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1 Introdution

GF1

�

is a deidable desription logi allowing for n-ary relations. It was intro-

dued in [LST99℄ along with a tableau algorithm deiding GF1

�

-satis�ability in

PSpae. In this paper, the implementation of this algorithm, the modi�ations

and optimizations used, and some empirial results are desribed.

2 Preliminaries

In the following, upper ase letters stand for relations, lower ase letters ; d; : : :

for onstants, and v; w; x; : : : for variables. x denotes a non-empty variable

vetor, '; �; : : : losed formulae, '(x) a formula with free variables x. '(

x



)

means the formula ' with all ourrenes of x replaed with , and '(

x



) is

de�ned aordingly.

GF1

�

syntax and semantis The Guarded Fragment 1 as desribed in

[ANvB98℄ restrits First Order Prediate Logi by allowing quanti�ers to ap-

pear only in formulae of the kind:

8x(G(x; y)! '(x)) or 9x(G(x; y) ^ '(x))

where G must be an atom and is alled the guard of the formula.

GF1

�

imposes the further restrition that for every prediate P with arity n

there is a \grouping" (i; j) of its parameters suh that n = i + j (written as

P

(i;j)

), x is of length i or j, y is of the remaining length, and x and y do not

share any variables, i.e.

Qx(G

(i;j)

(x; y)) Æ '(x) or Qx(G

(j;i)

(y; x)) Æ '(x)

where length(x) = i, Q 2 f8; 9g, and Æ is either ^ or !, depending on the

quanti�er.

The semantis for GF1

�

is de�ned just like for standard �rst order logi.



A tableau-based algorithm for GF1

�

The tableau algorithm deiding GF1

�

-

satis�ability [LST99℄ is similar to the ALCI algorithm [Spa93℄. It �rst replaes

all free variables in a given formula with onstants. These onstants are added

to the root node of the model. Then, de Morgan's laws are used to transform

the formula into Negation Normal Form (NNF) by pushing negation inwards

suh that it only ours in front of prediates. This way, we only need rules for

four kinds of formulae:

� ' ^ �: ' and � are added to the node.

� ' _ �: a nondeterministi hoie is made between adding ' or �.

� 9x(G(d; x) ^ '(x)), where d onsists of onstants of the urrent node: the

variables in x are replaed with new onstants . A new node is reated

with onstants  and the formula '(

x



). The edge onneting the nodes is

labeled with G(d; ).

� 8x(G(d; x)! '(x)), d as above: all formulae of the urrent node and the

guards onneting it with its father and sons are heked for mathing

G(d; x). For every math G(d;

x



), '(

x



) is added to the orresponding

node.

Rules are only appliable if the formulae they would add are not yet a member

of the orresponding node. A lash means that a node ontains a formula and

its negation. A formula is satis�able i� the model onstruted by this algorithm

does not ontain a lash and no rule is appliable.

In [LST99℄, the proof is given that this algorithm terminates and an be

implemented in PSpae using a reset-restart mehanism to avoid having to

keep the whole model tree in memory at the same time.

For example, a tree representing a model for the formula

9v(R(v; x) ^D(v))^

9(y; z)(P (x; y; z) ^ C(y) ^ 9(v; w)(P (z; v; w)^ C(v) ^D(w)))

is displayed in Figure 1: the free variable x is replaed with the onstant , whih

beomes a member of the root node. Both sub-formulae of the onjuntion are

added to the node by the �rst rule. Then, the 9-formulae are satis�ed by the

third rule, replaing v with h and y; z with d; e. After reating the next node,

no more rules are appliable.

Implementation To implement this theoretial algorithm, several problems

have to be dealt with:



Constants: d, e

Constraints: C(d)

Constants: c

Constraints: none

Constants: h

Constraints: D(h)

Constants: f, g

Constraints: C(f), D(g)

Guard: P(c,d,e)

Guard: P(e,f,g)

Guard: R(h,c)

Figure 1: Example model tree for GF1

�

.

Nondeterminism To test the satis�ability of a _-formula, both alternatives

have to be heked. But sine GF1

�

allows for the n-ary omplement of

inverse roles, and therefore a formula in a node an modify this node's

predeessor, the whole model is opied before making a nondeterministi

deision. Then, one alternative is added to the opy and the other one is

added to the original model (Branhing). Beause branhing is expensive

regarding both time and spae, it has to be delayed if possible, and it is

important to make a good deision about whih alternative to test �rst.

Variables Sine the GF1

�

syntax ontains variables, it is possible for one single

formula to appear in syntatially di�erent forms, e.g. 8x

1

(G(; x

1

) !

'(x

1

)) and 8x

5

(G(; x

5

) ! '(x

5

)). To be eÆient, it is important to

detet the (semanti) equality between these formulae and a ontradition

like (8x

1

(G(; x

1

)! '(x

1

))) ^ :(8x

5

(G(; x

5

)! '(x

5

))).

Spae vs. time eÆieny A reset-restart algorithm onsumes time to gain

spae eÆieny. Sine for an implementation time eÆieny is the most

important fator, the algorithm will in fat keep the whole model in mem-

ory.

Negation normal form NNF is not helpful for GF1

�

sine it translates the

obviously ontraditory formula ('_�)^:('_�) to ('_�)^ (:'^:�),

preventing the unsatis�ability from being deteted immediately. The e�et

on 8- and 9-formulae is similar.



3 Syntati Preproessing

To prevent the algorithm from trying to onstrut models for \obviously" on-

traditory formulae, several tehniques were implemented to preproess the for-

mula. Most of these, in partiular Early Clash Detetion, Lazy Unfolding, Nor-

malization and Enoding, are desribed in [Hor97℄, implemented in FaCT, and

were adapted to GF1

�

.

Enoding, Lazy Unfolding and Early Clash Detetion Eah formula

is assigned a natural number (Enoding), and as long as it a sub-formula of a

surrounding formula, it is only represented by this number (Lazy Unfolding). A

positive formula reeives an even number, and its negation reeives the sueed-

ing odd number. Thus, ' ^ :' is enoded as 2 ^ 3, whih makes it possible to

detet the ontradition immediately, even if ' itself is omplex (Early Clash

Detetion, ECD). To enode and deode eÆiently, formulae are mapped to

numbers using a hash table, and numbers are mapped to formulae using an

array.

Normal form For reasons explained in setion 2, instead of NNF a normal

form is used whih allows negation of omplex formulae, but only needs the

juntors : and ^ and the quanti�er 8. This way, the formula ('^�)^(:'_:�)

is translated to (' ^ �) ^ :(' ^ �), whih ECD will identify as a ontradition.

Hierarhial ^-formulae, (e.g. (' ^ �) ^ (: ^ (:' ^ !))) are transformed

to n-ary one-level formulae (

V

('; �;: ;:'; !)). The sub-formulae are rep-

resented by their ode numbers (

V

(2; 4; 7; 3; 8)), whih are sorted numerially

(

V

(2; 3; 4; 7; 8)). Thus, every sub-formula only has to be ompared to the sub-

sequent one to detet a ontradition (between 2 and 3, but not between 7 and

8). Negated ^-formulae, whih stand for _-formulae, are treated the same way

to detet a tautology.

Syntati Simpli�ation Formulae ontaining redundant information are

simpli�ed aording to the rules

' ^ ' = ' ' ^ > = '

' ^ ? = ? 8x(G(x; y)! >) = >

and the dual rules for 9 and _.

Variable normalization To avoid redundany aused by separately heking

formulae whih di�er only in their variable names (see setion 2), variables are

normalized to start with the smallest possible number. But we need several

lasses of nodes ontaining only variables reserved for their lass to prevent



ambiguity between variables quanti�ed within sub-formulae. As every onstraint

ontains variables from at most two nodes (eah onstraint is uni - or bi-node

[LST99℄), two sets are suÆient: for the root node, odd variable indies are

used, and every node uses even numbers if its predeessor uses odd ones, and

vie versa.

Thus, 8x

4

(P (x

4

; x

5

)! 9x

6

(P (x

4

; x

6

)^9x

8

(P (x

6

; x

8

)^S(x

8

)))) is translated

into 8x

2

(P (x

2

; x

1

)! 9x

1

(P (x

2

; x

1

) ^ 9x

2

(P (x

1

; x

2

) ^ S(x

2

)))).

4 Optimization

While onstruting a model, espeially when branhing, several heuristis an be

used to improve the performane. Again, these were taken from FaCT [Hor97℄.

Dependeny Direted Baktraking Dependeny Direted Baktraking,

or Bakjumping [Hor97℄ modi�es the way baktraking is performed after a lash.

Instead of baktraking to the most reent branhing point, one goes bak to

the last branhing point one of the lashing formulae depends on.

To do so, every branhing point is assigned a number. The formulae added to

the model are labeled with that number, and all formulae added by deterministi

expansion inherit the labels of their predeessors. This makes it possible to

determine whih nondeterministi deision aused the lash.

For example, if the node n ontains the formulae

9x

1

(G(; x

1

) ^ '(x

1

)) (1)

(C() _D()) (2)

8x

1

(G(; x

1

)! (:'(x

1

) ^  (x

1

))) (3)

(where  is a new onstant of n), and the formulae are satis�ed in the given

order, 1 and 3 will lash and baktraking to 2 will inevitably result in another

lash. With Bakjumping, the deision for 2 reeives the number 1 (beause it

is the �rst branhing point), and C() is labeled with f1g. The labels of the

lashing formulae are ?, and therefore the algorithm does not add D() to n,

but it baktraks immediately to the next upper (in this ase: top) level and

fails.

To maximize the eÆieny of Bakjumping, whenever deiding whih formula

to expand next, the one with the earliest Bakjumping identi�er is hosen.

Semanti Branhing When trying to satisfy the formula ' _ �, the model

onstruted so far is opied, and ' is added to the �rst opy. If this results in

a lash, instead of �, :' is added to the seond opy (whih later also leads

to adding �). This an improve the performane beause information already



gathered is not lost: the information that ' is unsatis�able within the model is

added to the other opy.

However, in a naive implementation Semanti Branhing an degrade per-

formane, e.g. when ' is 8x(G(x; y) ! �(x)): :' translates into 9x(G(x; y) ^

:�(x)). This leads to the onstrution of a new node and possibly more if � is

omplex. Therefore, the formula on whih to branh is seleted by the branhing

heuristis MOMS or Maximize-Jump desribed below.

Loal Simpli�ation and Boolean Constraint Propagation Branhing

on a formula whose negation is already member of a node leads to an immediate

lash and wasted time for opying the model. Therefore, only open formulae,

i.e. formulae whih so far are neither true nor false within the orresponding

node, are seleted for branhing.

In partiular, if all alternatives but one would ause a lash, the remain-

ing one is deterministially added to the model (Boolean Constraint Propaga-

tion, BCP). For example, if a node ontains the prediates C() and :D(), no

branhing is performed for the formula

W

(:C(); D(); E()), but simply E()

is added. Before branhing, all disjuntions are heked for BCP appliability

to delay branhing as muh as possible.

Branhing heuristis For �nding the next formula to branh on, several

heuristis were used. The �rst one is alledMOMS, whih stands for \Maximum

number of Ourrenes in disjuntions of Minimum Size" [Fre95℄. It works by

ounting the positive and negated appearanes of all sub-formulae appearing in

minimum-size disjuntions. It then hooses the formula ' with the largest ount

and adds ' and :' to the opies of the model. If the ount of ' was larger than

that of :', it adds :' to the �rst opy, otherwise it adds '. This redues the

size of the remaining disjuntions and therefore maximizes the e�et of Loal

Simpli�ation and BCP.

But sine MOMS heks the more onstrained model �rst, the �rst alter-

native is more likely to fail, and therefore it may lead to additional overhead

for opying a model, deteting a lash and afterwards ontinuing with the less

onstrained alternative. To test this hypothesis, we also ran the benhmark with

an \inverted" MOMS algorithm whih adds ' and :' in the opposite order.

Horroks et al. observed [HST00℄ that MOMS does not work well together

with Bakjumping beause the most onstrained formula is not neessarily the

one leading to the furthest bakjump. Therefore, we also tried another heuris-

ti: Maximize-Jump hooses the �rst alternative of the formula for whih the

maximum Bakjumping identi�er is minimal to improve the eÆieny of Bak-

jumping.



5 Empirial Results

To test the eÆieny of our implementation, we used the Logis Workbenh

benhmark formulae [BHS00℄, whih were also applied on the TABLEAUX '98

[dS98℄ onferene. This benhmark suite onsists of nine sets of formulae named

k branh, k d4, et. in provable ( p) and not provable ( n) variants and di�erent

omplexity levels (1{21). The eÆieny of a solver is indiated by the most

omplex formula it an solve in less than 100 seonds.

Sine GF1

�

is not a prover, we tested if the negation of the given formula

was satis�able.

Comparison of heuristis To get a learer overview on the eÆieny of the

di�erent optimizations, we do not give the results for every single formula set,

but the sum of all formulae that ould be solved. The results for di�erent

ombinations of heuristis are shown in table 1. \Y" in a olumn means that

the orresponding heuristi was enabled. The numbers in brakets stand for

\inverted" MOMS as desribed in setion 4.

Syntati Simpl. Bakjumping Sem. Br. and BCP MOMS �

47

Y 97

Y Y 137

Y Y Y (150) 129

Y Y 132

Y Y Y 178

Y Y Y Y (183) 143

Table 1: Performane with di�erent heuristis

Not all ombinations are shown beause MOMS requires Semanti Branhing

(it adds ' and :' to the models), and Syntati Simpli�ation takes too little

time itself to expet a speedup if it is disabled.

The results show that Bakjumping and Semanti Branhing are very eÆ-

ient by themselves, and that they work well together. On the opposite, MOMS

slows down the solver independent of the presene of bakjumping. With in-

verted MOMS, this e�et is anelled out, whih shows that for GF1

�

, the

bad performane is aused by the opying overhead rather than the interation

with bakjumping. The most eÆient branhing heuristi also depends on the

partiular formula.

Comparison with other solvers Sine our GF1

�

implementation uses many

of the FaCT heuristis, we ompared it with FaCT and two other optimized



solvers, KSAT and DLP. The results are shown in table 2. However, these

results are preliminary beause we did not re-run the benhmark for the other

solvers, but we used results presented in [HPS98℄, whih were produed on a

di�erent platform. We did so beause our intention was not to \beat" the other

solvers, but to �nd out if our GF1

�

-implementation sales well, i.e. if it o�ers a

omparable performane on formulae whih are written in a logi less expressive

than GF1

�

.

As the formulae themselves are not tailored for GF1

�

, we have some over-

head: one of the time-onsuming fators is the permission of inverse roles (see

setion 2), whih leads to the neessity of opying the whole model when branh-

ing. For the logiK, it would be suÆient after a lash to baktrak to the non-

deterministi deision that aused the lash, delete the subtree onstruted and

start a new one with another alternative. Beause the \t4p" formulae ontain

many disjuntions, we think that this overhead is the reason why the perfor-

mane for this formula is so poor. But this is the only one of the benhmark

formulae for whih GF1

�

is signi�antly slower than the other solvers.

GF1

�

branhing performane might be improved if the model was not opied,

but the hanges resulting from a nondeterministi deision were marked in some

way suh that they ould be reverted after a lash. This is subjet to further

study.

GF1

�

FaCT DLP KSAT

Formula p n p n p n p n

k branh 10 6 6 4 19 13 8 8

k d4 5 3 21 8 21 21 8 5

k dum 9 14 21 21 21 21 11 21

k grz 21 21 21 21 21 21 17 21

k lin 21 21 21 21 21 21 21 3

k path 5 3 7 6 21 21 4 8

k ph 6 9 6 7 7 9 5 5

k poly 17 8 21 21 21 21 13 12

k t4p 2 2 21 21 21 21 10 18

Table 2: Results for GF1

�

and other solvers

Platforms: GF1

�

: Hardware: Pentium III-450, 256 MB. Software: Linux,

Allegro Common Lisp 5.0, ompiled. DLP: 150 MHz Ross RT626 CPU, 132

MB. Software: SML-NJ ompiler, version 109.32, ompiled. FaCT and KSAT:

Hardware: SUN Ultra 1 (147 MHz), 32 MB. Software: Solaris, Allegro CL 4.3,

ompiled.

To obtain results for a more expressive logi allowing for inverse roles, we

also ran GF1

�

with the \modal QBF with inverse" set of the TANCS 2000 [tan℄



benhmark formulae. It onsists of groups of eight random generated formulae

whih are haraterized by the number of lauses and variables they ontain,

and by their modal depth. The results for some of the easy groups (p-qbf-inv-

nfSSS-K4-Cx-Vy-Dz) are given in table 3. It shows for every group (indiated

by its x, y, and z values) the number of formulae found to be satis�able or

unsatis�able (#), the median of the alulation times (Med, in seonds), and

the number of timeouts (T) and memory failures (M).

The seond olumn shows the results of SHIQ, whih extends FaCT with

inverse roles. They were taken from [Hor00℄.

GF1

�

SHIQ

Formula Sat Unsat Fail Sat Unsat Fail

C-V-D # Med # Med T M # Med # Med T M

10-4-4 8 10.88 0 - 0 0 2 11.19 0 - 0 6

20-4-4 5 24.40 2 151.33 1 0 1 36.43 2 70.37 0 5

30-4-4 2 209.79 4 142.02 2 0 1 112.48 1 275.13 0 6

40-4-4 0 - 8 188.78 0 0 0 - 5 176.97 0 3

50-4-4 0 - 8 263.28 0 0 0 - 8 11.23 0 0

Table 3: TANCS results for GF1

�

and SHIQ

Platforms: GF1

�

: as above; timeout: 600 se. SHIQ: Hardware: Pentium

III-450, 128 MB and Celeron-433, 256 MB. Software: Linux, Allegro Common

Lisp, ompiled; timeout: 600 se.

In ontrast to the Logis Workbenh formulae, GF1

�

is in most ases more

eÆient than SHIQ. This demonstrates that the overhead aused by the pos-

sibility of inverse roles at least partially explains the inferior performane for K

formulae.

6 Conlusion

In this paper we presented implementation details and empirial results for an

algorithm deiding GF1

�

-satis�ability. It was shown that Syntati Simpli�a-

tion, Semanti Branhing and Bakjumping signi�antly improve performane,

while MOMS leads to additional overhead for trying the more onstrained model

�rst. Inverted MOMS leads to slightly improved performane in ontrast to

Maximize-Bakjump, but its eÆieny depends on the struture of the formula

under onsideration.

The overall performane in omparison with other systems is satisfatory for

K, whih ontains only a small subset of GF1

�

, and good for the more expressive

logi \modal QBF with inverse roles".
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