by

Lemma 3.8, it has a �nite tableau. As shown

in the proof of Lemma 3.14, suh a tableau in-

dues a �nite model for

3.4 Corretness, alternative version

Sine the onstrution used in the proof of

Lemma 3.14 so far ould only be shown to be

valid for GF, we still need to show soundness

of the algorithm for CGF. In this setion, we

will give an alternative proof for the soundness

of the algorithm, whih is valid also for CGF.

From the onstrution employed in the proof

we obtain and alternative proof of Fat 3.2 as

a orollary.

Lemma 3.16. Let 2 CGF[� ℄ with k =

width() and let T be a tableau for generated

by the tableau algorithm. Then is satis�able

and has a model of tree width at most k � 1.

Due to limited spae, we refer to [9℄ for the

full proof and give only a sketh here.

Proof: Let T = (V;E;C;�;N) a tableau

for . Using an unraveling onstrution, we

will onstrut a model for of width at most

k � 1 from T. We de�ne

V

u

= fv 2 V : v is not indiretly bloked g

and Paths(T) � V

+

u

(the set of non-empty

strings over V

u

) indutively de�ned by

3

3

This ompliated form of unraveling, where we

reord both bloked and bloking node is neessary be-

ause there might be a situation where two suessors

v

1

; v

2

of a node are bloked by the same node w.

10

� [

v

0

v

0

℄ 2 Paths(T) for the root v

0

of T,

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a sues-

sor of v

n

and w is not bloked, then

[

v

1

v

0

1

: : :

v

n

v

0

n

w

w

℄ 2 Paths(T),

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a suessor

of v

n

bloked by the node u 2 V, then

[

v

1

v

0

1

: : :

v

n

v

0

n

u

w

℄ 2 Paths(T).

The set Paths(T) forms a tree, with p

0

be-

ing a suessor of p if p

0

is obtained from p by

onatenating one element

u

w

at the end. We

de�ne the auxiliary funtions Tail;Tail

0

by set-

ting Tail(p) = v

n

and Tail

0

(p) = v

0

n

for every

path p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄. We further de�ne

C(T) = f(a; p) : p 2 Paths(T) ^ a 2 C(Tail(p))g

and the relation � as the smallest symmetri

relation on C(T) satisfying

� (a; p) � (a; q) if Tail

0

(q) is an unbloked

suessor of Tail(p) and a 2 C(Tail(p)) \

C(Tail

0

(q)),

� (a; p) � (b; q) if Tail

0

(q) is a bloked sues-

sor of Tail(p), a 2 C(Tail(p)) \C(Tail

0

(q))

and �(a) = b for the funtion � that veri-

�es that Tail

0

(q) is bloked by Tail(q).

With � we denote the reexive, transitive lo-

sure of �. First we need to prove some tehni-

alities for this unraveling.

Claim 1: Let p 2 Paths(T) and a; b 2

C(Tail(p)). Then (a; p) � (b; p) i� a = b.

Claim 1 is shown by ontradition. For a 6= b

with (a; p) � (b; p) we take a shortest �-path

from (a; p) to (b; p), whih must be of the form

(a; p) � (; q) � (b; p). This implies that

Tail

0

(q) must be bloked by Tail(q) (beause

otherwise a = b = would hold), whih im-

plies that the funtion � verifying this bloking

annot be injetive. This is impossible.

Sine the set Paths(T) is a tree, and as a

onsequene of Claim 1, we get the following.

Claim 2: Let p; p

0

2 Paths(T) with p =

[

v

1

v

0

1

: : :

v

n

v

0

n

℄, p

0

= [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

0

℄. If, for a 2

C(v

n

); b 2 C(w), (a; p) � (b; p

0

) then (a; p) �

(b; p

0

).

Using Claim 2, we an show that the bloking

ondition and the Rl- and Rl8-rule work as

desired.

Claim 3: Let p; q 2 Paths(T), a �

C(Tail(p));b � C(Tail(q))) and (a; p) � (b; q).

� For every atomi formula �, �(a; � � � � �)2

�

�(Tail(p)) i� �(b; � � � � �) 2

�

�(Tail(q)).

� For every universal formula ', '(a) 2

�(Tail(p)) i� '(b) 2 �(Tail(q)).

Due to Claim 3, we an now de�ne a stru-

ture A over the universe A = C(T)=� by

setting, for a relation R 2 � of arity m,

([a

1

; p

1

℄

�

; : : : ; [a

m

; p

m

℄

�

) 2 R

A

i� there is a

path p 2 Paths(T) and onstants

1

; : : :

m

suh that (

i

; p) 2 [a

i

; p

i

℄

�

and R

1

: : :

m

2

�(Tail(p)).

It remains to show that this onstrution

yields A j= . This is a onsequene of the fol-

lowing laim that an be shown by indution

over the struture of the formula '.

Claim 4: For every path p 2 Paths(T) and

a � C(Tail(p)), if '(a) 2 �(Tail(p)), then A j=

'([a; p℄

�

).

As a speial instane of Claim 4 we get that

A j= . Due to Lemma 3.6, for every node

v 2 V, jC(v)j � width() and hene A has

tree width at most width()� 1.

Corollary 3.17. CGF, and hene also

PF/LGF/GF have the generalised tree model

property.

Proof: Let 2 CGF[� ℄ be satis�able. Then,

from Lemma 3.8 we get that there is a tableau

T for . By Lemma 3.16, T indues a model for

 of tree width at most width()�1. Note that

we have never relied on Fat 3.2 to obtain any of

the results in this paper and hene have indeed

given an alternative proof for the generalised

tree model property of CGF.

4 Conlusion

We have developed a tableau algorithm for

CGF, whih we hope an serve as basis for

11

an eÆient implementation of a deision pro-

edure for CGF. This hope is justi�ed by the

fat that some of the most eÆient implemen-

tations of modal or desription logi reasoners

are based on tableau aluli similar to the one

for CGF presented in this paper. As a orollary

from the onstrutions used to prove the or-

retness of the tableau algorithm, we give an, in

our opinion, simpler proof for the �nite modal

property of GF. An extension of our approah

to CGF is part of future work. We also give a

new proof of the fat that GF=LGF=CGF have

the generalised tree model property.

Aknowledgements

We would like to thank Andrei Voronkov for

helpful disussions. The seond author is sup-

ported by the DFG, Projet No. GR 1324/3{1.

Referenes

[1℄ H. Andr�eka, J. van Benthem, and I. N�emeti.

Modal languages and bounded fragments of predi-

ate logi. Journal of Philosophial Logi, 27:217{

274, 1998.

[2℄ F. M. Donini, M. Lenzerini, D. Nardi, and

W. Nutt. The omplexity of onept languages.

Information and Computation, 134(1):1{58, 1997.

[3℄ H. Ganzinger and H. de Nivelle. A superposition

deision proedure for the guarded fragment with

equality. In Pro. 14th IEEE Symp. on Logi in

Computer Siene, pages 295{303, 1999.

[4℄ E. Gr�adel. On the restraining power of guards.

Journal of Symboli Logi. To appear.

[5℄ E. Gr�adel. Deision proedures for guarded log-

is. In H. Ganzinger, editor,Proeedings of 16th In-

ternational Conferene on Automated Dedution,

volume 1632 of Leture Notes in Arti�ial Intelli-

gene, pages 31{51. Springer-Verlag, 1999.

[6℄ E. Gr�adel and I. Walukiewiz. Guarded �xed point

logi. In Pro. 14th IEEE Symp. on Logi in Com-

puter Siene, pages 45{54, 1999.

[7℄ J. Y. Halpern and Y. Moses. A guide to omplete-

ness and omplexity for model logis of knowledge

and belief. Arti�ial Intelligene, 54(3):319{379,

April 1992.

[8℄ B. Herwig. Extending partial isomorphisms on �-

nite strutures. Combinatoria, 15:365{371, 1995.

[9℄ C. Hirsh and S. Tobies. A tableau algo-

rithm for the lique guarded fragment. LTCS-

Report 00-03, LuFG Theoretial Computer Si-

ene, RWTH Aahen, Germany, 2000. On-

line available from http://www-lti.informatik.

rwth-aahen.de/Forshung/Reports.html.

[10℄ I. Hodkinson Loosely guarded fragment of �rst-

order logi has the �nite model property. Submit-

ted, 2000. Online available from http://www.do.

i.a.uk/~imh/index.html.

[11℄ I. Horroks, P. F. Patel-Shneider, and R. Sebas-

tiani. An analysis of empirial testing for modal

deision proedures. Logi Journal of the IGPL,

8(3):293{323, 2000.

[12℄ I. Horroks, U. Sattler, and S. Tobies. Prati-

al reasoning for expressive desription logis. In

H. Ganzinger, D. MAllester, and A. Voronkov,

editors, Proeedings of the 6th International Con-

ferene on Logi for Programming and Automated

Reasoning (LPAR'99), number 1705 in Leture

Notes in Arti�ial Intelligene, pages 161{180.

Springer-Verlag, September 1999.

[13℄ R. Ladner. The omputational omplexity of prov-

ability in systems of propositional modal logi.

SIAM Journal on Computing, 6:467{480, 1977.

[14℄ M. Marx. Tolerane Logi. In Journal of Logi,

Language and Computation. To appear. On-

line availble from http://turing.wins.uva.nl/

~marx/papers.html.

[15℄ M. Shmidt-Shau� and G. Smolka. Attributive

onept desriptions with omplements. Arti�ial

Intelligene, 48:1{26, 1991.

[16℄ J. van Benthem. Dynami bits and piees. ILLC

researh report, University of Amsterdam, 1997.

[17℄ C. Weidenbah. SPASS|version 0.49. J. of Au-

tomated Reasoning, 18(2):247{252, April 1997.

12

