
A Tableau Algorithm for the Clique Guarded Fragment

Extended Abstra
t

Colin Hirs
h

Mathematis
he Grundlagen der Informatik

RWTH Aa
hen

hirs
h�
s.rwth-aa
hen.de

Stephan Tobies

LuFG Theoreti
al Computer S
ien
e

RWTH Aa
hen

tobies�
s.rwth-aa
hen.de

1 Introdu
tion

The Guarded Fragment of �rst-order logi
,

introdu
ed by Andr�eka, van Benthem, and

N�emeti [1℄, has been a su

essful attempt to

transfer many good properties of modal, tem-

poral, and des
ription logi
s to a larger frag-

ment of predi
ate logi
. Among these are de-

idability, the �nite model property, invarian
e

under an appropriate variant of bisimulation,

and other ni
e model theoreti
 properties [1, 4℄.

The Guarded Fragment (GF) is obtained

from full �rst-order logi
 through relativisation

of quanti�ers by so-
alled guard formulas. Ev-

ery appearan
e of a quanti�er in GF must be

of the form

9y(�(x;y) ^ '(x;y)) or 8y(�(x;y) ! '(x;y));

where � is a positive atomi
 formula, the guard,

that
ontains all free variables of '. This gener-

alises quanti�
ation in modal and temporal log-

i
s, where quanti�
ation is restri
ted to those

elements rea
hable via some a

essibility rela-

tion.

By allowing for more general formulas as

guards while preserving the idea of quanti�
a-

tion only over elements that are
lose together

in the model, one obtains generalisations of GF

whi
h are still well-behaved in the above sense.

Most importantly, one
an obtain the loosely

guarded fragment (LGF) [16℄ and the
lique

guarded fragment (CGF) [5℄, for whi
h de
id-

ability, invarian
e under
lique guarded bisim-

ulation, and some other properties have been

shown in [5℄. The question whether CGF and

LGF have the �nite model property was open

until re
ently. In [10℄ Hodkinson shows that

LGF and a further variant, the pa
ked fragment

(PF) [14℄, have the �nite model property. In-

deed the pa
ked fragment turns out to be a syn-

ta
ti
 variant of the
lique guarded fragment.

GF, LGF, and CGF are de
idable and known

to be 2-ExpTime
omplete, whi
h is shown

in [4, 5℄ using game and automata-based ap-

proa
hes. While these approa
hes yield op-

timal worst-
ase
omplexity results for many

logi
s, they appear to be unsuitable as a start-

ing point for an eÆ
ient implementation|their

worst-
ase
omplexity is a
tually their any-

ase
omplexity. Many de
idability results

for modal or des
ription logi
s are based on

tableau algorithms [13, 7, 2, 12℄. Some of the

fastest implementations of modal satis�ability

pro
edures are based on tableau
al
uli [11℄.

Unlike automata algorithms, the average-
ase

behaviour in pra
ti
e is so good that �nding

really hard problems to test these implementa-

tions has be
ome a problem in itself.

In this paper, we generalise the prin
iples

usually found in tableau algorithms for modal

logi
s to develop a tableau algorithm for CGF.

To the best of our knowledge, this is the �rst

algorithm for CGF that
an be used as the

basis for an eÆ
ient implementation

1

. As a

orollary of the
onstru
tions used to show the

soundness of our algorithm, we obtain that GF

has the �nite model property. While this re-

sult is not new, we feel that our proof is more

1

There are resolution based de
ision pro
edures for

GF and LGF [3℄ that are readily implemented using the

saturation theorem prover SPASS [17℄. It is un
lear if

this approa
h
an be extended to CGF.

1

elementary as it does not require some more

advan
ed model-theoreti

onstru
tions along

[8℄. We
onje
ture that the same method
an

be extended to in
lude CGF and LGF. Also,

we obtain an alternative proof for the fa
t that

CGF has a generalised tree model property, i.e.,

every satis�able CGF formula of width k has a

model of tree width at most k � 1 [5℄.

Due to the limited spa
e for this extended

abstra
t, we refer to [9℄ for most of the proofs.

2 Preliminaries

For the de�nitions of GF and LGF we refer

the reader to [5℄. The
lique guarded fragment

CGF of �rst-order logi

an be obtained in

two equivalent ways, by either semanti
ally or

synta
ti
ally restri
ting the range of the �rst-

order quanti�ers. In the following we will use

bold letters to refer to tuples of elements of

the universe (a;b; : : :) resp. tuples of variables

(x;y; : : :).

De�nition 2.1 (Semanti
 CGF). Let � be

a relational vo
abulary. For a � -stru
ture A

with universe A, the Gaifman graph of A is de-

�ned as the undire
ted graph G(A) = (A;E

A

)

with

E

A

= f(a; a

0

) : a 6= a

0

; there exists R 2 � and

a 2 R

A

whi
h
ontains both a and a

0

g:

Under
lique guarded semanti
s we understand

the modi�
ation of standard �rst order seman-

ti
s, where, instead of ranging over all elements

of the universe, a quanti�er is restri
ted to ele-

ments that form a
lique in the Gaifman graph,

in
luding the binding for the free variables of

the matrix formula. More pre
isely, let A be

a � -stru
ture and � an environment mapping

variables to elements of A. We de�ne the model

relation indu
tively over the stru
ture of formu-

las as the usual FO semanti
s with the ex
ep-

tion

A; � j= 8y:'(x; y) i� for all a 2 A su
h that

�(x) [fag forms a
lique in G(A)

it is the
ase that A; �[x 7! a℄ j= ' ,

and a similar de�nition for the existential
ase.

With CGF we denote �rst order logi
 restri
ted

to
lique guarded semanti
s.

De�nition 2.2 (Synta
ti
 CGF). Let � be

a relational vo
abulary. A formula � is a

lique-formula for a set x � free(�) if � is a

onjun
tion of atoms su
h that ea
h two ele-

ments from x
oexist in at least one atom, ea
h

atom
ontains at least two element from x, and

ea
h element from free(�) n x o

urs exa
tly

on
e in one atom. In the following, we will

identify a
lique-formula � with the set of its

onjun
ts.

The synta
ti
 CGF is indu
tively de�ned as

follows.

1. Every relational atomi
 formula

Rx

i

1

: : : x

i

m

or x

i

= x

j

belongs to

CGF.

2. CGF is
losed under boolean operations.

3. If x;y; z are tuples of variables, �(x;y; z)

is a
lique-formula for x [y and '(x;y)

is a formula in CGF su
h that free(') �

x [y,

then 9yz:(�(x;y; z) ^ '(x;y))

and 8yz:(�(x;y; z) ! '(x;y))

belong to CGF.

We will use (9yz:(�(x;y; z))'(x;y) and

(8yz:(�(x;y; z))'(x;y) as alternative no-

tations for 9yz:(�(x;y; z) ^ '(x;y)) and

8yz:(�(x;y; z) ! '(x;y)) respe
tively.

The following Lemma
an be shown by ele-

mentary formula manipulation.

Lemma 2.3. Let �(x;y; z) be a
lique-

formula for x;y. Then

8yz:(�(x;y; z) ! '(x;y))

� 8y:(9z:�(x;y; z) ! '(x;y)):

Some further transformations
an be used to

show that a pa
ked quanti�
ation
an be sim-

ulated by a synta
ti

lique guarded formula

yielding the following result.

2

Lemma 2.4. PF and CGF are equally expres-

sive.

The use of the name CGF both for the se-

manti
 and the synta
ti

lique guarded frag-

ment is justi�ed by the following Lemma.

Lemma 2.5. Over any �nite relational vo
ab-

ulary the synta
ti
 and semanti
 versions of the

CGF are equally expressive.

Proof sket
h: By some elementary equiv-

alen
e transformations, every synta
ti
ally

lique guarded formula
an be brought into a

form where swit
hing from standard semanti
s

to
lique guarded semanti
s does not
hange

its meaning. Conversely, for any �nite signa-

ture there is a �nite disjun
tion
lique(x; y; z)

of
lique-formulas for x; y su
h that a; b form

a
lique in G(A) i� A j= 9z:
lique(a; b; z). By

guarding every quanti�er with su
h a formula

and applying some elementary formula trans-

formations and Lemma 2.3, we get, for every

FO formula , a synta
ti
ally
lique guarded

formula that is equivalent to under
lique

guarded semanti
s. If we �x a �nite relational

vo
abulary, this transformation is polynomial

in the width of the formula.

In the following we will only
onsider the syn-

ta
ti
 variant of the
lique guarded fragment.

At a �rst glan
e the expressiveness of CGF

and the loosely guarded fragment LGF are in-

omparable. While the auxiliary variables of

the CGF allow additional expressiveness, there

are also LGF-formulas that are not (synta
ti-

ally)
lique guarded. In CGF, a guard � in

Qyz:�(x;y; z) ne
essarily
ontains every pair

from x [y in (at least) one atom. In LGF

a guard � in Qy:�(x;y) need only
ontain all

ombinations of a variable from x with one

from x [y in (at least) one guard atom. An

example for a loosely guarded formula that is

not (synta
ti
ally)
lique guarded is

 = (9xy:Rxy)(8z:(Rxz ^Ryz))'(x; y; z)

be
ause x and y do not
oexist in the guard of

the universal quanti�er. Yet,
an be turned

into a
lique guarded formula by adding the

guard Rxy of the existential quanti�er to the

guard of the universal quanti�er. This yields

the guard Rxy ^ Rxz ^ Ryz, a
lique formula

for x; y; z. Sin
e it is always possible to
lique-

guard a loosely guarded formula in this way,

LGF is
ontained in CGF. It is also possible to

show that CGF is stri
tly more expressive than

LGF [5℄.

De�nition 2.6 (NNF, Closure, Width).

Let 2 CGF be
losed. In the following,

we assume all formulas to be in negation

normal form (NNF), where negation o

urs

only in front of atomi
 formulas. Every

formula in CGF
an be transformed into NNF

in linear time by pushing negation inwards

using DeMorgan's law and the duality of the

quanti�ers.

For a formula 2 CGF in NNF, let
l() be

the smallest set that
ontains and is
losed

under sub-formulas. Let C be a set of
on-

stants. With
l(;C) we denote the set

l(;C) = f'(a) : a � C;'(x) 2
l()g:

The width of a formula 2 CGF is de�ned

by

width() := maxfjfree(')j : ' 2
l()g:

3 A Tableau Algorithm for

CGF

For various modal and des
ription logi
s, de-

idability
an be shown by means of tableau

algorithms, where satis�ability of a formula

is de
ided by a synta
ti
ally guided sear
h for

a model for . Examples for these kind of al-

gorithms
an be found, e.g., in [13, 15, 7, 12℄.

Models are usually represented by a graph in

whi
h the nodes
orrespond to worlds and the

edges
orrespond to the a

essibility relations

in the model. Ea
h node is labeled with a

set formulas that this node must satisfy, and

new edges and nodes are
reated as required

by existential modalities. Sin
e many modal

and des
ription logi
s have the tree model

property, the graphs generated by these algo-

rithms are trees, whi
h allows for simpler algo-

rithms and easier implementation and optimi-

sation of these algorithms. Indeed, some of the

3

fastest implementations of modal and des
rip-

tion logi
s satis�ability algorithms are based on

tableau
al
uli [11℄.

For many modal or des
ription logi
s, e.g. K

or ALC, termination of these algorithms is due

to the fa
t that the modal depth of the formulas

appearing at a node stri
tly de
reases with ev-

ery step from the root of the tree. For other log-

i
s, e.g., K4, K with the universal modality, or

the expressive DL SHIQ, this is no longer true

and termination has to be enfor
ed by other

means. One possibility for this is blo
king, i.e.,

stopping the
reation of new su

essor nodes

below a node v if there already is an an
estor

node w that is labeled with similar formulas

as v. Intuitively, in this
ase the model
an

fold ba
k from the prede
essor of v to w,
reat-

ing a
y
le. Unraveling of these
y
les re
overs

an (in�nite) tree model. Sin
e the algorithms

guarantee that the formulas o

urring in the la-

bel of the nodes stem from a �nite set (usually

the sub-formulas of the input formula), every

growing path will eventually
ontain a blo
ked

node, preventing further growth of this path

and (together with a bound on the degree of the

tree) ensuring termination of the algorithm.

Our investigation of a tableau algorithm for

CGF starts with the observation that CGF also

has some kind of tree model property.

De�nition 3.1. Let � be a relational vo
abu-

lary. A � -stru
ture A has tree width k if k 2 N

is minimal with the following property.

There exists a dire
ted tree T = (V;E) and a

fun
tion f : V ! 2

A

su
h that

� for every v 2 V , jf(v)j � k + 1,

� for every R 2 � and a 2 R

A

, there exists

v 2 V with a � f(v), and

� for every a 2 A, the set V

a

= fv 2 V :

a 2 f(v)g indu
es a subtree of T .

Every node v of T indu
es a substru
ture

F(v) � A of
ardinality at most k + 1. Sin
e

f(v) may be empty we, admit empty substru
-

tures. The tuple hT; (F(v))

v2T

i is
alled a tree

de
omposition of A.

A logi
 L has the generalised tree model

property if there exists a
omputable fun
tion

t, assigning to every senten
e 2 L a natural

number t() su
h that, if is satis�able, then

 has a model of tree width at most t().

Fa
t 3.2 (Tree Model Property for CGF).

Every satis�able senten
e 2 CGF of width

k has a
ountable model of tree width at most

k � 1.

This is a simple
orollary of [5℄, Theorem 4,

where the same result is given for �CGF, that is

CGF extended by a least �xed point operator.

Fa
t 3.2 is the starting point for our de�-

nition of a
ompletion tree for a formula 2

CGF. A node v of su
h a tree no longer stands

for a single element of the model as in the

modal
ase, but rather for a substru
ture F(v)

of a tree de
omposition of a model. To this

purpose, we label every node v with a set C(v)

of
onstants (the elements of the substru
ture)

and a subset of
l(;C(v)), re
e
ting the for-

mulas that must hold true for these elements.

To deal with auxiliary elements|elements

helping to form a
lique in G(A) that are not

part of this
lique themselves|we will use �

as a pla
eholder for an unspe
i�ed element in

atoms. The following de�nitions are useful

when dealing with these generalised atoms.

De�nition 3.3. Let K denote an in�nite set

of
onstants and � 62 K. For any set of
on-

stants C � K we set C

�

= C [f�g. We use

t

1

; t

2

; : : : to range over elements of K

�

. The

relation �

�

is de�ned by

Rt

1

: : : t

n

�

�

Rt

0

1

: : : t

0

n

i� for all i 2 f1 : : : ng

either t

i

= � or t

i

= t

0

i

:

For an atom � and a set of formulas � we de-

�ne � 2

�

� i� there is a �

0

2 � with � �

�

�

0

.

For a set of
onstants C � K and an atom

� = Rt

1

: : : t

n

, we de�ne

�j

�

C

= Rt

0

1

: : : t

0

n

where t

0

i

=

(

t

i

if t

i

2 C

� otherwise

We use the notation a

�

to indi
ate that the

tuple a

�

may
ontain �'s. Obviously,�

�

is tran-

sitive and re
exive, and �j

�

C

�

�

� for all atoms

� and sets of
onstants C.

4

While these are all synta
ti
 notions, they

have a semanti

ounterpart that
lari�es the

intuition of � standing for an unspe
i�ed ele-

ment. Let a

0

denote the tuple obtained from a

tuple a

�

by repla
ing every o

urren
e of � in

a

�

with a distin
t fresh variable, and let z be

pre
isely the variables used in this repla
ement.

For an atom �, we de�ne

A j= �(a

�

) i� A j= 9z:�(a

0

):

It is easy to see that

�(a)�

�

�(b) implies �(b) j= �(a)

�(a) 2

�

� implies � j= �(a)

be
ause, if a�

�

b, then b is obtained from a by

repla
ing some � with
onstants, whi
h provide

witnesses for the existential quanti�er.

De�nition 3.4 (Compl. Tree, Tableau).

Let 2 CGF be a
losed formula in NNF.

A
ompletion tree T = (V;E;C;�;N) for

 is a vertex labeled tree (V;E) with the

labeling fun
tion C labeling ea
h node v 2 V

with a subset of K, � labeling ea
h node

v 2 V with a subset of
l(;C(v)

�

) su
h that

� o

urs only in atoms (without equality) and

the fun
tion N : V! N mapping ea
h node to

a distin
t natural number, with the additional

property that, if v is an an
estor of w, then

N(v) < N(w).

A
onstant
 2 K is
alled shared between

two nodes v

1

; v

2

2 V, if
 2 C(v

1

) \ C(v

2

),

and
 2 C(w) for all nodes w on the (unique,

undire
ted, possibly empty) path
onne
ting v

1

to v

2

.

A node v 2 V is
alled dire
tly blo
ked

2

by a

node w 2 V, if w is not blo
ked, N(w) < N(v)

and there is an inje
tive mapping � from C(v)

into C(w) su
h that, for all
onstants
 2 C(v)

that are shared between v and w, �(
) =
, and

�(�(v)) = �(w)j

�(C(v)

�

)

. Here and throughout

this paper we use the
onvention �(�) = � for

every fun
tion � that veri�es a blo
king.

2

The de�nition of blo
king is re
ursive. This does

not
ause any problems be
ause the status of a node

v only depends on its label and the status of nodes w

with N(w) < N(v). The re
ursion terminates at the

root node, where the N-value is minimal.

A node is
alled blo
ked if it is dire
tly

blo
ked or if its prede
essor is blo
ked.

A
ompletion tree T
ontains a
lash if there

is a node v 2 V su
h that

� for a
onstant
 2 C(v),
 6=
 2 �(v), or

� there is an atomi
 formula � and a tu-

ple of
onstants a � C(v) su
h that

f�(a);:�(a)g � �(v).

Otherwise, T is
alled
lash-free. A
ompletion

tree T is
alled
omplete if none of the
om-

pletion rules given in Figure 1
an be applied to

T. A
omplete and
lash-free
ompletion tree

for is
alled a tableau for .

To test for satis�ability, the tableau algo-

rithm
reates an initial tree with only a single

node v

0

, �(v

0

) = f g and C(v

0

) = ;. The

rules from Figure 1 are su

essively applied un-

til either a
lash o

urs, produ
ing output \

unsatisfiable", or the tree is
omplete, in

whi
h
ase \ satisfiable" is output.

While our notion of tableaux has many sim-

ilarities to the tableaux appearing in [6℄, there

are two important di�eren
es that make the no-

tion of tableaux here more suitable as basis for

a tableau algorithm.

We will see that every
ompletion tree gen-

erated by the tableau algorithm is �nite. Con-

versely, tableaux in [6℄, in general,
an be in�-

nite.

Also, in [6℄ every node is labeled with a
om-

plete (;C(v))-type, i.e., every formula ' 2

l(;C(v)) is expli
itly asserted true of false at

v. Conversely, a
ompletion tree
ontains only

assertions about relevant formulas. This im-

plies a lower degree of non-determinism in the

algorithm, whi
h is important for an eÆ
ient

implementation.

Theorem 3.5. The tableau algorithm is a

(non-deterministi
) de
ision pro
edure for

CGF-satis�ability.

Proof: This is an immediate
onsequen
e of

the following fa
ts established in the subse-

quent se
tions.

1. Every sequen
e of rule appli
ations termi-

nates after a �nite number of steps. (Ter-

mination, Lemma 3.7)

5

R^ : if ' ^ # 2 �(v) and f'; #g 6� �(v)

then �(v) := �(v) [f'; #g

R_ : if ' _ # 2 �(v) and f'; #g \�(v) = ;

then �(v) := �(v) [f�g for � 2 f'; #g (
hosen non-deterministi
ally)

R= : if a = b 2 �(v)

then for all w that share a with v;C(w) := (C(w) n fag) [fbg and �(w) := �(w)[a 7! b℄

R8 : if (8yz:�(a;y; z))'(a;y)) 2 �(v); there exists a b � C(v) su
h that for all atoms

�(x;y; z) 2 �; �(a;b; � � � � �) 2

�

�(v); and '(a;b) 62 �(v)

then �(v) := �(v) [f'(a;b)g

R9 : if (9yz:�(a;y; z))'(a;y)) 2 �(v) and for every b;
 � C(v); f�(a;b;
); '(a;b)g 6� �(v)

and there is no
hild w of v with f�(a;b;
); '(a;b)g � �(w) for some b;
 � C(w)

and v is not blo
ked

then let b;
 be sequen
es of distin
t and fresh
onstants that mat
h the lengths of y; z;

reate a
hild w of v with C(w) := a [b [
 and �(w) := f�(a;b;
); '(a;b)g; and

let N(w) = 1 +maxfN(v) : v 2 V n fwgg

Rl : if �(a

�

) 2 �(v); � atomi
; w is a neighbour of v with a

�

\C(w) 6= ;; and

�(a

�

)j

�

C(w)

62 �(w)

then �(w) := �(w) [f�(a)j

�

C(w)

g

Rl8 : if '(a) 2 �(v); '(a) universal; and y is a neighbour of x with a � C(w) and '(a) 62 �(w)

then �(w) := �(w) [f'(a)g

Figure 1: The Completion Rules for CGF

2. If is satis�able, then the rules
an be ap-

plied to generate a tableau for . (Com-

pleteness, Lemma 3.8)

3. If the algorithm
onstru
ts a tableau for

 , then is satis�able (Soundness). We

give two alternative proofs for soundness.

One for GF (Lemma 3.14) and one for the

full CGF (Lemma 3.16).

We give two proofs for the soundness of the

tableau algorithm be
ause as
orollaries of the

onstru
tions used in the di�erent proofs, we

obtain alternative proofs for the �nite model

property of GF (Corollary 3.15) and of the gen-

eralised tree model property of CGF (Corol-

lary 3.17).

3.1 Termination

The following te
hni
al lemma is a simple
on-

sequen
e of the
ompletion rules and the blo
k-

ing
ondition.

Lemma 3.6. Let 2 CGF be a
losed for-

mula in NNF with j j = n, width() = m,

and T a
ompletion tree generated for by ap-

pli
ation of the rules in Figure 1. For every

node v 2 T,

1. jC(v)j � m

2. j�(v)j � n� (m+ 1)

m

3. Any ` > 2

n�(m+1)

m

distin
t nodes in T

ontain a blo
ked node.

Lemma 3.7 (Termination). Let 2 CGF

be a
losed formula in NNF. Any sequen
e of

rule appli
ation of the tableau algorithm start-

ing from the initial tree terminates.

Proof: For any
ompletion tree T generated

by the tableau algorithm, we de�ne k � k : V 7!

N

3

by

kvk := (jC(v)j; n� (m+ 1)

m

� j�(v)j;

jf' 2 �(v) j ' triggers the R9-r. for vgj):

The lexi
ographi
 order� on N is well-founded,

i.e. it has no in�nite de
reasing
hains. Any

6

rule appli
ation de
reases kvk w.r.t. � for at

least one node v, and never in
reases kvk w.r.t.

� for an existing node v. However it may
reate

a new node w. Hen
e, there
an only be a �nite

number of appli
ations of rules to every node in

T and an in�nite sequen
e of rule appli
ations

would generate an in�nite tree. As a
orollary

of Lemma 3.6, we have that the depths of T

is bounded by 2

n�(m+1)

m

+ 1, sin
e, on any

dire
ted path of that length, there must be a

blo
ked node. The R9-rule is never applied to

blo
ked nodes, so paths with blo
ked nodes
an

not grow in length. Hen
e, T
an only be in-

�nite due to an in�nite bran
hing in T. Any

su

essor of a node v is generated by appli
a-

tion of the R9-rule to v. Ea
h su
h appli
ation

generates exa
tly one su

essor. Hen
e, for T

to be ini�nite, there must be an in�nite number

of appli
ations of the R9-rule to a node v. As

ea
h su
h appli
ation de
reases kvk we have a

ontradi
tion.

3.2 Completeness

Lemma 3.8. Let 2 CGF be a
losed for-

mula in NNF. If is satis�able, then there

is a sequen
e of rule appli
ations starting from

the initial tree that yields a tableau.

Proof: Sin
e is satis�able, there is a model

A of . We will use A to guide the appli
a-

tion of the non-deterministi
 R_-rule. For this

we in
remently de�ne a fun
tion g :

S

fC(v) j

v 2 Vg ! A su
h that for all v 2 V : A j=

g(�(v)). We refer to this property by (�).

The set �(v)
an
ontain atomi
 formulas

�(a

�

) where � o

urs at some positions of a

�

and is not mapped to an element of A by g. We

deal with this as des
ribed below De�nition 3.3

by setting

A j= g(�(a

�

)) i� A j= 9z:g(�(a

0

)):

Claim 1: If for a
ompletion treeT there exists

a fun
tion g su
h that (�) holds and a rule is

appli
able to T, then it
an be applied in a way

that maintains (�).

� For the R^- and the R_-rule this is obvi-

ous.

� If the R=-rule is appli
able to a node

v 2 V with a = b 2 �(v), then A j=

g(b) = g(b) implies g(a) = g(b). Hen
e,

for every node w that shares a with v,

g(�(w)) = g(�(w)[a 7! b℄) and the rule

an be applied without violating (�).

� If the R8-rule is appli
able to a node v 2

V with (8yz:�(a;y; z))'(a;y) 2 �(v),

then there is b � C(v) su
h that, for

all atoms �(x;y; z) 2 �, �(a;b; � � � � �) 2

�

�(v). Hen
e, from the de�nition of

2

�

, there is a tuple

�

� C(v)

�

su
h that �(a;b; � � � � �)�

�

�(a;b;

�

) and

�(a;b;

�

) 2

�

�(v). From (�) we get that

A j= 9z:�(g(a); g(b); z) and sin
e every

z appears in exa
tly one atom in �, also

A j= 9z:�(g(a); g(b); z). Hen
e, we have

fA j= f8y:(9z:�(g(a);y; z) ! '(g(a);y));

9z:�(g(a); g(b); z)g

whi
h, by Lemma 2.3, implies A j=

'(g(a); g(b)) and hen
e '(a;b)
an be

added to �(v) without violating (�).

� If the R9-rule is appli
able to a node v 2

V with (9yz:�(a;y; z))'(a;y), then this

implies

A j= g((9yz:�(a;y; z))'(a;y)):

Hen
e, there are sequen
es b

0

;

0

� A

of elements su
h that A j=

f�(g(a);b

0

;

0

); '(g(a);b

0

)g. If we de�ne

g su
h that g(b) = b

0

and g(
) =

0

, then

obviously A j= fg(�(a;b;
); g('(a;b))g.

Note, that this might involve setting

g(b

1

) = g(b

2

) for some b

1

; b

2

2 b. With

this
onstru
tion the resulting extended

ompletion-tree T and extended fun
tion

g again satisfy (�).

� If the Rl-rule is appli
able to a node v 2 V

with �(a

�

) 2 �(v) and a neighbour w with

a

�

\C(w) 6= ;, then it adds �(a

�

)j

�

C(w)

to

�(w). From (�) we get that A j= �(g(a

�

)),

and sin
e �(a

�

)j

�

C(w)

�

�

�(a

�

), this im-

plies A j= �(g(a

�

))j

�

C(w)

. Hen
e, adding

�(a

�

)j

�

C(w)

to �(w) does not violate (�).

7

� If the Rl8-rule is appli
able to a node v 2

V with a universal formula '(a) 2 �(v)

and a neighbour w whi
h shares a with

v, (�) yields A j= '(g(a)). Hen
e, adding

'(a) to �(w) does not violate (�).

Claim 2: A
ompletion-tree T for whi
h a

fun
tion g exists su
h that (�) holds is
lash

free.

Assume that T
ontains a
lash, namely,

there is a node v 2 V su
h that either a 6=

a 2 V(v)|implying A j= g(a) 6= g(a)|, or

that there is a sequen
e a � C(v), and an

atomi
 formula ' su
h that f�(a);:�(a)g �

�(v). From (�) it would follow that A j=

f�(g(a));:�(g(a))g, also a
ontradi
tion.

These
laims yield Lemma 3.8 as follows. Let

T be a tableau for . Sin
e A j= , (�) is sat-

is�ed for initial tree together with the empty

fun
tion g. By Lemma 3.7, any sequen
e of

appli
ations is �nite, and from Claim 1 we get

that there is a sequen
e of rule-appli
ations

that maintains (�). By Claim 2, this sequen
e

results in a tableau.

Lemma 3.8 involves two di�erent kinds of

non-determinism, namely, the
hoi
e whi
h

rule to apply to whi
h
onstraint (as several

rules
an be appli
able simultaneously), and

whi
h disjun
t to
hoose in an appli
ation of

the R_-rule. While the latter
hoi
e is don't-

know non-deterministi
, i.e., for a satis�able

formula only
ertain
hoi
es will lead to the dis-

overy of a tableau, the former
hoi
e is don't-

are non-deterministi
. This means that arbi-

trary
hoi
es of whi
h rule to apply next will

lead to the dis
overy of a tableau for a satis-

�able formula. For an implementation of the

tableau algorithm this has the following
on-

sequen
es. Exhaustive sear
h is ne
essary to

deal with all possible expansions of the R_-rule,

but arbitrary strategies of
hoosing whi
h rule

to apply next and where will lead to a
orre
t

implementation, although the eÆ
ien
y of the

implementation will strongly depend on a so-

phisti
ated strategy.

3.3 Corre
tness

In order to prove the
orre
tness of the tableau

algorithm we have to show that the existen
e

of a tableau for implies satis�ability of .

To this purpose, we will
onstru
t an, indeed

�nite, model from a tableau. The following ap-

plies only to GF; the generalization to CGF

is yet work in progress and
an at this point

only be
onje
tured. An alternative
orre
tness

proof appli
able to the CGF
ase is given in a

later se
tion in Lemma 3.16, providing a fur-

ther proof for the generalised tree model prop-

erty but omitting the �nite model property.

In the following, let 2 GF[� ℄ and let T =

(V;E;C;�;N) be a tableau for . W.l.o.g.,

we assume, for every node v 2 V and every

a 2 C(v), a = a 2 �(v). For every blo
k-

ing situation we �x a mapping � verifying this

blo
king.

De�nition 3.9. We make the blo
king rela-

tion expli
it. For every blo
ked node v there

is a unique node u blo
king v and we de�ne B

as set of all su
h pairs (u; v). Further de�ne

C(V) :=

[

fC(v) : v 2 V; v not blo
kedg:

The equivalen
e relation � on C(V) is the re-

exive and transitive
losure of the set of all

pairs of
onstants (
; d), where
 2 C(u) and

d 2 C(v) for two nodes u and v, (u; v) 2 B and

the fun
tion � that veri�es the blo
king maps

d to
.

We also use � as an operator that maps a

onstant a to its �-
lass ~a. For tuples of
on-

stants a, this operation is performed
ompo-

nentwise. We say that
~
a � C(v), if for ea
h

a 2 a there is an a

0

2 ~a \C(v).

De�nition 3.10. Let v; w 2 V and a 2 C(v),

b 2 C(w). An (a; b)-path in T is a sequen
e

(s

1

;

1

); : : : ; (s

k

;

k

) inV�C(V) su
h that

1

=

a,

k

= b and for all 1 � i < k one of the

following holds.

1. (s

i

; s

i+1

) 2 E and

i

=

i+1

2. (s

i

; s

i+1

) 2 B and �(

i+1

) =

i

3. 1. and 2. for reversed roles of i and i+ 1.

8

That is, an (a; b)-path veri�es a � b.

The general idea in the
onstru
tion of a

model from a tableau is to use C(V)=� as

the universe and de�ne the relations using

the atomi

onstraints in the nodes. In gen-

eral, there may be problemati
 situations in a

tableau that make this
onstru
tion impossible,

so
alled dormant
lashes.

De�nition 3.11 (Dormant Clash). Two

distin
t nodes v; w 2 V, two tuples of
on-

stants a;b and a positive literal � form

a dormant
lash (v; w;a;b; �) in T, if

a 2 C(v), b 2 C(w) and it is the
ase that

a 6= b, but a � b and either �(a) 2 �(v)

and �(b) 62 �(w) or �(a) 62 �(v) and

�(b) 2 �(w).

Note that for ea
h dormant
lash

(v; w;a;b; �), the interse
tion of the sets

P

i

= fp : p is an (a

i

; b

i

)-pathg, 1 � i � jaj,

is empty. Any path in
luded in all P

i

would

su

essively let the
omplete atomi
 infor-

mation about a and b be propagated from v

to w using Rl, either produ
ing a true
lash

or
ontradi
ting the de�nition of a dormant

lash.

Further, there are
onstants a

t

2 a and b

t

2

b, a

t

6= b

t

but a

t

� b

t

, su
h that for some

(s

i

;

i

); (s

i+1

;

i+1

) on every (a

t

; b

t

)-path, either

s

i

is blo
ked by s

i+1

(or vi
e versa) and the

belonging inje
tion � maps

i

to

i+1

(

i+1

to

i

), or there is a node s blo
king both s

i

and

s

i+1

su
h that for the respe
tive inje
tions �

s

i

:

C(s

i

) ! C(s) and �

s

i+1

: C(s

i+1

) ! C(s) we

have �

s

i

(

1

) = �

s

i+1

(

i+1

). It follows that B

ontains (s

i

; s

i+1

) (or (s

i+1

; s

i

)) in the �rst and

both (s; s

i

) and (s; s

i+1

) in the se
ond
ase.

De�nition 3.12. Given a tableau T, the set

of
riti
al edges of T, S = S(T), is a subset of

B de�ned as follows.

� For ea
h dormant
lash C = (v; w;a;b; �)

we
hoose an index t su
h that for a

t

2 a

and b

t

2 b we have a

t

6= b

t

. Let S
ontain

the �rst B-edge from ea
h (a

t

; b

t

)-path.

By making enough (but �nitely many) iso-

morphi

opies of all subtrees of the tableau

below the root, it is possible to redire
t all
rit-

i
al edges into di�erent
opies in a manner that

gets rid of all (isomorphi

opies of) dormant

lashes.

Lemma 3.13. If there is a �nite tableau T for

 , then there is also a �nite tableau T

0

for

that does not
ontain dormant
lashes.

The
onstru
tion used to show this Lemma

is omitted in this paper and
an be found in

[9℄.

Lemma 3.14. Let 2 GF[� ℄ and let T be a

tableau for . Then is (�nitely) satis�able.

Proof: A

ording to Lemma 3.13 we assume

T = (V;E;C;�;N) to be a tableau for that

does not
ontain
riti
al edges.

Towards the �nite satis�ability we
onstru
t

a �nite stru
ture A = A(T) with universe

A := C(V)=�. For ea
h relation R 2 � and

ea
h tuple a 2 A of mat
hing arity let a 2 R

A

i� there is a node v 2 V and a tuple of
on-

stants b 2 C(v) su
h that all b

i

� a

i

and

Rb 2 �(v). Note that with Rl and the non-

existen
e of dormant
lashes, this is the
ase i�

the same holds true independent of the spe
i�

hoi
e of b or v. Hen
e A is well de�ned.

Claim: A j= .

This is implied by the stronger statement

that for every
losed formula ' using
onstants

from a that appears in the �-label of some un-

blo
ked node v of T, '[a 7!
~
a℄ holds in A.

Again ' is assumed to be in NNF.

� For equality statements this is immediate.

The R=-rule makes sure, that distin
t
on-

stants o

uring at a
ommon node have

distin
t �-
lasses. For inequality state-

ments, assume a 6= b 2 �(v), but a � b.

Then we
an �nd an (a; b)-path
ontain-

ing a node w 6= v and a
onstant
 2 C(w)

with a �
 � b. Sin
e we have assumed

 =
 2 �(v), this would imply the exis-

ten
e of the dormant
lash (v; w; ab;

;
 =

) in T.

� For an atomi
 senten
e Ra, we get A j=

R
~
a immediately from the
onstru
tion of

9

A. In
ase of a negated atomi
 senten
e,

assume '(a) = :Ra 2 �(v) but A j= R
~
a.

This implies the existen
e of a (dormant)

lash in T.

� For positive Boolean
ombinations the ar-

gument is immediate.

� Let '(a) = (9y:�(a;y))�(a;y). If, for

some b 2 C(v), �(a;b); �(a;b) 2 �(v),

we note that A j= �(
~
a;

~

b) and A j= �(
~
a;

~

b)

by indu
tion hypothesis for � and �.

If there is no b 2 C(v) with

�(a;b); �(a;b) 2 �(v), then appli
a-

tion of the R9-Rule yields a su

essor

node w of v with
onstants b 2 C(w)

su
h that �(a;b); �(a;b) 2 �(w). If w is

not blo
ked, the
laim again follows by

indu
tion hypothesis for � and �.

If, however, w is blo
ked,
onsider the

node u with (u;w) 2 B and the inje
tion

� : C(w) ! C(u). Then �(�(a); �(b))

and �(�(a); �(b)) are in the �-label of u.

Sin
e all pairs of
onstants (a; a

0

) where

a

0

= �(a) are in the same �-
lass, it

follows by indu
tion that A j= �(
~
a;

~

b) ^

�(
~
a;

~

b), and hen
e '(
~
a) holds in A.

� Finally let '(a) = (8y:�(a;y))�(a;y). As-

sume that there is a tuple b su
h that

A j= �(
~
a;

~

b). Then there is a node w

where
~
a [

~

b � C(w), i.e., there are tu-

ples a

0

;b

0

� C(w) with a

0

� a and

b

0

� b. Moreover, �(a

0

;b

0

) 2 �(w) and

'(a

0

) 2 �(w). Hen
e, the R8-rule is ap-

pli
able for '(a

0

) at w and must have

been applied be
ause T is
omplete. This

gives us �(a

0

;b

0

) 2 �(v), whi
h, by in-

du
tion, yields A j= �(a

0

;b

0

) and hen
e

A j= �(a;b).

Unfortunately, for CGF it is not suÆ
ient

to get rid of the dormant
lashes, but one

has to deal also with evil
liques. These are

liques in the Gaifman graph of the
onstru
ted

model that are not expli
itly represented in the

tableau and are only
aused by folding ba
k

from blo
ked to blo
king nodes. These
liques

might interfere with universally quanti�ed sub-

formulas of the input formula in a way that

leads to the obtained stru
ture not being a

model for even though it was
onstru
ted

from a tableau for . Although we believe that

it is possible to
onstru
t a �nite model from a

tableau using a similar
onstru
tion to the one

used to establish the result for GF, the proof

remains part of future work.

Hen
e, we only obtain the �nite model prop-

erty of the GF as a
orollary from this.

Corollary 3.15. GF has the �nite model

property.

Proof: If 2 GF[� ℄ is satis�able, then, by

Lemma 3.8, it has a �nite tableau. As shown

in the proof of Lemma 3.14, su
h a tableau in-

du
es a �nite model for

3.4 Corre
tness, alternative version

Sin
e the
onstru
tion used in the proof of

Lemma 3.14 so far
ould only be shown to be

valid for GF, we still need to show soundness

of the algorithm for CGF. In this se
tion, we

will give an alternative proof for the soundness

of the algorithm, whi
h is valid also for CGF.

From the
onstru
tion employed in the proof

we obtain and alternative proof of Fa
t 3.2 as

a
orollary.

Lemma 3.16. Let 2 CGF[� ℄ with k =

width() and let T be a tableau for generated

by the tableau algorithm. Then is satis�able

and has a model of tree width at most k � 1.

Due to limited spa
e, we refer to [9℄ for the

full proof and give only a sket
h here.

Proof: Let T = (V;E;C;�;N) a tableau

for . Using an unraveling
onstru
tion, we

will
onstru
t a model for of width at most

k � 1 from T. We de�ne

V

u

= fv 2 V : v is not indire
tly blo
ked g

and Paths(T) � V

+

u

(the set of non-empty

strings over V

u

) indu
tively de�ned by

3

3

This
ompli
ated form of unraveling, where we

re
ord both blo
ked and blo
king node is ne
essary be-

ause there might be a situation where two su

essors

v

1

; v

2

of a node are blo
ked by the same node w.

10

� [

v

0

v

0

℄ 2 Paths(T) for the root v

0

of T,

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a su

es-

sor of v

n

and w is not blo
ked, then

[

v

1

v

0

1

: : :

v

n

v

0

n

w

w

℄ 2 Paths(T),

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a su

essor

of v

n

blo
ked by the node u 2 V, then

[

v

1

v

0

1

: : :

v

n

v

0

n

u

w

℄ 2 Paths(T).

The set Paths(T) forms a tree, with p

0

be-

ing a su

essor of p if p

0

is obtained from p by

on
atenating one element

u

w

at the end. We

de�ne the auxiliary fun
tions Tail;Tail

0

by set-

ting Tail(p) = v

n

and Tail

0

(p) = v

0

n

for every

path p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄. We further de�ne

C(T) = f(a; p) : p 2 Paths(T) ^ a 2 C(Tail(p))g

and the relation � as the smallest symmetri

relation on C(T) satisfying

� (a; p) � (a; q) if Tail

0

(q) is an unblo
ked

su

essor of Tail(p) and a 2 C(Tail(p)) \

C(Tail

0

(q)),

� (a; p) � (b; q) if Tail

0

(q) is a blo
ked su

es-

sor of Tail(p), a 2 C(Tail(p)) \C(Tail

0

(q))

and �(a) = b for the fun
tion � that veri-

�es that Tail

0

(q) is blo
ked by Tail(q).

With � we denote the re
exive, transitive
lo-

sure of �. First we need to prove some te
hni-

alities for this unraveling.

Claim 1: Let p 2 Paths(T) and a; b 2

C(Tail(p)). Then (a; p) � (b; p) i� a = b.

Claim 1 is shown by
ontradi
tion. For a 6= b

with (a; p) � (b; p) we take a shortest �-path

from (a; p) to (b; p), whi
h must be of the form

(a; p) � (
; q) � (b; p). This implies that

Tail

0

(q) must be blo
ked by Tail(q) (be
ause

otherwise a = b =
 would hold), whi
h im-

plies that the fun
tion � verifying this blo
king

annot be inje
tive. This is impossible.

Sin
e the set Paths(T) is a tree, and as a

onsequen
e of Claim 1, we get the following.

Claim 2: Let p; p

0

2 Paths(T) with p =

[

v

1

v

0

1

: : :

v

n

v

0

n

℄, p

0

= [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

0

℄. If, for a 2

C(v

n

); b 2 C(w), (a; p) � (b; p

0

) then (a; p) �

(b; p

0

).

Using Claim 2, we
an show that the blo
king

ondition and the Rl- and Rl8-rule work as

desired.

Claim 3: Let p; q 2 Paths(T), a �

C(Tail(p));b � C(Tail(q))) and (a; p) � (b; q).

� For every atomi
 formula �, �(a; � � � � �)2

�

�(Tail(p)) i� �(b; � � � � �) 2

�

�(Tail(q)).

� For every universal formula ', '(a) 2

�(Tail(p)) i� '(b) 2 �(Tail(q)).

Due to Claim 3, we
an now de�ne a stru
-

ture A over the universe A = C(T)=� by

setting, for a relation R 2 � of arity m,

([a

1

; p

1

℄

�

; : : : ; [a

m

; p

m

℄

�

) 2 R

A

i� there is a

path p 2 Paths(T) and
onstants

1

; : : :

m

su
h that (

i

; p) 2 [a

i

; p

i

℄

�

and R

1

: : :

m

2

�(Tail(p)).

It remains to show that this
onstru
tion

yields A j= . This is a
onsequen
e of the fol-

lowing
laim that
an be shown by indu
tion

over the stru
ture of the formula '.

Claim 4: For every path p 2 Paths(T) and

a � C(Tail(p)), if '(a) 2 �(Tail(p)), then A j=

'([a; p℄

�

).

As a spe
ial instan
e of Claim 4 we get that

A j= . Due to Lemma 3.6, for every node

v 2 V, jC(v)j � width() and hen
e A has

tree width at most width()� 1.

Corollary 3.17. CGF, and hen
e also

PF/LGF/GF have the generalised tree model

property.

Proof: Let 2 CGF[� ℄ be satis�able. Then,

from Lemma 3.8 we get that there is a tableau

T for . By Lemma 3.16, T indu
es a model for

 of tree width at most width()�1. Note that

we have never relied on Fa
t 3.2 to obtain any of

the results in this paper and hen
e have indeed

given an alternative proof for the generalised

tree model property of CGF.

4 Con
lusion

We have developed a tableau algorithm for

CGF, whi
h we hope
an serve as basis for

11

an eÆ
ient implementation of a de
ision pro-

edure for CGF. This hope is justi�ed by the

fa
t that some of the most eÆ
ient implemen-

tations of modal or des
ription logi
 reasoners

are based on tableau
al
uli similar to the one

for CGF presented in this paper. As a
orollary

from the
onstru
tions used to prove the
or-

re
tness of the tableau algorithm, we give an, in

our opinion, simpler proof for the �nite modal

property of GF. An extension of our approa
h

to CGF is part of future work. We also give a

new proof of the fa
t that GF=LGF=CGF have

the generalised tree model property.

A
knowledgements

We would like to thank Andrei Voronkov for

helpful dis
ussions. The se
ond author is sup-

ported by the DFG, Proje
t No. GR 1324/3{1.

Referen
es

[1℄ H. Andr�eka, J. van Benthem, and I. N�emeti.

Modal languages and bounded fragments of predi-

ate logi
. Journal of Philosophi
al Logi
, 27:217{

274, 1998.

[2℄ F. M. Donini, M. Lenzerini, D. Nardi, and

W. Nutt. The
omplexity of
on
ept languages.

Information and Computation, 134(1):1{58, 1997.

[3℄ H. Ganzinger and H. de Nivelle. A superposition

de
ision pro
edure for the guarded fragment with

equality. In Pro
. 14th IEEE Symp. on Logi
 in

Computer S
ien
e, pages 295{303, 1999.

[4℄ E. Gr�adel. On the restraining power of guards.

Journal of Symboli
 Logi
. To appear.

[5℄ E. Gr�adel. De
ision pro
edures for guarded log-

i
s. In H. Ganzinger, editor,Pro
eedings of 16th In-

ternational Conferen
e on Automated Dedu
tion,

volume 1632 of Le
ture Notes in Arti�
ial Intelli-

gen
e, pages 31{51. Springer-Verlag, 1999.

[6℄ E. Gr�adel and I. Walukiewi
z. Guarded �xed point

logi
. In Pro
. 14th IEEE Symp. on Logi
 in Com-

puter S
ien
e, pages 45{54, 1999.

[7℄ J. Y. Halpern and Y. Moses. A guide to
omplete-

ness and
omplexity for model logi
s of knowledge

and belief. Arti�
ial Intelligen
e, 54(3):319{379,

April 1992.

[8℄ B. Herwig. Extending partial isomorphisms on �-

nite stru
tures. Combinatori
a, 15:365{371, 1995.

[9℄ C. Hirs
h and S. Tobies. A tableau algo-

rithm for the
lique guarded fragment. LTCS-

Report 00-03, LuFG Theoreti
al Computer S
i-

en
e, RWTH Aa
hen, Germany, 2000. On-

line available from http://www-lti.informatik.

rwth-aa
hen.de/Fors
hung/Reports.html.

[10℄ I. Hodkinson Loosely guarded fragment of �rst-

order logi
 has the �nite model property. Submit-

ted, 2000. Online available from http://www.do
.

i
.a
.uk/~imh/index.html.

[11℄ I. Horro
ks, P. F. Patel-S
hneider, and R. Sebas-

tiani. An analysis of empiri
al testing for modal

de
ision pro
edures. Logi
 Journal of the IGPL,

8(3):293{323, 2000.

[12℄ I. Horro
ks, U. Sattler, and S. Tobies. Pra
ti-

al reasoning for expressive des
ription logi
s. In

H. Ganzinger, D. M
Allester, and A. Voronkov,

editors, Pro
eedings of the 6th International Con-

feren
e on Logi
 for Programming and Automated

Reasoning (LPAR'99), number 1705 in Le
ture

Notes in Arti�
ial Intelligen
e, pages 161{180.

Springer-Verlag, September 1999.

[13℄ R. Ladner. The
omputational
omplexity of prov-

ability in systems of propositional modal logi
.

SIAM Journal on Computing, 6:467{480, 1977.

[14℄ M. Marx. Toleran
e Logi
. In Journal of Logi
,

Language and Computation. To appear. On-

line availble from http://turing.wins.uva.nl/

~marx/papers.html.

[15℄ M. S
hmidt-S
hau� and G. Smolka. Attributive

on
ept des
riptions with
omplements. Arti�
ial

Intelligen
e, 48:1{26, 1991.

[16℄ J. van Benthem. Dynami
 bits and pie
es. ILLC

resear
h report, University of Amsterdam, 1997.

[17℄ C. Weidenba
h. SPASS|version 0.49. J. of Au-

tomated Reasoning, 18(2):247{252, April 1997.

12

