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1 Introduction

GF1~ is a decidable description logic allowing for n-ary relations. It was intro-
duced in [LST99] along with a tableau algorithm deciding GF1~-satisfiability in
PSpPACE. In this paper, the implementation of this algorithm, the modifications
and optimizations used, and some empirical results are described.

2 Preliminaries

In the following, upper case letters stand for relations, lower case letters ¢, d, . ..
for constants, and v, w,z,... for variables. T denotes a non-empty variable
vector, ¢,X,... closed formulae, ©(7) a formula with free variables 7. (%)

means the formula ¢ with all occurrences of z replaced with ¢, and ¢(%) is
defined accordingly.

GF1~ syntax and semantics The Guarded Fragment 1 as described in
[ANVB9S8] restricts First Order Predicate Logic by allowing quantifiers to ap-
pear only in formulae of the kind:

vI(G(z,y) = (@) or 3G Y) A e(T))

where G must be an atom and is called the guard of the formula.

GF1~ imposes the further restriction that for every predicate P with arity n
there is a “grouping” (i,j) of its parameters such that n = i + j (written as
PO, T is of length 4 or j, 7 is of the remaining length, and Z and % do not
share any variables, i.e.

(G (@) op@) o QEGYI(7, 7))o p(T)

where length(Z) = i, @ € {V,3}, and o is either A or —, depending on the
quantifier.
The semantics for GF17 is defined just like for standard first order logic.



A tableau-based algorithm for GF1~ The tableau algorithm deciding GF1~-
satisfiability [LST99] is similar to the ALCT algorithm [Spa93]. It first replaces
all free variables in a given formula with constants. These constants are added
to the root node of the model. Then, de Morgan’s laws are used to transform
the formula into Negation Normal Form (NNF) by pushing negation inwards
such that it only occurs in front of predicates. This way, we only need rules for
four kinds of formulae:

e o Ax: v and x are added to the node.
e © V x: a nondeterministic choice is made between adding ¢ or .

e 37(G(d,T) A p(T)), where d consists of constants of the current node: the
variables in T are replaced with new constants ¢. A new node is created
with constants ¢ and the formula cp(%) The edge connecting the nodes is
labeled with G(d, ).

e VZ(G(d,T) — ©(T)), d as above: all formulae of the current node and the
guards connecting it with its father and sons are checked for matching
G(d,T). For every match G(d,2), ¢(2) is added to the corresponding
node.

Rules are only applicable if the formulae they would add are not yet a member
of the corresponding node. A clash means that a node contains a formula and
its negation. A formula is satisfiable iff the model constructed by this algorithm
does not contain a clash and no rule is applicable.

In [LST99], the proof is given that this algorithm terminates and can be
implemented in PSPACE using a reset-restart mechanism to avoid having to
keep the whole model tree in memory at the same time.

For example, a tree representing a model for the formula

Fu(R(v,x) A D(v))A
Ay, 2)(P(x,y,2) ANC(y) A (v, w)(P(z,v,w) A C(v) A D(w)))

is displayed in Figure 1: the free variable x is replaced with the constant ¢, which
becomes a member of the root node. Both sub-formulae of the conjunction are
added to the node by the first rule. Then, the d-formulae are satisfied by the
third rule, replacing v with h and y, z with d,e. After creating the next node,
no more rules are applicable.

Implementation To implement this theoretical algorithm, several problems
have to be dealt with:



Constants: ¢

Constraints: none

Guard: R(h,c) Guard: P(c,d,e)

Constants: h Constants: d, e

Constraints: D(h) Constraints: C(d)

Guard: P(e,f,g)

Constants: f, g

Constraints: C(f), D(g)

Figure 1: Example model tree for GF1~.

Nondeterminism To test the satisfiability of a V-formula, both alternatives

have to be checked. But since GF1~ allows for the n-ary complement of
inverse roles, and therefore a formula in a node can modify this node’s
predecessor, the whole model is copied before making a nondeterministic
decision. Then, one alternative is added to the copy and the other one is
added to the original model (Branching). Because branching is expensive
regarding both time and space, it has to be delayed if possible, and it is
important to make a good decision about which alternative to test first.

Variables Since the GF 1~ syntax contains variables, it is possible for one single

formula to appear in syntactically different forms, e.g. Vz(G(c,z1) —
¢(z1)) and Vrs5(G(c,z5) — ¢(x5)). To be efficient, it is important to
detect the (semantic) equality between these formulae and a contradiction
like (Vz1(G(c,z1) = p(21))) A ~(Va5(G(e, x5) — @(x5))).

Space vs. time efficiency A reset-restart algorithm consumes time to gain

space efficiency. Since for an implementation time efficiency is the most
important factor, the algorithm will in fact keep the whole model in mem-
ory.

Negation normal form NNF is not helpful for GF1~ since it translates the

obviously contradictory formula (¢ V x) A=(eV x) to (¢ Vx) A (=@ A=),
preventing the unsatisfiability from being detected immediately. The effect
on V- and 3-formulae is similar.



3 Syntactic Preprocessing

To prevent the algorithm from trying to construct models for “obviously” con-
tradictory formulae, several techniques were implemented to preprocess the for-
mula. Most of these, in particular Early Clash Detection, Lazy Unfolding, Nor-
malization and Encoding, are described in [Hor97], implemented in FaCT, and
were adapted to GF1™.

Encoding, Lazy Unfolding and Early Clash Detection FEach formula
is assigned a natural number (Encoding), and as long as it a sub-formula of a
surrounding formula, it is only represented by this number (Lazy Unfolding). A
positive formula receives an even number, and its negation receives the succeed-
ing odd number. Thus, ¢ A = is encoded as 2 A 3, which makes it possible to
detect the contradiction immediately, even if ¢ itself is complex (Farly Clash
Detection, ECD). To encode and decode efficiently, formulae are mapped to
numbers using a hash table, and numbers are mapped to formulae using an
array.

Normal form For reasons explained in section 2, instead of NNF a normal
form is used which allows negation of complex formulae, but only needs the
junctors = and A and the quantifier V. This way, the formula (o Ax) A (—¢V —x)
is translated to (¢ A x) A =(¢ A x), which ECD will identify as a contradiction.

Hierarchical A-formulae, (e.g. (¢ A x) A (m9 A (- A w))) are transformed
to n-ary one-level formulae (A(p,x, ¢, —p,w)). The sub-formulae are rep-
resented by their code numbers (A(2,4,7,3,8)), which are sorted numerically
(A(2,3,4,7,8)). Thus, every sub-formula only has to be compared to the sub-
sequent one to detect a contradiction (between 2 and 3, but not between 7 and
8). Negated A-formulae, which stand for V-formulae, are treated the same way
to detect a tautology.

Syntactic Simplification Formulae containing redundant information are
simplified according to the rules

PN = @ OANT =
ALl = 1 VI(G(T,g) = T) =

— €

and the dual rules for 3 and V.

Variable normalization To avoid redundancy caused by separately checking
formulae which differ only in their variable names (see section 2), variables are
normalized to start with the smallest possible number. But we need several
classes of nodes containing only variables reserved for their class to prevent



ambiguity between variables quantified within sub-formulae. As every constraint
contains variables from at most two nodes (each constraint is uni- or bi-node
[LST99]), two sets are sufficient: for the root node, odd variable indices are
used, and every node uses even numbers if its predecessor uses odd ones, and
vice versa.

Thus, Vz4(P (x4, x5) — Jxe(P (24, x6) AJxg (P (26, 18) A S(28)))) is translated
into Vo (P (x2, 1) — Jz1(P (22, 1) A 3xe(P(x1, 22) A S(22)))).

4 Optimization

While constructing a model, especially when branching, several heuristics can be
used to improve the performance. Again, these were taken from FaCT [Hor97].

Dependency Directed Backtracking Dependency Directed Backtracking,
or Backjumping [Hor97] modifies the way backtracking is performed after a clash.
Instead of backtracking to the most recent branching point, one goes back to
the last branching point one of the clashing formulae depends on.

To do so, every branching point is assigned a number. The formulae added to
the model are labeled with that number, and all formulae added by deterministic
expansion inherit the labels of their predecessors. This makes it possible to
determine which nondeterministic decision caused the clash.

For example, if the node n contains the formulae

Jz1(G(e,21) A (1)) (
(C(c) Vv D(c)) (2)
Va1 (G(e, 1) = (mp(@1) A (1)) (3)

—_
~

(where ¢ is a new constant of n), and the formulae are satisfied in the given
order, 1 and 3 will clash and backtracking to 2 will inevitably result in another
clash. With Backjumping, the decision for 2 receives the number 1 (because it
is the first branching point), and C(c) is labeled with {1}. The labels of the
clashing formulae are &, and therefore the algorithm does not add D(c) to n,
but it backtracks immediately to the next upper (in this case: top) level and
fails.

To maximize the efficiency of Backjumping, whenever deciding which formula
to expand next, the one with the earliest Backjumping identifier is chosen.

Semantic Branching When trying to satisfy the formula ¢ V y, the model
constructed so far is copied, and ¢ is added to the first copy. If this results in
a clash, instead of x, —¢ is added to the second copy (which later also leads
to adding x). This can improve the performance because information already



gathered is not lost: the information that ¢ is unsatisfiable within the model is
added to the other copy.

However, in a naive implementation Semantic Branching can degrade per-
formance, e.g. when ¢ is Vo (G(z,y) — x()): —¢ translates into Iz(G(x,y) A
—x(z)). This leads to the construction of a new node and possibly more if y is
complex. Therefore, the formula on which to branch is selected by the branching
heuristics MOMS' or Mazximize-Jump described below.

Local Simplification and Boolean Constraint Propagation Branching
on a formula whose negation is already member of a node leads to an immediate
clash and wasted time for copying the model. Therefore, only open formulae,
i.e. formulae which so far are neither true nor false within the corresponding
node, are selected for branching.

In particular, if all alternatives but one would cause a clash, the remain-
ing one is deterministically added to the model (Boolean Constraint Propaga-
tion, BCP). For example, if a node contains the predicates C'(c) and =D(c), no
branching is performed for the formula \/(=C(c), D(¢c), E(c)), but simply E(c)
is added. Before branching, all disjunctions are checked for BCP applicability
to delay branching as much as possible.

Branching heuristics For finding the next formula to branch on, several
heuristics were used. The first one is called MOMS, which stands for “Maximum
number of Occurrences in disjunctions of Minimum Size” [Fre95]. It works by
counting the positive and negated appearances of all sub-formulae appearing in
minimum-size disjunctions. It then chooses the formula ¢ with the largest count
and adds ¢ and —¢ to the copies of the model. If the count of ¢ was larger than
that of =y, it adds —p to the first copy, otherwise it adds ¢. This reduces the
size of the remaining disjunctions and therefore maximizes the effect of Local
Simplification and BCP.

But since MOMS checks the more constrained model first, the first alter-
native is more likely to fail, and therefore it may lead to additional overhead
for copying a model, detecting a clash and afterwards continuing with the less
constrained alternative. To test this hypothesis, we also ran the benchmark with
an “inverted” MOMS algorithm which adds ¢ and —¢ in the opposite order.

Horrocks et al. observed [HST00] that MOMS does not work well together
with Backjumping because the most constrained formula is not necessarily the
one leading to the furthest backjump. Therefore, we also tried another heuris-
tic: Mazimize-Jump chooses the first alternative of the formula for which the
maximum Backjumping identifier is minimal to improve the efficiency of Back-
jumping.



5 Empirical Results

To test the efficiency of our implementation, we used the Logics Workbench
benchmark formulae [BHS00], which were also applied on the TABLEAUX 98
[dS98] conference. This benchmark suite consists of nine sets of formulae named
k_branch, k_d/, etc. in provable (_p) and not provable (_n) variants and different
complexity levels (1-21). The efficiency of a solver is indicated by the most
complex formula it can solve in less than 100 seconds.

Since GF1~ is not a prover, we tested if the negation of the given formula
was satisfiable.

Comparison of heuristics To get a clearer overview on the efficiency of the
different optimizations, we do not give the results for every single formula set,
but the sum of all formulae that could be solved. The results for different
combinations of heuristics are shown in table 1. “Y” in a column means that
the corresponding heuristic was enabled. The numbers in brackets stand for
“inverted” MOMS as described in section 4.

Syntactic Simpl. | Backjumping | Sem. Br. and BCP | MOMS by
47

Y 97

Y Y 137

Y Y Y (150) 129

Y Y 132

Y Y Y 178

Y Y Y Y (183) 143

Table 1: Performance with different heuristics

Not all combinations are shown because MOMS requires Semantic Branching
(it adds ¢ and —p to the models), and Syntactic Simplification takes too little
time itself to expect a speedup if it is disabled.

The results show that Backjumping and Semantic Branching are very effi-
cient by themselves, and that they work well together. On the opposite, MOMS
slows down the solver independent of the presence of backjumping. With in-
verted MOMS, this effect is cancelled out, which shows that for GF1~, the
bad performance is caused by the copying overhead rather than the interaction
with backjumping. The most efficient branching heuristic also depends on the
particular formula.

Comparison with other solvers Since our GF 1~ implementation uses many
of the FaCT heuristics, we compared it with FaCT and two other optimized



solvers, KSAT and DLP. The results are shown in table 2. However, these
results are preliminary because we did not re-run the benchmark for the other
solvers, but we used results presented in [HPS98|, which were produced on a
different platform. We did so because our intention was not to “beat” the other
solvers, but to find out if our GF 1~ -implementation scales well, i.e. if it offers a
comparable performance on formulae which are written in a logic less expressive
than GF1.

As the formulae themselves are not tailored for GF1~, we have some over-
head: one of the time-consuming factors is the permission of inverse roles (see
section 2), which leads to the necessity of copying the whole model when branch-
ing. For the logic K, it would be sufficient after a clash to backtrack to the non-
deterministic decision that caused the clash, delete the subtree constructed and
start a new one with another alternative. Because the “t4p” formulae contain
many disjunctions, we think that this overhead is the reason why the perfor-
mance for this formula is so poor. But this is the only one of the benchmark
formulae for which GF17 is significantly slower than the other solvers.

GF1~ branching performance might be improved if the model was not copied,
but the changes resulting from a nondeterministic decision were marked in some
way such that they could be reverted after a clash. This is subject to further
study.

GF1~ || FaCT DLP KSAT
Formula pl n|| p| n| p| n| p| n
k_branch_ | 10| 6| 6| 4| 19]|13]| 8| 8
k_d4_ 51 3|21 82121 8| 5
k_dum_ 911421 |21 (2121|1121
k_grz_ 21121 |21 |21 21|21 || 17|21
k lin_ 21121 |21 (21|21 |21 ||21| 3
k_path_ 51 3| 7] 621121 4| 8
k_ph_ 6 9 6| 7| 7] 9 5| 5
k_poly_ 171 8|21 (2121|2113 |12
k_tdp_ 20 2| 21|21 |21 (21 10|18

Table 2: Results for GF1~ and other solvers

Platforms: GF17: Hardware: Pentium IT1-450, 256 MB. Software: Linux,
Allegro Common Lisp 5.0, compiled. DLP: 150 MHz Ross RT626 CPU, 132
MB. Software: SML-NJ compiler, version 109.32, compiled. FaCT and KSAT:
Hardware: SUN Ultra 1 (147 MHz), 32 MB. Software: Solaris, Allegro CL 4.3,
compiled.

To obtain results for a more expressive logic allowing for inverse roles, we
also ran GF1~ with the “modal QBF with inverse” set of the TANCS 2000 [tan]



benchmark formulae. It consists of groups of eight random generated formulae
which are characterized by the number of clauses and variables they contain,
and by their modal depth. The results for some of the easy groups (p-qbf-inv-
enfSSS-K4-Cz-Vy-Dz) are given in table 3. It shows for every group (indicated
by its z, y, and z values) the number of formulae found to be satisfiable or
unsatisfiable (#), the median of the calculation times (Med, in seconds), and
the number of timeouts (T) and memory failures (M).

The second column shows the results of SHZQ, which extends FaCT with
inverse roles. They were taken from [Hor00].

GF1~ SHIQ

Formula Sat Unsat Fail Sat Unsat Fail

C-V-D # Med || # Med | T | M || # Med || # Med | T | M
10-4-4 8| 10.88 | 0 -0 O} 2] 11.19| 0O -1 0] 6
20-4-4 5| 2440 2 (15133 | 1| O 1| 36.43| 2| 7037] 0| 5
30-4-4 2120979 || 4(142.02 | 2| O 111248 | 1[27513| 0| 6
40-4-4 0 - || 81188.78 1| 0| O O -l 5117697 0| 3
50-4-4 0 -l 8126328 0 O O -l 8 1123 0| O

Table 3: TANCS results for GF1~ and SHZQ

Platforms: GF17: as above; timeout: 600 sec. SHZQ: Hardware: Pentium
I11-450, 128 MB and Celeron-433, 256 MB. Software: Linux, Allegro Common
Lisp, compiled; timeout: 600 sec.

In contrast to the Logics Workbench formulae, GF17 is in most cases more
efficient than SHZ Q. This demonstrates that the overhead caused by the pos-
sibility of inverse roles at least partially explains the inferior performance for K
formulae.

6 Conclusion

In this paper we presented implementation details and empirical results for an
algorithm deciding GF 1~ -satisfiability. It was shown that Syntactic Simplifica-
tion, Semantic Branching and Backjumping significantly improve performance,
while MOMS leads to additional overhead for trying the more constrained model
first. Inverted MOMS leads to slightly improved performance in contrast to
Maximize-Backjump, but its efficiency depends on the structure of the formula
under consideration.

The overall performance in comparison with other systems is satisfactory for
K, which contains only a small subset of GF 17, and good for the more expressive
logic “modal QBF with inverse roles”.
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