
Implementing the n-ary Des
ription Logi
 GF1

�

Jan Hladik

LuFG Theoreti
al Computer S
ien
e, RWTH Aa
hen, Germany

email: jan�
antor.informatik.rwth-aa
hen.de

1 Introdu
tion

GF1

�

is a de
idable des
ription logi
 allowing for n-ary relations. It was intro-

du
ed in [LST99℄ along with a tableau algorithm de
iding GF1

�

-satis�ability in

PSpa
e. In this paper, the implementation of this algorithm, the modi�
ations

and optimizations used, and some empiri
al results are des
ribed.

2 Preliminaries

In the following, upper
ase letters stand for relations, lower
ase letters
; d; : : :

for
onstants, and v; w; x; : : : for variables. x denotes a non-empty variable

ve
tor, '; �; : : :
losed formulae, '(x) a formula with free variables x. '(

x

)

means the formula ' with all o

urren
es of x repla
ed with
, and '(

x

) is

de�ned a

ordingly.

GF1

�

syntax and semanti
s The Guarded Fragment 1 as des
ribed in

[ANvB98℄ restri
ts First Order Predi
ate Logi
 by allowing quanti�ers to ap-

pear only in formulae of the kind:

8x(G(x; y)! '(x)) or 9x(G(x; y) ^ '(x))

where G must be an atom and is
alled the guard of the formula.

GF1

�

imposes the further restri
tion that for every predi
ate P with arity n

there is a \grouping" (i; j) of its parameters su
h that n = i + j (written as

P

(i;j)

), x is of length i or j, y is of the remaining length, and x and y do not

share any variables, i.e.

Qx(G

(i;j)

(x; y)) Æ '(x) or Qx(G

(j;i)

(y; x)) Æ '(x)

where length(x) = i, Q 2 f8; 9g, and Æ is either ^ or !, depending on the

quanti�er.

The semanti
s for GF1

�

is de�ned just like for standard �rst order logi
.

A tableau-based algorithm for GF1

�

The tableau algorithm de
iding GF1

�

-

satis�ability [LST99℄ is similar to the ALCI algorithm [Spa93℄. It �rst repla
es

all free variables in a given formula with
onstants. These
onstants are added

to the root node of the model. Then, de Morgan's laws are used to transform

the formula into Negation Normal Form (NNF) by pushing negation inwards

su
h that it only o

urs in front of predi
ates. This way, we only need rules for

four kinds of formulae:

� ' ^ �: ' and � are added to the node.

� ' _ �: a nondeterministi

hoi
e is made between adding ' or �.

� 9x(G(d; x) ^ '(x)), where d
onsists of
onstants of the
urrent node: the

variables in x are repla
ed with new
onstants
. A new node is
reated

with
onstants
 and the formula '(

x

). The edge
onne
ting the nodes is

labeled with G(d;
).

� 8x(G(d; x)! '(x)), d as above: all formulae of the
urrent node and the

guards
onne
ting it with its father and sons are
he
ked for mat
hing

G(d; x). For every mat
h G(d;

x

), '(

x

) is added to the
orresponding

node.

Rules are only appli
able if the formulae they would add are not yet a member

of the
orresponding node. A
lash means that a node
ontains a formula and

its negation. A formula is satis�able i� the model
onstru
ted by this algorithm

does not
ontain a
lash and no rule is appli
able.

In [LST99℄, the proof is given that this algorithm terminates and
an be

implemented in PSpa
e using a reset-restart me
hanism to avoid having to

keep the whole model tree in memory at the same time.

For example, a tree representing a model for the formula

9v(R(v; x) ^D(v))^

9(y; z)(P (x; y; z) ^ C(y) ^ 9(v; w)(P (z; v; w)^ C(v) ^D(w)))

is displayed in Figure 1: the free variable x is repla
ed with the
onstant
, whi
h

be
omes a member of the root node. Both sub-formulae of the
onjun
tion are

added to the node by the �rst rule. Then, the 9-formulae are satis�ed by the

third rule, repla
ing v with h and y; z with d; e. After
reating the next node,

no more rules are appli
able.

Implementation To implement this theoreti
al algorithm, several problems

have to be dealt with:

Constants: d, e

Constraints: C(d)

Constants: c

Constraints: none

Constants: h

Constraints: D(h)

Constants: f, g

Constraints: C(f), D(g)

Guard: P(c,d,e)

Guard: P(e,f,g)

Guard: R(h,c)

Figure 1: Example model tree for GF1

�

.

Nondeterminism To test the satis�ability of a _-formula, both alternatives

have to be
he
ked. But sin
e GF1

�

allows for the n-ary
omplement of

inverse roles, and therefore a formula in a node
an modify this node's

prede
essor, the whole model is
opied before making a nondeterministi

de
ision. Then, one alternative is added to the
opy and the other one is

added to the original model (Bran
hing). Be
ause bran
hing is expensive

regarding both time and spa
e, it has to be delayed if possible, and it is

important to make a good de
ision about whi
h alternative to test �rst.

Variables Sin
e the GF1

�

syntax
ontains variables, it is possible for one single

formula to appear in synta
ti
ally di�erent forms, e.g. 8x

1

(G(
; x

1

) !

'(x

1

)) and 8x

5

(G(
; x

5

) ! '(x

5

)). To be eÆ
ient, it is important to

dete
t the (semanti
) equality between these formulae and a
ontradi
tion

like (8x

1

(G(
; x

1

)! '(x

1

))) ^ :(8x

5

(G(
; x

5

)! '(x

5

))).

Spa
e vs. time eÆ
ien
y A reset-restart algorithm
onsumes time to gain

spa
e eÆ
ien
y. Sin
e for an implementation time eÆ
ien
y is the most

important fa
tor, the algorithm will in fa
t keep the whole model in mem-

ory.

Negation normal form NNF is not helpful for GF1

�

sin
e it translates the

obviously
ontradi
tory formula ('_�)^:('_�) to ('_�)^ (:'^:�),

preventing the unsatis�ability from being dete
ted immediately. The e�e
t

on 8- and 9-formulae is similar.

3 Synta
ti
 Prepro
essing

To prevent the algorithm from trying to
onstru
t models for \obviously"
on-

tradi
tory formulae, several te
hniques were implemented to prepro
ess the for-

mula. Most of these, in parti
ular Early Clash Dete
tion, Lazy Unfolding, Nor-

malization and En
oding, are des
ribed in [Hor97℄, implemented in FaCT, and

were adapted to GF1

�

.

En
oding, Lazy Unfolding and Early Clash Dete
tion Ea
h formula

is assigned a natural number (En
oding), and as long as it a sub-formula of a

surrounding formula, it is only represented by this number (Lazy Unfolding). A

positive formula re
eives an even number, and its negation re
eives the su

eed-

ing odd number. Thus, ' ^ :' is en
oded as 2 ^ 3, whi
h makes it possible to

dete
t the
ontradi
tion immediately, even if ' itself is
omplex (Early Clash

Dete
tion, ECD). To en
ode and de
ode eÆ
iently, formulae are mapped to

numbers using a hash table, and numbers are mapped to formulae using an

array.

Normal form For reasons explained in se
tion 2, instead of NNF a normal

form is used whi
h allows negation of
omplex formulae, but only needs the

jun
tors : and ^ and the quanti�er 8. This way, the formula ('^�)^(:'_:�)

is translated to (' ^ �) ^ :(' ^ �), whi
h ECD will identify as a
ontradi
tion.

Hierar
hi
al ^-formulae, (e.g. (' ^ �) ^ (: ^ (:' ^ !))) are transformed

to n-ary one-level formulae (

V

('; �;: ;:'; !)). The sub-formulae are rep-

resented by their
ode numbers (

V

(2; 4; 7; 3; 8)), whi
h are sorted numeri
ally

(

V

(2; 3; 4; 7; 8)). Thus, every sub-formula only has to be
ompared to the sub-

sequent one to dete
t a
ontradi
tion (between 2 and 3, but not between 7 and

8). Negated ^-formulae, whi
h stand for _-formulae, are treated the same way

to dete
t a tautology.

Synta
ti
 Simpli�
ation Formulae
ontaining redundant information are

simpli�ed a

ording to the rules

' ^ ' = ' ' ^ > = '

' ^ ? = ? 8x(G(x; y)! >) = >

and the dual rules for 9 and _.

Variable normalization To avoid redundan
y
aused by separately
he
king

formulae whi
h di�er only in their variable names (see se
tion 2), variables are

normalized to start with the smallest possible number. But we need several

lasses of nodes
ontaining only variables reserved for their
lass to prevent

ambiguity between variables quanti�ed within sub-formulae. As every
onstraint

ontains variables from at most two nodes (ea
h
onstraint is uni - or bi-node

[LST99℄), two sets are suÆ
ient: for the root node, odd variable indi
es are

used, and every node uses even numbers if its prede
essor uses odd ones, and

vi
e versa.

Thus, 8x

4

(P (x

4

; x

5

)! 9x

6

(P (x

4

; x

6

)^9x

8

(P (x

6

; x

8

)^S(x

8

)))) is translated

into 8x

2

(P (x

2

; x

1

)! 9x

1

(P (x

2

; x

1

) ^ 9x

2

(P (x

1

; x

2

) ^ S(x

2

)))).

4 Optimization

While
onstru
ting a model, espe
ially when bran
hing, several heuristi
s
an be

used to improve the performan
e. Again, these were taken from FaCT [Hor97℄.

Dependen
y Dire
ted Ba
ktra
king Dependen
y Dire
ted Ba
ktra
king,

or Ba
kjumping [Hor97℄ modi�es the way ba
ktra
king is performed after a
lash.

Instead of ba
ktra
king to the most re
ent bran
hing point, one goes ba
k to

the last bran
hing point one of the
lashing formulae depends on.

To do so, every bran
hing point is assigned a number. The formulae added to

the model are labeled with that number, and all formulae added by deterministi

expansion inherit the labels of their prede
essors. This makes it possible to

determine whi
h nondeterministi
 de
ision
aused the
lash.

For example, if the node n
ontains the formulae

9x

1

(G(
; x

1

) ^ '(x

1

)) (1)

(C(
) _D(
)) (2)

8x

1

(G(
; x

1

)! (:'(x

1

) ^ (x

1

))) (3)

(where
 is a new
onstant of n), and the formulae are satis�ed in the given

order, 1 and 3 will
lash and ba
ktra
king to 2 will inevitably result in another

lash. With Ba
kjumping, the de
ision for 2 re
eives the number 1 (be
ause it

is the �rst bran
hing point), and C(
) is labeled with f1g. The labels of the

lashing formulae are ?, and therefore the algorithm does not add D(
) to n,

but it ba
ktra
ks immediately to the next upper (in this
ase: top) level and

fails.

To maximize the eÆ
ien
y of Ba
kjumping, whenever de
iding whi
h formula

to expand next, the one with the earliest Ba
kjumping identi�er is
hosen.

Semanti
 Bran
hing When trying to satisfy the formula ' _ �, the model

onstru
ted so far is
opied, and ' is added to the �rst
opy. If this results in

a
lash, instead of �, :' is added to the se
ond
opy (whi
h later also leads

to adding �). This
an improve the performan
e be
ause information already

gathered is not lost: the information that ' is unsatis�able within the model is

added to the other
opy.

However, in a naive implementation Semanti
 Bran
hing
an degrade per-

forman
e, e.g. when ' is 8x(G(x; y) ! �(x)): :' translates into 9x(G(x; y) ^

:�(x)). This leads to the
onstru
tion of a new node and possibly more if � is

omplex. Therefore, the formula on whi
h to bran
h is sele
ted by the bran
hing

heuristi
s MOMS or Maximize-Jump des
ribed below.

Lo
al Simpli�
ation and Boolean Constraint Propagation Bran
hing

on a formula whose negation is already member of a node leads to an immediate

lash and wasted time for
opying the model. Therefore, only open formulae,

i.e. formulae whi
h so far are neither true nor false within the
orresponding

node, are sele
ted for bran
hing.

In parti
ular, if all alternatives but one would
ause a
lash, the remain-

ing one is deterministi
ally added to the model (Boolean Constraint Propaga-

tion, BCP). For example, if a node
ontains the predi
ates C(
) and :D(
), no

bran
hing is performed for the formula

W

(:C(
); D(
); E(
)), but simply E(
)

is added. Before bran
hing, all disjun
tions are
he
ked for BCP appli
ability

to delay bran
hing as mu
h as possible.

Bran
hing heuristi
s For �nding the next formula to bran
h on, several

heuristi
s were used. The �rst one is
alledMOMS, whi
h stands for \Maximum

number of O

urren
es in disjun
tions of Minimum Size" [Fre95℄. It works by

ounting the positive and negated appearan
es of all sub-formulae appearing in

minimum-size disjun
tions. It then
hooses the formula ' with the largest
ount

and adds ' and :' to the
opies of the model. If the
ount of ' was larger than

that of :', it adds :' to the �rst
opy, otherwise it adds '. This redu
es the

size of the remaining disjun
tions and therefore maximizes the e�e
t of Lo
al

Simpli�
ation and BCP.

But sin
e MOMS
he
ks the more
onstrained model �rst, the �rst alter-

native is more likely to fail, and therefore it may lead to additional overhead

for
opying a model, dete
ting a
lash and afterwards
ontinuing with the less

onstrained alternative. To test this hypothesis, we also ran the ben
hmark with

an \inverted" MOMS algorithm whi
h adds ' and :' in the opposite order.

Horro
ks et al. observed [HST00℄ that MOMS does not work well together

with Ba
kjumping be
ause the most
onstrained formula is not ne
essarily the

one leading to the furthest ba
kjump. Therefore, we also tried another heuris-

ti
: Maximize-Jump
hooses the �rst alternative of the formula for whi
h the

maximum Ba
kjumping identi�er is minimal to improve the eÆ
ien
y of Ba
k-

jumping.

5 Empiri
al Results

To test the eÆ
ien
y of our implementation, we used the Logi
s Workben
h

ben
hmark formulae [BHS00℄, whi
h were also applied on the TABLEAUX '98

[dS98℄
onferen
e. This ben
hmark suite
onsists of nine sets of formulae named

k bran
h, k d4, et
. in provable (p) and not provable (n) variants and di�erent

omplexity levels (1{21). The eÆ
ien
y of a solver is indi
ated by the most

omplex formula it
an solve in less than 100 se
onds.

Sin
e GF1

�

is not a prover, we tested if the negation of the given formula

was satis�able.

Comparison of heuristi
s To get a
learer overview on the eÆ
ien
y of the

di�erent optimizations, we do not give the results for every single formula set,

but the sum of all formulae that
ould be solved. The results for di�erent

ombinations of heuristi
s are shown in table 1. \Y" in a
olumn means that

the
orresponding heuristi
 was enabled. The numbers in bra
kets stand for

\inverted" MOMS as des
ribed in se
tion 4.

Synta
ti
 Simpl. Ba
kjumping Sem. Br. and BCP MOMS �

47

Y 97

Y Y 137

Y Y Y (150) 129

Y Y 132

Y Y Y 178

Y Y Y Y (183) 143

Table 1: Performan
e with di�erent heuristi
s

Not all
ombinations are shown be
ause MOMS requires Semanti
 Bran
hing

(it adds ' and :' to the models), and Synta
ti
 Simpli�
ation takes too little

time itself to expe
t a speedup if it is disabled.

The results show that Ba
kjumping and Semanti
 Bran
hing are very eÆ-

ient by themselves, and that they work well together. On the opposite, MOMS

slows down the solver independent of the presen
e of ba
kjumping. With in-

verted MOMS, this e�e
t is
an
elled out, whi
h shows that for GF1

�

, the

bad performan
e is
aused by the
opying overhead rather than the intera
tion

with ba
kjumping. The most eÆ
ient bran
hing heuristi
 also depends on the

parti
ular formula.

Comparison with other solvers Sin
e our GF1

�

implementation uses many

of the FaCT heuristi
s, we
ompared it with FaCT and two other optimized

solvers, KSAT and DLP. The results are shown in table 2. However, these

results are preliminary be
ause we did not re-run the ben
hmark for the other

solvers, but we used results presented in [HPS98℄, whi
h were produ
ed on a

di�erent platform. We did so be
ause our intention was not to \beat" the other

solvers, but to �nd out if our GF1

�

-implementation s
ales well, i.e. if it o�ers a

omparable performan
e on formulae whi
h are written in a logi
 less expressive

than GF1

�

.

As the formulae themselves are not tailored for GF1

�

, we have some over-

head: one of the time-
onsuming fa
tors is the permission of inverse roles (see

se
tion 2), whi
h leads to the ne
essity of
opying the whole model when bran
h-

ing. For the logi
K, it would be suÆ
ient after a
lash to ba
ktra
k to the non-

deterministi
 de
ision that
aused the
lash, delete the subtree
onstru
ted and

start a new one with another alternative. Be
ause the \t4p" formulae
ontain

many disjun
tions, we think that this overhead is the reason why the perfor-

man
e for this formula is so poor. But this is the only one of the ben
hmark

formulae for whi
h GF1

�

is signi�
antly slower than the other solvers.

GF1

�

bran
hing performan
e might be improved if the model was not
opied,

but the
hanges resulting from a nondeterministi
 de
ision were marked in some

way su
h that they
ould be reverted after a
lash. This is subje
t to further

study.

GF1

�

FaCT DLP KSAT

Formula p n p n p n p n

k bran
h 10 6 6 4 19 13 8 8

k d4 5 3 21 8 21 21 8 5

k dum 9 14 21 21 21 21 11 21

k grz 21 21 21 21 21 21 17 21

k lin 21 21 21 21 21 21 21 3

k path 5 3 7 6 21 21 4 8

k ph 6 9 6 7 7 9 5 5

k poly 17 8 21 21 21 21 13 12

k t4p 2 2 21 21 21 21 10 18

Table 2: Results for GF1

�

and other solvers

Platforms: GF1

�

: Hardware: Pentium III-450, 256 MB. Software: Linux,

Allegro Common Lisp 5.0,
ompiled. DLP: 150 MHz Ross RT626 CPU, 132

MB. Software: SML-NJ
ompiler, version 109.32,
ompiled. FaCT and KSAT:

Hardware: SUN Ultra 1 (147 MHz), 32 MB. Software: Solaris, Allegro CL 4.3,

ompiled.

To obtain results for a more expressive logi
 allowing for inverse roles, we

also ran GF1

�

with the \modal QBF with inverse" set of the TANCS 2000 [tan℄

ben
hmark formulae. It
onsists of groups of eight random generated formulae

whi
h are
hara
terized by the number of
lauses and variables they
ontain,

and by their modal depth. The results for some of the easy groups (p-qbf-inv-

nfSSS-K4-Cx-Vy-Dz) are given in table 3. It shows for every group (indi
ated

by its x, y, and z values) the number of formulae found to be satis�able or

unsatis�able (#), the median of the
al
ulation times (Med, in se
onds), and

the number of timeouts (T) and memory failures (M).

The se
ond
olumn shows the results of SHIQ, whi
h extends FaCT with

inverse roles. They were taken from [Hor00℄.

GF1

�

SHIQ

Formula Sat Unsat Fail Sat Unsat Fail

C-V-D # Med # Med T M # Med # Med T M

10-4-4 8 10.88 0 - 0 0 2 11.19 0 - 0 6

20-4-4 5 24.40 2 151.33 1 0 1 36.43 2 70.37 0 5

30-4-4 2 209.79 4 142.02 2 0 1 112.48 1 275.13 0 6

40-4-4 0 - 8 188.78 0 0 0 - 5 176.97 0 3

50-4-4 0 - 8 263.28 0 0 0 - 8 11.23 0 0

Table 3: TANCS results for GF1

�

and SHIQ

Platforms: GF1

�

: as above; timeout: 600 se
. SHIQ: Hardware: Pentium

III-450, 128 MB and Celeron-433, 256 MB. Software: Linux, Allegro Common

Lisp,
ompiled; timeout: 600 se
.

In
ontrast to the Logi
s Workben
h formulae, GF1

�

is in most
ases more

eÆ
ient than SHIQ. This demonstrates that the overhead
aused by the pos-

sibility of inverse roles at least partially explains the inferior performan
e for K

formulae.

6 Con
lusion

In this paper we presented implementation details and empiri
al results for an

algorithm de
iding GF1

�

-satis�ability. It was shown that Synta
ti
 Simpli�
a-

tion, Semanti
 Bran
hing and Ba
kjumping signi�
antly improve performan
e,

while MOMS leads to additional overhead for trying the more
onstrained model

�rst. Inverted MOMS leads to slightly improved performan
e in
ontrast to

Maximize-Ba
kjump, but its eÆ
ien
y depends on the stru
ture of the formula

under
onsideration.

The overall performan
e in
omparison with other systems is satisfa
tory for

K, whi
h
ontains only a small subset of GF1

�

, and good for the more expressive

logi
 \modal QBF with inverse roles".

Referen
es

[ANvB98℄ H. Andr�eka, I. N�emeti, and J. van Benthem. Modal logi
 and

bounded fragments of predi
ate logi
. Journal of Philosophi
al Logi
,

27(3):217{274, 1998.

[BHS00℄ P. Balsiger, A. Heuerding, and S. S
hwendimann. A ben
hmark

method for the propositional modal logi
s K, KT, S4. Journal of

Automated Reasoning, 24(3):297{317, April 2000.

[dS98℄ H. de Swart, editor. Automated Reasoning with Analyti
 Tableaux

and Related Methods, number 1397 in Le
ture Notes in Arti�
ial In-

telligen
e, Oisterwijk, Netherlands, May 1998. Springer-Verlag.

[Fre95℄ J. W. Freeman. Improvements to propositional satis�ability sear
h

algorithms. PhD thesis, Department of Computer and Information

S
ien
e, University of Pennsylvania, Philadelphia, PA, USA, 1995.

[Hor97℄ I. Horro
ks. Optimising Tableaux De
ision Pro
edures for Des
ription

Logi
s. PhD thesis, University of Man
hester, 1997.

[Hor00℄ I. Horro
ks. Ben
hmark analysis with FaCT. In Pro
eedings of

Tableaux 2000, 2000. to appear.

[HPS98℄ I. Horro
ks and P. F. Patel-S
hneider. FaCT and DLP. In Automated

Reasoning with Analyti
 Tableaux and Related Methods, pages 27{30,

1998.

[HST00℄ I. Horro
ks, U. Sattler, and S. Tobies. Pra
ti
al reasoning for very

expressive des
ription logi
s. Logi
 Journal of the IGPL, 8(3):239{

264, May 2000.

[LST99℄ C. Lutz, U. Sattler, and S. Tobies. A suggestion for an n-ary des
rip-

tion logi
. In P. Lambrix, A. Borgida, M. Lenzerini, R. M�oller, and

P. Patel-S
hneider, editors, Pro
eedings of the International Work-

shop on Des
ription Logi
s, pages 81{85. Link�oping University, 1999.

Pro
eedings online available from http://sunsite.informatik.rwth-

aa
hen.de/publi
ations/
eur-ws/vol-22/.

[Spa93℄ Edith Spaan. The
omplexity of propositional tense logi
s. In

Maarten de Rijke, editor, Diamonds and Defaults, pages 287{307.

Kluwer A
ademi
 Publishers, Dordre
ht, 1993.

[tan℄ TANCS (tableaux non
lassi
al systems
omparison) for the

TABLEAUX 2000
onferen
e

URL: http://www.dis.uniroma1.it/�tan
s/.

